
Exercises PV 08/09

Wishnu Prasetya

December 18, 2009

CTL Model Checking

1. Imagine a simple webshop where you can buy USB sticks. To make it simple, the shop only
sell one kind of stick, and you can only buy one at a time. A typical interaction with the
shop is (deliberately underspecified):

(a) The user clicks on the button buy to buy a stick. She will then be presented with a page
specifying the price of stick, and a (secured) form where she can fill in her creditcard
data.

(b) If the user agrees, she can click ok ok. The transaction is then confirmed. Otherwise
she can cancel.

(c) She can repeat the procedure to buy more sticks.

(d) It is possible to click on help to get information on how to use the webshop.

Unfortunately, we don’t have a real implementation of this webshop, you will have to imagine
one yourself.

(a) Come up with a Kripke structure that abstractly models your imaginary webshop.
There should of course be enough detail in your Kripke so that we are able to check some
properties given later. We will assume the Donini et al’s WAG modelling framework

Answer:

In the WAG framework windows, pages, actions/links are represented by nodes. Let us
introduce the propositions W, P, A to represent each sort respectively.

Now, in my imaginary webshop, which is rather simple, every window has just one page.
So, to make the model simpler I remove the W nodes from my model. The model is
shown below.

The edge labelled by back is the transition that will happen when the user click on her
browser’s back-button.

In one property later there is a need to check on the number of completed transactions.
Rather than explicitly counting transactions I will just abstractly distinguish one com-
pleted transaction with the next one. The propositions T0 and T1 are used for this
purpose.

1



{ P, H } { A, H, buy } { P, form } { A, form, ok }

{ A, form, cancel }

{ P, confirm, T0 }

{ A, confirm, more }

{ P, H } { A, H, buy } { P, form } { A, form, ok }

{ A, form, cancel }

{ P, confirm, T1 }

{ A, confirm, more }

back backback

back

backback

(b) The following are some properties that could be part of the webshop’s specification.
Express them with LTL or CTL.

i. From any window, it should be possible to reach the help page.
Answer:

In LTL it may seems that this will capture the first property: 2(W → 3H), but
this too strong. This formula would require that all paths starting from a window
must eventually visit the help page. However, the property only requires that one
path exists. This is sufficient, as it implies that it is possible for the user to navigate
to the help page.
In CTL we can express this by AG(W → EF H).

ii. The user will not be charged double transactions if she accidentally clicks ok twice.
Answer:

This property is more difficult to capture. We can be express it indirectly by stating
that it is not possible to get from T0 to T1 (and vice versa) without clicking on the
more button. In CTL this is easy to express:

AG (T0 → ¬E(¬more U T1))

(c) D escribe how CTL model checking works, then perform it to verify the above properties.

2. Consider the following Kripke structure:

{ p } { p } { p, q }

∅

(a) Do LTL model checking to verify the LTL property 32p.

Answer:

First we construct a Buchi automaton representing ¬32p = 23¬p:

0 1

∗ p /∈

∗

We transform the given Krike structure (modelling the program to verifty) to a Buchi
automaton, because it would be easier as we later intersect it with the above specifica-
tion:

2



a b c

d

{ p }

{ p }

{ p }

{ p } ∅

{ p, q }

We furthermore label the states with a, b, c, d.

We can now construct a Buchi automaton representing the intersection of the above
two Buchis (belonging to the program and the negation of our original specification):

a, 0 b, 0 c, 0

d, 0 c, 1

{ p }

{ p }

{ p }

{ p, q }

{ p }

∅

{ p, q }

The given specification is violated if we can find a sentence accepted by the above Buchi
automaton. This is a infinite sentence which can be produced by an infinite execution
that pass through the accepting state above infinitely many times.

This is only the case if the accepting state is reachable (from the initial state), and if
it is also part of a cycle. This can be detected e.g. by a nested DFS algorithm as used
by SPIN.

In our case, the accepting state is not a part of any cycle. So, the automaton can’t
produce a counter example. Therefore, it satisfies 32p.

(b) Can the above property be expressed in CTL? How about in CTL*?

Answer: 32p can’t be expressed in CTL. We can express it in CTL* as: AFG p.

(c) Do CTL model checking to verify EF (p ∧ q).

Answer:

The algorithm works by systematically labelling the states of our program with formulas
known to hold on the corresponding states.

We first label the states with the atomic propositions that occur in our fomula. However,
we don’t have to do anything actually, because the labeling with the atomic propositions
are already given in the Kripke itself.

We now continue with the labeling with the subformula p∧q:

{ p } { p } { p, q, p ∧ q }

∅

Then the labeling with the formula EF (p ∧ q) itself. Notice that EF (p ∧ q) =
true U (p ∧ q). The labeling of such a property is done iteratively.

Iteration 1. Those states labelled with p∧ q obviously satisfy EF (p∧ q), so we add the
latter:

{ p } { p } { p, q, p∧q }, EF (p∧q)

∅

Iteration 2. Next, all states s that has an outgoing transition into a state labelled with
EF (p ∧ q) will therefore satisfy EF (p ∧ q); so we add it as labels:

3



{ p } { p, EF (p∧q) } { p, q, p∧q }, EF (p∧q

{ EF (p∧q) }

Iteration 3. Applying the same step as in the previos iteration get us to this:

{ p, EF (p∧q) } { p, EF (p∧q) } { p, q, p∧q }, EF (p∧q)

{ EF (p∧q) }

After this we can’t label any more states with EF (p∧q) (in this case simply because
all states have been labelled with this formula). So we stop the iteration.

Note such an iteration will terminate. Each iteration either does not label any new
state, in which case we stop, or it labels new states. The latter cannot go on forever
because we have a finite number of states.

Now, since the initial state is also labelled with EF (p∧q) the formula is therefor holds
on this state; and thus the program satisfies it.

(d) Ok, now try these properties:

• EF ¬p

• AG p

• E(p U (AG p))

• A(p U (AG p))

• AFAG p

3. Consider again the Kripke structure in No. 2.

(a) How would you describe it if you are to express with a Boolean formula?

Answer:

The four states can be encoded by two boolean variables x, y. Let us first number the
states and label them with their encoding. This is just so that we can latter refer to
them. We will write x to mean ¬x.

0, x y, { p } 1, xy, { p } 2, xy, { p, q }

3, xy, ∅

We can now encode the arrows in this automaton with a boolean formula; each arrow
can be encoded by one DNF clause (there are six arrows, notice that below we also
have 6 clauses):

R(x, y, x′, y′)
=
x y x′ y′ ∨ x y x′ y′ ∨ x y x′ y′ ∨ x y x′ y′ ∨ x y x′ y′ ∨ x y x′ y′

You’ll of course get a formula with as many clauses as your arrows in the original
automaton. However, we can come up with a more compact formula by expressing the
automaton in a more declarative, rule-based, way. E.g.:

i. from 0, you may go to 1.

4



ii. from 1, you don’t go back to 1.

iii. from 2 or 3, you may go to 2.

which can be directly expressed with boolean formulas, that now looks simpler:

R(x, y, x′, y′)
=

x y x′ y′ ∨ x y x′ y′ ∨ x x′ y′

The sets of states satisfying p respectively q are encoded by the formula:

Wp = xy

Wq = xy

(b) Do the model checking of the formula EF (p∧q) on the symbolic representation of your
Kripke.

Answer:

CTL symbolic model checking proceeds as CTL explicit state model checking, except
that we use boolean formulas. When we label states with a formula, we basically
compute the set of states satisfying that formula. We can express set of state with a
boolean formula.

For example, in the next stage of labeling we would label all the states satisfying p∧q.
These states are simply those states in the conjunction of Wp and Wq. So:

Wp∧q = Wp ∧ Wq = xyxy = xy

Now we proceed with the labelling with EF (p∧q). Remember we do this in iterations,
where each iterations basically compute an approximation of the set of states satisfying
EF (p∧q).

The first approaximation K0 is simply Wp∧q. The next approximation is:

K1 =
(∃x′, y′. R(x, y, x′, y′) ∧ K0[x

′, y′/x, y]) ∨ K0

=
(∃x′, y′. R(x, y, x′, y′) ∧ x′y′) ∨ K0

=

(∃x′, y′. (x y x′ y′ ∨ x y x′ y′ ∨ x x′ y′) ∧ x′y′) ∨ K0

You will probably wonder if the above complicated formula really represent all the
states labelled in the second iteration. It is indeed difficult to see this directly; but just
so that you can convince yourself, let’s simplify the above formula:

last formula above

=
x y ∨ x ∨ K0

=
x y ∨ x ∨ xy
=
x y ∨ x

The above formula encodes this set of states: {1, 2, 3}. If you recall the labelling in
the explicit state procedure, this is indeed the set of states we label with EF (p∧q) in
Iteration-2.

The next approximation K2 can be obtained in the same way:

K2 =
(∃x′, y′. R(x, y, x′, y′) ∧ K1[x

′, y′/x, y]) ∨ K1

=
(∃x′, y′. R(x, y, x′, y′) ∧ (x′ y′ ∨ x′)) ∨ x y ∨ x

5



At each iteration we should check if Ki+1 ↔ Ki; if so we stop. I’m not going to write
out K2 above. I leave it to you to check yourself that we can stop after K3, because
K3 ↔ K2. Hence:

WEF (p∧q) = K3

Next we need to check if initial state is labelled by EF (p∧q). In terms of symbolic
model checking this means checking either of this:

i. Valuation x=false and y=false makes WEF (p∧q) true.

ii. x y → WEF (p∧q) is valid.

6


