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Preface

This volume contains the description of the HOL system. It is one of four volumes
making up the documentation for HOL:

(i) LOGIC: a formal description of the higher order logic implemented by the HOL

system.

(ii) TUTORIAL: a tutorial introduction to HOL, with case studies.

(iii) DESCRIPTION: a detailed user’s guide for the HOL system;

(iv) REFERENCE: the reference manual for HOL.

These four documents will be referred to by the short names (in small slanted capitals)
given above.

This document, DESCRIPTION, is an advanced guide for users with some prior experi-
ence of the system. Beginners should start with the companion document TUTORIAL.

The HOL system is designed to support interactive theorem proving in higher order
logic (hence the acronym ‘HOL’). To this end, the formal logic is interfaced to a general
purpose programming language (ML, for meta-language) in which terms and theorems
of the logic can be denoted, proof strategies expressed and applied, and logical theories
developed. The version of higher order logic used in HOL is predicate calculus with
terms from the typed lambda calculus (i.e. simple type theory). This was originally
developed as a foundation for mathematics [2]. The primary application area of HOL

was initially intended to be the specification and verification of hardware designs. (The
use of higher order logic for this purpose was first advocated by Keith Hanna [3].)
However, the logic does not restrict applications to hardware; HOL has been applied to
many other areas.

This document presents the HOL logic in its ML guise, and explains the means by
which meta-language functions can be used to generate proofs in the logic. Thus, it
describes how the abstract system of LOGIC is actually implemented in the ML program-
ming language, providing comprehensive descriptions of the system’s major features.

The approach to mechanizing formal proof used in HOL is due to Robin Milner [7],
who also headed the team that designed and implemented the language ML. That work
centred on a system called LCF (logic for computable functions), which was intended for
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4 Preface

interactive automated reasoning about higher order recursively defined functions. The
interface of the logic to the meta-language was made explicit, using the type structure of
ML, with the intention that other logics eventually be tried in place of the original logic.
The HOL system is a direct descendant of LCF; this is reflected in everything from its
structure and outlook to its incorporation of ML, and even to parts of its implementation.
Thus HOL satisfies the early plan to apply the LCF methodology to other logics.

The original LCF was implemented at Edinburgh in the early 1970’s, and is now re-
ferred to as ‘Edinburgh LCF’. Its code was ported from Stanford Lisp to Franz Lisp by
Gérard Huet at INRIA, and was used in a French research project called ‘Formel’. Huet’s
Franz Lisp version of LCF was further developed at Cambridge by Larry Paulson, and
became known as ‘Cambridge LCF’. The HOL system is implemented on top of an early
version of Cambridge LCF and consequently many features of both Edinburgh and Cam-
bridge LCF were inherited by HOL. For example, the axiomatization of higher order logic
used is not the classical one due to Church, but an equivalent formulation influenced by
LCF.

An enhanced and rationalized version of HOL, called HOL88, was released (in 1988),
after the original HOL system had been in use for several years. HOL90 (released in
1990) was a port of HOL88 to SML [9] by Konrad Slind at the University of Calgary.
It has been further developed through the 1990’s. HOL 4 is the latest version of HOL,
and is also implemented in SML; it features a number of novelties compared to its
predecessors. HOL 4 is also the supported version of the system for the international
HOL community.

We have retroactively decided to number HOL implementations in the following way

1. HOL88 and earlier: implementations based on a Lisp substrate, with Classic ML.

2. HOL90: implementations in Standard ML, principally using the SML/NJ imple-
mentation.

3. HOL98 (Athabasca and Taupo releases): implementations using Moscow ML, and
with a new library and theory mechanism.

4. HOL (Kananaskis releases)

Therefore, with HOL 4, we do away with the habit of associating implementations with
year numbers. Individual releases within HOL 4 will retain the lake-number naming
scheme.

In this document, the acronym ‘HOL’ refers to both the interactive theorem proving
system and to the version of higher order logic that the system supports; where there is
serious ambiguity, the former is called ‘the HOL system’ and the latter ‘the HOL logic’.
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Chapter 1

The HOL Logic in ML

In this chapter, the concrete representation of the HOL logic is described. This involves
describing the ML functions that comprise the interface to the logic (up to and includ-
ing Section 1.3); the quotation, parsing, and printing of logical types and terms (Sec-
tion 1.4); the representation of theorems (Section 1.6); the representation of theories
(Section 1.9); the fundamental HOL theory bool (Section 3.2.1); the primitive rules
of inference (Section 1.7); and the methods for extending theories (throughout Sec-
tion 1.9 and also later in Section 5.3). It is assumed that the reader is familiar with ML.
If not, the introduction to ML in Getting Started with HOL in TUTORIAL should be read
first.

The HOL system provides the ML types hol_type and term which implement the types
and terms of the HOL logic, as defined in LOGIC. It also provides primitive ML functions
for creating and manipulating values of these types. Upon this basis the HOL logic is
implemented. The key idea of the HOL system, due to Robin Milner, and discussed
in this chapter, is that theorems are represented as an abstract ML type whose only
pre-defined values are axioms, and whose only operations are rules of inference. This
means that the only way to construct theorems in HOL is to apply rules of inference to
axioms or existing theorems; hence the consistency of the logic is preserved.

The purpose of the meta-language ML is to provide a programming environment in
which to build theorem proving tools to assist in the construction of proofs. When
the HOL system is built, a range of useful theorems is pre-proved and a set of tools
pre-defined. The basic system thus offers a rich initial environment; users can further
enrich it by implementing their own application specific tools and building their own
application specific theories.

1.1 Lexical Matters

The name of a HOL variable can be any ML string, but the quotation mechanism will
parse only names that are identifiers (see Section 1.1.1 below). Using non-identifiers as
variable names is discouraged except in special circumstances (for example, when writ-
ing derived rules that generate variables with names that are guaranteed to be different
from existing names). The name of a type variable in the HOL logic is formed by a prime
(’) followed by an alphanumeric which itself contains no prime (see Section 1.1.1 for

13



14 CHAPTER 1. THE HOL LOGIC IN ML

examples). The name of a type constant or a term constant in the HOL logic can be any
identifier, although some names are treated specially by the HOL parser and printer and
should therefore be avoided.

1.1.1 Identifiers

In addition to special forms already present in the relevant grammar, a HOL identifier
can be of two forms:

(i) A finite sequence of alphanumerics starting with a letter. The underscore char-
acter is considered a digit character, and so can occur after an identifier’s first
letter. Greek characters (roughly Unicode range U+0370 to U+03FF) are also let-
ters, except for λ (U+03BB), which is treated as a symbol. HOL is case-sensitive:
upper and lower case letters are considered to be different.

Digits are the ASCII characters 0–9, the underscore character, and the Unicode
subscripts and superscripts. The apostrophe character is special. It is not a
letter, but can appear as part of an alphanumeric term identifier after the first
letter. It must appear at the start of a type variable’s name, and can also appear
in the term context as a sequence of apostrophes on their own.

(ii) A symbolic identifier, i.e., a finite sequence formed by any combination of the
ASCII symbols and the Unicode symbols. The basic ASCII symbols are

# ? + * / \ = < > & % @ ! : | - ^ ‘

Use of the caret and back-tick characters is complicated by the fact that these
characters have special meaning in the quotation mechanism; see Section 5.1.3.
The ASCII grouping symbols (braces, brackets, and parentheses), and the
tilde (~), full-stop (.), comma (,), semi-colon (;) and hyphen (-) charac-
ters are called non-aggregating characters. Unless the desired token is already
present in the grammar, these characters do not combine with themselves or
other symbolic characters. Thus, the string "((" is viewed as two tokens, as
are "+;" and "-+".

Unicode code characters that are not letters or digits are regarded as symbolic.
None of these are non-aggregating.

(iii) A number is a string of one or more digits. If not the initial digit, an underscore
can be used within the sequence to provide spacing. In order to distinguish
different kinds of numbers a single character suffix may be used: for example
3n is a natural number while 3i is an integer. The 0x and 0b prefixes may also
be used to change the base of the number. If the 0x prefix is used, hexadecimal
‘digits’ a–f and A–F can also be used. See also Section 3.3.3.
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Separators The separators used by the HOL lexical analyser are (with ASCII codes in
brackets):

space (32), carriage return (13), line feed (10), tab (^I, 9), form feed (^L, 12)

Special identifiers The following valid identifiers are used by the grammar in the
theory of booleans, and thus in all descendent theories as well. They should not be
used as the name of a variable or a constant unless the user is very confident of their
ability to mess with grammars.

let in and \ . ; => | : := with updated_by case of

Type variable names The name of a type variable in the HOL logic is a string begin-
ning with a prime (’) followed by an alphanumeric which itself contains no prime; for
example all of the following are valid type variable names except for the last:

’a ’b ’cat ’A11 ’g_a_p ’f’oo

User tokens In general, a HOL user has a great deal of freedom to create their own
syntax, involving special tokens quite apart from variables and names for constants.
For example, the if-then-else syntax for the conditional operator has special tokens (the
“if”, “then” and “else”) that are not names for variables, nor constants (the underlying
constant is actually called COND). In order to make sure that the operations of printing
and parsing tokens are suitably inverse to each other, users should not create tokens
that include whitespace, or the comment strings ((* and *)).

1.2 Types

The allowed types depend on which type constants have been declared in the current
theory. See Section 1.9 for details of how such declarations are made. There are two
primitive constructor functions for values of type hol_type:

mk_vartype : string -> hol_type

mk_thy_type : {Tyop:string, Thy:string, Args:hol_type list} -> hol_type

The function mk_vartype constructs a type variable with a given name; it gives a warn-
ing if the name is not an allowable type variable name (i.e. not a ’ followed by an
alphanumeric). The function mk_thy_type constructs a compound type from a record
{Tyop,Thy,Args} where Tyop is a string representing the name of the type operator,
Thy is a string representing the theory that Tyop was declared in, and Args is a list of
types representing the arguments to the operator. Function types σ1→σ2 of the logic are
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represented in ML as though they were compound types (σ1, σ2)fun (in LOGIC, however,
function types were not regarded as compound types).

The evaluation of mk_thy_type{Tyop = name, Thy = thyname, Args = [σ1, · · · , σn]}
fails if

(i) name is not a type operator of theory thyname

(ii) name is a type operator of theory thyname, but its arity is not n.

For example, mk_thy_type{Tyop="bool", Thy="bool", Args=[]} evaluates to an ML
value of type term representing the type bool.

Type constants may be bound to ML values and need not be repeatedly constructed:
e.g., the type built by mk_thy_type{Tyop="bool", Thy="bool", Args=[]} is abbrevi-
ated by the ML value bool. Similarly, function types may be constructed with the infix
ML function -->. A few common type variables have been constructed and bound to ML
identifers, e.g., alpha is the type variable ’a and beta is the type variable ’b. Thus the
ML code alpha --> bool is equal to, but much more concise than

mk_thy_type{Tyop="fun", Thy="min",

Args=[mk_vartype "’a",

mk_thy_type{Tyop="bool", Thy="bool", Args=[]}}

There are two primitive destructor functions for values of type hol_type:

dest_vartype : hol_type -> string

dest_thy_type : hol_type -> {Tyop:string, Thy:string, Args:hol_type list}

The function dest_vartype extracts the name of a type variable. A compound type is
destructed by the function dest_thy_type into the name of the type operator, the name
of the theory it was declared in, and a list of the argument types; dest_vartype and
dest_thy_type are thus the inverses of mk_vartype and mk_thy_type, respectively. The
destructors fail on arguments of the wrong form.

1.3 Terms

The four primitive kinds of terms of the logic are described in LOGIC. The ML functions
for manipulating these are described in this section. There are also derived terms that
are described in Section 3.2.1.2.

At any time, the terms that may be constructed depends on which constants have been
declared in the current theory. See Section 1.9 for details of how such declarations are
made.

There are four primitive constructor functions for values of type term:

mk_var : (string * hol_type) -> term
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mk_var(x,σ) evaluates to a variable with name x and type σ; it always succeeds.

mk_thy_const : {Name:string, Thy:string, Ty:hol_type} -> term

mk thy const{Name = c, Thy = thyname, Ty = σ} evaluates to a term representing the
constant with name c and type σ; it fails if:

(i) c is not the name of a constant in the theory thyname;

(ii) σ is not an instance of the generic type of c (the generic type of a constant is
established when the constant is defined; see Section 1.9).

mk_comb : (term * term) -> term

mk_comb(t1,t2) evaluates to a term representing the combination t1 t2. It fails if:

(i) the type of t1 does not have the form σ′->σ;

(ii) the type of t1 has the form σ′->σ, but the type of t2 is not equal to σ′.

mk_abs : (term * term) -> term

mk_abs(x,t) evaluates to a term representing the abstraction λx. t; it fails if x is not a
variable.

There are four primitive destructor functions on terms:

dest_var : term -> (string * hol_type)

dest_thy_const : term -> {Name:string, Thy:string, Ty:hol_type}

dest_comb : term -> (term * term)

dest_abs : term -> (term * term)

These are the inverses of mk_var, mk_thy_const, mk_comb and mk_abs, respectively.
They fail when applied to terms of the wrong form. Other useful destructor functions
are rator, rand, bvar, body, lhs and rhs. See REFERENCE for details.

The function

type_of : term -> hol_type

returns the type of a term. The function

aconv : term -> term -> bool

implements the α-convertibility test for λ-calculus terms. From the point of view of the
HOL logic, α-convertible terms are identical. A variety of other functions are available
for performing β-reduction (beta_conv), η-reduction (eta_conv), substitution (subst),
type instantiation (inst), computation of free variables (free_vars) and other common
term operations. See REFERENCE for more details.
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1.4 Quotation

It would be tedious to always have to input types and terms using the constructor func-
tions. The HOL system, adapting the approach taken in LCF, has special quotation
parsers for HOL types and terms which enable types and terms to be input using a fairly
standard syntax. For example, the ML expression ‘‘:bool -> bool‘‘ denotes exactly
the same value (of ML type hol_type) as

mk_thy_type{Tyop = "fun",Thy = "min",

Args = [mk_thy_type{Tyop = "bool", Thy = "bool", Args = []},

mk_thy_type{Tyop = "bool", Thy = "bool", Args = []}]}

and the expression ‘‘\x. x + 1‘‘ can be used instead of1

let val numty = mk_thy_type{Tyop="num",Thy="num",Args=[]}

in

mk_abs

(mk_var("x",numty),

mk_comb(mk_comb

(mk_thy_const

{Name="+",Thy="arithmetic",Ty=numty --> numty --> numty},

mk_var("x", numty)),

mk_comb(mk_thy_const{Name="NUMERAL",Thy="arithmetic",Ty=numty-->numty},

mk_comb(mk_thy_const{Name="BIT1",Thy="arithmetic",Ty=numty-->numty},

mk_thy_const{Name="ZERO",Thy="arithmetic",Ty=numty}))))

end

The HOL printer, which is integrated into the ML toplevel loop, also outputs types
and terms using this syntax. Types are printed in the form ‘‘:type‘‘. For example,
the ML value of type hol_type representing α→(ind→bool) would be printed out as
‘‘:’a -> ind -> bool‘‘. Similarly, terms are printed in the form ‘‘term‘‘. Thus, the
term representing ∀x y. x < y ⇒ ∃z. x+ z = y would be printed as:

‘‘!x y. x < y ==> ?z. x + z = y‘‘

A leading colon is used to distinguish a type quotation from a term quotation: the
former have the form ‘‘: · · · ‘‘ and the latter have the form ‘‘ · · · ‘‘.

Section 5.1 has more detailed information about the capabilities of the term and type
parsing and printing facilities in the system. The remainder of this section provides a
brief overview of what is possible.

1In order to be processed successfully, this quotation requires the theory of arithmetic to have already
been loaded, which can be accomplished in the interactive system by load "arithmeticTheory".
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1.4.1 Type inference

Notice that there is no explicit type information in \x.x+1. The HOL type checker knows
that 1 has type num and + has type num->(num->num). From this information it can infer
that both occurrences of x in \x.x+1 could have type num. This is not the only possible
type assignment; for example, the first occurrence of x could have type bool and the
second one have type num. In that case there would be two different variables with
name x, namely xbool and xnum, the second of which is free. However, the only way
to construct a term with this second type assignment is by using constructors, since the
type checker uses the heuristic that all variables in a term with the same name have the
same type. This is illustrated in the following session.

1- ‘‘x = (x = 1)‘‘;

Type inference failure: unable to infer a type for the application of

$= (x :num)

which has type

:num -> bool

to

(x :num) = (1 :num)

which has type

:bool

unification failure message: unify failed

The desired value can be directly constructed by the primitive constructor functions:

2- mk_eq

(mk_var("x",bool),

mk_eq(mk_var("x",numty),

mk_numeral (Arbnum.fromString "1")));

> val it = ‘‘x <=> (x = 1)‘‘ : term

The original quotation type checker was designed and implemented by Robin Milner.
It employs heuristics like the one above to infer a sensible type for all variables occurring
in a term.

At times, the user may want to control the exact type of a subterm. To support such
functionality, types can be explicitly indicated by following any subterm with a colon
and then a type. For example, ‘‘f(x:num):bool‘‘ will type check with f and x getting
types num->bool and num respectively. This treatment of types within quotations is
inherited from LCF.
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1.4.2 Viewing the grammar

The behaviour of the HOL quotation parser and printer is determined by the current
grammar. Thus, a familiarity with the basic vocabulary of the standard collection of
HOL theories is important if one is to use HOL effectively. One can examine the current
grammar used by the parser with the functions type_grammar and term_grammar.

For example, in the following session, we see that the type grammar used in the
startup context of HOL has the type operators fun, sum, prod, list, recspace, num,
option, one, label, ind, and bool.

1- type_grammar();

> val it =

Rules:

(50) TY ::= TY -> TY [fun] (R-associative)

(60) TY ::= TY + TY [sum] (R-associative)

(70) TY ::= TY # TY [prod] (R-associative)

(100) TY ::= TY list | TY recspace | num | (TY, TY)prod | TY option |

one | (TY, TY)sum | label | (TY, TY)fun | ind | bool

: grammar

Also, fun, sum, and prod have infix notation (->), (+), and (#), respectively, with
different binding strengths: # (with 70) binds stronger than + (60), which binds stronger
than -> (50). All postfix type operators (with 100) bind more strongly than the infixes.

The next session, in Figure 1.1, shows the (abbreviated) output from invoking the
term_grammar function in the startup HOL environment. The deleted output includes a
listing of all constants known to the system, including prefix operators, along with all
overloadings currrently in force. The portrayed grammar ranges from binding operators
at very low (0) binding strength, through to function application (2000) and record
selection (2500), which bind very tightly.

1.4.3 Namespace control

In order to provide convenience, the parser deals with overloading and ambiguity. Over-
loading of numeric literals is discussed in Section 3.3.3.1, although any symbol may be
overloaded, not just numerals. At times such flexibility is quite useful; however, it can
happen that one wishes to explicitly designate a particular constant. In that case, the
notation thy$const may be used in the parser to designate the constant const declared
in theory thy . In the following example, the less-than operator is explicitly specified.

1- ‘‘prim_rec$< x y‘‘

> val it = ‘‘x < y‘‘ : term

Note how the < symbol is not treated as an infix by the parser when given in “fully-
qualified” form. Syntactically, such tokens are never given special treatment by the
parser of HOL’s concrete syntax.



1.4. QUOTATION 21

1- term_grammar();

> val it =

(0) TM ::= "LEAST" <..binders..> "." TM |

"?!" <..binders..> "." TM | "?" <..binders..> "." TM |

"!" <..binders..> "." TM | "@" <..binders..> "." TM |

"\" <..binders..> "." TM

(2) TM ::= "let" TM "in" TM [let]

(4) TM ::= TM "::" TM (restricted quantification operator)

(5) TM ::= TM TM (binder argument concatenation)

(7) TM ::= "case" TM "of" TM [case__magic]

(8) TM ::= TM "|" TM [case_split__magic] (R-associative)

(9) TM ::= TM "and" TM (L-associative)

(10) TM ::= TM "=>" TM [case_arrow__magic] (R-associative)

(50) TM ::= TM "##" TM | TM "," TM (R-associative)

(70) TM ::= "if" TM "then" TM "else" TM [COND]

(80) TM ::= TM ":-" TM (non-associative)

(100) TM ::= TM "=" TM (non-associative)

(200) TM ::= TM "==>" TM (R-associative)

(300) TM ::= TM "\/" TM (R-associative)

(400) TM ::= TM "/\" TM (R-associative)

(425) TM ::= TM "IN" TM (non-associative)

(440) TM ::= TM "++" TM (L-associative)

(450) TM ::= TM "::" TM [CONS] | TM ">=;" TM | TM "<=" TM |

TM ">" TM | TM "<;" TM | TM ">=" TM | TM "<=" TM |

TM ">" TM | TM "<" TM | TM "LEX" TM | TM "RSUBSET" TM |

TM ":=" TM [record field update] |

TM "updated_by" TM [functional record update] |

TM "with" TM [record update]

(R-associative)

(500) TM ::= TM "-" TM | TM "+" TM | TM "RUNION" TM (L-associative)

(600) TM ::= TM "DIV" TM | TM "*" TM | TM "RINTER" TM

(L-associative)

(650) TM ::= TM "MOD" TM (L-associative)

(700) TM ::= TM "**" TM | TM "EXP" TM (R-associative)

(800) TM ::= TM "O" TM | TM "o" TM (R-associative)

(900) TM ::= "~" TM

(1000) TM ::= TM ":" TY (type annotation)

(2000) TM ::= TM TM (function application) | (L-associative)

(2500) TM ::= TM "." TM [record field selection] (L-associative)

TM ::= "[" ... "]" (separator = ";") |

"<|" ... "|>" (separator = ";")

TM ::= "(" ")" [one] |

"(" TM ")" [just parentheses, no term produced]

... <further output omitted>

: grammar

Figure 1.1: Result of a call to term_grammar()
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1.5 Ways to Construct Types and Terms

The table below shows ML expressions for various kinds of type quotations. The expres-
sions in the same row are equivalent.

Types

Kind of type ML quotation Constructor expression

Type variable : ’alphanum mk_vartype("’alphanum")

Type constant : op mk_type("op",[])

: thy$op
mk_thy_type{Thy="thy",
Tyop="op", Args=[]}

Function type : σ1 -> σ2 σ1 --> σ2

Compound type :(σ1, . . . , σn)op mk_type("op", [ σ1 , . . . , σn])

:(σ1, . . . , σn)thy$op
mk_thy_type{Thy="thy",
Tyop="op", Args=[ σ1, . . . , σn ]}

Equivalent ways of inputting the four primitive kinds of term are shown in the next
table.

Primitive terms

Kind of term ML quotation Constructor expression

Variable var:σ mk_var("var",σ)
Constant const:σ mk_const("const",σ)
Constant thy$const:σ mk_thy_const{Name="const",Thy="thy",Ty=σ}
Combination t1 t2 mk_comb(t1, t2)
Abstraction \x.t mk_abs(x, t)

In addition to the kinds of terms in the tables above, the parser also supports the
following syntactic abbreviations.

Syntactic abbreviations

Abbreviated term Meaning Constructor expression

t t1 · · · tn (· · ·(t t1)· · · tn) list_mk_comb(t,[t1, . . . ,tn])
\x1 · · ·xn.t \x1. · · · \xn.t list_mk_abs([x1, . . . ,xn],t)
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1.6 Theorems

In LOGIC, the notion of deduction was introduced in terms of sequents, where a sequent is
a pair whose second component is a formula being asserted (a conclusion), and whose
first component is a set of formulas (hypotheses). Based on this was the notion of a
deductive system: a set of pairs, whose second component is a sequent, and whose
first component is a set of sequents.2 The concept of a sequent following from a set
of sequents via a deductive system was then defined: a sequent follows from a set of
sequents if the sequent is the last element of some chain of sequents, each of whose
elements is either in the set, or itself follows from the set along with earlier elements of
the chain, via the deductive system.

A notation for ‘follows from’ was then introduced. That a sequent ({t1, . . . , tn}, t)
follows from a set of sequents ∆, via a deductive systemD, is denoted by: t1, . . . , tn `D,∆
t. (It was noted that where either D or ∆ were clear by context, their mention could be
omitted; and where the set of hypotheses was empty, its mention could be omitted.)

A sequent that follows from the empty set of sequents via a deductive system is called
a theorem of that deductive system. That is, a theorem is the last element of a proof (in
the sense of LOGIC) from the empty set of sequents. When a pair (L, (Γ, t)) belongs to
a deductive system, and the list L is empty, then the sequent (Γ, t) is called an axiom.
Any pair (L, (Γ, t)) belonging to a deductive system is called a primitive inference of the
system, with hypotheses3 L and conclusion (Γ, t).

A formula in the abstract is represented concretely in HOL by a term whose HOL

type is :bool. Therefore, a term of type :bool is used to represent a member of the
set of hypotheses of a sequent; and likewise to represent the conclusion of a sequent.
Sets in this context are represented by an implementation of the ML signature HOLset

supporting operations such as member and union.
A theorem in the abstract is represented concretely in the HOL system by a value with

the ML abstract type thm. The type thm has a destructor function

dest_thm : thm -> (term list * term)

which returns a pair consisting of a list of the hypotheses and the conclusion, respec-
tively, of a theorem. The order of assumptions in the list should not be relied on. A
theorem’s hypotheses are also available in the set form with the function

hyp_set : thm -> term HOLset.set

Using dest_thm, two further destructor functions are derived

2Note that these sequents form a list, not a set; that is, are ordered.
3Note that ‘hypotheses’ and ‘conclusion’ are also used for the components of sequents.
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hyp : thm -> term list

concl : thm -> term

for extracting the hypothesis list and the conclusion, respectively, of a theorem. The
ML type thm does not have a primitive constructor function. In this way, the ML type
system protects the HOL logic from the arbitrary and unrecorded construction of theo-
rems, which would compromise the consistency of the logic. (Functions which return
theorems as values, e.g. functions representing primitive inferences, are discussed in
Section 1.7.)

It was mentioned in LOGIC that the deductive system of HOL includes four axioms.4

In that manual, the axioms were presented in abstract form. Concretely, axioms are
just theorem values that are introduced through the use of the ML function new_axiom

(see Section 1.9.1 below). For example, the axiom BOOL_CASES_AX mentioned in LOGIC

is printed in HOL as follows (where T and F are the HOL logic’s constants representing
truth and falsity, respectively):

|- !t. (t = T) \/ (t = F) : thm

Note the special print format, with the approximation to the abstract ` notation, |-,
used to indicate ML type thm status; as well as the absence of HOL quotation marks in
the |- context. The session below illustrates the use of the destructor functions:

1- val th = BOOL_CASES_AX;

> val th = |- !t. (t = T) \/ (t = F) : thm

- hyp th;

> val it = [] : term list

- concl th;

> val it = ‘‘!t. (t = T) \/ (t = F)‘‘ : term

- type_of it;

> val it = ‘‘:bool‘‘ : hol_type

In addition to the print conventions mentioned above, the printing of theorems prints
hypotheses as periods (i.e. full stops or dots). The flag show_assums allows theorems to
be printed with hypotheses shown in full. These points are illustrated with a theorem
inferred, for example purposes, from another axiom mentioned in LOGIC, SELECT_AX.

4This is a simplification: in fact the various axioms are an extension of the basic logic.
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2- val th = UNDISCH (SPEC_ALL SELECT_AX);

> val th = [.] |- P ($@ P) : thm

- show_assums := true;

> val it = () : unit

- th;

> val it = [P x] |- P ($@ P) : thm

1.7 Primitive Rules of Inference of the HOL Logic

The primitive rules of inference of the logic were described abstractly in LOGIC. The
descriptions relied on meta-variables t, t1, t2, and so on. In the HOL logic, infinite
families of primitive inferences are grouped together and thought of as single primitive
inference schemes. Each family contains all the concrete instances of one particular
inference ‘pattern’. These can be produced, in abstract form, by instantiating the meta-
variables in LOGIC’s rules to concrete terms.

In HOL, primitive inference schemes are represented by ML functions that return the-
orems as values. That is, for particular HOL terms, the ML functions return the instance
of the theorem at those terms. The ML functions are part of the ML abstract type thm:
although thm has no primitive constructors, it has (eight) operations which return the-
orems as values: ASSUME, REFL, BETA_CONV, SUBST, ABS, INST_TYPE, DISCH and MP.

The ML functions that implement the primitive inference schemes in the HOL system
are described below. The same notation is used here as in LOGIC: hypotheses above a
horizontal line and conclusion beneath. The machine-readable ASCII notation is used
for the logical constants.

1.7.1 Assumption introduction

ASSUME : term -> thm

t |- t

ASSUME t evaluates to t|- t. Failure if t is not of type bool.

1.7.2 Reflexivity

REFL : term -> thm

|- t = t
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REFL t evaluates to |- t = t. A call to REFL never fails.

1.7.3 Beta-conversion

BETA_CONV : term -> thm

|- (\x.t1)t2 = t1[t2/x]

• where t1[t2/x] denotes the result of substituting t2 for x in t1, with suitable renam-
ing of variables to prevent free variables in t2 becoming bound after substitution.
The substitution t1[t2/x] is always defined.

BETA_CONV ‘‘(\x.t1)t2‘‘ evaluates to the theorem |- (\x.t1)t2 = t1[t2/x]. Failure if
the argument to BETA_CONV is not a β-redex (i.e. is not of the form (\x.t1)t2.

1.7.4 Substitution

SUBST : (thm * term)list -> term -> thm -> thm

Γ1 |- t1=t
′
1 · · · Γn |- tn=t

′
n Γ |- t[t1, . . . , tn]

Γ1 ∪ · · · ∪ Γn ∪ Γ |- t[t′1, . . . , t
′
n]

• where t[t1, . . . , tn] denotes a term t with some free occurrences of the terms t1, . . .,
tn singled out and t[t′1, . . . , t

′
n] denotes the result of simultaneously replacing each

such occurrences of ti by t′i (for 1≤i≤n), with suitable renaming of variables to
prevent free variables in t′i becoming bound after substitution.

The first argument to SUBST is a list [(|-t1=t
′
1, x1); . . . ;(|-tn= t

′
n, xn)]. The second

argument is a template term t[x1, . . . , xn] in which occurrences of the variable xi (where
1 ≤ i ≤ n) are used to mark the places where substitutions with |- ti=t

′
i are to be done.

Thus

SUBST [(|-t1=t
′
1, x1);. . .;(|-tn= t

′
n, xn)] t[x1, . . . , xn] Γ |- t[t1, . . . , tn]

returns Γ |- t[t′1, . . . , t
′
n]. Failure if:

(i) any of the arguments are of the wrong form;

(ii) the type of xi is not equal to the type of ti for some 1 ≤ i ≤ n.
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1.7.5 Abstraction

ABS : term -> thm -> thm

Γ |- t1 = t2
Γ |- (\x.t1) = (\x.t2)

• where x is not free in Γ.

ABS x Γ |- t1=t2 returns the theorem Γ |- (\x.t1) = (\x.t2). Failure if x is not a vari-
able, or x occurs free in any assumption in Γ.

1.7.6 Type instantiation

INST_TYPE : {redex : hol_type, residue : hol_type} list -> thm -> thm

Γ |- t
Γ[σ1, . . . , σn/α1, . . . , αn] |- t[σ1, . . . , σn/α1, . . . , αn]

• where t[σ1, . . . , σn/α1, . . . , αn] denotes the result of substituting (in parallel)
the types σ1, . . . , σn for the type variables α1, . . . , αn in the term t. Similarly,
Γ[σ1, . . . , σn/α1, . . . , αn] denotes the result of performing the same substitution
to all of the hypotheses in the set Γ.

INST_TYPE[α1 |-> σ1,. . .,αn |-> σn] th returns the result of instantiating each oc-
currence of αi in the theorem th to σi (for 1 ≤ i ≤ n). Failure occurs if an αi is not a
type variable.

The polymorphic ML infix function |-> is used to construct values of the record type
redex-residue. It is defined

fun ((x:’a) |-> (y:’b)) = {redex = x, residue = y}

1.7.7 Discharging an assumption

DISCH : term -> thm -> thm

Γ |- t2
Γ−{t1} |- t1 ==> t2

• Γ−{t1} denotes the set obtained by removing t1 from Γ (note that t1 need not
occur in Γ; in this case Γ−{t1} = Γ).

DISCH t1 Γ |- t2 evaluates to the theorem Γ−{t1} |- t1 ==> t2. DISCH fails if the term
given as its first argument is not of type bool.
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1.7.8 Modus Ponens

MP : thm -> thm -> thm

Γ1 |- t1 ==> t2 Γ2 |- t1
Γ1 ∪ Γ2 |- t2

MP takes two theorems (in the order shown above) and returns the result of applying
Modus Ponens; it fails if the arguments are not of the right form.

1.8 Oracles

HOL extends the LCF tradition by allowing the use of an oracle mechanism, enabling
arbitrary formulas to become elements of the thm type. By use of this mechanism, HOL

can utilize the results of arbitrary proof procedures. In spite of such liberalness, one can
still make strong assertions about the security of ML objects of type thm.

To avoid unsoundness, a tag is attached to any theorem coming from an oracle. This
tag is propagated through every inference that the theorem participates in (much as
ordinary assumptions are propagated in the inference rule MP). If it happens that falsity
becomes derived, the offending oracle can be found by examining the tags component
of the theorem. A theorem proved without use of any oracle will have an empty tag,
and can thus be considered to have been proved solely by deductive steps in the HOL
logic.

A tagged theorem can be created via

mk_oracle_thm : string -> term list * term -> thm

which directly creates the requested theorem and attaches the given tag to it. The tag
is created with a call to

Tag.read : string -> tag

As well as providing principled access to the results of external reasoners, tags are
used to implement some useful ‘system’ operations on theorems. For example, one can
directly create a theorem via the function mk_thm. The tag MK_THM gets attached to each
theorem created with this call. This allows users to directly create useful theorems, e.g.,
to use as test data for derived rules of inference. Another tag is used to implement
so-called ‘validity checking’ for tactics.

The tags in a theorem can be viewed by setting Globals.show_tags to true.

1- Globals.show_tags := true;

> val it = () : unit

- mk_thm([], Term ‘F‘);;

> val it = [oracles: MK_THM] [axioms: ] [] |- F : thm
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There are three elements to the left of the turnstile in the fully printed representation
of a theorem: the first two5 comprise the tags component and the third is the standard
assumption list. The tag component of a theorem can be extracted by

Thm.tag : thm -> tag

and prettyprinted by

Tag.pp : ppstream -> tag -> unit.

1.9 Theories

In LOGIC a theory is described as a 4-tuple

T = 〈StrucT , SigT , AxiomsT , TheoremsT 〉

where

(i) StrucT is the type structure of T ;

(ii) SigT is the signature of T ;

(iii) AxiomsT is the set of axioms of T ;

(iv) TheoremsT is the set of theorems of T .

In the implementation of HOL, theories are structured hierarchically to represent se-
quences of extensions called segments of an initial theory called min. A theory segment
is not really a logical concept, but rather a means of representating theories in the HOL

system. Each segment records some types, constants, axioms and theorems, together
with pointers to other segments called its parents. The theory represented by a segment
is obtained by taking the union of all the types, constants, axioms and theorems in the
segment, together with the types, constants, axioms and theorems in all the segments
reachable by following pointers to parents. This collection of reachable segments is
called the ancestry of the segment.

5Tags are also used for tracking the use of axioms in proofs.
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1.9.1 ML functions for theory operations

A typical piece of work with the HOL system consists in a number of sessions. In the first
of these, a new theory, T say, is created by importing some existing theory segments,
making a number of definitions, and perhaps proving and storing some theorems in
the current segment. Then the current segment (named name say) is exported. The
concrete result will be an ML module nameTheory whose contents is the current theory
segment created during the session and whose ancestry represents the desired logical
theory T . Subsequent work sessions can access the definitions and theorems of T by
importing nameTheory; this avoids having to load the tools and replay the proofs that
created nameTheory in the first place.

The naming of data in theories is based on the names given to segments. Specifi-
cally an axiom, definition, specification or theorem is accessed by an ML long identi-
fier thyTheory.name, where thy is the name of the theory segment current when the
item was declared and name is a specific name supplied by the user (see the functions
new_axiom, new_definition, below). Different items can have the same specific name
if the associated segment is different. Thus each theory segment provides a separate
namespace of ML bindings of HOL items.

Various additional pieces of information are stored in a theory segment, including the
parsing status of the constants (e.g. whether they are infixes or binders).

Determining the context There is always a current theory which is the theory rep-
resented by the current theory segment together with its ancestry. The name of the
current theory segment is returned by the ML function:

current_theory : unit -> string

When an interactive HOL session begins, some theories will already be in the logical
context. The exact set of theories in context will vary. If the executable used is hol.bare,
then only min and bool will be loaded. When the hol executable is used, a richer context
is loaded.

The exact set of theories loaded can be determined with the ancestry command.

ancestry : string -> string list

This function provides a general mechanism for examining the structure of the theory
hierarchy. The argument is the name of a theory (or "-" as an abbreviation for the
current theory), to which ancestry will respondwith a list of the argument’s ancestors
in the theory hierarchy.
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- ancestry "-";

> val it =

["num", "prim_rec", "normalForms", "relation", "pair",

"arithmetic", "while", "numeral", "label", "combin", "sum", "min",

"bool", "marker", "one", "option", "ind_type", "list"] : string list

Creating a theory segment New theory segment are created by a call to new_theory.

new_theory : string -> unit

This allocates a new ‘area’ where subsequent theory operations take effect. If the cur-
rent theory (thy1 say) at the time of a call to new_theory thy2 is non-empty, i.e., has
had an axiom, definition, or theorem stored in it, then thy1 is exported before thy2 is
allocated. Furthermore, thy2 will obtain thy1 as a parent. If new_theory thy is called
when the current theory segment is already named thy, then that is interpreted as a
request merely to clear the current theory segment (nothing will be exported).

A call to new_theory "name" fails if:

• name is not an alphanumeric starting with a letter.

• there is a theory already named name in the ancestry of the current segment.

• if it is necessary to export the current segment before creating the new theory and
the export attempt fails.

On startup, the current theory segment of HOL is named scratch, which is an empty
theory, having a useful collection of theories in its ancestry. Typically, a user would
begin by loading whatever extra logical context is required for the work at hand.

The current theory segment acts as a kind of scratchpad. Elements stored in the cur-
rent segment may be overwritten by subsequent additions, or deleted outright. Any
theory elements that were built from overwritten or deleted elements would then be
held to be out-of-date, and would not be included in the theory when it is finally ex-
ported. Out-of-date constants and types are detected by the HOL printer, which will
print them surrounded by odd-looking syntax to alert the user.

In contrast to the current segment, (proper) ancestor segments may not be altered.

Loading prebuilt theories Since HOL theories are represented by ML modules, one
imports an existing theory segment by simply importing the corresponding module.

load : string -> unit

Executing load nameTheory imports the first file named nameTheory.uo found along
the loadPath into the session. Any unloaded ancestors of name will be loaded before
loading of nameTheory continues. Note that load can not be used in ML files that are to
be compiled; it can only be used in the interactive system.
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Adding to the current theory The following ML functions add types and terms to
the current theory segment. In typical usage, these functions will not be needed since
higher-level definition facilities will invoke these as necessary. However, these functions
can be useful for those writing proof tools and derived definition principles.

new_type : int -> string -> unit

Executing new_type n "op" makes op a new n-ary type operator in the current theory.
If op is not an allowed name for a type, a warning will be issued.

new_constant : (string * type) -> unit

Executing new_constant("c",σ) makes cσ′ a new constant of the current theory, for all
cσ′ where σ′ is an instance of σ. The type σ is called the generic type of c. If c is not an
allowed name for a constant, a warning will be issued.

new_axiom : (string * term) -> thm

Executing new_axiom("name",t) declares the sequent ({},t) to be an axiom of the
current theory with name name. Failure if:

(i) the type of t is not bool.

(ii) t contains out-of-date constants or types, i.e., constants or types that have been
re-declared after t was built.

Once a theorem has been proved, it can be saved with the function

save_thm : (string * thm) -> thm

Evaluating save_thm("name",th) will save the theorem th with name name in the
current theory segment.

Exporting a theory Once a theory segment has been constructed, it can be written
out to a file, which, after compilation, can be imported into future sessions.

export_theory : unit -> unit

When export_theory is called, all out-of-date entities are removed from the cur-
rent segment. Also, the parenthood of the theory is computed. The current theory
segment is written to file nameTheory.sml in the current working directory. The file
nameTheory.sig, which documents the contents of name, is also written to the current
working directory. Notice that the exported theory is not compiled by HOL. That is left
to an external tool, Holmake (see section 6.3), which maintains dependencies among
collections of HOL theory segments.
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1.9.2 ML functions for accessing theories

The arguments of ML type string to new_axiom, new_definition etc. are the names
of the corresponding axioms and definitions. These names are used when accessing
theories with the functions axiom, definition, etc., described below.

The current theory can be extended by adding new parents, types, constants, ax-
ioms and definitions. Theories that are in the ancestry of the current theory cannot be
extended in this way; they can be thought of as frozen.

There are various functions for loading the contents of theory files:

parents : string -> string list

types : string -> (int * string) list

constants : string -> term list

The first argument is the name of a theory (which must be in the ancestry of the current
theory segment); the result is a list of the components of the theory. The name of
the current theory can be abbreviated by "-". For example, parents "-" returns the
parents of the current theory.

In the case of types a list of arity-name pairs is returned. Individual axioms, defini-
tions and theorems can be read from the current theory using the following ML func-
tions:

axiom : string -> thm

definition : string -> thm

theorem : string -> thm

The first argument is the user supplied name of the axiom, definition or theorem in the
current theory. Further, a list of all of a theory’s axioms, definitions and theorems can
be retreived with the ML functions:

axioms : string -> (string * thm) list

definitions : string -> (string * thm) list

theorems : string -> (string * thm) list

The contents of the current theory can be printed in a readable format using the
function print_theory.

1.9.3 Functions for creating definitional extensions

There are three kinds of definitional extensions: constant definitions, constant specifi-
cations and type definitions.
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1.9.3.1 Constant definitions

In LOGIC a constant definition over a signature ΣΩ is defined to be an equation, i.e. a
formula of the form cσ = tσ, such that:

(i) c is not the name of any constant in ΣΩ;

(ii) tσ is a closed term in TermsΣΩ
;

(iii) all the type variables occurring in tσ occur in σ.

In HOL, definitions can be slightly more general than this, in that an equation:

c v1 · · · vn = t

is allowed to be a definition where v1, . . ., vn are variable structures (i.e. tuples of
distinct variables). Such an equation is logically equivalent to:

c = λv1 · · · vn. t

which is a definition in the sense of LOGIC if (i), (ii) and (iii) hold.
The following ML function creates a new definition in the current theory.

new_definition : (string * term) -> thm

Evaluating new_definition("name", ‘‘c v1 · · · vn = t‘‘), declares the sequent
({},c = λv1 · · · vn. t) to be a constant definition of the current theory. The name
associated with the definition in this theory is name. Failure occurs if:

(i) t contains free variables that are not in any of the variable structures v1, . . .,
vn (this is equivalent to requiring λv1 · · · vn. t to be a closed term);

(ii) there is a type variable in v1, . . ., vn or t that does not occur in the type of c.

1.9.3.2 Constant specifications

In LOGIC a constant specification for a theory T is defined to be a pair:

〈(c1, . . . , cn), λx1σ1
· · · xnσn . tbool〉

such that:

(i) c1, . . ., cn are distinct names.

(ii) λx1σ1
· · · xnσn . tbool ∈ TermsT .
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(iii) tyvars(λx1σ1
· · ·xnσn . tbool) ⊆ tyvars(σi) for 1 ≤ i ≤ n.

(iv) ∃x1σ1
· · · xnσn . t ∈ TheoremsT .

The following ML function is used to make constant specifications in the HOL system.

new_specification : string * string list * thm -> thm

Evaluating:

new_specification("name", ["c1", ..., "cn"],

|- ?x1 ... xn. t[x1, ..., xn])

simultaneously introduces new constants named c1, . . ., cn satisfying the property:

|- t[c1, . . . ,cn]

This theorem is stored, with name name, as a definition in the current theory segment.
A call to new_specification fails if:

(i) the theorem argument has a non-empty assumption list;

(ii) there are free variables in the theorem argument;

(iii) c1, . . ., cn are not distinct variables;

(iv) the type of some ci does not contain all the type variables which occur in the
term \x1 · · · xn. t[x1, . . ., xn].

1.9.3.3 Type definitions

In LOGIC it is explained that defining a new type (α1, . . . , αn)op in a theory T consists
of introducing op as a new n-ary type operator and

` ∃f(α1,...,αn)op→σ. Type Definition p f

as a new axiom, where p is a predicate characterizing a non-empty subset of an existing
type σ. Formally, a type definition for a theory T is a 3-tuple

〈σ, (α1, . . . , αn)op, p
σ→bool〉

where:

(i) σ ∈ TypesT and tyvars(σ) ∈ {α1, . . . , αn}.
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(ii) op is not the name of a type constant in StrucT .

(iii) p ∈ TermsT is a closed term of type σ→bool and tyvars(p) ⊆ {α1, . . . , αn}.

(iv) ∃xσ. p x ⊆ TheoremsT .

The following ML function makes a type definition in the HOL system.

new_type_definition : (string * thm) -> thm

If t is a term of type σ->bool containing n distinct type variables, then evaluating:

new_type_definition("op", |- ?x. t x)

results in op being declared as a new n-ary type operator characterized by the defini-
tional axiom:

|- ?rep. TYPE DEFINITION t rep

which is stored as a definition with the automatically generated name op_TY_DEF.. The
constant TYPE_DEFINITION is defined in the theory bool by:

|- TYPE_DEFINITION (P:’a->bool) (rep:’b->’a) =

(!x’ x’’. (rep x’ = rep x’’) ==> (x’ = x’’)) /\

(!x. P x = (?x’. x = rep x’))

Executing new_type_definition("op", |- ?x. t x) fails if:

(i) t does not have a type of the form σ->bool.

Defining bijections The result of a type definition using new_type_definition is a
theorem which asserts only the existence of a bijection from the type it defines to the
corresponding subset of an existing type. To introduce constants that in fact denote
such a bijection and its inverse, the following ML function is provided:

define_new_type_bijections

: {name:string, ABS:string, REP:string, tyax:thm} -> thm

This function takes a record {ABS, REP, name, tyax} The tyax argument must be a
definitional axiom of the form returned by new_type_definition. The name argument is
the name under which the constant definition (a constant specification, in fact) made by
define_new_type_bijections will be stored in the current theory segment, and the ABS

and REP arguments are user-specified names for the two constants that are to be defined.
These constants are defined so as to denote mutually inverse bijections between the
defined type, whose definition is given by the supplied theorem, and the representing
type of this defined type.

Evaluating:
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define new type bijections

{name="name", ABS="abs", REP="rep",
tyax = |- ?rep:newty->ty. TYPE DEFINITION P rep}

automatically defines two new constants abs:ty->newty and rep:ty->newty such that:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

This theorem, which is the defining property for the constants abs and rep, is stored
under the name ”name” in the current theory segment. It is also the value returned
by define_new_type_bijections. The theorem states that abs is the left inverse of rep
and—for values satisfying P—that rep is the left inverse of abs.

A call to define_new_type_bijections name abs rep th fails if:

(i) th is not a theorem of the form returned by new_type_definition.

Properties of type bijections The following ML functions are provided for proving
that the bijections introduced by define_new_type_bijections are injective (one-to-
one) and surjective (onto):

prove_rep_fn_one_one : thm -> thm

prove_rep_fn_onto : thm -> thm

prove_abs_fn_one_one : thm -> thm

prove_abs_fn_onto : thm -> thm

The theorem argument to each of these functions must be a theorem of the form re-
turned by define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

If th is a theorem of this form, then evaluating prove_rep_fn_one_one th proves that
the function rep is one-to-one, and returns the theorem:

|- !a a’. (rep a = rep a’) = (a = a’)

Likewise, prove_rep_fn_onto th proves that rep is onto the set of values that satisfy P :

|- !r. P r = (?a. r = rep a)

Evaluating prove_abs_fn_one_one th proves that abs is one-to-one for values that sat-
isfy P , and returns the theorem:

|- !r r’. P r ==> P r’ ==> ((abs r = abs r’) = (r = r’))

And evaluating prove_abs_fn_onto th proves that abs is onto, returning the theorem:

|- !a. ?r. (a = abs r) /\ P r

All four functions will fail if applied to any theorem that does not have the form of
a theorem returned by define_new_type_bijections. None of these functions saves
anything in the current theory.
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Chapter 2

Derived Inference Rules

The notion of proof is defined abstractly in the manual LOGIC: a proof of a sequent (Γ, t)

from a set of sequents ∆ (with respect to a deductive system D) was defined to be
a chain of sequents culminating in (Γ, t), such that every element of the chain either
belongs to ∆ or else follows from ∆ and earlier elements of the chain by deduction.
The notion of a theorem was also defined in LOGIC: a theorem of a deductive system is
a sequent that follows from the empty set of sequents by deduction; i.e., it is the last
element of a proof from the empty set of sequents, in the deductive system. In this
section, proofs and theorems are made concrete in HOL.

The deductive system of HOL was sketched in Section 1.7, where the eight families of
primitive inferences making up the deductive system were specified by diagrams. It was
explained that these families of inferences are represented in HOL via ML functions, and
that theorems are represented by an ML abstract type called thm. The eight ML functions
corresponding to the inferences are operations of the type thm, and each of the eight
returns a value of type thm. It was explained that the type thm has primitive destruc-
tors, but no primitive constructor; and that in that way, the logic is protected against
the computation of theorems except by functions representing primitive inferences, or
compositions of these.

Finally, the primitive HOL logic was supplemented by three primitive constants and
four axioms, to form the basic logic. The primitive inferences, together with the primi-
tive constants, the five axioms, and a collection of definitions, give a starting point for
constructing proofs, and hence computing theorems. However, proving even the sim-
plest theorems from this minimal basis costs considerable effort. The basis does not
immediately provide the transitivity of equality, for example, or a means of universal
quantification; both of these themselves have to be derived.

2.1 Simple Derivations

As an illustration of a proof in HOL, the following chain of theorems forms a proof
(from the empty set, in the HOL deductive system), for the particular terms ‘‘t1‘‘and
‘‘t2‘‘,both of HOL type ‘‘:bool‘‘:

1. t1 ==> t2 |- t1 ==> t2

39
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2. t1 |- t1

3. t1 ==> t2, t1 |- t2

That is, the third theorem follows from the first and second.
In the session below, the proof is performed in the HOL system, using the ML functions

ASSUME and MP.

2- show_assums := true;

> val it = () : unit

- val th1 = ASSUME ‘‘t1 ==> t2‘‘;

> val th1 = [t1 ==> t2] |- t1 ==> t2 : thm

- val th2 = ASSUME ‘‘t1:bool‘‘

> val th2 = [t1] |- t1 : thm

- MP th1 th2;

> val it = [t1 ==> t2, t1] |- t2 : thm

More briefly, one could evaluate the following, and ‘count’ the invocations of functions
representing primitive inferences.

3#set_flag(‘timing‘, true);;

false : bool

Run time: 0.0s

#MP(ASSUME "t1 ==> t2")(ASSUME "t1:bool");;

t1 ==> t2, t1 |- t2

Run time: 0.0s

Intermediate theorems generated: 3

Each of the three inference steps of the abstract proof corresponds to the applicationof
an ML function in the performance of the proof in HOL; and each of the ML functions
corresponds to a primitive inference of the deductive system.

It is worth emphasising that, in either case, every primitive inference in the proof
chain is made, in the sense that for each inference, the corresponding ML function is
evaluated. That is, HOL permits no short-cut around the necessity of performing com-
plete proofs. The short-cut provided by derived inference rules (as implemented in ML)
is around the necessity of specifying every step; something that would be impossible for
a proof of any length. It can be seen from this that the derived rule, and its represen-
tation as an ML function, is essential to the HOL methodology; theorem proving would
be otherwise impossible.

There are, of course, an infinite number of proofs, of the ‘form’ shown in the example,
that can be conducted in HOL: one for every pair of ‘‘:bool‘‘-typed terms. Moreover,
every time a theorem of the form
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t1 ⇒ t2, t1 ` t2

is required, its proof must be constructed anew. To capture the general pattern of
inference, an ML function can be written to implement an inference rule as a derivation
from the primitive inferences. Abstractly, a derived inference rule is a rule that can be
justified on the basis of the primitive inference rules (and/or the axioms). In the present
case, the rule required ‘undischarges’ assumptions. It is specified for HOL by

Γ |- t1 ==> t2
Γ ∪ {t1} |- t2

This general rule is valid because from a HOL theorem of the form Γ |- t1==>t2, the
theorem Γ ∪ {t1} |- t2 can be derived as for the specific instance above. The rule can
be implemented in ML as a function (UNDISCH, say) that calls the appropriate sequence
of primitive inferences. The ML definition of UNDISCH is simply

4- val UNDISCH th = MP th (ASSUME(fst(dest_imp(concl th))));;

> val UNDISCH = fn : thm -> thm

This provides a function that maps a theorem to a theorem; that is, performs proofs in
HOL. The following session illustrates the use of the derived rule, on a consequence of
the axiom IMP_ANTISYM_AX. (The inferences are counted.) Assume that the printing of
theorems has been adjusted as above and th is bound as shown below:

2#th;;

|- (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2)

Run time: 0.0s

#set_flag(‘timing‘,true);;

true : bool

Run time: 0.0s

#UNDISCH th;;

t1 ==> t2 |- (t2 ==> t1) ==> (t1 = t2)

Run time: 0.1s

Intermediate theorems generated: 2

#UNDISCH it;;

t1 ==> t2, t2 ==> t1 |- t1 = t2

Run time: 0.0s

Intermediate theorems generated: 2
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Each successful application of UNDISCH to a theorem invokes an application of ASSUME,
followed by an application of MP; UNDISCH constructs the 2-step proof for any given
theorem (of appropriate form). As can be seen, it relies on the class of ML functions
that access HOL syntax: in particular, concl to produce the conclusion of the theorem,
dest_imp to separate the implication, and the selector fst to choose the antecedent.

This particular example is very simple, but a derived inference rule can perform proofs
of arbitrary length. It can also make use of previously defined rules. In this way, the
normal inference patterns can be developed much more quickly and easily; transitivity,
generalization, and so on, support the familiar patterns of inference.

A number of derived inference rules are pre-defined when the HOL system is entered
(of which UNDISCH is one of the first). In Section 2.3, the abstract derivations are given
for the pre-defined rules that reflect the more usual inference patterns of the predicate
(and lambda) calculi. Like those shown, some of the pre-defined derived rules in HOL

generate relatively short proofs. Others invoke thousands of primitive inferences, and
clearly save a great deal of effort. Furthermore, rules can be defined by the user to make
still larger steps, or to implement more specialized patterns.

All of the pre-defined derived rules in HOL are described in REFERENCE.

2.2 Rewriting

Included in the set of derived inferences that are pre-defined in HOL is a group of rules
with complex definitions that do a limited amount of ‘automatic’ theorem-proving in
the form of rewriting. The ideas and implementation were originally developed by
Milner and Wadsworth for Edinburgh LCF, and were later implemented more flexibly
and efficiently by Paulson and Huet for Cambridge LCF. They appear in HOL in the
Cambridge form. The basic rewriting rule is REWRITE_RULE. All of the rewriting rules
are described in detail in REFERENCE.
REWRITE_RULE uses a list of equational theorems (theorems whose conclusions can

be regarded as having the form t1 = t2) to replace any subterms of an object theorem
that ‘match’ t1 by the corresponding instance of t2. The rule matches recursively and to
any depth, until no more replacements can be made, using internally defined search,
matching and instantiation algorithms. The validity of REWRITE_RULE rests ultimately on
the primitive rules SUBST (for making the substitutions); INST_TYPE (for instantiating
types); and the derived rules for generalization and specialization (see Sections 2.3.13
and 2.3.11) for instantiating terms. The definition of REWRITE_RULE in ML also relies on
a large number of general and HOL-oriented ML functions.

In practice, the derived rule REWRITE_RULE plays a central role in proofs, because
it takes over a very large number of inferences which may happen in a complex and
unpredictable order. It is unlike any other primitive or pre-defined rule, first because
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of the number of inferences it generates1; and second because its outcome is often
unexpected. Its power is increased by the fact that any existing equational theorem can
be supplied as a ‘rewrite rule’, including a standard HOL set of pre-proved tautologies;
and these rewrite rules can interact with each other in the rewriting process to transform
the original theorem.

The application of REWRITE_RULE, in the session below, illustrates that replacements
are made at all levels of the structure of a term. The example is numerical; the infixes
"$>" and "$<" are the usual ‘greater than’ and ‘less than’ relations, respectively, and
"SUC", the usual successor function. Use is made of the pre-existing definition of "$>":
GREATER (see REFERENCE). The timing facility is used again, for interest, and the printing
of theorems is adjusted as above.

2#top_print print_all_thm;;

- : (thm -> void)

#set_flag(‘timing‘,true);;

false : bool

Run time: 0.0s

#REWRITE_RULE

[GREATER]

(ASSUME "SUC 4 > 0 = (SUC 3 > 0 = (SUC 2 > 0 = (SUC 1 > 0 = SUC 0 > 0)))");;

##Definition GREATER autoloaded from theory ‘arithmetic‘.

GREATER = |- !m n. m > n = n < m

Run time: 1.5s

Intermediate theorems generated: 1

(SUC 4) > 0 =

((SUC 3) > 0 = ((SUC 2) > 0 = ((SUC 1) > 0 = (SUC 0) > 0)))

|- 0 < (SUC 4) =

(0 < (SUC 3) = (0 < (SUC 2) = (0 < (SUC 1) = 0 < (SUC 0))))

Run time: 0.3s

Intermediate theorems generated: 23

Notice that rewriting equations can be extracted from universally quantified theorems.
To construct the proof step-wise, with all of the instantiations, substitutions, and uses
of transitivity, etc., would be a lengthy process. The rewriting rules make it easy, and
do so whilst still generating the entire chain of inferences.

1The number of inferences performed by this rule is generally ‘inflated’; i.e. is generally greater than
the length of the proof itself, if the proof could be ‘seen’. This is because, in the current implemen-
tation, some inference is done during the search phase that is not necessarily in support of successful
replacements.



44 CHAPTER 2. DERIVED INFERENCE RULES

2.3 Derivation of the Standard Rules

The HOL system provides all the standard introduction and elimination rules of the
predicate calculus pre-defined as derived inferences. It is these derived rules, rather
than the primitive rules, that one normally uses in practice. In this section, the deriva-
tions of some of the standard rules are given, in sequence. These derivations only use
the axioms and definitions in the theory bool (see Section 3.2.1), the eight primitive
inferences of the HOL logic, and inferences defined earlier in the sequence.

Theorems,in accordance with the definition given at the beginning of this chapter,
are treated as rules without hypotheses; thus the derivation of a theorem resembles the
derivation of a rule except in not having hypotheses. (The derivation of TRUTH, Sec-
tion 2.3.9, is the only example given of this, but there are several others in HOL.) There
are also some rules that are intrinsically more general than theorems. For example, for
any two terms t1 and t2, the theorem ` (λx. t1)t2 = t1[t2/x] follows by the primitive
rule BETA CONV. The rule BETA_CONV returns a theorem for each pair of terms t1 and t2,
and is therefore equivalent to an infinite familyof theorems. No single theorem can be
expressed in the HOL logic that is equivalent to BETA CONV. (UNDISCH is not a rule of this
sort, as it can, in fact, be expressed as a theorem.)

For each derivation given below, there is an ML function definition in the HOL system
that implements the derived rule as a procedure in ML. The actual implementation in
the HOL system differs in some cases from the derivations given here, since the system
code has been optimised for improved performance.

In addition, for reasons that are mostly historical, not all the inferences that are de-
rived in terms of the abstract logic are actually derived in the current version of the HOL

system. That is, there are currently about forty rules that are installed in the system on
an ‘axiomatic’ basis, all of which should be derived by explicit inference. Although the
current status of these rules is not satisfactory, and it is planned, as a high priority, to
derive them properly in a future version, their current status does not actually compro-
mise the consistency of the logic. In effect, the existing HOL system has a deductive
system more comprehensive than the one presented abstractly, but the model outlined
in LOGIC would easily extend to cover it.

For reference, in HOL Version 2.0 the following rules that should be derived are
not derived, but (for efficiency) are implemented as primitives. The list includes some
conversions and conversion-valued functions.
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ADD_ASSUM CONTR IMP_ANTISYM_RULE

ALPHA DEF_EXISTS_RULE IMP_TRANS

AP_TERM DISJ_CASES INST

AP_THM DISJ1 MK_ABS

SUBS DISJ2 MK_COMB

SUBS_OCCS EQ_IMP_RULE MK_EXISTS

CCONTR EQ_MP NOT_ELIM

CHOOSE EQT_INTRO NOT_INTRO

CONJ ETA_CONV num_CONV

EXISTS SPEC TRANS

EXT SUBST_CONV CONJUNCT1

GEN SYM CONJUNCT2

The derivations that follow consist of sequences of numbered steps each of which

1. is an axiom, or

2. is a hypothesis of the rule being derived, or

3. follows from preceding steps by a rule of inference (either primitive or previously
derived).

Note that the abbreviation conv (standing for ‘conversion’) is used for the ML type
term -> thm.

2.3.1 Adding an assumption

ADD_ASSUM : term -> thm -> thm

Γ ` t

Γ, t′ ` t

1. t′ ` t′ [ASSUME]

2. Γ ` t [Hypothesis]

3. Γ ` t′ ⇒ t [DISCH 2]

4. Γ, t′ ` t [MP 3,1]

2.3.2 Undischarging

UNDISCH : thm -> thm
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Γ ` t1 ⇒ t2
Γ, t1 ` t2

1. t1 ` t1 [ASSUME]

2. Γ ` t1 ⇒ t2 [Hypothesis]

3. Γ, t1 ` t2 [MP 2,1]

2.3.3 Symmetry of equality

SYM : thm -> thm

Γ ` t1 = t2
Γ ` t2 = t1

1. Γ ` t1 = t2 [Hypothesis]

2. ` t1 = t1 [REFL]

3. Γ ` t2 = t1 [SUBST 1,2]

2.3.4 Transitivity of equality

TRANS : thm -> thm -> thm

Γ1 ` t1 = t2 Γ2 ` t2 = t3
Γ1 ∪ Γ2 ` t1 = t3

1. Γ2 ` t2 = t3 [Hypothesis]

2. Γ1 ` t1 = t2 [Hypothesis]

3. Γ1 ∪ Γ2 ` t1 = t3 [SUBST 1,2]
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2.3.5 Application of a term to a theorem

AP_TERM : term -> thm -> thm

Γ ` t1 = t2
Γ ` t t1 = t t2

1. Γ ` t1 = t2 [Hypothesis]

2. ` t t1 = t t1 [REFL]

3. Γ ` t t1 = t t2 [SUBST 1,2]

2.3.6 Application of a theorem to a term

AP_THM : thm -> conv

Γ ` t1 = t2
Γ ` t1 t = t2 t

1. Γ ` t1 = t2 [Hypothesis]

2. ` t1 t = t1 t [REFL]

3. Γ ` t1 t = t2 t [SUBST 1,2]

2.3.7 Modus Ponens for equality

EQ_MP : thm -> thm -> thm

Γ1 ` t1 = t2 Γ2 ` t1
Γ1 ∪ Γ2 ` t2

1. Γ1 ` t1 = t2 [Hypothesis]

2. Γ2 ` t1 [Hypothesis]

3. Γ1 ∪ Γ2 ` t2 [SUBST 1,2]
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2.3.8 Implication from equality

EQ_IMP_RULE : thm -> (thm # thm)

Γ ` t1 = t2
Γ ` t1 ⇒ t2 Γ ` t2 ⇒ t1

1. Γ ` t1 = t2 [Hypothesis]
2. t1 ` t1 [ASSUME]
3. Γ, t1 ` t2 [EQ MP 1,2]
4. Γ ` t1 ⇒ t2 [DISCH 3]
5. Γ ` t2 = t1 [SYM 1]
6. t2 ` t2 [ASSUME]
7. Γ, t2 ` t1 [EQ MP 5,6]
8. Γ ` t2 ⇒ t1 [DISCH 7]
9. Γ ` t1 ⇒ t2 and Γ ` t2 ⇒ t1 [4,8]

2.3.9 T-Introduction

TRUTH

` T

1. ` T = ((λx. x) = (λx. x)) [Definition of T]
2. ` ((λx. x) = (λx. x)) = T [SYM 1]
3. ` (λx. x) = (λx. x) [REFL]
4. ` T [EQ MP 2,3]

2.3.10 Equality-with-T elimination

EQT_ELIM : thm -> thm

Γ ` t = T

Γ ` t
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1. Γ ` t = T [Hypothesis]
2. Γ ` T = t [SYM 1]
3. ` T [TRUTH]
4. Γ ` t [EQ MP 2,3]

2.3.11 Specialization (∀-elimination)

SPEC : term -> thm -> thm

Γ ` ∀x. t
Γ ` t[t′/x]

• t[t′/x] denotes the result of substituting t′ for free occurrences of x in t, with the
restriction that no free variables in t′ become bound after substitution.

1. ` ∀ = (λP. P = (λx. T)) [INST TYPE applied to the definition of ∀]
2. Γ ` ∀(λx. t) [Hypothesis]
3. Γ ` (λP. P = (λx. T))(λx. t) [SUBST 1,2]
4. ` (λP. P = (λx. T))(λx. t) = ((λx. t) = (λx. T)) [BETA CONV]
5. Γ ` (λx. t) = (λx. T) [EQ MP 4,3]
6. Γ ` (λx. t) t′ = (λx. T) t′ [AP THM 5]
7. ` (λx. t) t′ = t[t′/x] [BETA CONV]
8. Γ ` t[t′/x] = (λx. t) t′ [SYM 7]
9. Γ ` t[t′/x] = (λx. T) t′ [TRANS 8,6]

10. ` (λx. T) t′ = T [BETA CONV]
11. Γ ` t[t′/x] = T [TRANS 9,10]
12. Γ ` t[t′/x] [EQT ELIM 11]

2.3.12 Equality-with-T introduction

EQT_INTRO : thm -> thm

Γ ` t

Γ ` t = T

1. ` ∀b1 b2. (b1 ⇒ b2)⇒ (b2 ⇒ b1)⇒ (b1 = b2) [Axiom]
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2. ` ∀b2. (t⇒ b2)⇒ (b2 ⇒ t)⇒ (t = b2) [SPEC 1]

3. ` (t⇒ T)⇒ (T⇒ t)⇒ (t = T) [SPEC 2]

4. ` T [TRUTH]

5. ` t⇒ T [DISCH 4]

6. ` (T⇒ t)⇒ (t = T) [MP 3,5]

7. Γ ` t [Hypothesis]

8. Γ ` T⇒ t [DISCH 7]

9. Γ ` t = T [MP 6,8]

2.3.13 Generalization (∀-introduction)

GEN : term -> thm -> thm

Γ ` t

Γ ` ∀x. t
• Where x is not free in Γ.

1. Γ ` t [Hypothesis]

2. Γ ` t = T [EQT INTRO 1]

3. Γ ` (λx. t) = (λx. T) [ABS 2]

4. ` ∀(λx. t) = ∀(λx. t) [REFL]

5. ` ∀ = (λP. P = (λx. T)) [INST TYPE applied to the definition of ∀]
6. ` ∀(λx. t) = (λP. P = (λx. T))(λx. t) [SUBST 5,4]

7. ` (λP. P = (λx. T))(λx. t) = ((λx. t) = (λx. T)) [BETA CONV]

8. ` ∀(λx. t) = ((λx. t) = (λx. T)) [TRANS 6,7]

9. ` ((λx. t) = (λx. T)) = ∀(λx. T) [SYM 8]

10. Γ ` ∀(λx. t) [EQ MP 9,3]

2.3.14 Simple α-conversion

SIMPLE_ALPHA

` (λx1. t x1) = (λx2. t x2)
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• Where neither x1 nor x2 occurs free in t.2

1. ` (λx1. t x1) x = t x [BETA CONV]

2. ` (λx2. t x2) x = t x [BETA CONV]

3. ` t x = (λx2. t x2) x [SYM 2]

4. ` (λx1. t x1) x = (λx2. t x2) x [TRANS 1,3]

5. ` (λx. (λx1. t x1) x) = (λx. (λx2. t x2) x) [ABS 4]

6. ` ∀f. (λx. f x) = f [Appropriately type-instantiated axiom]

7. ` (λx. (λx1. t x1)x) = λx1. t x1 [SPEC 6]

8. ` (λx. (λx2. t x2)x) = λx2. t x2 [SPEC 6]

9. ` (λx1. t x1) = (λx. (λx1. t x1)x) [SYM 7]

10. ` (λx1. t x1) = (λx. (λx2. t x2)x) [TRANS 9,5]

11. ` (λx1. t x1) = (λx2. t x2) [TRANS 10,8]

2.3.15 η-conversion

ETA_CONV : conv

` (λx′. t x′) = t

• Where x′ does not occur free in t (we use x′ rather than just x to motivate the use
of SIMPLE ALPHA in the derivation below).

1. ` ∀f. (λx. f x) = f [Appropriately type-instantiated axiom]

2. ` (λx. t x) = t [SPEC 1]

3. ` (λx′. t x′) = (λx. t x) [SIMPLE ALPHA]

4. ` (λx′. t x′) = t [TRANS 3,2]

2SIMPLE_ALPHA is included here because it is used in a subsequent derivation, but it is not actually in
the HOL system, as it is subsumed by other functions.
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2.3.16 Extensionality

EXT : thm -> thm

Γ ` ∀x. t1 x = t2 x

Γ ` t1 = t2

• Where x is not free in t1 or t2.

1. Γ ` ∀x. t1 x = t2 x [Hypothesis]

2. Γ ` t1 x
′ = t2 x

′ [SPEC 1 (x′ is a fresh)]

3. Γ ` (λx′. t1 x
′) = (λx′. t2 x

′) [ABS 2]

4. ` (λx′. t1 x
′) = t1 [ETA CONV]

5. ` t1 = (λx′. t1 x
′) [SYM 4]

6. Γ ` t1 = (λx′. t2 x
′) [TRANS 5,3]

7. ` (λx′. t2 x
′) = t2 [ETA CONV]

8. Γ ` t1 = t2 [TRANS 6,7]

2.3.17 ε-introduction

SELECT_INTRO : thm -> thm

Γ ` t1 t2
Γ ` t1(ε t1)

1. ` ∀P x. P x⇒ P (ε P ) [Suitably type-instantiated axiom]

2. ` t1 t2 ⇒ t1(ε t1) [SPEC 1 (twice)]

3. Γ ` t1 t2 [Hypothesis]

4. Γ ` t1(ε t1) [MP 2,3]
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2.3.18 ε-elimination

SELECT_ELIM : thm -> (term # thm) -> thm

Γ1 ` t1(ε t1) Γ2, t1 v ` t

Γ1 ∪ Γ2 ` t

• Where v occurs nowhere except in the assumption t1 v of the second hypothesis.

1. Γ2, t1 v ` t [Hypothesis]
2. Γ2 ` t1 v ⇒ t [DISCH 1]
3. Γ2 ` ∀v. t1 v ⇒ t [GEN 2]
4. Γ2 ` t1(ε t1)⇒ t [SPEC 3]
5. Γ1 ` t1(ε t1) [Hypothesis]
6. Γ1 ∪ Γ2 ` t [MP 4,5]

2.3.19 ∃-introduction

EXISTS : (term # term) -> thm -> thm

Γ ` t1[t2]

Γ ` ∃x. t1[x]

• Where t1[t2] denotes a term t1 with some free occurrences of t2 singled out, and
t1[x] denotes the result of replacing these occurrences of t1 by x, subject to the
restriction that x doesn’t become bound after substitution.

1. ` (λx. t1[x])t2 = t1[t2] [BETA CONV]
2. ` t1[t2] = (λx. t1[x])t2 [SYM 1]
3. Γ ` t1[t2] [Hypothesis]
4. Γ ` (λx. t1[x])t2 [EQ MP 2,3]
5. Γ ` (λx. t1[x])(ε(λx. t1[x])) [SELECT INTRO 4]
6. ` ∃ = λP. P (ε P ) [INST TYPE applied to the definition of ∃]
7. ` ∃(λx. t1[x]) = (λP. P (ε P ))(λx. t1[x]) [AP THM 6]
8. ` (λP. P (ε P ))(λx. t1[x]) = (λx. t1[x])(ε(λx. t1[x])) [BETA CONV]
9. ` ∃(λx. t1[x]) = (λx. t1[x])(ε(λx. t1[x])) [TRANS 7,8]

10. ` (λx. t1[x])(ε(λx. t1[x])) = ∃(λx. t1[x]) [SYM 9]
11. Γ ` ∃(λx. t1[x]) [EQ MP 10,5]
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2.3.20 ∃-elimination

CHOOSE : (term # thm) -> thm -> thm

Γ1 ` ∃x. t[x] Γ2, t[v] ` t′

Γ1 ∪ Γ2 ` t′

• Where t[v] denotes a term t with some free occurrences of the variable v singled
out, and t[x] denotes the result of replacing these occurrences of v by x, subject to
the restriction that x doesn’t become bound after substitution.

1. ` ∃ = λP. P (ε P ) [INST TYPE applied to the definition of ∃]
2. ` ∃(λx. t[x]) = (λP. P (ε P ))(λx. t[x]) [AP THM 1]
3. Γ1 ` ∃(λx. t[x]) [Hypothesis]
4. Γ1 ` (λP. P (ε P ))(λx. t[x]) [EQ MP 2,3]
5. ` (λP. P (ε P ))(λx. t[x]) = (λx. t[x])(ε(λx. t[x])) [BETA CONV]
6. Γ1 ` (λx. t[x])(ε(λx. t[x]) [EQ MP 5,4]
7. ` (λx. t[x])v = t[v] [BETA CONV]
8. ` t[v] = (λx. t[x])v [SYM 7]
9. Γ2, t[v] ` t′ [Hypothesis]

10. Γ2 ` t[v]⇒ t′ [DISCH 9]
11. Γ2 ` (λx. t[x])v ⇒ t′ [SUBST 8,10]
12. Γ2, (λx. t[x])v ` t′ [UNDISCH 11]
13. Γ1 ∪ Γ2 ` t′ [SELECT ELIM 6,12]

2.3.21 Use of a definition

RIGHT_BETA : thm -> thm

Γ ` t = λx. t′[x]

Γ ` t t = t′[t]

• Where t does not contain x.

1. Γ ` t = λx. t′[x] [Suitably type-instantiated hypothesis]
2. Γ ` t t = (λx. t′[x]) t [AP THM 1 ]
3. ` (λx. t′[x]) t = t′[t] [BETA CONV]
4. Γ ` t t = t′[t] [TRANS 2,3]
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2.3.22 Use of a definition

RIGHT_LIST_BETA : thm -> thm

Γ ` t = λx1 · · ·xn. t′[x1, . . . , xn]

Γ ` t t1 · · · tn = t′[t1, . . . , tn]

• Where none of the ti contain any of the xi.

1. Γ ` t = λx1 · · ·xn. t′[x1, . . . , xn] [Suitably type-instantiated hypothesis]

2. Γ ` t t1 · · · tn = (λx1 · · ·xn. t′[x1, . . . , xn]) t1 · · · tn [AP THM 1 (n times)]

3. ` (λx1 · · · xn. t′[x1, . . . , xn]) t1 · · · tn = t′[t1, . . . , tn] [BETA CONV (n times)]

4. Γ ` t t1 · · · tn = t′[t1, . . . , tn] [TRANS 2,3]

2.3.23 ∧-introduction

CONJ : thm -> thm -> thm

Γ1 ` t1 Γ2 ` t2
Γ1 ∪ Γ2 ` t1 ∧ t2

1. ` ∧ = λb1 b2. ∀b. (b1 ⇒ (b2 ⇒ b))⇒ b [Definition of ∧ ]

2. ` t1 ∧ t2 = ∀b. (t1 ⇒ (t2 ⇒ b))⇒ b [RIGHT LIST BETA 1]

3. t1 ⇒ (t2 ⇒ b) ` t1 ⇒ (t2 ⇒ b) [ASSUME]

4. Γ1 ` t1 [Hypothesis]

5. Γ1, t1 ⇒ (t2 ⇒ b) ` t2 ⇒ b [MP 3,4]

6. Γ2 ` t2 [Hypothesis]

7. Γ1 ∪ Γ2, t1 ⇒ (t2 ⇒ b) ` b [MP 5,6]

8. Γ1 ∪ Γ2 ` (t1 ⇒ (t2 ⇒ b))⇒ b [DISCH 7]

9. Γ1 ∪ Γ2 ` ∀b. (t1 ⇒ (t2 ⇒ b))⇒ b [GEN 8]

10. Γ1 ∪ Γ2 ` t1 ∧ t2 [EQ MP (SYM 2),9]
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2.3.24 ∧-elimination

CONJUNCT1 : thm -> thm, CONJUNCT2 : thm -> thm

Γ ` t1 ∧ t2
Γ ` t1 Γ ` t2

1. ` ∧ = λb1 b2. ∀b. (b1 ⇒ (b2 ⇒ b))⇒ b [Definition of ∧ ]
2. ` t1 ∧ t2 = ∀b. (t1 ⇒ (t2 ⇒ b))⇒ b [RIGHT LIST BETA 1]
3. Γ ` t1 ∧ t2 [Hypothesis]
4. Γ ` ∀b. (t1 ⇒ (t2 ⇒ b))⇒ b [EQ MP 2,3]
5. Γ ` (t1 ⇒ (t2 ⇒ t1))⇒ t1 [SPEC 4]
6. t1 ` t1 [ASSUME]
7. t1 ` t2 ⇒ t1 [DISCH 6]
8. ` t1 ⇒ (t2 ⇒ t1) [DISCH 7]
9. Γ ` t1 [MP 5,8]

10. Γ ` (t1 ⇒ (t2 ⇒ t2))⇒ t2 [SPEC 4]
11. t2 ` t2 [ASSUME]
12. ` t2 ⇒ t2 [DISCH 11]
13. ` t1 ⇒ (t2 ⇒ t2) [DISCH 12]
14. Γ ` t2 [MP 10,13]
15. Γ ` t1 and Γ ` t2 [9,14]

2.3.25 Right ∨-introduction

DISJ1 : thm -> conv

Γ ` t1
Γ ` t1 ∨ t2

1. ` ∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ (b2 ⇒ b)⇒ b [Definition of ∨ ]
2. ` t1 ∨ t2 = ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [RIGHT LIST BETA 1]
3. Γ ` t1 [Hypothesis]
4. t1 ⇒ b ` t1 ⇒ b [ASSUME]
5. Γ, t1 ⇒ b ` b [MP 4,3]
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6. Γ, t1 ⇒ b ` (t2 ⇒ b)⇒ b [DISCH 5]
7. Γ ` (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [DISCH 6]
8. Γ ` ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [GEN 7]
9. Γ ` t1 ∨ t2 [EQ MP (SYM 2),8]

2.3.26 Left ∨-introduction

DISJ2 : term -> thm -> thm

Γ ` t2
Γ ` t1 ∨ t2

1. ` ∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ (b2 ⇒ b)⇒ b [Definition of ∨ ]
2. ` t1 ∨ t2 = ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [RIGHT LIST BETA 1]
3. Γ ` t2 [Hypothesis]
4. t2 ⇒ b ` t2 ⇒ b [ASSUME]
5. Γ, t2 ⇒ b ` b [MP 4,3]
6. Γ ` (t2 ⇒ b)⇒ b [DISCH 5]
7. Γ ` (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [DISCH 6]
8. Γ ` ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [GEN 7]
9. Γ ` t1 ∨ t2 [EQ MP (SYM 2),8]

2.3.27 ∨-elimination

DISJ_CASES : thm -> thm -> thm -> thm

Γ ` t1 ∨ t2 Γ1, t1 ` t Γ2, t2 ` t

Γ ∪ Γ1 ∪ Γ2 ` t

1. ` ∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ (b2 ⇒ b)⇒ b [Definition of ∨ ]
2. ` t1 ∨ t2 = ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [RIGHT LIST BETA 1]
3. Γ ` t1 ∨ t2 [Hypothesis]
4. Γ ` ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [EQ MP 2,3]
5. Γ ` (t1 ⇒ t)⇒ (t2 ⇒ t)⇒ t [SPEC 4]
6. Γ1, t1 ` t [Hypothesis]
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7. Γ1 ` t1 ⇒ t [DISCH 6]

8. Γ ∪ Γ1 ` (t2 ⇒ t)⇒ t [MP 5,7]

9. Γ2, t2 ` t [Hypothesis]

10. Γ2 ` t2 ⇒ t [DISCH 9]

11. Γ ∪ Γ1 ∪ Γ2 ` t [MP 8,10]

2.3.28 Classical contradiction rule

CCONTR : term -> thm -> thm

Γ, ¬t ` F

Γ ` t

1. ` ¬ = λb. b⇒ F [Definition of ¬]

2. ` ¬t = t⇒ F [RIGHT LIST BETA 1]

3. Γ, ¬t ` F [Hypothesis]

4. Γ ` ¬t⇒ F [DISCH 3]

5. Γ ` (t⇒ F)⇒ F [SUBST 2,4]

6. t = F ` t = F [ASSUME]

7. Γ, t = F ` (F⇒ F)⇒ F [SUBST 6,5]

8. F ` F [ASSUME]

9. ` F⇒ F [DISCH 8]

10. Γ, t = F ` F [MP 7,9]

11. ` F = ∀b. b [Definition of F]

12. Γ, t = F ` ∀b. b [SUBST 11,10]

13. Γ, t = F ` t [SPEC 12]

14. ` ∀b. (b = T) ∨ (b = F) [Axiom]

15. ` (t = T) ∨ (t = F) [SPEC 14]

16. t = T ` t = T [ASSUME]

17. t = T ` t [EQT ELIM 16]

18. Γ ` t [DISJ CASES 15,17,13]



Chapter 3

Core Theories

The HOL system provides a collection of theories on which to base verification tools
or further theory development. In the rest of this section, these theories are briefly
described. The sections that follow provide an overview of the contents of each theory.
For a complete list of all the axioms, definitions and theorems in HOL, see the online
resources distributed with the system. In particular, the HTML file help/HOLindex.html

is a good place to start browsing the available theories. For a graphical picture of the
theory hierarchy, see help/theorygraph/theories.html.

3.1 The Theory min

The starting theory of HOL is the theory min. In this theory, the type constant bool

of booleans, the binary type operator (α, β)fun of functions, and the type constant ind
of individuals are declared. Building on these types, three primitive constants are
declared: equality, implication, and a choice operator:

Equality Equality (= : ’a -> ’a -> bool) is an infix operator.

Implication Implication (==> : bool -> bool -> bool) is the material implication and
is an infix operator that is right-associative, i.e., x ==> y ==> z parses to the same
term as x ==> (y ==> z).

Choice Equality and implication are standard predicate calculus notions, but choice
is more exotic: if t is a term having type σ->bool, then @x.t x (or, equivalently,
$@t) denotes some member of the set whose characteristic function is t. If the
set is empty, then @x.t x denotes an arbitrary member of the set denoted by σ.
The constant @ is a higher order version of Hilbert’s ε-operator; it is related to
the constant ι in Church’s formulation of higher order logic. For more details,
see Church’s original paper [2], Leisenring’s book on Hilbert’s ε-symbol [6], or
Andrews’ textbook on type theory [1].

No theorems or axioms are placed in theory min. The primitive rules of inference of
HOL depend on the presence of min.
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3.2 Basic Theories

The most basic theories in HOL provide support for a standard collection of types. The
theory bool defines the basis of the HOL logic, including the boolean operations and
quantifiers. On this platform, quite a bit of theorem-proving infrastructure can already
be built. Further basic types are developed in the theory of pairs (prod), disjoint sums
(sum), the one-element type (one), and the (option) type.

3.2.1 The theory bool

At start-up, the initial theory for users of the HOL system is called bool, which is con-
structed when the HOL system is built. The theory bool is an extension of the combina-
tion of the “conceptual” theories LOG and INIT, described in LOGIC. Thus it contains the
four axioms for higher order logic. These axioms, together with the rules of inference
described in Section 1.7, constitute the core of the HOL logic. Because of the way the
HOL system evolved from LCF1, the particular axiomatization of higher order logic it
uses differs from the classical axiomatization due to Church [2]. The biggest difference
is that in Church’s formulation type variables are in the meta-language, whereas in the
HOL logic they are part of the object language.

The logical constants T (truth), F (falsity), ~ (negation), /\ (conjunction), \/ (dis-
junction), ! (universal quantification), ? (existential quantification), and ?! (unique
existence quantifier) can all be defined in terms of equality, implication and choice. The
definitions listed below are fairly standard; each one is preceded by its ML name. Later
definitions sometimes build on earlier ones.

T_DEF |- T = ((\x:bool. x) = (\x. x))

FORALL_DEF |- ! = \P:’a->bool. P = (\x. T)

EXISTS_DEF |- ? = \P:’a->bool. P($@ P)

AND_DEF |- /\ = \t1 t2. !t. (t1 ==> t2 ==> t) ==> t

OR_DEF |- \/ = \t1 t2. !t. (t1 ==> t) ==> (t2 ==> t) ==> t

F_DEF |- F = !t. t

NOT_DEF |- ~ = (\t. t ==> F)

EXISTS_UNIQUE_DEF |- ?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y)))

There are four axioms in the theory bool; the first three are the following:

1To simplify the porting of the LCF theorem-proving tools to the HOL system, the HOL logic was made
as like PPλ (the logic built-in to LCF) as possible.
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BOOL_CASES_AX |- !t. (t = T) \/ (t = F)

ETA_AX |- !t. (\x. t x) = t

SELECT_AX |- !P:’a->bool x. P x ==> P($@ P)

The fourth and last axiom of the HOL logic is the Axiom of Infinity. Its statement is
phrased in terms of the function properties ONE_ONE and ONTO. The definitions are:

ONE_ONE_DEF |- ONE_ONE f = (!x1 x2. (f x1 = f x2) ==> (x1 = x2))

ONTO_DEF |- ONTO f = (!y. ?x. y = f x)

The Axiom of Infinity is

INFINITY_AX |- ?f:ind->ind. ONE_ONE f /\ ~(ONTO f)

This asserts that there exists a one-to-one map from ind to itself that is not onto. This
implies that the type ind denotes an infinite set.

The three other axioms of the theory bool, the rules of inference in Section 1.7 and
the Axiom of Infinity are, together, sufficient for developing all of standard mathemat-
ics. Thus, in principle, the user of the HOL system should never need to make a non-
definitional theory. In practice, it is often very tempting to take the risk of introducing
new axioms because deriving them from definitions can be tedious—proving that ‘ax-
ioms’ follow from definitions amounts to proving their consistency.

Further definitions The theory bool also supplies the definitions of a number of useful
constants.

LET_DEF |- LET = \f x. f x

COND_DEF |- COND = \t t1 t2. @x. ((t=T)==>(x=t1)) /\ ((t=F)==>(x=t2))

IN_DEF |- IN = \x (f:’a -> bool). f x

The constant LET is used in representing terms containing local variable bindings
(i.e. let-terms). For example, the concrete syntax let v = M in N is translated by the
parser to the term LET (\v.N) M. For the full description of how let expressions are
translated, see Section 3.2.3.

The constant COND is used to represent conditional expressions. The concrete syntax
if t1 then t2 else t3 abbreviates the application COND t1 t2 t3.

The constant IN (written as an infix) is the basis of the modelling of sets by their
characteristic functions. The term x IN P can be read as “x is an element of the set P ”,
or (more in line with its definition) as “the predicate P is true of x”.

Finally, the polymorphic constant ARB : α denotes a fixed but arbitrary element. ARB

is occasionally useful when attempting to deal with the issue of partiality.
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3.2.1.1 Restricted quantifiers

The theory bool also defines constants that implement restricted quantification. This
provides a means of simulating subtypes and dependent types with predicates. The
most heavily used are restrictions of the existential and universal quantifiers:

RES_FORALL_DEF |- RES_FORALL = \P m. !x. x IN P ==> m x

RES_EXISTS_DEF |- RES_EXISTS = \P m. ?x. x IN P /\ m x

RES_ABSTRACT_DEF |- (!P m x. x IN P ==> (RES_ABSTRACT P m x = m x) /\

(!P m1 m2.

(!x. x IN P ==> (m1 x = m2 x)) ==>

(RES_ABSTRACT P m1 = RES_ABSTRACT P m2)

The definition of RES_ABSTRACT is a characterising formula, rather than a direct equa-
tion. There are two important properties

• if y is an element of P then (\x :: P. M)y = M [y/x]

• If two restricted abstractions agree on all values over their (common) restricting
set, then they are equal.

For completeness, restricted versions of unique existence and indefinite description
are provided, although hardly used.

RES_EXISTS_UNIQUE_DEF

|- RES_EXISTS_UNIQUE = \P m. (?x :: P. m x) /\

(!x y :: P. m x /\ m y ==> (x = y))

RES_SELECT_DEF

|- RES_SELECT = \P m. @x. x IN P /\ m x

The definition of RES_EXISTS_UNIQUE uses the restricted quantification syntax with
the :: symbol, referring to the earlier definitions RES_EXISTS and RES_FORALL. The
:: syntax is used with restricted quantifiers to allow arbitrary predicates to restrict
binding variables. The HOL parser allows restricted quantification of all of a sequence
of binding variables by putting the restriction at the end of the sequence, thus with a
universal quantification:

∀x y z :: P . Q(x, y, z)

Here the predicate P restricts all of x, y and z.
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3.2.1.2 Derived syntactic forms

The HOL quotation parser can translate various standard logical notations into primitive
terms. For example, if + has been declared an infix (as explained in Section 1.9), as it
is when arithmeticTheory has been loaded, then ‘‘x+1‘‘ is translated to ‘‘$+ x 1‘‘.
The escape character $ suppresses the infix behaviour of + and prevents the quotation
parser getting confused. In general, $ can be used to suppress any special syntactic be-
haviour a token (such as if, + or let) might have. This is illustrated in the table below,
in which the terms in the column headed ‘ML quotation’ are translated by the quotation
parser to the corresponding terms in the column headed ‘Primitive term’. Conversely,
the terms in the latter column are always printed in the form shown in the former one.
The ML constructor expressions in the rightmost column evaluate to the same values (of
type term) as the other quotations in the same row.

Non-primitive terms

Kind of term ML quotation Primitive term Constructor expression

Negation ~t $~ t mk_neg(t)
Disjunction t1\/t2 $\/ t1 t2 mk_disj(t1,t2)
Conjunction t1/\t2 $/\ t1 t2 mk_conj(t1,t2)
Implication t1==>t2 $==> t1 t2 mk_imp(t1,t2)
Equality t1=t2 $= t1 t2 mk_eq(t1,t2)
∀-quantification !x.t $!(\x.t) mk_forall(x,t)
∃-quantification ?x.t $?(\x.t) mk_exists(x,t)
ε-term @x.t $@(\x.t) mk_select(x,t)
Conditional if t then t1 else t2 COND t t1 t2 mk_cond(t,t1,t2)
let-expression let x=t1 in t2 LET(\x.t2)t1 mk_let(mk_abs(x,t2),t1)

There are constructors, destructors and indicators for all the obvious constructs. (In-
dicators, e.g. is_neg, return truth values indicating whether or not a term belongs to the
syntax class in question.) In addition to the constructors listed in the table there are con-
structors, destructors, and indicators for pairs and lists, namely mk_pair, mk_cons and
mk_list (see REFERENCE). The constants COND and LET are explained in Section 3.2.1.
The constants \/, /\, ==> and = are examples of infixes and represent ∨, ∧, ⇒ and
equality, respectively. If c is declared to be an infix, then the HOL parser will translate
t1 c t2 to $c t1 t2.

The constants !, ? and @ are examples of binders and represent ∀, ∃ and ε, respectively.
If c is declared to be a binder, then the HOL parser will translate c x.t to the combination
$c(\x.t) (i.e. the application of the constant c to the representation of the abstraction
λx. t).
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Syntactic abbreviations

Abbreviated term Meaning Constructor expression

t t1 · · · tn (· · ·(t t1)· · · tn) list_mk_comb(t,[t1, . . . ,tn])
\x1 · · ·xn.t \x1. · · · \xn.t list_mk_abs([x1, . . . ,xn],t)
!x1 · · ·xn.t !x1. · · · !xn.t list_mk_forall([x1, . . . ,xn],t)
?x1 · · ·xn.t ?x1. · · · ?xn.t list_mk_exists([x1, . . . ,xn],t)

There are also constructors list_mk_conj, list_mk_disj, list_mk_imp and for con-
junctions, disjunctions, and implications respectively. The corresponding destructor
functions are called strip_comb, etc.,

3.2.1.3 Theorems

A large number of theorems involving the logical constants are pre-proved in the theory
bool. The following theorems illustrate how higher order logic allows concise expres-
sion of theorems supporting quantifier movement.

LEFT_AND_FORALL_THM |- !P Q. (!x. P x) /\ Q = !x. P x /\ Q

RIGHT_AND_FORALL_THM |- !P Q. P /\ (!x. Q x) = !x. P /\ Q x

LEFT_EXISTS_AND_THM |- !P Q. (?x. P x /\ Q) = (?x. P x) /\ Q

RIGHT_EXISTS_AND_THM |- !P Q. (?x. P /\ Q x) = P /\ ?x. Q x

LEFT_FORALL_IMP_THM |- !P Q. (!x. P x ==> Q) = (?x. P x) ==> Q

RIGHT_FORALL_IMP_THM |- !P Q. (!x. P ==> Q x) = P ==> !x. Q x

LEFT_EXISTS_IMP_THM |- !P Q. (?x. P x ==> Q) = (!x. P x) ==> Q

RIGHT_EXISTS_IMP_THM |- !P Q. (?x. P ==> Q x) = P ==> ?x. Q x

LEFT_FORALL_OR_THM |- !Q P. (!x. P x \/ Q) = (!x. P x) \/ Q

RIGHT_FORALL_OR_THM |- !P Q. (!x. P \/ Q x) = P \/ !x. Q x

LEFT_OR_EXISTS_THM |- !P Q. (?x. P x) \/ Q = ?x. P x \/ Q

RIGHT_OR_EXISTS_THM |- !P Q. P \/ (?x. Q x) = ?x. P \/ Q x

EXISTS_OR_THM |- !P Q. (?x. P x \/ Q x) = (?x. P x) \/ ?x. Q x

FORALL_AND_THM |- !P Q. (!x. P x /\ Q x) = (!x. P x) /\ !x. Q x

NOT_EXISTS_THM |- !P. ~(?x. P x) = !x. ~P x

NOT_FORALL_THM |- !P. ~(!x. P x) = ?x. ~P x

SKOLEM_THM |- !P. (!x. ?y. P x y) = ?f. !x. P x (f x)

Also, a theorem justifying Skolemization (SKOLEM_THM) is proved. Many other theo-
rems may be found in bool theory.
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3.2.2 Combinators

The theory combin contains the definitions of function composition (infixed o), a re-
versed function application operator, function override (infixed =+), and the combina-
tors S, K, I, W, and C,

o_DEF |- f o g = (\x. f(g x))

APP_DEF |- x :> f = f x

UPDATE_DEF |- (k =+ v) = (\f c. if k = c then v else f c)

K_DEF |- K = (\x y. x)

S_DEF |- S = (\f g x. f x(g x))

I_DEF |- I = S K K

W_DEF |- W = (\f x. f x x)

C_DEF |- C = (\f x y. f y x)

The following elementary properties are proved in the theory combin:

o_THM |- !f g x. (f o g) x = f(g x)

o_ASSOC |- !f g h. f o (g o h) = (f o g) o h

UPDATE_EQ

|- !f a b c. (a =+ c) ((a =+ b) f) = (a =+ c) f

UPDATE_COMMUTES

|- !f a b c d. a <> b ==>

((a =+ c) ((b =+ d) f) = (b =+ d) ((a =+ c) f))

K_THM |- !x y. K x y = x

S_THM |- !f g x. S f g x = f x (g x)

I_THM |- !x. I x = x

W_THM |- !f x. W f x = f x x

C_THM |- !f x y. C f x y = f y x

There are no theorems about :>; its use is as a convenient syntax for function appli-
cations. For example, chains of updates can lose some parentheses if written

f :> (k1 += v1) :> (k2 += v2) :> (k3 += v3)

This presentation also makes the order in which functions are applied read from left-to-
right.

Having the symbols o, S, K, I, W, and C as built-in constants is sometimes inconvenient
because they are often wanted as mnemonic names for variables (e.g. S to range over
sets and o to range over outputs).2 Variables with these names can be used in the
current system if o, S, K, I, W, and C are first hidden (see Section 5.1.2.9). In fact, this
happens so often with the constant C that it is “hidden” by default. While hidden, it
must be written in fully-qualified form, as combin$C.

2Constants declared in new theories can freely re-use these names, with ambiguous inputs resolved
by type inference.
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3.2.3 Pairs

The Cartesian product type operator prod is defined in the theory pair. Values of type
(σ1,σ2)prod are ordered pairs whose first component has type σ1 and whose second
component has type σ2. The HOL type parser converts type expressions of the form
:σ1#σ2 into (σ1,σ2)prod, and the printer inverts this transformation. Pairs are con-
structed with an infixed comma symbol

$, : ’a -> ’b -> ’a # ’b

so, for example, if t1 and t2 have types σ1 and σ2 respectively, then t1,t2 is a term with
type σ1#σ2. Usually, pairs are written within brackets: (t1,t2). The comma symbol
associates to the right, so that (t1,t2,. . .,tn) means (t1,(t2,. . .,tn)).

Defining the product type The type of Cartesian products is defined by representing
a pair (t1,t2) by the function

\a b. (a=t1) /\ (b=t2)

The representing type of σ1#σ2 is thus σ1->σ2->bool. It is easy to prove the following
theorem.3

|- ?p:’a->’b->bool. (\p. ?x y. p = \a b. (a = x) /\ (b = y)) p

The type operator prod is defined by invoking new_type_definition with this theorem
which results in the definitional axiom prod_TY_DEF shown below being asserted in the
theory pair.

prod_TY_DEF

|- ?rep. TYPE_DEFINITION (\p. ?x y. p = (\a b. (a = x) /\ (b = y))) rep

Next, the representation and abstraction functions REP_prod and ABS_prod for the new
type are introduced, along with the following characterizing theorem, by use of the
function define_new_type_bijections.

|- (!a. ABS_prod (REP_prod a) = a) /\

(!r. (\p. ?x y. p = (\a b. (a=x) /\ (b=y)) r = (REP_prod(ABS_prod r) = r)

3This theorem has an un-reduced β-redex in order to meet the interface required by the type definition
principle.
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Pairs and projections The infix constructor ‘,’ is then defined to be an application
of the abstraction function. Subsequently, two crucial theorems are proved: PAIR_EQ

asserts that equal pairs have equal components and ABS_PAIR_THM shows that every term
having a product type can be decomposed into a pair of terms.

COMMA_DEF |- !x y. $, x y = ABS_prod (\a b. (a = x) /\(b = y))

PAIR_EQ |- ((x,y) = (a,b)) = (x=a) /\ (y=b)

ABS_PAIR_THM |- !x. ?q r. x = (q,r)

By Skolemizing ABS_PAIR_THM and making constant specifications for FST and SND, the
following theorems are proved.

PAIR |- !x. (FST x,SND x) = x

FST |- !x y. FST(x,y) = x

SND |- !x y. SND(x,y) = y

Pairs and functions In HOL, a function of type α#β → γ always has a counterpart of
type α→ β → γ, and vice versa. This conversion is accomplished by the functions CURRY
and UNCURRY. These functions are inverses.

CURRY_DEF |- !f x y. CURRY f x y = f (x,y)

UNCURRY_DEF |- !f x y. UNCURRY f (x,y) = f x y

CURRY_UNCURRY_THM |- !f. CURRY (UNCURRY f) = f

UNCURRY_CURRY_THM |- !f. UNCURRY (CURRY f) = f

Mapping functions over a pair Functions f : α → γ1 and g : β → γ2 can be applied
component-wise (##, infix) over a pair of type α#β to obtain a pair of type γ1#γ2.

PAIR_MAP_THM |- !f g x y. (f ## g) (x,y) = (f x,g y)

Binders and pairs When doing proofs, statements involving tuples may take the form
of a binding (quantification or λ-abstraction) of a variable with a product type. It may
be convenient in subsequent reasoning steps to replace the variables with tuples of
variables. The following theorems support this.

FORALL_PROD |- (!p. P p) = !p_1 p_2. P (p_1,p_2)

EXISTS_PROD |- (?p. P p) = ?p_1 p_2. P (p_1,p_2)

LAMBDA_PROD |- !P. (\p. P p) = \(p1,p2). P (p1,p2)

The theorem LAMBDA_PROD involves a paired abstraction, discussed in Section 3.2.3.1.
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Wellfounded relations on pairs Wellfoundedness, defined in Section 3.3.1.4, is a
useful notion, especially for proving termination of recursive functions. For pairs, the
lexicographic combination of relations (LEX, infix) may be defined by using paired ab-
stractions. Then the theorem that lexicographic combination of wellfounded relations
delivers a wellfounded relation is easy to prove.

LEX_DEF =

|- !R1 R2. R1 LEX R2 = (\(s,t) (u,v). R1 s u \/ (s = u) /\ R2 t v)

WF_LEX

|- !R Q. WF R /\ WF Q ==> WF (R LEX Q)

3.2.3.1 Paired abstractions

It is notationally convenient to include pairing in the lambda notation, as a simple
pattern-matching mechanism. The quotation parser will convert the term \(x1,x2).t

to UNCURRY(\x1 x2.t). The transformation is done recursively so that, for example,

\(x1,x2,x3).t

is converted to

UNCURRY \x1. UNCURRY(\x2 x3.t))

More generally, the quotation parser repeatedly applies the transformation:

\(v1,v2).t ; UNCURRY(\v1.\v2.t)

until no more variable structures remain. For example:

\(x,y).t ; UNCURRY(\x y.t)
\(x1,x2,. . .,xn).t ; UNCURRY(\x1.\(x2,. . .,xn).t)
\((x1,. . .,xn),y1,. . .,ym).t ; UNCURRY(\(x1,. . .,xn).\(y1,. . .,ym).t)

As a result of this parser translation, a variable structure, such as (x,y) in \(x,y).x+y,
is not a subterm of the abstraction in which it occurs; it disappears on parsing. This
can lead to unexpected errors (accompanied by obscure error messages). For example,
antiquoting a pair into the bound variable position of a lambda abstraction fails:

1- ‘‘\(x,y).x+y‘‘;

> val it = ‘\(x,y). x + y‘ : term

- val p = Term ‘(x:num,y:num)‘;

> val p = ‘(x,y)‘ : term

- Lib.try Term ‘\^p.x+y‘;

Exception raised at Term.dest_var:

not a var

! Uncaught exception:
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If b is a binder, then b(x1,x2).t is parsed as b(\(x1,x2).t), and hence transformed as
above. For example, !(x,y). x > y parses to $!(UNCURRY(\x.\y. x > y)).

3.2.3.2 let-terms

The quotation parser accepts let-terms similar to those in ML. For example, the follow-
ing terms are allowed:

let x = 1 and y = 2 in x+y

let f(x,y) = (x*x)+(y*y) and a = 20*20 and b = 50*49 in f(a,b)

let-terms are actually abbreviations for ordinary terms which are specially supported
by the parser and pretty printer. The constant LET is defined (in the theory bool) by:

LET = (\f x. f x)

and is used to encode let-terms in the logic. The parser repeatedly applies the trans-
formations:

let f v1 . . . vn = t1 in t2 ; LET(\f.t2)(\v1 . . . vn.t1)
let (v1,. . .,vn) = t1 in t2 ; LET(\(v1,. . .,vn).t2)t1
let v1=t1 and . . . and vn=tn in t ; LET(. . .(LET(LET(\v1 . . . vn.t)t1)t2). . .)tn

The underlying structure of the term can be seen by applying destructor operations. For
example:

2- Term ‘let x = 1 and y = 2 in x+y‘;

> val it = ‘let x = 1 and y = 2 in x + y‘ : term

- dest_comb it;

> val it = (‘LET (LET (\x y. x + y) 1)‘, ‘2‘) : term * term

- Term ‘let (x,y) = (1,2) in x+y‘;

> val it = ‘let (x,y) = (1,2) in x + y‘ : Term.term

- dest_comb it;

> val it = (‘LET (\(x,y). x + y)‘, ‘(1,2)‘) : Term.term * Term.term

Readers are encouraged to convince themselves that the translations of let-terms
represent the intuitive meaning suggested by the surface syntax.
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3.2.4 Disjoint sums

The theory sum defines the binary disjoint union type operator sum. A type (σ1,σ2)sum

denotes the disjoint union of types σ1 and σ2. The type operator sum can be defined, just
as prod was, but the details are omitted here.4 The HOL parser converts ‘‘:σ1+σ2‘‘

into ‘‘:(σ1,σ2)sum‘‘, and the printer inverts this.
The standard operations on sums are:

INL : ’a -> ’a + ’b

INR : ’b -> ’a + ’b

ISL : ’a + ’b -> bool

ISR : ’a + ’b -> bool

OUTL : ’a + ’b -> ’a

OUTR : ’a + ’b -> ’b

These are all defined as constants in the theory sum. The constants INL and INR inject
into the left and right summands, respectively. The constants ISL and ISR test for
membership of the left and right summands, respectively. The constants OUTL and OUTR

project from a sum to the left and right summands, respectively.
The following theorem is proved in the theory sum. It provides a complete and abstract

characterization of the disjoint sum type, and is used to justify the definition of functions
over sums.

sum_Axiom |- !f g. ?! h. (!x. h(INL x) = f x) /\ (!x. h(INR x) = g x)

Also provided are the following theorems having to do with the discriminator functions
ISL and ISR:

ISL |- (!x. ISL(INL x)) /\ (!y. ~ISL(INR y))

ISR |- (!x. ISR(INR x)) /\ (!y. ~ISR(INL y))

ISL_OR_ISR |- !x. ISL x \/ ISR x

The sum theory also provides the following theorems relating the projection functions
and the discriminators.

OUTL |- !x. OUTL(INL x) = x

OUTR |- !x. OUTR(INR x) = x

INL |- !x. ISL x ==> (INL(OUTL x) = x)

INR |- !x. ISR x ==> (INR(OUTR x) = x)

4The definition of disjoint unions in the HOL system is due to Tom Melham. The technical details of
this definition can be found in [8].
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3.2.5 The one-element type

The theory one defines the type one which contains one element. The constant one is
specified to denote this element. The pre-proved theorems in the theory one are:

one_axiom |- !(f:’a->one) (g:’a -> one). f = g

one |- !(v:one). v = one

one_Axiom |- !(e:’a). ?!(fn:one->’a). fn one = e

These three theorems are equivalent characterizations of the type with only one value.
The theory one is typically used in constructing more elaborate types. The one value of
the type one, can also be written as () by analogy with the unit value in ML. This is also
the default way in which this value is printed by the system pretty-printer.

3.2.5.1 The itself type

The unary itself type operator provides a family of singleton types akin to one. Thus,
for every type α, α itself is a type containing just one value. This value’s name is
the_value, but the parser and pretty-printer are set up so that for the type α itself,
the_value can be written as (:α) (the syntax includes the parentheses). For example,
(:num) is the single value inhabiting the type num itself.

The point of the itself type is that if one defines a function with α itself as the
domain, the function picks out just one value in its range, and so one can think of the
function as being one from the type to a value for the whole type.

For example, one could define

finite_univ (:’a) = FINITE (UNIV :’a set)

It would then be straightforward to prove the following theorems

` finite_univ(:bool)

` ¬finite_univ(:num)
` finite_univ(:’a) ∧ finite_univ(:’b) ⇒ finite_univ(:’a # ’b)

The itself type is used in the Finite Cartesian Product construction that underlies the
fixed-width word type (see Section 3.3.8 below).

3.2.6 The option type

The theory option defines a type operator option that ‘lifts’ its argument type, creating
a type with all of the values of the argument and one other, specially distinguished
value. The constructors of this type are

NONE : ’a option

SOME : ’a -> ’a option
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Options can be used to model partial functions. If a function of type α → β does not
have useful β values for all α inputs, then this distinction can be marked by making the
range of the function β option, and mapping the undefined α values to NONE.

An inductive type, options have a recursion theorem supporting the definition of prim-
itive recursive functions over option values.

option_Axiom

|- !e f.

?h:’a option -> ’b.

(!x. h (SOME x) = f x) /\

(h NONE = e)

The option theory also defines a case constant that allows one to inspect option values
in a “pattern-matching” style.

case e of

NONE => u

| SOME x => f x

The constant underlying this syntactic sugar is option_case with definition

option_case_def |- (option_case u f NONE = u) /\

(option_case u f (SOME x) = f x)

Another useful function maps a function over an option:

OPTION_MAP_DEF |- (OPTION_MAP f NONE = NONE) /\

(OPTION_MAP f (SOME x) = SOME (f x))

Finally, the THE function takes a SOME value to that constructor’s argument, and is un-
specified on NONE:

THE_DEF |- THE (SOME x) = x

3.3 Numbers

The natural numbers, integers, and real numbers are provided in a series of theories.
Also available are theories of n-bit words (numbers modulo 2n), floating point and fixed
point numbers.

3.3.1 Natural numbers

The natural numbers are developed in a series of theories: num, prim rec, arithmetic,
and numeral. In num, the type of numbers is defined from the Axiom of Infinity, and
Peano’s axioms are derived. In prim rec the Primitive Recursion theorem is proved.
Based on that, a large theory treating the standard arithmetic operations is developed
in arithmetic. Lastly, a theory of numerals is developed.



3.3. NUMBERS 73

3.3.1.1 The theory num

The theory num defines the type num of natural numbers to be isomorphic to a countable
subset of the primitive type ind. In this theory, the constants 0 and SUC (the successor
function) are defined and Peano’s axioms pre-proved in the form:

NOT_SUC |- !n. ~(SUC n = 0)

INV_SUC |- !m n. (SUC m = SUC n) ==> (m = n)

INDUCTION |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n)

In higher order logic, Peano’s axioms are sufficient for developing number theory
because addition and multiplication can be defined. In first order logic these must be
taken as primitive. Note also that INDUCTION could not be stated as a single axiom in
first order logic because predicates (e.g. P) cannot be quantified.

3.3.1.2 The theory prim rec

In classical logic, unlike domain theory logics such as PPλ, arbitrary recursive definitions
are not allowed. For example, there is no function f (of type num->num) such that

!x. f x = (f x) + 1

Certain restricted forms of recursive definition do, however, uniquely define functions.
An important example are the primitive recursive functions.5 For any x and f the primi-
tive recursion theorem tells us that there is a unique function fn such that:

(fn 0 = x) /\ (!n. fn(SUC n) = f (fn n) n)

The primitive recursion theorem, named num_Axiom in HOL, follows from Peano’s
axioms.

num_Axiom |- !x f. ?fn. (fn 0 = x) /\ (!n. fn(SUC n) = f n (fn n))

The theorem states the validity of primitive recursive definitions on the natural num-
bers: for any x and f there exists a corresponding total function fn which satisfies the
primitive recursive definition whose form is determined by x and f.

5In higher order logic, primitive recursion is much more powerful than in first order logic; for example,
Ackermann’s function can be defined by primitive recursion in higher order logic.
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The less-than relation The less-than relation ‘<’ is most naturally defined by primitive
recursion. However, in our development it is needed for the proof of the primitive
recursion theorem, so it must be defined before definition by primitive recursion is
available. The theory prim rec therefore contains the following non-recursive definition
of <:

LESS |- !m n. m < n = ?P. (!n. P(SUC n) ==> P n) /\ P m /\ ~P n

This definition says that m < n if there exists a set (with characteristic function P) that
is downward closed6 and contains m but not n.

3.3.1.3 Mechanizing primitive recursive definitions

The primitive recursion theorem can be used to justify any definition of a function on the
natural numbers by primitive recursion. For example, a primitive recursive definition in
higher order logic of the form

fun 0 x1 . . . xi = f1[x1, . . . , xi]
fun (SUC n) x1 . . . xi = f2[fun n t1 . . . ti, n, x1, . . . , xi]

where all the free variables in the terms t1, . . . , ti are contained in {n, x1, . . . , xi}, is
logically equivalent to:

fun 0 = \x1 . . . xi.f1[x1, . . . , xi]
fun (SUC n) = \x1 . . . xi.f2[fun n t1 . . . ti, n,x1, . . . , xi]

= (\f n x1 . . . xi.f2[f t1 . . . ti, n, x1, . . . , xi]) (fun n) n

The existence of a recursive function fun which satisfies these two equations follows
directly from the primitive recursion theorem num_Axiom shown above. Specializing the
quantified variables x and f in a suitably type-instantiated version of num_Axiom so that

x=\x1 . . . xi.f1[x1, . . . , xi] and f=\f n x1 . . . xi.f2[f t1 . . . ti, n, x1, . . . , xi])

yields the existence theorem shown below:

|- ?fn. fn 0 = \x1 . . . xi.f1[x1, . . . , xi] /\

fn (SUC n) = (\f n x1 . . . xi.f2[f t1 . . . ti, n, x1, . . . , xi]) (fn n) n

This theorem allows a constant fun to be introduced (via the definitional mechanism
of constant specifications—see Section 1.9.3.2) to denote the recursive function that
satisfies the two equations in the body of the theorem. Introducing a constant fun to
name the function asserted to exist by the theorem shown above, and simplifying using
β-reduction, yields the following theorem:

6A set of numbers is downward closed if whenever it contains the successor of a number, it also contains
the number.
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|- fun 0 = \x1 . . . xi.f1[x1, . . . , xi] /\

fun (SUC n) = \x1 . . . xi.f2[fun n t1 . . . ti, n, x1, . . . , xi]

It follows immediately from this theorem that the constant fun satisfies the primitive
recursive defining equations given by the theorem shown below:

|- fun 0 x1 . . . xi = f1[x1, . . . , xi]
fun (SUC n) x1 . . . xi = f2[fun n t1 . . . ti, n, x1, . . . , xi]

To automate the use of the primitive recursion theorem in deriving recursive defini-
tions of this kind, the HOL system provides a function which automatically proves the
existence of primitive recursive functions and then makes a constant specification to
introduce the constant that denotes such a function:

new_recursive_definition :

{def : term, name : string, rec_axiom : thm} -> thm

In fact, new_recursive_definition handles primitive recursive definitions over a range
of types, not just the natural numbers. For details, see the REFERENCE documentation.

More conveniently still, the Define function (see Section 5.3.1) supports primitive re-
cursion, along with other styles of recursion, and does not require the user to quote the
primitive recursion axiom. It may, however, require termination proofs to be performed;
fortunately, these need not be done for primitive recursions.

3.3.1.4 Dependent choice and wellfoundedness

The primitive recursion theorem is useful beyond its main purpose of justifying recursive
definitions. For example, the theory prim rec proves the Axiom of Dependent Choice
(DC).

DC |- !P R a.

P a /\ (!x. P x ==> ?y. P y /\ R x y)

==>

?f. (f 0 = a) /\ !n. P (f n) /\ R (f n) (f (SUC n))

The proof uses SELECT_AX. The theorem DC is useful when one wishes to build a func-
tion having a certain property from a relation. For example, one way to define the
wellfoundedness of a relation R is to say that it has no infinite decreasing R chains.

wellfounded_def

|- wellfounded (R:’a->’a->bool) = ~?f. !n. R (f (SUC n)) (f n)

WF_IFF_WELLFOUNDED

|- !R. WF R = wellfounded R
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By use of DC, this statement can be proved to be equal to the notion of wellfoundedness
WF (namely, that every set has an R-minimal element) defined in the theory relation.

Theorems asserting the wellfoundedness of the predecessor relation and the less-
than relation, as well as the wellfoundedness of measure functions are also proved in
prim rec.

WF_PRED |- WF (\x y. y = SUC x)

WF_LESS |- WF $<

measure_def |- measure = inv_image $<

measure_thm |- !f x y. measure f x y = f x < f y

WF_measure |- !m. WF (measure m)

3.3.2 Arithmetic

The HOL theory arithmetic contains primitive recursive definitions of the following
standard arithmetic operators.

ADD |- (!n. 0 + n = n) /\

(!m n. (SUC m) + n = SUC(m + n))

SUB |- (!m. 0 - m = 0) /\

(!m n. (SUC m) - n = if m < n then 0 else SUC(m - n))

MULT |- (!n. 0 * n = 0) /\

(!m n. (SUC m) * n = (m * n) + n)

EXP |- (!m. m EXP 0 = 1) /\

(!m n. m EXP (SUC n) = m * (m EXP n))

Note that EXP is an infix. The infix notation ** may be used in place of EXP. Thus
(x EXP y) means xy, and so does (x ** y).

Comparison operators A full set of comparison operators is defined in terms of <.

GREATER_DEF |- !m n. m > n = (n < m)

LESS_OR_EQ |- !m n. m <= n = (m < n \/ (m = n))

GREATER_OR_EQ |- !m n. m >= n = (m > n \/ (m = n))

Division and modulus A constant specification is used to introduce division (DIV,
infix) and modulus (MOD, infix) operators, together with their characterizing property.

DIVISION

|- !n. 0 < n ==> !k. (k = ((k DIV n) * n) + (k MOD n)) /\ (k MOD n) < n
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Even and odd The properties of a number being even or odd are defined recursively.

EVEN |- (EVEN 0 = T) /\ !n. EVEN (SUC n) = ~EVEN n

ODD |- (ODD 0 = F) /\ !n. ODD (SUC n) = ~ODD n

Maximum and minimum The minimum and maximum of two numbers are defined
in the usual way.

MAX_DEF |- !m n. MAX m n = (if m < n then n else m)

MIN_DEF |- !m n. MIN m n = (if m < n then m else n)

Factorial The factorial of a number is a primitive recursive definition.

FACT |- (FACT 0 = 1) /\ !n. FACT (SUC n) = SUC n * FACT n

Function iteration The iterated application fnx of a function f : α → α is defined
by primitive recursion. The definition (FUNPOW) is tail-recursive, which can be awkward
to reason about. An alternative characterization (FUNPOW_SUC) may be easier to apply
when doing proofs.

FUNPOW

|- (!f x. FUNPOW f 0 x = x) /\

(!f n x. FUNPOW f (SUC n) x = FUNPOW f n (f x))

FUNPOW_SUC

|- !f n x. FUNPOW f (SUC n) x = f (FUNPOW f n x)

On this basis, an ad hoc but useful collection of over two hundred and fifty elemen-
tary theorems of arithmetic are proved when HOL is built and stored in the theory
arithmetic. For a complete list of the available theorems, see REFERENCE. See also Sec-
tion 3.6 for discussion of the LEAST operator, which returns the least number satisfying
a predicate.

3.3.2.1 Grammar information

The following table gives the parsing status of the arithmetic constants.

Operator Strength Associativity
>= 450 non
<= 450 non
> 450 non
< 450 non
+ 500 left
- 500 left
* 600 left
DIV 600 left
MOD 650 left
EXP 700 right
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3.3.3 Numerals

The type num is usually thought of as being supplied with an infinite collection of nu-
merals: 1, 2, 3, etc.. However, the HOL logic has no way to define such infinite families
of constants; instead, all numerals other than 0 are actually built up from the constants
introduced by the following definitions:

NUMERAL_DEF |- !x. NUMERAL x = x

BIT1 |- !n. BIT1 n = n + (n + SUC 0)

BIT2 |- !n. BIT2 n = n + (n + SUC(SUC 0))

ALT_ZERO |- ZERO = 0

For example, the numeral 5 is represented by the term

NUMERAL(BIT1(BIT2 ZERO))

and the HOL parser and pretty-printer make such terms appear as numerals. This binary
representation for numerals allows for asymptotically efficient calculation. Theorems
supporting arithmetic calculations on numerals can be found in the numeral theory;
these are mechanized by the reduce library. Thus, arithmetic calculations are performed
by deductive steps in HOL. For example the following calculation of 2(1023+14)/9 takes
approximately 4,200 primitive inference steps and returns in 30 milli-seconds.

1- reduceLib.REDUCE_CONV ‘‘2 EXP ((1023 + 14) DIV 9)‘‘;

> val it = |- 2 ** ((1023 + 14) DIV 9) = 41538374868278621028243970633760768

Construction of numerals Numerals may of course be built using mk_comb, and taken
apart with dest_comb; however, a more convenient interface to this functionality is
provided by the functions mk_numeral, dest_numeral, and is_numeral (found in the
structure numSyntax). These entry-points make use of an ML structure Arbnum which
implements arbitrary precision numbers num. The following session shows how HOL

numerals are constructed from elements of type num and how numerals are destructed.
The structure Arbnum provides a full collection of arithmetic operations, using the usual
names for the operations, e.g.+, *, -, etc..

2- numSyntax.mk_numeral

(Arbnum.fromString "3432432423423423234");

> val it = ‘‘3432432423423423234‘‘ : term

- numSyntax.dest_numeral it;

> val it = 3432432423423423234 : num

- Arbnum.+(it,it);

> val it = 6864864846846846468 : num
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Numerals and the parser Simple digit sequences are parsed as decimal numbers, but
the parser also supports the input of numbers in binary, octal and hexadecimal notation.
Numbers may be written in binary and hexadecimal form by prefixing them with the
strings 0b and 0x respectively. The ‘digits’ A–F in hexadecimal numbers may be written
in upper or lower case. Binary numbers have their most significant digits left-most. In
the interests of backwards compatibility, octal numbers are not enabled by default, but
if the reference base_tokens.allow_octal_input is set to true, then octal numbers are
those that appear with leading zeroes.

Finally, all numbers may be padded with underscore characters (_). These can be
used to groups digits for added legibility and have no semantic effect.

Thus

3- ‘‘0xAA‘‘;

> val it = ‘‘170‘‘ : term

- ‘‘0b1010_1011‘‘;

> val it = ‘‘171‘‘ : term

- base_tokens.allow_octal_input := true;

> val it = () : unit

- ‘‘067‘‘;

> val it = ‘‘55‘‘ : term

Numerals and Peano numbers Numerals are related to numbers built from 0 and
SUC via the derived inference rule num_CONV, found in the numLib library.

num_CONV : term -> thm

num_CONV can be used to generate the ‘SUC’ equation for any non-zero numeral. For
example:

4- load "numLib"; open numLib;

- num_CONV ‘‘2‘‘;

> val it = |- 2 = SUC 1 : thm

- num_CONV ‘‘3141592653‘‘;

> val it = |- 3141592653 = SUC 3141592652 : thm

The num_CONV function works purely by inference.
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3.3.3.1 Overloading of arithmetic operators

When other numeric theories are loaded (such as those for the reals or integers), nu-
merals are overloaded so that the numeral 1 can actually stand for a natural number,
an integer or a real value. The parser has a pass of overloading resolution in which it
attempts to determine the actual type to give to a numeral. For example, in the follow-
ing session, the theory of integers is loaded, whereupon the numeral 2 is taken to be an
integer.

5- load "integerTheory";

> val it = () : unit

- ‘‘2‘‘;

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ‘2‘ : term

- type_of it;

> val it = ‘:int‘ : hol_type

In order to precisely specify the desired type, the user can use single character suffixes
(‘n’ for the natural numbers, and ‘i’ for the integers):

6- type_of ‘‘2n‘‘;

> val it = ‘:num‘ : hol_type

- type_of ‘‘42i‘‘;

> val it = ‘:int‘ : hol_type

A numeric literal for a HOL type other than num, such as 42i, is represented by the ap-
plication of an injection function of type num -> ty to a numeral. The injection function
is different for each type ty. See Section 3.3.4 for further discussion.

The functions mk_numeral, dest_numeral, and is_numeral only work for numerals,
and not for numeric literals with character suffixes other than n. For information on how
to install new character suffixes, consult the add_numeral_form entry in REFERENCE.

3.3.4 Integers

There is an extensive theory of integers in HOL. The type of integers is constructed
as a quotient on pairs of natural numbers. A standard collection of operators are de-
fined. These are overloaded with similar operations on the natural numbers, and on the
real numbers. The constants defined in the integer theory include those found in the
following table.
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Constant Overloaded symbol Strength Associativity
int_ge >= 450 non
int_le <= 450 non
int_gt > 450 non
int_lt < 450 non
int_add + 500 left
int_sub - 500 left
int_neg ~ 900 trueprefix
int_mul * 600 left

/ 600 left
% 650 left

int_exp ** 700 right
int_of_num & prefix

The overloaded symbol & : num -> int denotes the injection function from natural
numbers to integers. The following session illustrates how overloading and integers
literals are treated.

1Term ‘1i = &(1n + 0n)‘;

> val it = ‘1 = & (1 + 0)‘ : term

- show_numeral_types := true;

> val it = () : unit

- Term ‘&1 = &(1n + 0n)‘;

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ‘1i = & (1n + 0n)‘ : Term.term

3.3.5 Rational numbers

The type of rationals is constructed as a quotient on ordered pairs of integers (the
numerator and the denominator of a fraction) whose second component must not be
zero. To make things easier in the HOL theory, the sign of a rational number is always
moved to the numerator. So, the denominator is always positive.

A standard collection of operators, which are overloaded with similar operations on
the integers, are defined. These include those found in the following table. Injection
from natural numbers is supported by the overloaded symbol & : num -> rat and the
suffix q.
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Constant Overloaded symbol Strength Associativity
rat_geq >= 450 non
rat_leq <= 450 non
rat_gre > 450 non
rat_les < 450 non
rat_add + 500 left
rat_sub - 500 left
rat_ainv ~ 900 trueprefix
rat_minv

rat_mul * 600 left
rat_div / 600 left

rat_of_num &

The theorems in the theory of rational numbers include field properties, arithmetic
rules, manipulation of (in)equations and their reduction to (in)equations between inte-
gers, properties of less-than relations and the density of rational numbers. For details,
consult REFERENCE and the source files.

3.3.6 Real numbers

There is an extensive collection of theories that make up the development of real num-
bers and analysis in HOL, due to John Harrison [4]. We will only give a sketchy overview
of the development; the interested reader should consult REFERENCE and Harrison’s the-
sis.

The axioms for the real numbers are derived from the ‘half reals’ which are con-
structed from the ‘half rationals’. This part of the development is recorded in hratTheory

and hrealTheory, but is not used once the reals have been constructed. The real axioms
are derived in the theory realaxTheory. A standard collection of operators on the reals,
and theorems about them, is found in realaxTheory and realTheory. The operators and
their parse status are listed in the following table.

Constant Overloaded symbol Strength Associativity
real_ge >= 450 non
real_lte <= 450 non
real_gt > 450 non
real_lt < 450 non
real_add + 500 left
real_sub - 500 left
real_neg ~ 900 trueprefix
real_mul * 600 left
real_div / 600 left

pow 700 right
real_of_num & prefix

On the basis of realTheory, the following sequence of theories is constructed:
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topology Topologies and metric spaces, including metric on the real line.

nets Moore-Smith convergence nets, and special cases like sequences.

seq Sequences and series of real numbers.

lim Limits, continuity and differentiation.

powser Power series.

transc Transcendental functions, e.g., exp, sin, cos, ln, root, sqrt, pi, tan, asn, acs, atn.
Also the Kurzweil-Henstock gauge integral the fundamental theorem of calculus,
and McLaurin’s theorem.

HOL also includes a basic theory of the complex numbers (complexTheory), where the
type complex is a type abbreviation for a pair of real numbers. The

√
−1 value is the

HOL constant i. Numerals are supported (with the suffix c available to force numerals
to be parsed as complex numbers). The standard arithmetic operations are defined,
with the appropriate theorems proved about them.

3.3.7 Probability theory

A foundational construction of probability theory developed by Joe Hurd [5]. First a
type of boolean sequences is defined to model an infinite sequence of coin flips. Next a
probability function is formalized which takes as input a set of boolean sequences, and
returns a real number between 0 and 1. Unfortunately not all sets can be assigned a
probability (the Banach-Tarski paradox), rather the sets that can be assigned a proba-
bility are called measurable sets, and this is also formalized in the HOL theory.

Building on this foundation, the probability theory is used to define a sampling func-
tion that takes an infinite sequence of coin flips and a positive integer N , and returns
an integer n in the range 0 ≤ n < N , picked uniformly at random from the available
choices. This sampling function for the uniform distribution is later used to verify the
Miller-Rabin primality test.

3.3.8 Bit vectors

HOL provides a theory of bit vectors, or n-bit words. For example, in computer archi-
tectures one finds: bytes/octets (n = 8), half-words (n = 16), words (n = 32) and
long-words (n = 64). In the theory words, bit vectors are represented as finite Cartesian
products: an n-bit word is given type bool[α] where the size of the type α determines
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the word length n. This approach comes from an idea of John Harrison, which was
presented at TPHOLs 2005.7

3.3.8.1 Finite Cartesian products

The HOL theory fcp introduces an infix type operator **, which is used to represent
finite Cartesian products.8 The type ’a ** ’b, or equivalently ’a[’b], is conceptually
equivalent to:

’a # ’a # · · · # ’a︸ ︷︷ ︸
dimindex(’b)

where dimindex(’b) is the cardinality of univ(:’b) when ’b is finite and is one when
it is infinite. Thus, ’a[num] is similar to ’a, and ’a[bool] is similar to ’a # ’a. Numeral
type names are supported, so one can freely work with indexing sets of any size, e.g.
the type 32 has thirty-two elements and bool[32] represents 32-bit words.

The components of a finite Cartesian product are accessed with an indexing function

fcp_index : ’a[’b]→num→’a

which is typically written with an infixed apostrophe: x ’ i denotes the value of vector
x at position i. Typically, indices are constrained to be less than the size of ’b.

The following theorem shows that two Cartesian products x and y are equal if, and
only if, all of their components x ’ i and y ’ i are equal:

CART_EQ: |- !x y. (x = y) = !i. i < dimindex (:’a) ==> (x ’ i = y ’ i)

In order to construct Cartesian products, the theory fcp introduces a binder FCP,
which is characterised by the following theorems:

FCP_BETA: |- !i. i < dimindex (:’a) ==> ($FCP g ’ i = g i)

FCP_ETA: |- !x. (FCP i. x ’ i) = x

The theorem FCP_BETA shows that the components of $FCP g are determined by the
function g:num→’a . The theorem FCP_ETA shows that a binding can be eliminated
when all of the components are identical to that of x. These two theorems, together
with CART_EQ, can be found in the simpset fragment fcpLib.FCP_ss.

Finite Cartesian products provide a good means to model n-bit words. That is to say,
the type bool[’a] can represent a binary word whose length n corresponds with the size
of the type ’a. The binder FCP provides a flexible means for defining words – one can
supply a function f:num→bool that gives the word’s bit values, each of which can be
accessed using the indexing map fcp_index.

7The current theory subsumes previous word theories – it evolved from a development based on an
equivalence class construction. Wai Wong’s word theory, which was based on Paul Curzon’s rich_list

theory, is no longer distributed with HOL. The principle advantages of the current theory are that there
is just one theory for all word sizes and that word length side conditions are not required.

8The theory of finite Cartesian products was ported from HOL Light.
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3.3.8.2 Bit theory

The theory bit defines some bit operations over the natural numbers, e.g. BITS, SLICE,
BIT, BITWISE and BIT_MODIFY. In this context, natural numbers are treated as binary
words of unbounded length. The operations in bit are primarily defined using DIV, MOD
and EXP. For example, from the definition of BIT, the following theorem holds:

|- !b n. BIT b n = ((n DIV 2 ** b) MOD 2 = 1)

This theory is used in the development of the word theory and it also provides a mech-
anism for the efficient evaluation of some word operations via the theory numeral bit.

3.3.8.3 Words theory

The theory words introduces a selection of polymorphic constants and operations, which
can be type instantiated to any word size. For example, word addition has type:

+:bool[α]→bool[α]→bool[α]

If ’a is instantiated to 32 then this operation corresponds with 32-bit addition. All
theorems about word operations apply for any word length.9

Some basic operations The function w2n:bool[α]→num gives the natural number
value of a word. If x ∈ TT{0,1,...,n−1} is a finite Cartesian product representing an n-bit
word then its natural number value is:

w2n(x) =
n−1∑
i=0

if xi then 2i else 0 .

The length of a word (the number n) is given by the function word_len:bool[α]→num .
The function n2w:num→bool[α] maps from a number to a word and is defined in HOL

by:

|- !n. n2w n = FCP i. BIT i n

The suffix w is used to denote word literals, e.g. 255w is the same as n2w 255.
The function w2w:bool[α]→bool[β] provides word-to-word conversion (casting):

|- !w. w2w w = n2w (w2n w)

9Note that it is impossible to introduce words of length zero because all types must be inhabited, and
hence their size will always be greater than or equal to one.
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If β is smaller than α then the higher bits of w will be lost (it performs bit extraction),
otherwise the longer word will have the same value as the original (in effect providing
zero padding). However, if one were treating w as a two’s complement number then the
word needs to be sign extended, i.e.

(−ve) 1bn−2 · · · b0 7→ 1 · · · 11bn−2 · · · b0

(+ve) 0bn−2 · · · b0 7→ 0 · · · 00bn−2 · · · b0

The function sw2sw:bool[α]→bool[β] provides this sign extending version of w2w.
A collection of operations are provided for mapping to and from strings and number

(digit) lists, e.g.

|- word_to_dec_string 876w = "876"

and

|- word_to_hex_list 876w = [12; 6; 3]

These function are specialised versions of w2s and w2l respectively.

Concatenation The operation word_concat:bool[α]→bool[β]→bool[γ] concate-
nates words. Note that the return type is not constrained. This means that two sixteen
bit words can be concatenated to give a word of any length – which may be smaller
or larger than the expect value of 32. The related function word_join does return a
word of the expected length, i.e. of type bool[α + β]; however, the concatenation op-
eration is more useful because we often want bool[32] and not the logically distinct
bool[16+16].

Signed and unsigned words Words can be viewed as being either signed (using the
two’s complement representation) or as being unsigned. However, this is not made
explicit within the theory10 and all of the arithmetic operations are defined using the
natural numbers, i.e. via w2n and n2w. In particular, addition and multiplication work
naturally (have the same definition) under the two’s complement representation. This
is not the case however with word-to-word conversion, orderings, division and right
shifting, where signed and unsigned variants are needed. When operating over the nat-
ural numbers, some of the two’s complement versions have slightly unnatural looking
presentations. For example, with the signed (two’s complement) version of “less than”
we have 255w < (0w:word8) because the word 255w is actually taken to be representing
the integer −1, whereas the unsigned version is more natural: 0w <+ (255w:word8).

10Words are not tagged as being signed/unsigned. Mappings to/from the integers (w2i and i2w) are
provided in the theory integer word.
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Bit field operations The standard Boolean bit field operations are provided, i.e. bit-
wise negation (one’s complement), conjunction, disjunction and exclusive-or. These
functions are defined quite naturally using the Cartesian product binder; for example,
bitwise conjunction is defined by:

|- !v w. v && w = FCP i. v ’ i /\ w ’ i .

There is also a collection of word reduction operations, which reduce bit vectors to 1-bit
words, e.g.

reduce and(x) ′ 0 =
n−1∧
i=0

xi .

The functions word_lsb, word_msb and word_bit(i) give the bit value of a word at
positions 0, n − 1 and i respectively. Four operations are provided for selecting bit
fields, or sub-words: word_bits (--), word_signed_bits (---), word_slice (’’) and
word_extract (><). For example, word_bits 4 1 will select four bits starting from
bit position 1. The slice function is an in-place variant (it zeroes bits outside of the
bit range) and the extract function combines word_bits with a word cast (w2w). The
operation word_signed_bits is similar to word_bits, except that it sign-extends the bit
field.

The bit_field_insert operation inserts a bit field. For example,

bit_field_insert 5 2 a b

is word b with bits 5–2 replaced by bits 3–0 of a.
A word’s bit ordering can be flipped over with word_reverse, i.e. bit zero is swapped

with bit n− 1 and so forth.
The function word_modify:(num→ bool→ bool)→ bool[α]→ bool[α] changes a

word by applying a map at each bit position. This operation provides a very flexible and
convenient mechanism for manipulating words, e.g.

word_modify (λi b. if EVEN i then ∼b else b) w

negates the bits of w that are in even positions. Of course, the binder FCP also provides
a very general means to represent words using a predicate e.g. $FCP ODD represents a
word where all the odd bits are set.

Shifts Six types of shifts are provided: logical shift left/right (<< and >>>), arithmetic
shift right (>>), rotate left/right (#<< and #>>) and rotate right extended by 1 place
(word_rrx). These shifts are illustrated in Figure 3.1 and are defined in a similar manner
to the other bit field operations. For example, rotating right is defined by:

|- !w n. w #>> x = FCP i. w ’ (i + x) MOD dimindex (:’a) .

Rotating left by x places is defined as rotating right by n− x mod n places.
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vi−x vi+x

(a) Logical shift left: w = v << x. (b) Logical shift right: w = v >>> x.

vi+x v(i+x) mod n

(c) Arithmetic shift right: w = v >> x. (d) Rotate right: w = v #>> x.

(e) Rotate right extended by 1 place: (d,w) = word_rrx (c,v).

Figure 3.1: Shift operations.

Arithmetic and orderings The arithmetic operations are: addition, subtraction, unary
minus (two’s complement), logarithm (base-2), multiplication, modulus and division
(signed and unsigned). These operations are defined with respect to the natural num-
bers. For example, word addition is defined by:

|- !v w. v + w = n2w (w2n v + w2n w)

The + on the left-hand side is word addition and on the right it is natural number
addition.

All of the standard word orderings are provided, with signed and unsigned versions
of <, ≤, > and ≥. The unsigned versions are suffixed with a plus; for example, <+ is
unsigned “less than”.

Constants The word theory also defines a few word constants:

Constant Value Binary

word_T or UINT_MAXw 2l − 1 11 · · · 11
word_L or INT_MINw 2l−1 10 · · · 00
word_H or INT_MAXw 2l−1 − 1 01 · · · 11

List of bit vector operations A list of operations is provided in the table below.
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Operation Symbol Type Description

n2w num→bool[α] Map from a natural number
w2n bool[α]→num Map to a natural number
w2w bool[α]→bool[β] Map word-to-word (unsigned)
sw2sw bool[α]→bool[β] Map word-to-word (signed)
w2l num→bool[α]→num list Map word to digit list
l2w num→num list→bool[α] Map digit list to word
w2s num→(num→char)→bool[α]→string Map word to string
s2w num→(char→num)→string→bool[α] Map string to word
word_len bool[α]→num The word length
word_lsb bool[α]→bool The least significant bit
word_msb bool[α]→bool The most significant bit
word_bit num→bool[α]→bool Test bit position
word_bits -- num→num→bool[α]→bool[α] Select a bit field
word_signed_bits --- num→num→bool[α]→bool[α] Sign-extend selected bit field
word_slice ’’ num→num→bool[α]→bool[α] Set bits outside field to zero
word_extract >< num→num→bool[α]→bool[β] Extract (cast) a bit field
word_reverse bool[α]→bool[α] Reverse the bit order
bit_field_insert num→num→bool[α]→

bool[β]→bool[β]
Insert a bit field

word_modify (num→bool→bool)→
bool[α]→bool[α]

Apply a function to each bit

word_join bool[α]→bool[β]→bool[α+ β] Join words
word_concat @@ bool[α]→bool[β]→bool[γ] Concatenate words
concat_word_list bool[α] list→bool[β] Concatenate list of words
word_replicate num→bool[α]→bool[β] Replicate word
word_or || bool[α]→bool[α]→bool[α] Bitwise disjunction
word_xor ?? bool[α]→bool[α]→bool[α] Bitwise exclusive-or
word_and && bool[α]→bool[α]→bool[α] Bitwise conjunction
word_nor ~|| bool[α]→bool[α]→bool[α] Bitwise NOR
word_xnor ~?? bool[α]→bool[α]→bool[α] Bitwise XNOR
word_nand ~&& bool[α]→bool[α]→bool[α] Bitwise NAND
word_reduce (bool→bool→bool)→

bool[α]→bool[1]
Word reduction

reduce_or bool[α]→bool[1] Disjunction reduction
reduce_xor bool[α]→bool[1] Exclusive-or reduction
reduce_and bool[α]→bool[1] Conjunction reduction
reduce_nor bool[α]→bool[1] NOR reduction
reduce_xnor bool[α]→bool[1] XNOR reduction
reduce_nand bool[α]→bool[1] NAND reduction
word_1comp ~ bool[α]→bool[α] One’s complement
word_2comp - bool[α]→bool[α] Two’s complement
word_add + bool[α]→bool[α]→bool[α] Addition
word_sub - bool[α]→bool[α]→bool[α] Subtraction

continued on next page
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continued from previous page

Operation Symbol Type Description

word_mul * bool[α]→bool[α]→bool[α] Multiplication
word_div // bool[α]→bool[α]→bool[α] Division (unsigned)
word_sdiv / bool[α]→bool[α]→bool[α] Division (signed)
word_mod bool[α]→bool[α]→bool[α] Modulus
word_log2 bool[α]→bool[α] Logarithm base-2
word_lsl << bool[α]→num→bool[α] Logical shift left
word_lsr >>> bool[α]→num→bool[α] Logical shift right
word_asr >> bool[α]→num→bool[α] Arithmetic shift right
word_ror #>> bool[α]→num→bool[α] Rotate right
word_rol #<< bool[α]→num→bool[α] Rotate left
word_rrx bool#bool[α]→bool#bool[α] Rotate right extended by 1 place
word_lt < bool[α]→bool[α]→bool Signed “less than”
word_le <= bool[α]→bool[α]→bool Signed “less than or equal”
word_gt > bool[α]→bool[α]→bool Signed “greater than”
word_ge >= bool[α]→bool[α]→bool Signed “greater than or equal”
word_lo <+ bool[α]→bool[α]→bool Unsigned “less than”
word_ls <=+ bool[α]→bool[α]→bool Unsigned “less than or equal”
word_hi >+ bool[α]→bool[α]→bool Unsigned “greater than”
word_hs >=+ bool[α]→bool[α]→bool Unsigned “greater than or equal”

3.4 Sequences

HOL provides theories for various kinds of sequences: finite lists, lazy lists, paths, and
finite strings.

3.4.1 Lists

HOL lists are inductively defined finite sequences where each element in a list has the
same type. The theory list introduces the unary type operator α list by a type defi-
nition and a standard collection of list processing functions are defined. The primitive
constructors NIL and CONS

NIL : ’a list

CONS : ’a -> ’a list -> ’a list

are used to build lists and have been defined from the representing type for lists. The
HOL parser has been specially modified to parse the expression [] into NIL, to parse
the expression h::t into CONS h t, and to parse the expression [t1;t2;...;tn] into
CONS t1 (CONS t2 · · · (CONS tn NIL) · · ·). The HOL printer reverses these transforma-
tions.

Based on the inductive characterization of the type, the following fundamental theo-
rems about lists are proved and stored in the theory list.
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list_Axiom

|- !x f. ?fn. (fn [] = x) /\ (!h t. fn (h::t) = f(fn t)h t)

list_INDUCT

|- !P. P [] /\ (!t. P t ==> (!h. P(h::t))) ==> (!l. P l)

list_CASES

|- !l. (l = []) \/ (?t h. l = h::t)

CONS_11

|- !h t h’ t’. (h::t = h’::t’) = (h = h’) /\ (t = t’)

NOT_NIL_CONS

|- !h t. ~([] = h::t)

NOT_CONS_NIL

|- !h t. ~(h::t = [])

The theorem list_Axiom shown above is analogous to the primitive recursion theo-
rem on the natural numbers discussed above in Section 3.3.1.3. It states the validity
of primitive recursive definitions on lists, and can be used to justify any such defini-
tion. The ML function new_recursive_definition uses this theorem to do automatic
proofs of the existence of primitive recursive functions on lists and then make constant
specifications to introduce constants that denote such functions.

The induction theorem for lists, list_INDUCT, provides the main proof tool used to
reason about operations that manipulate lists. The theorem list_CASES is used to per-
form case analysis on whether a list is empty or not.

The theorem CONS_11 shows that CONS is injective; the theorems NOT_NIL_CONS and
NOT_CONS_NIL show that NIL and CONS are distinct, i.e., cannot give rise to the same
structure. Together, these three theorems are used for equational reasoning about lists.

The predicate NULL and the selectors HD and TL are defined in the theory list by

NULL |- NULL [] /\ (!h t. ~NULL(h::t))

HD |- !h t. HD(h::t) = h

TL |- !h t. TL(h::t) = t

The following functions on lists are also defined in the theory list.

Case expressions Compound HOL expressions that branch based on whether a term
is an empty or non-empty list have the surface syntax (roughly borrowed from ML)

case e1

of [] => e2

| (h::t) => e3

Such an expression is translated to list case e2 (λh t. e3) e1 where the constant list_case
is defined as follows:

list_case_def

|- (!v f. list_case v f [] = v) /\

(!v f a0 a1. list_case v f (a0::a1) = f a0 a1)
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List membership Membership in a list, MEM, is defined as follows:

MEM |- (!x. MEM x [] = F) /\

(!x h t. MEM x (h::t) = (x = h) \/ MEM x t)

Concatenation of lists Binary list concatenation (APPEND) may also be denoted by the
infix operator ++; thus the expression L1 ++ L2 is translated into APPEND L1 L2. The
concatenation of a list of lists into a list is achieved by FLAT.

APPEND

|- (!l. APPEND [] l = l) /\

(!l1 l2 h. APPEND (h::l1) l2 = h::APPEND l1 l2)

FLAT

|- (FLAT [] = []) /\ (!h t. FLAT(h::t) = h ++ FLAT t)

Numbers and lists The length (LENGTH) and size (list_size) of a list are related
notions. The size of a list takes account of the size of each element of the list (given
by parameter f : α → num), while the length of the list ignores the size of each list
element. The alternate length definition (LEN) is tail-recursive. Numbers can also be
used to index into lists, extracting the element at the specified position.

LENGTH

|- (LENGTH [] = 0) /\ (!h t. LENGTH (h::t) = SUC(LENGTH t))

LEN_DEF

|- (!n. LEN [] n = n) /\ !h t n. LEN (h::t) n = LEN t (n + 1)

list_size_def

|- (!f. list_size f [] = 0) /\

!f a0 a1. list_size f (a0::a1) = 1 + (f a0 + list_size f a1))

EL

|- (!l. EL 0 l = HD l) /\ (!l n. EL (SUC n) l = EL n (TL l))

Note that the extraction of the nth element (EL) of a list starts its indexing from 0. If
the length of the list ` is less than or equal to n, the result of EL n ` is unspecified.

Mapping functions over lists There are functions for mapping a function f : α → β

over a single list (MAP) or a function f : α→ β → γ over two lists (MAP2).

MAP

|- (!f. MAP f [] = []) /\

(!f h t. MAP f (h::t) = f h::MAP f t)

MAP2

|- (!f. MAP2 f [] [] = []) /\

!f h1 t1 h2 t2. MAP2 f (h1::t1) (h2::t2) = f h1 h2::MAP2 f t1 t2

The behaviour of MAP2 in the cases when it is given lists of unequal lengths is unspeci-
fied.
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Predicates over lists Predicates can be applied to lists in a universal sense (the pred-
icate must hold of every element in the list) or an existential sense (the predicate must
hold of some element in the list). This functionality is supported by EVERY and EXISTS,
respectively. The elimination of all elements in list not satisfying a given predicate is
performed by FILTER.

EVERY_DEF

|- (!P. EVERY P [] = T) /\

(!P h t. EVERY P (h::t) = P h /\ EVERY P t)

EXISTS_DEF

|- (!P. EXISTS P [] = F) /\

(!P h t. EXISTS P (h::t) = P h \/ EXISTS P t)

FILTER

|- (!P. FILTER P [] = []) /\

(!P h t. FILTER P (h::t) = if P h then h::FILTER P t else FILTER P t)

ALL_DISTINCT

|- (ALL_DISTINCT [] = T) /\

(!h t. ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)

The predicate ALL_DISTINCT holds on a list just in case no element in the list is equal to
any other.

Folding Applying a binary function f : α → β → β pairwise through a list and accu-
mulating the result is known as folding. At times, it is necessary to do this operation
from left-to-right (FOLDL), and at others the right-to-left direction (FOLDR) is required.

FOLDL

|- (!f e. FOLDL f e [] = e) /\

(!f e x l. FOLDL f e (x::l) = FOLDL f (f e x) l)

FOLDR

|- (!f e. FOLDR f e [] = e) /\

(!f e x l. FOLDR f e (x::l) = f x (FOLDR f e l))

List reversal The reversal of a list (REVERSE) and its tail recursive counterpart REV are
defined in list.

REVERSE_DEF

|- (REVERSE [] = []) /\

(!h t. REVERSE (h::t) = REVERSE t ++ [h])

REV_DEF

|- (!acc. REV [] acc = acc) /\

(!h t acc. REV (h::t) acc = REV t (h::acc))

Conversion to sets Lists can be converted to sets (LIST_TO_SET) by partial application
of MEM. The somewhat terse definition is used to derive the theorem IN_LIST_TO_SET.
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LIST_TO_SET

|- LIST_TO_SET = combin$C MEM

IN_LIST_TO_SET

|- x IN LIST_TO_SET l = MEM x l

Further support for translating between different kinds of collections may be found in
the container theory.

Pairs and lists Two lists of equal length may be component-wise paired by the ZIP

operation. The result is unspecified when the lists are not the same length. The inverse
operation, UNZIP, translates a list of pairs into a pair of lists.

ZIP

|- (ZIP ([],[]) = []) /\

(!x1 l1 x2 l2. ZIP (x1::l1,x2::l2) = (x1,x2)::ZIP (l1,l2))

UNZIP_THM

|- (UNZIP [] = ([],[])) /\

(UNZIP ((x,y)::t) = let (L1,L2) = UNZIP t in (x::L1,y::L2))

Alternate access Lists are essentially treated in a stack-like manner. However, at times
it is convenient to access the last element (LAST) of a non-empty list directly. The last
element of a non-empty list is dropped by FRONT.

LAST_DEF

|- !h t. LAST (h::t) = if t = [] then h else LAST t

FRONT_DEF

|- !h t. FRONT (h::t) = if t = [] then [] else h::FRONT t

APPEND_FRONT_LAST

|- !l. ~(l = []) ==> (FRONT l ++ [LAST l] = l)

Joining the front part and the last element of a non-empty list yields the original list.
Both LAST and FRONT are unspecified on empty lists.

Prefix checking The relation capturing whether a list `1 is a prefix of `2 (isPREFIX)
can be defined by recursion. The infix <<= can also be used as notation for this partial
order.

isPREFIX_THM

|- ([] <<= l <=> T) /\

(h::t <<= [] <=> F) /\

(h1::t1 <<= h2::t2 <=> (h1 = h2) /\ t1 <<= t2)

The above theorem states that: the empty list is a prefix of any other list (clause 1); that
no non-empty list is a prefix of the empty list (clause 2); and that a non-empty list is a
prefix of another non-empty list if the first elements of the lists are the same, and if the
tail of the first is a prefix of the tail of the second.

For a complete list of available theorems in list, see REFERENCE. Further development
of list theory can be found in rich list.
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3.4.1.1 List permutations and sorting

The sorting theory defines a notion of two lists being permutations of each other, then
defines a general notion of sorting, then shows that Quicksort is a sorting function.

List permutation Two lists are in permutation if they have exactly the same members,
and each member has the same number of occurrences in both lists. One definition
(PERM) that captures this relationship is the following:

PERM_DEF

|- !L1 L2. PERM L1 L2 = !x. FILTER ($= x) L1 = FILTER ($= x) L2

PERM_IND =

|- !P.

P [] [] /\

(!x l1 l2. P l1 l2 ==> P (x::l1) (x::l2)) /\

(!x y l1 l2. P l1 l2 ==> P (x::y::l1) (y::x::l2)) /\

(!l1 l2 l3. P l1 l2 /\ P l2 l3 ==> P l1 l3)

==>

!l1 l2. PERM l1 l2 ==> P l1 l2

A derived induction theorem (PERM_IND) is very useful in proofs about permutations.

Sorting A list is R-sorted if R holds pairwise through the list. This notion (SORTED) is
captured by a recursive definition. Then a function of type

(’a -> ’a -> bool) -> ’a list -> ’a list

is a sorting function (SORTS) with respect to R if it delivers a permutation of its input,
and the result is R-sorted.

SORTED_DEF

|- (SORTED R [] = T) /\

(SORTED R [x] = T) /\

(SORTED R (x::y::rst) = R x y /\ SORTED R (y::rst))

SORTS_DEF

|- !f R. SORTS f R = !l. PERM l (f R l) /\ SORTED R (f R l)

Quicksort is defined in the usual functional programming style, and it is indeed a sorting
function, provided R is a transitive and total relation.

QSORT_DEF =

|- (QSORT ord [] = []) /\

(QSORT ord (h::t) =

let (l1,l2) = PARTITION (\y. ord y h) t

in

QSORT ord l1 ++ [h] ++ QSORT ord l2)

QSORT_SORTS

|- !R. transitive R /\ total R ==> SORTS QSORT R
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3.4.2 Possibly infinite sequences (llist)

The theory llist contains the definition of a type of possibly infinite sequences. This
type is similar to the “lazy lists” of programming languages like Haskell, hence the
name of the theory. The llist theory has a number of constants that are analogous to
constants in the theory of finite lists. The llist versions of these constants have the
same names, but with a capital ‘L’ prepended. Thus, some of the core constants in this
theory are:

LNIL : ’a llist

LCONS : ’a -> ’a llist -> ’a llist

LHD : ’a llist -> ’a option

LTL : ’a llist -> ’a llist option

The LHD and LTL constants return NONE when applied to the empty sequence, LNIL.
This use of an option type is another way of modelling the essential partiality of these
constants. (In the theory of lists, the analogous HD and TL functions simply have un-
specified values when applied to empty lists.)

The type llist is not inductive, and there is no primitive recursion theorem sup-
porting the definition of functions that have domains of type llist. Rather, llist is a
coinductive type, and has an axiom that justifies the definition of (co-)recursive func-
tions that map into the llist type:

llist_Axiom

|- !f : ’a -> (’a # ’b) option.

?g : ’a -> ’b llist.

(!x. LHD (g x) = OPTION_MAP SND (f x)) /\

(!x. LTL (g x) = OPTION_MAP (g o FST) (f x))

An equivalent form of the above is

llist_Axiom_1

|- !f. ?g.

!x. g x =

case f x

of NONE => LNIL

| SOME (x’,y) => LCONS y (g x’)

Other constants in the theory llist include LMAP, LFINITE, LNTH, LTAKE, LDROP, and
LFILTER. Their types are

LMAP : (’a -> ’b) -> ’a llist -> ’b llist

LFINITE : ’a llist -> bool

LNTH : num -> ’a llist -> ’a option

LTAKE : num -> ’a llist -> ’a list option

LDROP : num -> ’a llist -> ’a llist option

LFILTER : (’a -> bool) -> ’a llist -> ’a llist
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They are characterised by the following theorems

LMAP

|- (LMAP f LNIL = LNIL) /\

(LMAP f (LCONS h t) = LCONS (f h) (LMAP f t))

LFINITE_THM

|- (LFINITE LNIL = T) /\

(LFINITE (LCONS h t) = LFINITE t)

LNTH_THM

|- (!n. LNTH n LNIL = NONE) /\

(!h t. LNTH 0 (LCONS h t) = SOME h) /\

(!n h t. LNTH (SUC n) (LCONS h t) = LNTH n t)

LTAKE_THM

|- (LTAKE 0 l = SOME []) /\

(LTAKE (SUC n) LNIL = NONE) /\

(LTAKE (SUC n) (LCONS h t) = OPTION_MAP (CONS h) (LTAKE n t)

LDROP_THM

|- (LDROP 0 ll = SOME ll) /\

(LDROP (SUC n) ll = NONE) /\

(LDROP (SUC n) (LCONS h t) = LDROP n t)

LFILTER_THM

|- (LFILTER P LNIL = LNIL) /\

(LFILTER P (LCONS h t) = if P h then LCONS h (LFILTER P t)

else LFILTER P t)

Concatenation Two lazy lists may be concatenated by LAPPEND. If the first lazy list is
infinite, elements of the second are inaccessible in the result. A lazy list of lazy lists can
be flattened to a lazy list by LFLATTEN.

LAPPEND

|- (!x. LAPPEND LNIL x = x) /\

(!h t x. LAPPEND (LCONS h t) x = LCONS h (LAPPEND t x))

LFLATTEN_THM

|- (LFLATTEN LNIL = LNIL) /\

(!tl. LFLATTEN (LCONS LNIL t) = LFLATTEN t) /\

(!h t tl. LFLATTEN (LCONS (LCONS h t) tl) =

LCONS h (LFLATTEN (LCONS t tl)))

Lists and lazy lists Mapping back and forth from lists to lazy lists is accomplished by
fromList and toList:

fromList

|- (fromList [] = LNIL) /\

(!h t. fromList (h::t) = LCONS h (fromList t))

toList_THM

|- (toList LNIL = SOME []) /\

(!h t. toList (LCONS h t) = OPTION_MAP (CONS h) (toList t))
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Proof principles Finally, there are two very important proof principles for proving
that two llist values are equal. The first states that two sequences are equal if they
return the same prefixes of length n for all possible values of n:

LTAKE_EQ |- (ll1 = ll2) = (!n. LTAKE n ll1 = LTAKE n ll2)

This theorem is subsequently used to derive the bisimulation principle:

LLIST_BISIMULATION

|- (ll1 = ll2) =

?R. R ll1 ll2 /\

!ll3 ll4. R ll3 ll4 ==>

(ll3 = LNIL) /\ (ll4 = LNIL) \/

(LHD ll3 = LHD ll4) /\

R (THE (LTL ll3)) (THE (LTL ll4))

The principle of bisimulation states that two llist values l1 and l2 are equal if (and
only if) it is possible to find a relation R such that

• R relates the two values, i.e., R l1 l2; and

• if R holds of any two values l3 and l4, then either

– both l3 and l4 are empty; or

– the head elements of l3 and l4 are the same, and the tails of those two values
are again related by R

Of course, a possible R would be equality itself, but the strength of this theorem is that
other, more convenient relations can also be used.

3.4.3 Labelled paths (path)

The theory path defines a binary type operator (α, β)path, which stands for possibly
infinite paths of the following form

α1
β1−→ α2

β2−→ α3
β3−→ · · ·αn

βn−→ αn+1
βn+1−→ · · ·

The path type is thus an appropriate model for reduction sequences, where the α pa-
rameter corresponds to “states”, and the β parameter corresponds to the labels on the
arrows.

The model of (α, β)path is α×((α×β)llist). The type of paths has two constructors:

stopped_at : ’a -> (’a,’b) path

pcons : ’a -> ’b -> (’a,’b) path -> (’a,’b) path
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The stopped_at constructor returns a path containing just one state, and no transitions.
(Thus, the reduction sequence has “stopped at” this state.) The pcons constructor takes
a state, a label, and a path, and returns a path which is now headed by the state argu-
ment, and which moves from that state via the label argument to the path. Graphically,
pcons x l p is equal to

x
l−→ p1

l1−→ p2
l2−→ · · ·︸ ︷︷ ︸

p

Other constants defined in theory path include

finite : (’a,’b) path -> bool

first : (’a,’b) path -> ’a

labels : (’a,’b) path -> ’b llist

last : (’a,’b) path -> ’a

length : (’a,’b) path -> num option

okpath : (’a -> ’b -> ’a -> bool) -> (’a,’b) path -> bool

pconcat : (’a,’b) path -> ’b -> (’a,’b) path -> (’a,’b) path

pmap : (’a -> ’c) -> (’b -> ’d) -> (’a,’b)path -> (’c,’d)path

The first function returns the first element of a path. There always is such an
element, and the defining equations are

first_thm |- (first (stopped_at x) = x) /\

(first (pcons x l p) = x)

On the other hand, the last function does not always have a well-specified value,
though it still has nice characterising equations:

last_thm |- (last (stopped_at x) = x) /\

(last (pcons x l p) = last p)

The theorem for finite has a similar feel, but has a definite value (F, or false) on
infinite paths), whereas the value of last on such paths is unspecified:

finite_thm |- (finite (stopped_at x) = T) /\

(finite (pcons x l p) = finite p)

The function pconcat concatenates two paths, linking them with a provided label. If
the first path is infinite, then the result is equal to that first path. The defining equation
is

pconcat_thm |- (pconcat (stopped_at x) lab p2 = pcons x lab p2) /\

(pconcat (pcons x r p) lab p2 =

pcons x r (pconcat p lab p2)

These equations are true even when the first argument to pconcat is an infinite path.
The okpath predicate tests whether or not a path is a valid transition given a ternary

transition relation. Its characterising theorem is
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okpath_thm |-

(okpath R (stopped_at x)) /\

(okpath R (pcons x r p) = R x r (first p) /\ okpath R p)

There is also an induction principle that simplifies reasoning about finite R-paths:

finite_okpath_ind |-

(!x. P (stopped_at x)) /\

(!x r p. okpath R p /\ finite p /\ R x r (first p) /\ P p ==>

P (pcons x r p)) ==>

!p. okpath R p /\ finite p ==> P p

One can show that a set P of paths are all R-paths with the co-induction principle:

okpath_co_ind |-

!P.

(!x r p. P (pcons x r p) ==> R x r (first p) /\ P p) ==>

!p. P p ==> okpath R p

3.4.4 Character strings (string)

The theory string defines a type of characters and a type of finite strings built from
those characters, along with a useful suite of definitions for operating on strings.

Characters The type char is represented by the numbers less than 256. Two constants
are defined: CHR : num→ char and ORD : char→ num. The following theorems hold:

CHR_ORD |- !a. CHR (ORD a) = a

ORD_CHR |- !r. r < 256 = (ORD (CHR r) = r)

Character literals can also be entered using ML syntax, with a hash character imme-
diately followed by a string literal of length one. Thus:

1- val t = ‘‘f #"c" #"\n"‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val t = ‘‘f #"c" #"\n"‘‘ : term

- dest_term ‘‘#"\t"‘‘;

> val it = COMB(‘‘CHR‘‘, ‘‘9‘‘) : lambda

Strings The type string is an alias for the type char list. All functions and pred-
icates over lists are thus available for use over strings. Some of these constants are
overloaded so that they are printed (and can be parsed) with names that are more
appropriate for the particular case of lists of characters.

For example, NIL and CONS over strings have alternative names EMPTYSTRING and
STRING respectively:
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EMPTYSTRING : string

STRING : char -> string -> string

The HOL parser maps the syntax "" to EMPTYSTRING, and the HOL printer inverts this.
The parser expands string literals of the form "c1c2 . . . cn" to the compound term

STRING c1 (STRING c2 . . . (STRING cn−1 (STRING cn EMPTYSTRING)) . . . )

Of course, one could also write

2- ‘‘[#"a"; #"b"]‘‘;

> val it = ‘‘"ab"‘‘ : term

String literals can be constructed using the various special escape sequences that are
used in ML. For example, \n for the newline character, and a backslash followed by three
decimal digits for characters of the given number.

3- val t = ‘‘"foo bar\n\001"‘‘;

> val t = ‘‘"foo bar\n\^A"‘‘ : term

Note that if one wants to use the control-character syntax with the caret that the pretty-
printer has chosen to use in printing the given string, and this occurs inside a quotation,
then the caret will need to be doubled. (See Section 5.1.3.)

There is also a destructor function DEST_STRING for strings which returns an option
type.

DEST_STRING

|- (DEST_STRING "" = NONE) /\

(DEST_STRING (STRING c rst) = SOME(c,rst))

Case expressions Compound HOL expressions that branch based on whether a term
is an empty or non-empty string have the surface syntax

case s

of "" => e1

| STRING c rst => e2

Such an expression is translated to string_case e1 (λc rst. e2) s where the constant
string_case is defined as follows:

STRING_CASE_DEF

|- (string_case b f "" = b) /\

(string_case b f (STRING c s) = f c s)
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Length and concatenation A standard function LENGTH can be written STRLEN when
applied to a string, and APPEND can be written as STRCAT. There are also theorems
characterising these constants in stringTheory, though they are simply instantiations
of results from listTheory:

STRLEN_THM

|- (STRLEN "" = 0) /\

(STRLEN (STRING c s) = 1 + STRLEN s)

STRCAT_EQNS =

|- (STRCAT "" s = s) /\

(STRCAT s "" = s) /\

(STRCAT (STRING c s1) s2 = STRING c (STRCAT s1 s2))

3.5 Collections

Several different notions of a collection of elements are available in HOL: sets, multisets,
relations, and finite maps.

3.5.1 Sets (pred set)

An extensive development of set theory is available in the theory pred set. Sets are
represented by functions of the type α → bool, i.e., they are so-called characteristic
functions. One can use the type abbreviation α set instead of α → bool. Sets may be
finite or infinite. All of the elements in a set must have the same type.

Set membership is the basic notion that formalized set theory is based on. In HOL,
membership is represented by a the infix constant IN, defined in theory bool for conve-
nience.

IN_DEF |- IN = \x f. f x

The IN operator is merely a way of applying the characteristic function to an item, as
the following trivial consequence of the definition shows:

SPECIFICATION |- !P x. x IN P = P x

Two sets are equal if they have the same elements.

EXTENSION |- !s t. (s = t) = (!x. (x IN s) = (x IN t))
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Empty and universal sets The empty set is the characteristic function that is con-
stantly false. The constant EMPTY denotes the empty set; it may be written as {} and
∅ (U+2205). The universal set, UNIV, on a type is the characteristic function that is
always true for elements of that type.

EMPTY_DEF |- {} = (\x. F)

UNIV_DEF |- UNIV = (\x. T)

In addition to UNIV (perhaps with a type annotation :’a set), one may also write
univ(:’a) to represent the universal set over type :’a. The Unicode syntax U(:’a)
means the same. The Unicode symbol for U is U+1D54C, and may not exist in many
fonts.

One of these forms will be used to print UNIV by default. The user trace (see Sec-
tion 6.2) "Univ pretty-printing" can be set to zero to cancel this behaviour. Addi-
tionally, the trace "Unicode Univ printing" can be used to stop the U+1D54C syntax
from being used, even if the Unicode trace is set.

The symbols univ and U are high-priority prefixes (see Section 5.1.2.7), and over-
loaded patterns (see Section 5.1.2.3) mapping a value of the itself type to the corre-
sponding UNIV constant. One effect is that one can write things like

FINITE univ(:’a)

without the need for parentheses around FINITE’s argument.

Insertion, union, and intersection The insertion (INSERT, written infix) of an element
into a set is defined with a set comprehension. Set comprehension is discussed in the
next subsection. Set union (UNION, written infix) and intersection (INTER, also infix) are
given their usual definitions by set comprehension.

INSERT_DEF |- !x s. x INSERT s = {y | (y = x) \/ y IN s}

UNION_DEF |- !s t. s UNION t = {x | x IN s \/ x IN t}

INTER_DEF |- !s t. s INTER t = {x | x IN s /\ x IN t}

UNION and INTER are binary operations. Indexed union and intersection operations, i.e.,⋃
i∈P and

⋂
i∈P are provided by the definitions of BIGUNION and BIGINTER.

BIGUNION |- !P. BIGUNION P = {x | ?s. s IN P /\ x IN s}

BIGINTER |- !P. BIGINTER P = {x | !s. s IN P ==> x IN s}

Both BIGUNION and BIGINTER reduce a set of sets to a set and thus have the type ((α→
bool)→ bool)→ (α→ bool).
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Subsets Set inclusion (SUBSET, infix), proper set inclusion (PSUBSET, infix), and power
set (POW) are defined as follows:

SUBSET_DEF |- !s t. s SUBSET t = !x. x IN s ==> x IN t

PSUBSET_DEF |- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t)

POW_DEF |- !set. POW set = {s | s SUBSET set}

Set difference and complement The difference between two sets (DIFF, infix) is de-
fined by a set comprehension. Based on that, the deletion of a single element (DELETE,
infix) from a set is straightforward. Since the universe of a type is always available via
UNIV, the complement (COMPL) of a set may be taken.

DIFF_DEF |- !s t. s DIFF t = {x | x IN s /\ ~(x IN t)}

DELETE_DEF |- !s x. s DELETE x = s DIFF {x}

COMPL_DEF |- !P. COMPL P = UNIV DIFF P

Functions on sets The image of a function f : α→ β on a set (IMAGE) is defined with
a set comprehension.

IMAGE_DEF |- !f s. IMAGE f s = {f x | x IN s}

Injections, surjections, and bijections between sets are defined as follows:

INJ_DEF

|- !f s t.

INJ f s t =

(!x. x IN s ==> f x IN t) /\

!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)

SURJ_DEF

|- !f s t.

SURJ f s t =

(!x. x IN s ==> f x IN t) /\

!x. x IN t ==> ?y. y IN s /\ (f y = x)

BIJ_DEF |- !f s t. BIJ f s t = INJ f s t /\ SURJ f s t

Finite sets The finite sets (FINITE) are defined inductively as those built from the
empty set by a finite number of insertions.

FINITE_DEF

|- !s. FINITE s = !P. P {} /\ (!s. P s ==> !e. P (e INSERT s)) ==> P s

A set is infinite iff it is not finite, and there is an abbreviation in the system that parses
‘‘INFINITE s‘‘ into ‘‘~FINITE s‘‘. The pretty-printer reverses this transformation.

The finite sets have an induction theorem:
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FINITE_INDUCT

|- !P. P {} /\

(!s. FINITE s /\ P s ==> !e. ~(e IN s) ==> P (e INSERT s))

==> !s. FINITE s ==> P s

As mentioned, set operations apply to both finite and infinite sets. However, some
operations, such as cardinality (CARD), are only defined for finite sets. The cardinality
of an infinite set is not specified.

CARD_DEF

|- (CARD {} = 0) /\

!s. FINITE s ==>

!x. CARD (x INSERT s) = if x IN s then CARD s else SUC (CARD s)

Since the finite and infinite sets are dealt with uniformly in pred set, properties of op-
erations on finite sets must explicitly include constraints about finiteness. For example
the following theorem relating cardinality and subsets is only true for finite sets.

CARD_PSUBSET

|- !s. FINITE s ==> !t. t PSUBSET s ==> CARD t < CARD s

An extensive suite of theorems dealing with finiteness and cardinality is available in
pred set.

Cross product The product of two sets (CROSS, infix) is defined with a set comprehen-
sion.

CROSS_DEF |- !P Q. P CROSS Q = {p | FST p IN P /\ SND p IN Q}

Cardinality and cross product are related by the following theorem:

CARD_CROSS

|- !P Q. FINITE P /\ FINITE Q ==> (CARD (P CROSS Q) = CARD P * CARD Q)

Recursive functions on sets Recursive functions on sets may be defined by well-
founded recursion. Usually, the totality of such a function is established by measuring
the cardinality of the (finite) set. However, another theorem may be used to justify a
fold (ITSET) for finite sets. Provided a function f : α→ β → β obeys a condition known
as left-commutativity, namely, f x (f y z) = f y (f x z), then f can be applied by folding
it on the set in a tail-recursive fashion.

ITSET_EMPTY

|- !f b. ITSET f {} b = b

COMMUTING_ITSET_INSERT

|- !f s. (!x y z. f x (f y z) = f y (f x z)) /\ FINITE s ==>

!x b. ITSET f (x INSERT s) b = ITSET f (s DELETE x) (f x b)
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A recursive version is also available:

COMMUTING_ITSET_RECURSES

|- !f e s b.

(!x y z. f x (f y z) = f y (f x z)) /\ FINITE s ==>

(ITSET f (e INSERT s) b = f e (ITSET f (s DELETE e) b))

For the full derivation, see the sources of pred_set. The definition of ITSET allows, for
example, the definition of summing the results of a function on a finite set of elements,
from which a recursive characterization and other useful theorems are derived.

SUM_IMAGE_DEF

|- !f s. SIGMA f s = ITSET (\e acc. f e + acc) s 0

SUM_IMAGE_THM

|- !f. (SIGMA f {} = 0) /\

!e s. FINITE s ==>

(SIGMA f (e INSERT s) = f e + SIGMA f (s DELETE e))

Other definitions and theorems There are more definitions in pred set, but they are
not as heavily used as the ones presented here. Similarly, most theorems in pred set

relate the various common set operations to each other, but do not express any deep
theorems of set theory.

However, one notable theorem is Koenig’s Lemma, which states that every finitely
branching infinite tree has an infinite path. There are many ways to formulate this the-
orem, depending on how the notion of tree is formalized. In pred set, finite branching
is defined as a predicate on a relation.

finite_branching_def

|- !R. finitely_branching R = !x. FINITE {y | R x y}

From this, the following version of Koenig’s Lemma is stated and proved:

KoenigsLemma

|- finitely_branching R ==>

!x. ~FINITE {y | RTC R x y} ==>

?f. (f 0 = x) /\ !n. R (f n) (f (SUC n))

3.5.1.1 Syntax for sets

The special purpose set-theoretic notations {t1; t2; . . . ; tn} and {t | p} are recognized by
the HOL parser and printer when the theory pred set is loaded.

The normal interpretation of {t1; t2; . . . ; tn} is the finite set containing just t1, t2, . . . , tn.
This can be modelled by starting with the empty set and performing a sequence of
insertions. For example, {1;2;3;4} parses to

1 INSERT (2 INSERT (3 INSERT (4 INSERT EMPTY)))
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Set comprehensions The normal interpretation of {t | p} is the set of all ts such
that p. In HOL, such syntax parses to: GSPEC(\(x1,. . .,xn).(t,p)) where x1, . . . , xn are
those free variables that occur in both t and p if both have at least one free variable.
If t or p has no free variables, then x1, . . . , xn are taken to be the free variables of the
other term. If both terms have free variables, but there is no overlap, then an error
results. The order in which the variables are listed in the variable structure of the
paired abstraction is an unspecified function of the structure of t (it is approximately
left to right). For example,

{p+q | p < q /\ q < r}

parses to:

GSPEC(\(p,q). ((p+q), (p < q /\ q < r)))

where GSPEC is characterized by:

GSPECIFICATION |- !f v. (v IN GSPEC f) = (?x. (v,T) = f x)

This somewhat cryptic specification can be understood by exercising an example. The
syntax

a IN {p+q | p < q /\ q < r}

is mapped by the HOL parser to

a IN GSPEC(\(p,q). ((p+q), (p < q /\ q < r)))

which, by GSPECIFICATION, is equal to

?x. (a,T) = (\(p,q). ((p+q), (p < q /\ q < r))) x

The existentially quantified variable x has a pair type, so it can be replaced by a pair
(p,q) and a paired-β-reduction can be performed, yielding

?(p,q). (a,T) = ((p+q), (p < q /\ q < r))

which is equal to the intended meaning of the original syntax:

?(p,q). (a = p+q) /\ (p < q /\ q < r)
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Unambiguous set comprehensions There is also an unambiguous set comprehension
syntax, which allows the user to specify which variables are to be quantified over in the
abstraction that is the argument of GSPEC. Terms of the form

{ t | vs | P }

generate sets containing values of the form given by t, where the variables mentioned
in vs must satisfy the constraint P. For example, the set

{ x + y | x | x < y }

is the set of numbers from y up to but not including 2 * y. The set can be “read”
computationally: draw out all those x that are less than y, and to each such x add y,
thereby generating a set of numbers.

In the example above, the underlying GSPEC term will be

GSPEC (\x. (x + y, x < y))

The vs component of the unambiguous notation must be a single “variable structure”
that might appear underneath a possibly paired abstraction as in section 3.2.3.1. In
other words, this

{ x + y | (x,y) | x < y }

is fine, but this

{ x + y | x y | x < y }

will raise an error. (Additionally, the outermost parentheses around pairs in the vs

position can be omitted.)
The unambiguous notation is printed by the pretty-printer whenever the set to be

printed can not be expressed with the default notation, or if the trace variable with
name pp_unambiguous_comprehensions is set to true.

3.5.2 Multisets (bag)

Multisets, also known as bags, are similar to sets, except that they allow repeat occur-
rences of an element. Whereas sets are represented by functions of type α→ bool, which
signal the presence, or absence, of an element, multisets are represented by functions
of type α → num, which give the multiplicity of each element in the multiset. Multisets
may be finite or infinite.

The type abbreviations α multiset and α bag can be used instead of α→ num.
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Empty multiset The empty bag has no elements. Thus, the function implementing it
returns 0 for every input.

EMPTY_BAG |- EMPTY_BAG = K 0

The special syntax {||} can be used to represent the empty bag.

Membership Much of the theory can be based on the notion of membership in a bag.
There are two notions: does an element occur at least n times in a bag (BAG_INN); and
does an element occur in a bag at all (BAG_IN).

BAG_INN |- BAG_INN e n b = (b e >= n)

BAG_IN |- BAG_IN e b = BAG_INN e 1 b

Two bags are equal if all elements have the same tally.

BAG_EXTENSION

|- !b1 b2. (b1 = b2) = (!n e. BAG_INN e n b1 = BAG_INN e n b2)

Sub-multiset A sub-bag relationship (SUB_BAG) holds between b1 and b2 provided that
every element in b1 occurs at least as often in b2. The notion of a proper sub-bag
(PSUB_BAG) is easily defined.

SUB_BAG

|- SUB_BAG b1 b2 = !x n. BAG_INN x n b1 ==> BAG_INN x n b2

PSUB_BAG

|- PSUB_BAG b1 b2 = SUB_BAG b1 b2 /\ ~(b1 = b2)

Insertion Inserting an element into a bag (BAG_INSERT) updates the tally for that
element and leaves the others unchanged.

BAG_INSERT

|- BAG_INSERT e b = (\x. if (x = e) then b e + 1 else b x)

Explicitly-given multisets are supported by the syntax {|t1; t2; . . . ; tn|}, where there
may, of course, be repetitions. This is modelled by starting with the empty multiset and
performing a sequence of insertions. For example, {|1; 2; 3; 2; 1|} parses to

BAG_INSERT 1 (BAG_INSERT 2 (BAG_INSERT 3

(BAG_INSERT 2 (BAG_INSERT 1 {||}))))
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Union and difference The union (BAG_UNION) and difference (BAG_DIFF) operations
on bags both reduce to an arithmetic calculation on their elements. Deleting a single
element from a bag may be expressed by taking the multiset difference with a single-
element multiset; however, there is also a relational presentation (BAG_DELETE) which
relates its first and last arguments only if the first contains exactly one more occurrence
of the middle argument than the last. This is not the same as using BAG_DIFF to remove
a one-element bag because it insists that the element being removed actually appear in
the larger bag.

BAG_UNION

|- BAG_UNION b c = \x. b x + c x

BAG_DIFF

|- BAG_DIFF b1 b2 = \x. b1 x - b2 x

BAG_DELETE

|- BAG_DELETE b0 e b = (b0 = BAG_INSERT e b)

Intersection, merge, and filter The intersection of two bags (BAG_INTER) takes the
pointwise minimum. The dual operation, merging (BAG_MERGE), takes the pointwise
maximum. A bag can be ‘filtered’ by a set to return the bag where all the elements not
in the set have been dropped (BAG_FILTER).

BAG_INTER

|- BAG_INTER b1 b2 = (\x. if (b1 x < b2 x) then b1 x else b2 x)

BAG_MERGE

|- BAG_MERGE b1 b2 = (\x. if (b1 x < b2 x) then b2 x else b1 x)

BAG_FILTER_DEF

|- BAG_FILTER P b = (\e. if P e then b e else 0)

Sets and Multisets Moving between bags and sets is accomplished by the following
two definitions.

SET_OF_BAG

|- SET_OF_BAG b = \x. BAG_IN x b

BAG_OF_SET

|- BAG_OF_SET P = \x. if x IN P then 1 else 0

Image Taking the image of a function on a multiset to get a new multiset seems to
be simply a matter of applying the function to each element of the multiset. However,
there is a problem if f is non-injective and the multiset is infinite. For example, take
the multiset consisting of all the natural numbers and apply λx. 1 to each element. The
resulting multiset would hold an infinite number of 1s. To avoid this requires some
constraints: for example, stipulating that the function be only finitely non-injective,
or that the input multiset be finite. Such conditions would be onerous in proof; the
compromise is to map the multipicity of problematic elements to 0.
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BAG_IMAGE_DEF

|- BAG_IMAGE f b =

\e. let sb = BAG_FILTER (\e0. f e0 = e) b

in

if FINITE_BAG sb then BAG_CARD sb else 0

Finite multisets The finite multisets (FINITE_BAG) are defined inductively as those
built from the empty bag by a finite number of insertions.

FINITE_BAG

|- FINITE_BAG b =

!P. P EMPTY_BAG /\

(!b. P b ==> (!e. P (BAG_INSERT e b))) ==> P b

The finite multisets have an induction theorem, and also a strong induction theorem.

FINITE_BAG_INDUCT

|- !P. P {||} /\

(!b. P b ==> (!e. P (BAG_INSERT e b)))

==> (!b. FINITE_BAG b ==> P b)

STRONG_FINITE_BAG_INDUCT

|- !P. P {||} /\

(!b. FINITE_BAG b /\ P b ==> !e. P (BAG_INSERT e b))

==> (!b. FINITE_BAG b ==> P b)

The cardinality (BAG_CARD) of a multiset counts the total number of occurrences. It is
only specified for finite multisets.

BAG_CARD_THM

|- (BAG_CARD {||} = 0) /\

(!b. FINITE_BAG b ==>

!e. BAG_CARD (BAG_INSERT e b) = BAG_CARD b + 1)

Recursive functions on multisets Recursive functions on multiset may be defined
by wellfounded recursion. Usually, the totality of such a function is established by
measuring the cardinality of the (finite) multiset. However, a fold (ITBAG) for finite
sets is provided. Provided a function f : α → β → β obeys a condition known as left-
commutativity, namely, f x (f y z) = f y (f x z), then f can be applied by folding it on
the multiset in a tail-recursive fashion.

ITBAG_EMPTY

|- !f acc. ITSET f {||} acc = acc

COMMUTING_ITBAG_INSERT

|- !f b. (!x y z. f x (f y z) = f y (f x z)) /\ FINITE_BAG b ==>

!x a. ITBAG f (BAG_INSERT x b) a = ITBAG f b (f x a)

A recursive version is also available:
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COMMUTING_ITBAG_RECURSES

|- !f e b a. (!x y z. f x (f y z) = f y (f x z)) /\ FINITE_BAG b ==>

(ITBAG f (BAG_INSERT e b) a = f e (ITBAG f b a))

3.5.3 Relations (relation)

Mathematical relations can be represented in HOL by the type α → β → bool. (In most
applications, the type of a relation is an instance of α → α → bool, but the extra gen-
erality doesn’t hurt.) The theory relation provides definitions of basic properties and
operations on relations, defines various kinds of orders and closures, defines wellfound-
edness and proves the wellfounded recursion theorem, and develops some basic results
used in Term Rewriting.

Basic properties The following basic properties of relations are defined.

transitive_def

|- transitive R = !x y z. R x y /\ R y z ==> R x z

reflexive_def

|- reflexive R = (!x. R x x)

irreflexive_def

|- irreflexive R = (!x. ~R x x)

symmetric_def

|- symmetric R = (!x y. R x y = R y x)

antisymmetric_def

|- antisymmetric R = (!x y. R x y /\ R y x ==> (x = y))

equivalence_def

|- equivalence R = reflexive R /\ symmetric R /\ transitive R

trichotomous

|- trichotomous R = !a b. R a b \/ R b a \/ (a = b)

total_def

|- total R = (!x y. R x y \/ R y x)

Basic operations The following basic operations on relations are defined: the empty
relation (EMPTY_REL), relation composition (O, infix), inversion (inv), domain (RDOM),
and range (RRANGE).

EMPTY_REL_DEF

|- !x y. EMPTY_REL x y = F

O_DEF

|- $O R1 R2 x z = ?y. R1 x y /\ R2 y z

inv_DEF

|- inv R x y = R y x

RDOM_DEF

|- RDOM R x = ?y. R x y

RRANGE

|- RRANGE R y = ?x. R x y
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Set operations lifted to work on relations include subset (RSUBSET, infix), union (RUNION,
infix), intersection (RINTER, infix), complement (RCOMPL), and universe (RUNIV).

RSUBSET

|- $RSUBSET R1 R2 = !x y. R1 x y ==> R2 x y

RUNION

|- $RUNION R1 R2 x y = R1 x y \/ R2 x y

RINTER

|- $RINTER R1 R2 x y = R1 x y /\ R2 x y

RCOMPL

|- RCOMPL R x y = ~R x y

RUNIV

|- RUNIV x y = T

Orders A sequence of definitions capturing various notions of order are made in
relation.

PreOrder

|- PreOrder R = reflexive R /\ transitive R

Order

|- Order Z = antisymmetric Z /\ transitive Z

WeakOrder

|- WeakOrder Z = reflexive Z /\ antisymmetric Z /\ transitive Z

StrongOrder

|- StrongOrder Z = irreflexive Z /\ antisymmetric Z /\ transitive Z

LinearOrder

|- LinearOrder R = Order R /\ trichotomous R

WeakLinearOrder

|- WeakLinearOrder R = WeakOrder R /\ trichotomous R

StrongLinearOrder

|- StrongLinearOrder R = StrongOrder R /\ trichotomous R

Closures The transitive closure (TC) of a relation R : α → α → bool is defined in-
ductively, as the least relation including R and closed under transitivity. Similarly, the
reflexive-transitive closure (RTC) is defined to be the least relation closed under transi-
tivity and reflexivity.

TC_DEF

|- TC R a b =

!P. (!x y. R x y ==> P x y) /\

(!x y z. P x y /\ P y z ==> P x z) ==> P a b

RTC_DEF

|- RTC R a b =

!P. (!x. P x x) /\

(!x y z. R x y /\ P y z ==> P x z) ==> P a b

From these definitions, one can recover the initial rules.
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TC_RULES

|- !R. (!x y. R x y ==> TC R x y) /\

(!x y z. TC R x y /\ TC R y z ==> TC R x z)

RTC_RULES

|- !R. (!x. RTC R x x) /\

(!x y z. R x y /\ RTC R y z ==> RTC R x z)

RTC_RULES_RIGHT1

|- !R. (!x. RTC R x x) /\

(!x y z. RTC R x y /\ R y z ==> RTC R x z)

Notice that RTC_RULES, in keeping with the definition of RTC, extends an R-step from
x to y with a a sequence of R-steps from y to z to construct RTC x z. The theorem
RTC_RULES_RIGHT1 first makes a sequence of R steps and then a single R step to form
RTC x z. Similar alternative theorems are proved for case analysis and induction.

For example, TC_CASES1 and TC_CASES2 in the following decompose RTC R x z to either
R x y followed by RTC R y z (TC_CASES1) or RTC R x y followed by R y z (TC_CASES2).

TC_CASES1

|- !R x z. TC R x z ==> R x z \/ ?y. R x y /\ TC R y z

TC_CASES2

|- !R x z. TC R x z ==> R x z \/ ?y. TC R x y /\ R y z

RTC_CASES1

|- !R x y. RTC R x y = (x = y) \/ ?u. R x u /\ RTC R u y

RTC_CASES2

|- !R x y. RTC R x y = (x = y) \/ ?u. RTC R x u /\ R u y

RTC_CASES_RTC_TWICE

|- !R x y. RTC R x y = ?u. RTC R x u /\ RTC R u y

As well as the basic induction theorems for TC and RTC, there are so-called strong
induction theorems, which have stronger induction hypotheses.

TC_INDUCT

|- !R P. (!x y. R x y ==> P x y) /\

(!x y z. P x y /\ P y z ==> P x z)

==> !u v. TC R u v ==> P u v

RTC_INDUCT

|- ! R P. (!x. P x x) /\

(!x y z. R x y /\ P y z ==> P x z) ==>

(!x y. RTC R x y ==> P x y)

TC_STRONG_INDUCT

|- !R P. (!x y. R x y ==> P x y) /\

(!x y z. P x y /\ P y z /\ TC R x y /\ TC R y z ==> P x z) ==>

(!u v. TC R u v ==> P u v)

RTC_STRONG_INDUCT

|- !R P. (!x. P x x) /\

(!x y z. R x y /\ RTC R y z /\ P y z ==> P x z) ==>

(!x y. RTC R x y ==> P x y)
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Variants of these induction theorems are also available which break apart the closure
from the left or right, as for the case analysis theorems.

The reflexive (RC) and symmetric closures (SC) are straightforward to define. The
equivalence closure (EQC) is the symmetric then transitive then reflexive closure of R.

RC_DEF |- RC R x y = (x = y) \/ R x y

SC_DEF |- SC R x y = R x y \/ R y x

EQC_DEF |- EQC R = RC (TC (SC R))

Wellfounded relations A relation R is wellfounded (WF) if every non-empty set has
an R-minimal element. Wellfoundedness is used to justify the principle of wellfounded
induction (WF_INDUCTION_THM).

WF_DEF

|- !R. WF R = !B. (?w. B w) ==> ?min. B min /\ !b. R b min ==> ~B b

WF_INDUCTION_THM

|- !R WF R ==> !P. (!x. (!y. R y x ==> P y) ==> P x) ==> !x. P x

The wellfounded part (WFP) of a relation can be inductively defined, from which its
rules, case-analysis theorem and induction theorems may be derived.

WFP_DEF

|- WFP R a = !P. (!x. (!y. R y x ==> P y) ==> P x) ==> P a

WFP_RULES

|- !R x. (!y. R y x ==> WFP R y) ==> WFP R x

WFP_CASES

|- !R x. WFP R x = !y. R y x ==> WFP R y

WFP_INDUCT

|- !R P. (!x. (!y. R y x ==> P y) ==> P x)

==> !x. WFP R x ==> P x

WFP_STRONG_INDUCT

|- !R. (!x. WFP R x /\ (!y. R y x ==> P y) ==> P x)

==> !x. WFP R x ==> P x

Wellfoundedness can also be used to justify a general recursion theorem. Intuitively, a
collection of recursion equations can be admitted into the HOL logic with no loss of con-
sistency provided that every possible sequence of recursive calls is finite. Wellfounded
relations are used to capture this notion: if there is a wellfounded relation R on the do-
main of the desired function such that every sequence of recursive calls is R-decreasing,
then the recursion equations specify a unique total function and the equations can be
admitted into the logic.

The recursion theorems WFREC_COROLLARY and WF_RECURSION_THM use the notion of a
function restriction (RESTRICT) in order to force the recursive function to be applied to
R-smaller arguments in recursive calls..
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RESTRICT_DEF

|- !f R x. RESTRICT f R x = \y. if R y x then f y else ARB

WFREC_COROLLARY

|- !M R f. (f = WFREC R M) ==> WF R ==> !x. f x = M (RESTRICT f R x) x

WF_RECURSION_THM

|- !R. WF R ==> !M. ?!f. !x. f x = M (RESTRICT f R x) x

The theorems WF_INDUCTION_THM and WFREC_COROLLARY are used to automate recursive
definitions; see Section 4.5. A few basic operators for wellfounded relations are also
defined, along with theorems stating that they propagate wellfoundedness.

inv_image_def |- !R f. inv_image R f = \x y. R (f x) (f y)

WF_inv_image |- !R f. WF R ==> WF (inv_image R f)

WF_SUBSET |- !R P. WF R /\ (!x y. P x y ==> R x y) ==> WF P

WF_TC |- !R. WF R ==> WF (TC R)

WF_Empty |- WF EMPTY_REL

Term Rewriting A few basic definitions from Term Rewriting theory (the diamond
property (diamond), the Church-Rosser property (CR and WCR), and Strong Normalization
(SN)) appear in relation.

diamond_def

|- diamond R = !x y z. R x y /\ R x z ==> ?u. R y u /\ R z u

CR_def

|- CR R = diamond (RTC R)

WCR_def

|- WCR R = !x y z. R x y /\ R x z ==> ?u. RTC R y u /\ RTC R z u

SN_def

|- SN R = WF (inv R)

From those, Newman’s Lemma is proved.

Newmans_lemma |- !R. WCR R /\ SN R ==> CR R

3.5.4 Finite maps (finite map)

The theory finite map formalizes a type (α, β) fmap of finite functions. These notionally
have type α → β, but additionally have only finitely many elements in their domain.
Finite maps are useful for formalizing substitutions and arrays. The representing type
is α→ β + one, where only a finite number of the α map to a β and the rest map to one.
The syntax α |-> β is recognized by the parser as an alternative to (α, β) fmap.
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Basic notions The empty map (FEMPTY), the updating of a map (FUPDATE), the appli-
cation of a map to an argument (FAPPLY), and the domain of a map (FDOM) are the main
notions in the theory.

FEMPTY : ’a |-> ’b

FUPDATE : (’a |-> ’b) -> ’a # ’b -> (’a |-> ’b)

FAPPLY : (’a |-> ’b) -> ’a -> ’b

FDOM : (’a |-> ’b) -> ’a set

The HOL parser and printer will treat the syntax f ’ x as the application of finite map
f to argument x, ie, as FAPPLY f x. The notation f |+ (x,y) represents FUPDATE f (x,y),
i.e., the updating of finite map f by the pair (x,y).

The basic constants have obscure definitions, from which more useful properties are
then derived. FAPPLY_FUPDATE_THM relates map update with map application. fmap_EXT

is an extensionality result: two maps are equal if they have the same domain and agree
when applied to arguments in that domain. One can prove properties of finite maps by
induction on the construction of the map (fmap_INDUCT). The cardinality of a finite map
is just the cardinality of its domain (FCARD_DEF); from this a recursive characterization
(FCARD_FUPDATE) is derived.

FAPPLY_FUPDATE_THM

|- !f a b x. (f |+ (a,b)) ’ x = (if x = a then b else f ’ x)

fmap_EXT

|- !f g. (f = g) =

(FDOM f = FDOM g) /\ (!x. x IN FDOM f ==> (f ’ x = g ’ x))

fmap_INDUCT

|- !P. P FEMPTY /\

(!f. P f ==> !x y. ~(x IN FDOM f) ==> P (f |+ (x,y))) ==> !f. P f

FCARD_DEF |- FCARD fm = CARD (FDOM fm)

FCARD_FUPDATE

|- !fm a b. FCARD(fm |+ (a,b)) =

if a IN FDOM fm then FCARD fm else 1 + FCARD fm

Iterated updates (FUPDATE_LIST) to a map are useful. The infix notation |++ may also be
used. For example, fm |++ [(k1,v1); (k2,v2)] is equal to (fm |+ (k1,v1)) |+ (k2,v2).

FUPDATE_LIST |- FUPDATE_LIST = FOLDL FUPDATE

FUPDATE_LIST_THM

|- !f. (f |++ [] = f) /\

(!h t. f |++ (h::t) = (f |+ h) |++ t)

Domain and range The domain of a finite map is the set of elements that it applies
to; this can be characterized recursively (FDOM_FUPDATE). The range of a map is defined
in the usual way.
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FDOM_FUPDATE

|- !f a b. FDOM (f |+ (a,b)) = a INSERT (FDOM f)

FRANGE_DEF

|- FRANGE f = {y | ?x. x IN FDOM f /\ (f ’ x = y)}

A finite map may have its domain (DRESTRICT) or range (RRESTRICT) restricted by inter-
section with a set. These notions have recursive versions as well (DRESTRICT_FUPDATE
and RRESTRICT_FUPDATE).

DRESTRICT_DEF

|- !f r. (FDOM (DRESTRICT f r) = (FDOM f) INTER r) /\

(!x. DRESTRICT f r ’ x =

(if x IN ((FDOM f) INTER r) then f ’ x else FEMPTY’x))

RRESTRICT_DEF

|- !f r. (FDOM (RRESTRICT f r) = {x | x IN FDOM f /\ f ’ x IN r}) /\

(!x. RRESTRICT f r ’ x =

(if x IN (FDOM f) /\ f ’ x IN r then f ’ x

else FEMPTY ’ x))

DRESTRICT_FUPDATE

|- !f r x y.

DRESTRICT (f |+ (x,y)) r =

if x IN r then (DRESTRICT f r) |+ (x,y) else DRESTRICT f r

RRESTRICT_FUPDATE

|- !f r x y.

RRESTRICT (f |+ (x,y)) r =

if y IN r then (RRESTRICT f r) |+ (x,y)

else RRESTRICT (DRESTRICT f (COMPL {x})) r)

The removal of a single element from the domain of a map (\\, infix) is a simple appli-
cation of (DRESTRICT), but sufficiently useful to deserve its own definition. Again, this
concept has a alternate recursive presentation (DOMSUB_FUPDATE_THM).

fmap_domsub

|- (fm \\ k) = DRESTRICT fm (COMPL {k})

DOMSUB_FUPDATE_THM

|- !fm k1 k2 v. (fm |+ (k1,v)) \\ k2 =

if (k1 = k2) then (fm \\ k2) else (fm \\ k2) |+ (k1, v)

Union and sub-maps Unlike set union, the union of two finite maps (FUNION_DEF) is
not symmetric: the domain of the first map takes precedence. The notion of a finite map
being a submap of another (SUBMAP, infix) is an extension of how subsets are formalized.

FUNION_DEF

|- !f g.

(FDOM (FUNION f g) = FDOM f UNION FDOM g) /\

!x. FUNION f g ’ x = (if x IN FDOM f then f ’ x else g ’ x)

SUBMAP_DEF

|- !f g. (f SUBMAP g) = (!x. x IN FDOM f ==> x IN FDOM g /\

(f ’ x = g ’ x))
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Finite maps and functions As much as possible, finite maps should be like ordinary
functions. Thus, if f is a finite map, then FAPPLY f is an ordinary function. Similarly,
there is an operation for totalizing a finite map (lookup) so that an application of it
returns an ordinary function, the range of which is the option type. An ordinary function
can be turned into a finite map by restricting the function to a finite set of arguments
(FUN_FMAP_DEF).

lookup_DEF

|- FLOOKUP f x = (if x IN FDOM f then SOME (f ’ x) else NONE)

FUN_FMAP_DEF

|- !f P. FINITE P ==>

(FDOM (FUN_FMAP f P) = P) /\

(!x. x IN P ==> (FUN_FMAP f P ’ x = f x))

Composition of maps There are three new definitions of composition, determined by
whether the composed functions are finite maps or not. The composition of two finite
maps (f_o_f, infix) has domain constraints attached. Composition of a finite map with
an ordinary function (o_f, infix) applies the finite map first, then the ordinary function.
Composition of an ordinary function with a finite map (f_o, infix) applies the ordinary
function and then the finite map; the application of the ordinary function is achieved
by turning it into a finite map.

f_o_f_DEF

|- !f g.

(FDOM (f f_o_f g) = (FDOM g) INTER {x | g ’ x IN FDOM f}) /\

!x. x IN FDOM (f f_o_f g) ==> ((f f_o_f g) ’ x = f ’ (g ’ x))

o_f_DEF

|- !f g.

(FDOM (f o_f g) = FDOM g) /\

!x. x IN FDOM (f o_f g) ==> ((f o_f g) ’ x = f (g ’ x))

f_o_DEF

|- (f f_o g) = f f_o_f (FUN_FMAP g {x | g x IN FDOM f})

3.6 While Loops

It is a curious fact that higher order logic, although a logic of total functions, allows the
definition of functions that don’t seem total, at least from a computational perspective.
An example is WHILE-loops. The following equation is derived in theory while:

WHILE |- !P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Clearly, if P in this theorem was instantiated to λx. T, the resulting instance of WHILE
would ‘run forever’ if executed. Why is such an “obviously” partial function definable in
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HOL? The answer lies in a subtle definition of WHILE, 11 which uses the expressive power
of HOL to surprising effect. Consider the following total and non-recursive function:

\x. if (?n. P (FUNPOW g n x))

then FUNPOW g (@n. P (FUNPOW g n x) /\

!m. m < n ==> ~P (FUNPOW g m x)) x

else ARB

This function does a case analysis on the iterations of function g: the finite ones return
the first value in the iteration at which P holds (i.e., when the iteration stops); the
infinite ones are mapped to ARB. This function is used as the witness for f in the proof
of the following theorem:

ITERATION

|- !P g. ?f. !x. f x = if P x then x else f (g x)

From this, it is a simple application of Skolemization and new_specification to obtain
the equation for WHILE.

Reasoning about WHILE loops The induction theorem for WHILE loops is proved by
wellfounded induction, and carries wellfoundedness constraints limiting its application.
In order to apply WHILE_INDUCTION, the instantiations for B and C must be known before
a wellfounded relation for R is found and used to eliminate the constraints.

WHILE_INDUCTION

|- !B C R.

WF R /\ (!s. B s ==> R (C s) s) ==>

!P. (!s. (B s ==> P (C s)) ==> P s) ==> !v. P v

A more refined level of support is provided by the standard Hoare Logic WHILE rule,
phrased in terms of Hoare triples (HOARE_SPEC).

HOARE_SPEC_DEF

|- !P C Q. HOARE_SPEC P C Q = !s. P s ==> Q (C s)

WHILE_RULE

|- !R B C.

WF R /\ (!s. B s ==> R (C s) s) ==>

HOARE_SPEC (\s. P s /\ B s) C P ==>

HOARE_SPEC P (WHILE B C) (\s. P s /\ ~B s)

As a follow-on, an operator for finding the least number with property P is defined.

LEAST_DEF |- !P. $LEAST P = WHILE ($~ o P) SUC 0

A few theorems for reasoning about LEAST may be found in theory while.

3.7 Further Theories

Other theories of interest in HOL are listed and briefly described in Figure 3.2.

11The original idea is due to J Moore, who suggested it for use in ACL2.



3.7. FURTHER THEORIES 121

poset Partial Orders, Knaster-Tarski theorem

divides, gcd Divisibility and the greatest common divisor.

poly A theory of polynomials over R, providing a collection of op-
erations on polynomials, and theorems about them.

Temporal Logic,
Omega Automata

Klaus Schneider’s development of temporal logic and
ω-automata.

ctl, mu Computation Tree Logic and the µ-calculus. See Hasan Am-
jad’s thesis.

lbtree Possibly infinitely deep (i.e., co-algebraic) binary trees.

inftree Possibly infinitely branching, algebraic trees

Figure 3.2: A selection of HOL theories
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Chapter 4

Advanced Definition Principles

4.1 Datatypes

Although the HOL logic provides primitive definition principles allowing new types to
be introduced, the level of detail is very fine-grained. The style of datatype definitions
in functional programming languages provides motivation for a high level interface for
defining algebraic datatypes.

The Hol_datatype function supports the definition of such data types; the specifica-
tions of the types may be recursive, mutually recursive, nested recursive, and involve
records. The syntax of declarations that Hol_datatype accepts is found in Table 4.1.

Hol datatype ‘[binding ;]* binding‘

binding ::= ident = constructor-spec
| ident = record-spec

constructor-spec ::= [clause |]* clause

clause ::= ident
| ident of [hol type =>]* hol type

record-spec ::= <| [ident : hol type ;]* ident : hol type |>

Table 4.1: Datatype Declaration

HOL maintains an underlying database of datatype facts called the TypeBase. This
database is used to support various high-level proof tools (see Section 5.3), and is aug-
mented whenever a Hol_datatype declaration is made. When a datatype is defined by
Hol_datatype, the following information is derived and stored in the database.

• initiality theorem for the type

• injectivity of the constructors

• distinctness of the constructors

123
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• structural induction theorem

• case analysis theorem

• definition of the ‘case’ constant for the type

• congruence theorem for the case constant

• definition of the ‘size’ of the type

When the HOL system starts up, the TypeBase already contains the relevant entries
for the types bool, prod, num, option, and list.

Example: Binary trees The following ML declaration of a data type of binary trees

datatype (’a,’b) btree = Leaf of ’a

| Node of (’a,’b) btree * ’b * (’a,’b) btree

would be declared in HOL as

Hol_datatype ‘btree = Leaf of ’a

| Node of btree => ’b => btree‘

The => notation in a HOL datatype description is intended to replace * in an ML datatype
description, and highlights the fact that, in HOL, constructors are by default curried.
Note also that any type parameters for the new type are not mentioned: the type vari-
ables are always ordered alphabetically.

This subtle point bears repeating: the format of datatype definitions does not have
enough information to always determine the order of arguments to the introduced type
operators. Thus, when defining a type that is polymorphic in more than one argument,
there is a question of what the order of the new operator’s arguments will be. For
another example, if one defines

Hol_datatype ‘sum = Left of ’left | Right of ’right‘;

and then writes (’a,’b)sum, will the ’a value be under the Left or Right constructor?
The system chooses to make the arguments corresponding to variables appear in the
order given by the dictionary ordering of the variables’ names. Thus, in the example
given, the ’a of (’a,’b)sum will be the Left argument because left comes before
right in the standard (ASCII) dictionary ordering.
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4.1.1 Further examples

In the following, we shall give an overview of the kinds of types that may be defined by
Hol_datatype.

To start, enumerated types can be defined as in the following example:

Hol_datatype

‘enum = A1 | A2 | A3 | A4 | A5

| A6 | A7 | A8 | A9 | A10

| A11 | A12 | A13 | A14 | A15

| A16 | A17 | A18 | A19 | A20

| A21 | A22 | A23 | A24 | A25

| A26 | A27 | A28 | A29 | A30‘

Other non-recursive types may be defined as well:

Hol_datatype

‘foo = N of num

| B of bool

| Fn of ’a -> ’b

| Pr of ’a # ’b‘

Turning to recursive types, we have already seen a type of binary trees having polymor-
phic values at internal nodes. This time, we will declare it in “paired” format.

Hol_datatype

‘tree = Leaf of ’a

| Node of tree # ’b # tree‘

This specification seems closer to the declaration that one might make in ML, but can
be more difficult to deal with in proof than the curried format used above.

The basic syntax of the named lambda calculus is easy to describe:

Hol_datatype

‘lambda = Var of string

| Const of ’a

| Comb of lambda => lambda

| Abs of lambda => lambda‘

The syntax for ‘de Bruijn’ terms is roughly similar:

Hol_datatype

‘dB = Var of string

| Const of ’a

| Bound of num

| Comb of dB => dB

| Abs of dB‘

Arbitrarily branching trees may be defined by allowing a node to hold the list of its
subtrees. In such a case, leaf nodes do not need to be explicitly declared.
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Hol_datatype

‘ntree = Node of ’a => ntree list‘

A type of ‘first order terms’ can be declared as follows:

Hol_datatype

‘term = Var of string

| Fnapp of string # term list‘

Mutally recursive types may also be defined. The following, extracted by Elsa Gunter
from the Definition of Standard ML, captures a subset of Core ML.

Hol_datatype

‘atexp = var_exp of string

| let_exp of dec => exp ;

exp = aexp of atexp

| app_exp of exp => atexp

| fn_exp of match ;

match = match of rule

| matchl of rule => match ;

rule = rule of pat => exp ;

dec = val_dec of valbind

| local_dec of dec => dec

| seq_dec of dec => dec ;

valbind = bind of pat => exp

| bindl of pat => exp => valbind

| rec_bind of valbind ;

pat = wild_pat

| var_pat of string‘

Simple record types may be introduced using the <| ... |> notation.

Hol_datatype

‘state = <| Reg1 : num; Reg2 : num; Waiting : bool |>‘

The use of record types may be recursive. For example, the following declaration could
be used to formalize a simple file system.

Hol_datatype

‘file = Text of string | Dir of directory

;

directory = <| owner : string ;

files : (string # file) list |>‘
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4.1.2 Type definitions that fail

Now we address some types that cannot be declared with Hol_datatype. In some cases
they cannot exist in HOL at all; in others, the type can be built in the HOL logic, but
Hol_datatype is not able to make the definition.

First, an empty type is not allowed in HOL, so the following attempt is doomed to
fail.

Hol_datatype

‘foo = A of foo‘

So called ‘nested types’, which are occasionally quite useful, cannot at present be built
with Hol_datatype:

Hol_datatype

‘btree = Leaf of ’a

| Node of (’a # ’a) btree‘

Types may not recurse on either side of function arrows. Recursion on the right is con-
sistent (see the theory inftree), but Hol_datatype is not capable of defining algebraic
types that require it. Thus, examples such as the following will fail:

Hol_datatype

‘flist = Nil

| Cons of ’a => (’b -> flist)‘

Recursion on the left must fail for for cardinality reasons. For example, HOL does not
allow the following attempt to model the untyped lambda calculus as a set (note the ->

in the clause for the Abs constructor):

Hol_datatype

‘lambda = Var of string

| Const of ’a

| Comb of lambda => lambda

| Abs of lambda -> lambda‘

4.1.3 Theorems arising from a datatype definition

The consequences of an invocation of Hol_datatype are stored in the current theory
segment and in TypeBase. The principal consequences of a datatype definition are
the primitive recursion and induction theorems. These provide the ability to define
simple functions over the type, and an induction principle for the type. Thus, for a type
named ty, the primitive recursion theorem is stored under ty_Axiom and the induction
theorem is put under ty_induction. Other consequences include the distinctness of
constructors (ty_distinct), and the injectivity of constructors (ty_11). A ‘degenerate’
version of ty_induction is also stored under ty_nchotomy: it provides for reasoning by
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cases on the construction of elements of ty. Finally, some special-purpose theorems are
stored: for example, ty_case_cong holds a congruence theorem for “case” statements
on elements of ty. These case statements are defined by ty_case_def. Also, a definition
of the “size” of the type is added to the current theory, under the name ty_size_def.

For example, invoking

Hol_datatype

‘tree = Leaf of num

| Node of tree => tree‘

results in the definitions

tree_case_def =

|- (!f f1 a. case f f1 (Leaf a) = f a) /\

!f f1 a0 a1. case f f1 (Node a0 a1) = f1 a0 a1

tree_size_def

|- (!a. tree_size (Leaf a) = 1 + a) /\

!a0 a1. tree_size (Node a0 a1) = 1 + (tree_size a0 + tree_size a1)

being added to the current theory. The following theorems about the datatype are also
proved and stored in the current theory.

tree_Axiom

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

!a0 a1. fn (Node a0 a1) = f1 a0 a1 (fn a0) (fn a1)

tree_induction

|- !P. (!n. P (Leaf n)) /\

(!t t0. P t /\ P t0 ==> P (Node t t0)) ==> !t. P t

tree_nchotomy

|- !t. (?n. t = Leaf n) \/ ?t’ t0. t = Node t’ t0

tree_11

|- (!a a’. (Leaf a = Leaf a’) = (a = a’)) /\

!a0 a1 a0’ a1’. (Node a0 a1 = Node a0’ a1’) = (a0=a0’) /\ (a1=a1’)

tree_distinct

|- !a1 a0 a. ~(Leaf a = Node a0 a1)

tree_case_cong

|- !M M’ f f1.

(M = M’) /\

(!a. (M’ = Leaf a) ==> (f a = f’ a)) /\

(!a0 a1. (M’ = Node a0 a1) ==> (f1 a0 a1 = f1’ a0 a1))

==>

(case f f1 M = case f’ f1’ M’)

When a type involving records is defined, many more definitions are made and added
to the current theory.

A mutually recursive type definition results in the above theorems and definitions
being added for each of the defined types.
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4.2 Record Types

Record types are convenient ways of bundling together a number of component types,
and giving those components names so as to facilitate access to them. Record types are
semantically equivalent to big pair (product) types, but the ability to label the fields
with names of one’s own choosing is a great convenience. Record types as implemented
in HOL are similar to C’s struct types and to Pascal’s records.

Done correctly, record types provide useful maintainability features. If one can al-
ways access the fieldn field of a record type by simply writing record.fieldn, then
changes to the type that result in the addition or deletion of other fields will not in-
validate this reference. One failing in SML’s record types is that they do not allow the
same maintainability as far as (functional) updates of records are concerned. The HOL
implementation allows one to write

rec with fieldn := new_value

which replaces the old value of fieldn in the record rec with new value. This expres-
sion will not need to be changed if another field is added, modified or deleted from the
record’s original definition.

Defining a record type Record types are defined with the function Hol datatype, as
previously discussed. For example, to create a record type called person with boolean,
string and number fields called employed, name and age, one would enter:

Hol_datatype

‘person = <| employed : bool ;

age : num ;

name : string |>‘

The order in which the fields are entered is not significant. As well as defining the
type (called person), the datatype definition function also defines two other sets of
constants. These are the field access functions and functional update functions. The
field access functions have names of the form 〈record-type〉_〈field 〉. These functions can
be used directly, or one can use standard field selection notation to access the values of
a record’s field. Thus, one would write the expression: bob.employed in order to return
the value of bob’s employed field. The alternative, person_employed bob, works, but
would be printed using the first syntax, with the full-stop.

The functional update functions are given the names “〈record-type〉 〈field 〉 fupd” for
each field in the type. They take two arguments, a function and a record to be updated.
The function parameter is an endomorphism on the field type, so that the resulting
record is the same as the original, except that the specified field has had the given
function applied to it to generate the new value for that field. They can be written with
the keyword with and the updated by operator. Thus
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bob with employed updated_by $~

is a record value identical to the bob except that the boolean value in the employed field
has been inverted.

Additionally, there is syntactic sugar available to let one write a record with one of
its fields replaced by a specific value. This is done by using the := operator instead of
updated_by:

bob with employed := T

This form is translated at parse-time to be a use of the corresponding functional update,
along with a use of the K-combinator from the combin theory. Thus, the above example
is really

bob with employed updated_by (K T)

which is in turn a pretty form of

person_employed_fupd (K T) bob

If a chain of updates is desired, then multiple updates can be specified inside <|-|>
pairs, separated by semi-colons, thus:

bob with <| age := 10; name := "Child labourer" |>

Both update forms (using updated by and :=) can be used in a chain of updates.

Specifying record literals The parser accepts lists of field specifications between <|-
|> pairs without the with keyword. These translate to sequences of updates of an
arbitrary value (literally, the HOL value ARB), and are treated as literals. Thus,

<| age := 21; employed := F; name := "Layabout" |>

Using the theorems produced by record definition As well as defining the type
and the functions described above, record type definition also proves a suite of useful
theorems. These are all are saved (using save thm) in the current segment. Some are
also added to the TypeBase’s simplifications for the type, so they will be automatically
applied when simplifying with the srw_ss() simpset, or with the tactics RW_TAC and
SRW_TAC (see Section 5.5).

All of the theorems are saved under names that begin with the name of the type.
The list below is a sample of the theorems proved. The identifying strings are suffixes
appended to the name of the type in order to generate the final name of the theorem.

accessors The definitions of the accessor functions. This theorem is installed in the
TypeBase.
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fn updates The definitions of the functional update functions.

accfupds A theorem that states simpler forms for expressions that are of the form
fieldi (fieldj fupd f r). If i = j, then the RHS is f(fieldi(r)), if not, it is (fieldi r).
This theorem is installed in the TypeBase.

component equality A theorem stating that (r1 = r2) ≡
∧
i(fieldi(r1) = fieldi(r2)).

fupdfupds A thereom stating that fieldi fupd f (fieldi fupd g r) = fieldi fupd (f ◦ g) r.
This theorem is installed in the TypeBase.

fupdcanon A theorem that states commutativity results for all possible pairs of field
updates. They are constructed in such a way that if used as rewrites, they will
canonicalise sequences of updates. Thus, for all i < j,

fieldj fupd f (fieldi fupd g r) = fieldi fupd g (fieldj fupd f r)

is generated. This theorem is installed in the TypeBase.

Big records The size of certain theorems proved in the record type package increases
as the square of the number of fields in the record. (In particular, the update canon-
icalisation and acc fupd theorems have this property.) To avoid inefficiency with big
records, the implementation of record types uses a more efficient underlying represen-
tation when the number of fields grows too large. The exact point at which this opti-
misation is applied is controlled by the reference variable Datatype.big record size.
This value is initialised to 20, but users can change it as they choose.

Unfortunately, the big record representation has the drawback that every update and
accessor function has two forms: different terms that are printed the same. One form is
a simple constant, and is the form produced when a term is parsed. The other is more
complicated, but allows for the use of smaller theorems when record values are sim-
plified. Therefore, it is recommended that new, user-proved theorems that mention big
records’ fields or field updates be passed through a phase of simplification (SIMP RULE),
applying the TypeBase’s rewrites, before they are saved.

The pretty-printing of big records can be controlled with the pp bigrecs trace-flag.

4.3 Quotient Types

HOL provides a library for defining new types which are quotients of existing types,
with respect to partial equivalence relations. This library is described in “Higher Order
Quotients in Higher Order Logic” [HOQ], from which the following description is taken.
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The quotient library is accessed by opening quotientLib, which makes all its tools
and theorems accessable.

The definition of new types corresponding to the quotients of existing types by equiv-
alence relations is called “lifting” the types from a lower, more representational level
to a higher, more abstract level. Both levels describe similar objects, but some details
which are apparent at the lower level are no longer visible at the higher level. The logic
is simplified.

Simply forming a new type does not complete the quotient operation. Rather, one
wishes to recreate the pre-existing logical environment at the new, higher, and more ab-
stract level. This includes not only the new types, but also new versions of the constants
that form and manipulate values of those types, and also new versions of the theorems
that describe properties of those constants. All of these form a logical layer, above which
all the lower representational details may be safely and forever forgotten.

This can be done in a single call of the main tool of this package.

define_quotient_types :

{types: {name: string,

equiv: thm} list,

defs: {def_name: string,

fname: string,

func: Term.term,

fixity: Parse.fixity} list,

tyop_equivs : thm list,

tyop_quotients : thm list,

tyop_simps : thm list,

respects : thm list,

poly_preserves : thm list,

poly_respects : thm list,

old_thms : thm list} ->

thm list

define quotient types takes a single argument which is a record with the following
fields.

types is a list of records, each of which contains two fields: name, which is the name
of a new quotient type to be created, and equiv, which is either 1) a theorem that a
binary relation R is an equivalence relation (see [HOQ] §4) of the form

|- ∀x y. R x y ⇔ (R x = R y),

or 2) a theorem that R is a nonempty partial equivalence relation, (see [HOQ] §5) of
the form

|- (∃x. R x x) ∧ (∀x y. R x y ⇔ R x x ∧R y y ∧ (R x = R y)).

The process of forming the new quotient types is described in [HOQ] §8.
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defs is a list of records specifying the constants to be lifted. Each record contains the
following four fields: func is an HOL term, which must be a single constant, which is the
constant to be lifted. fname is the name of the new constant being defined as the lifted
version of func. fixity is the HOL fixity of the new constant being created, as specified in
the HOL structure Parse. def name is the name under which the new constant definition
is to be stored in the current theory. The process of defining lifted constants is described
in [HOQ] §9.

tyop equivs is a list of conditional equivalence theorems for type operators (see [HOQ]
§4.1). These are used for bringing into regular form theorems on new type operators,
so that they can be lifted (see [HOQ] §11 and §12).

tyop quotients is a list of conditional quotient theorems for type operators (see [HOQ]
§5.2). These are used for lifting both constants and theorems.

tyop simps is a list of theorems used to simplify type operator relations and map
functions, e.g., for pairs, |- ($= ### $=) = $= and |- (I ## I) = I.

The rest of the arguments refer to the general process of lifting theorems over the
quotients being defined, as described in [HOQ] §10.

respects is a list of theorems about the respectfulness of the constants being lifted.
These theorems are described in [HOQ] §10.1.

poly preserves is a list of theorems about the preservation of polymorphic constants in
the HOL logic across a quotient operation. In other words, they state that any quotient
operation preserves these constants as a homomorphism. These theorems are described
in [HOQ] §10.2.

poly respects is a list of theorems showing the respectfulness of the polymorphic con-
stants mentioned in poly preserves. These are described in [HOQ] §10.3.

old thms is a list of theorems concerning the lower, representative types and contants,
which are to be automatically lifted and proved at the higher, more abstract quotient
level. These theorems are described in [HOQ] §10.4.

define quotient types returns a list of theorems, which are the lifted versions of the
old thms.

A similar function, define quotient types rule, takes a single argument which is a
record with the same fields as above except for old thms, and returns an SML function
of type thm -> thm. This result, typically called LIFT RULE, is then used to lift the old
theorems individually, one at a time.

For backwards compatibility with the excellent quotients package EquivType created
by John Harrison (which provided much inspiration), the following function is also
provided:
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define_equivalence_type :

{name: string,

equiv: thm,

defs: {def_name: string,

fname: string,

func: Term.term,

fixity: Parse.fixity} list,

welldefs : thm list,

old_thms : thm list} ->

thm list

This function is limited to a single quotient type, but may be more convenient when the
generality of define quotient types is not needed. This function is defined in terms
of define quotient types as

fun define_equivalence_type {name,equiv,defs,welldefs,old_thms} =

define_quotient_types

{types=[{name=name, equiv=equiv}], defs=defs, tyop_equivs=[],

tyop_quotients=[FUN_QUOTIENT],

tyop_simps=[FUN_REL_EQ,FUN_MAP_I], respects=welldefs,

poly_preserves=[FORALL_PRS,EXISTS_PRS],

poly_respects=[RES_FORALL_RSP,RES_EXISTS_RSP],

old_thms=old_thms};

4.4 Case Expressions

Within the HOL logic, case expressions provide a very compact and convenient notation
for multi-way selection among the values of several expressions. This is modeled on
the case constructs in functional programming languages such as Standard ML. Such
case expressions can simplify the expression of complicated branches between different
cases or combinations of cases. The basic syntax (where the non-terminal term stands
for any HOL term) is

term ::= case term of cases

cases ::= case1 morecases

case1 ::= | case | case

morecases ::= ε | | case morecases

case ::= term => term

The choice in the rule for the first case (case1) allows the use of more uniform syntax,
where every case is preceded by a vertical bar. Omitting the bar, which is what the
pretty-printer does when the syntax is printed, conforms with the syntax used by SML.
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Based on the value of a test expression, a list of pattern expressions are considered in
sequence to see if they match the test expression. The first pattern which successfully
matches causes its associated result expression to be evaluated and its value yielded as
the value of the entire case expression. For example,

case n of

0 => "none"

| 1 => "one"

| 2 => "two"

| _ => "many"

This could have been expressed using several “if–then–else” constructs, but the case
expression is much more compact and clean, with the selection between various choices
made clearly evident.

In addition to literals as patterns, as above, patterns may be constructor expressions.
Many standard HOL types have constructors, including num, list, and option.

case spouse(employee) of

| NONE => "single"

| SOME s => "married to " ++ name_of s

(This example uses the optional bar in front of the first case.)
HOL supports a rich structure of case expressions using a single notation. The format

is related to that of definitions of recursive functions, as described in Section 4.5. In
addition, case expressions may contain literals as patterns, either singly or as elements
of deeply nested patterns.

Case expressions may test values of any type. If the test expression is a type with
constructors, then the patterns may be expressed using the constructors applied to
arguments, as for example SOME s in the example above. A free variable within the
constructor pattern, for example s in the pattern SOME s, becomes bound to the cor-
responding value within the value of the test expression, and can be used within the
associated result expression for that pattern.

In addition to the constructors of standard types in HOL, constructor patterns may
also be used for types created by use of the datatype definition facility described in
Section 4.1, including user-defined types.

Whether or not the test expression is a type with constructors, the patterns may be
expressed using the appropriate literals of that type, if any such literals exist. A complex
pattern may contain either or both of literals and constructor patterns nested within it.
However, literals and constructors may not be mixed as alternatives of each other within
the same case expression, except insofar as a particular pattern may be both a literal
and also a (0-ary) constructor of its type, as for example 0 (zero) is both a literal and a
constructor of the type num. Here is an example of this kind of improper mixture.
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case n of

0 => "none"

| 1 => "one"

| 2 => "two"

| SUC m => "many"

In this pattern, the constructor pattern SUC m is given as an alternative to the literal
patterns 1 and 2. This makes this attempted case expression invalid. Deleting either
group of rows would resolve the conflict, and make the expression valid. Note that the
pattern 0 is acceptable to either group.

Patterns can be nested as well, as shown in the next example, where the function
parents returns a pair containing the person’s father and/or mother, where each is
represented by NONE if deceased.

case parents(john) of

(NONE,NONE) => "orphan"

| _ => "not an orphan"

This shows the nesting of option patterns within a pair pattern, and also the use of a
wildcard _ to match the cases not given.

If the set of patterns is sparse, there may be several new rows generated automatically
to fill it out, and possibly some new variables or the ARB constant to properly represent
the case expression.

- ‘‘case a of

(1, y, z) => y + z

| (x, 2, z) => x - z

| (x, y, 3) => x * y‘‘;

> val it =

‘‘case a of

(1,2,3) => 2 + 3

| (1,2,z) => 2 + z

| (1,y,3) => y + 3

| (1,y,z) => y + z

| (x,2,3) => x - 3

| (x,2,z’) => x - z’

| (x,y’,3) => x * y’

| (x,y’,z’) => ARB‘‘ : term

This is just a brief description of some of the expressive capabilities of the case ex-
pression with patterns. Many more examples of patterns are provided in Section 4.5 on
the definition of recursive functions.

4.5 Recursive Functions

HOL provides a function definition mechanism based on the wellfounded recursion the-
orem proved in relationTheory, discussed in Section 3.5.3. Define takes a high-level,
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possibly recursive, specification of a function, and attempts to define the function in the
logic. Define may be used to define abbreviations, recursive functions, and mutually re-
cursive functions. An induction theorem may be generated as a by-product of Define’s
activity. This induction theorem follows the recursion structure of the function, and may
be useful when proving properties of the function. Define is not always successful in
attempting to make the specified definition, usually because an automatic termination
proof fails; in that case, another entrypoint, Hol_defn, which defers the termination
proof to the user, can be used. The technology underlying Define and Hol_defn is
explained in detail in Slind [10].

In particular, Define takes as input a quotation representing a conjunction of equa-
tions. The specified function(s) may be phrased using ML-style pattern-matching. A call
Define ‘spec‘ should conform with the grammar in Table 4.2.

spec ::= eqn
| (eqn) ∧ spec

eqn ::= alphanumeric pat . . . pat = term

pat ::= variable
| wildcard
| cname
| (cnamen pat1 . . . patn)

cname ::= alphanumeric | symbolic

wildcard ::=
| wildcard

Table 4.2: Syntax of Function Declaration

Pattern Expansion In general, Define attempts to derive exactly the specified con-
junction of equations. However, the rich syntax of patterns allows some ambiguity. For
example, the input

Define ‘(f 0 _ = 1)

/\ (f _ 0 = 2)‘

is ambiguous at f 0 0: should the result be 1 or 2? This ambiguity is dealt with in the
usual way for compilers and interpreters for functional languages: namely, the conjunc-
tion of equations is treated as being applied left-conjunct first, followed by processing
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the right conjunct. Therefore, in the example above, the value of f 0 0 is 1. In the
implementation, ambiguities arising from such overlapping patterns are systematically
translated away in a pre-processing step.

Another case of ambiguity in patterns is shown above: the specification is incomplete
since it does not tell how f should behave when applied to two non-zero arguments:
e.g., f (SUC m) (SUC n). In the implementation, such missing clauses are filled in, and
have the value ARB. This ‘pattern-completion‘ step is a way of turning descriptions of
partial functions into total functions suitable for HOL. However, since the user has not
completely specified the function, the system takes that as a hint that the user is not
interested in using the function at the missing-but-filled-in clauses, and so such clauses
are dropped from the final theorem.

In summary, Define will derive the unambiguous and complete equations

|- (f 0 (SUC v4) = 1) /\

(f 0 0 = 1) /\

(f (SUC v2) 0 = 2)

(f (SUC v2) (SUC v4) = ARB)

from the above ambiguous and incomplete equations. The odd-looking variable names
are due to the pre-processing steps described above. The above result is only an in-
termediate value: in the final result returned by Define, the last equation is droppped
since it was not specified by the original input.

|- (f 0 (SUC v4) = 1) /\

(f 0 0 = 1) /\

(f (SUC v2) 0 = 2)

Termination When processing the specification of a recursive function, Define must
perform a termination proof. It automatically constructs termination conditions for the
function, and invokes a termination prover in an attempt to prove the termination con-
ditions. If the function is primitive recursive, in the sense that it exactly follows the re-
cursion pattern of a previously declared HOL datatype, then this proof always succeeds,
and Define stores the derived equations in the current theory segment. Otherwise, the
function is not an instance of primitive recursion, and the termination prover may suc-
ceed or fail. If the termination proof fails, then Define fails. If it succeeds, then Define

stores the specified equations in the current theory segment. An induction theorem cus-
tomized for the defined function is also stored in the current segment. Note, however,
that an induction theorem is not stored for primitive recursive functions, since that the-
orem would be identical to the induction theorem resulting from the declaration of the
datatype.

Storing definitions in the theory segment Define automatically generates names
with which to store the definition and, (if it exists) the associated induction theorem,
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in the current theory. The name for storing the definition is built by concatenating the
name of the function with the value of the reference variable Defn.def_suffix. The
name for storing the induction theorem is built by concatenating the name of the func-
tion with the value of the reference variable Defn.ind_suffix. For mutually recursive
functions, where there is a choice of names, the name of the function in the first clause
is taken.

Since the names used to store elements in the current theory segment are transformed
into ML bindings after the theory is exported, it is required that every invocation of
Define generate names that are valid ML identifiers. For this reason, Define requires
alphanumeric function names. If one wishes to define symbolic identifiers, the ML
function xDefine should be used.

xDefine : string -> term quotation -> thm

The xDefine function is identical to Define except that it takes an explicit name to use
when storing the definition in the current theory.

4.5.1 Function definition examples

We will give a number of examples that display the range of functions that may be
defined with Define. First, we have a recursive function that uses “destructors” in the
recursive call.

Define

‘fact x = if x = 0 then 1 else x * fact(x-1)‘;

Equations stored under "fact_def".

Induction stored under "fact_ind".

> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

Since fact is not primitive recursive, an induction theorem for fact is generated and
stored in the current theory.

- DB.fetch "-" "fact_ind";

> val it =

|- !P. (!x. (~(x = 0) ==> P (x - 1)) ==> P x) ==> !v. P v : thm

Next we have a recursive function with relatively complex pattern-matching. We omit
to examine the generated induction theorem.
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Define ‘(flatten [] = [])

/\ (flatten ([]::rst) = flatten rst)

/\ (flatten ((h::t)::rst) = h::flatten(t::rst))‘;

Equations stored under "flatten_def".

Induction stored under "flatten_ind".

> val it =

|- (flatten [] = []) /\

(flatten ([]::rst) = flatten rst) /\

(flatten ((h::t)::rst) = h::flatten (t::rst)) : thm

Next we define a curried recursive function, which uses wildcard expansion and
pattern-matching pre-processing.

Define ‘(min (SUC x) (SUC y) = min x y + 1)

/\ (min ____ ____ = 0)‘;

Equations stored under "min_def".

Induction stored under "min_ind".

> val it =

|- (min (SUC x) (SUC y) = min x y + 1) /\

(min (SUC v2) 0 = 0) /\

(min 0 v1 = 0) : thm

Next we make a primitive recursive definition. Note that no induction theorem is
generated in this case.

Define ‘(filter P [] = [])

/\ (filter P (h::t) = if P h then h::filter P t else filter P t)‘;

Definition has been stored under "filter_def".

> val it =

|- (!P. filter P [] = []) /\

!P h t. filter P (h::t) =

(if P h then h::filter P t else filter P t) : thm

Define may also be used to define mutually recursive functions. For example, we can
define a datatype of propositions and a function for putting a proposition into negation
normal form as follows. First we define a datatype, named prop, of boolean formulas:

Hol_datatype

‘prop = VAR of ’a

| NOT of prop

| AND of prop => prop

| OR of prop => prop‘;

Then two mutually recursive functions nnfpos and nnfneg are defined:
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Define

‘(nnfpos (VAR x) = VAR x)

/\ (nnfpos (NOT p) = nnfneg p)

/\ (nnfpos (AND p q) = AND (nnfpos p) (nnfpos q))

/\ (nnfpos (OR p q) = OR (nnfpos p) (nnfpos q))

/\ (nnfneg (VAR x) = NOT (VAR x))

/\ (nnfneg (NOT p) = nnfpos p)

/\ (nnfneg (AND p q) = OR (nnfneg p) (nnfneg q))

/\ (nnfneg (OR p q) = AND (nnfneg p) (nnfneg q))‘

The system makes the definition and returns the theorem

|- (nnfpos (VAR x) = VAR x) /\

(nnfpos (NOT p) = nnfneg p) /\

(nnfpos (AND p q) = AND (nnfpos p) (nnfpos q)) /\

(nnfpos (OR p q) = OR (nnfpos p) (nnfpos q)) /\

(nnfneg (VAR x) = NOT (VAR x)) /\

(nnfneg (NOT p) = nnfpos p) /\

(nnfneg (AND p q) = OR (nnfneg p) (nnfneg q)) /\

(nnfneg (OR p q) = AND (nnfneg p) (nnfneg q)) : thm

Define may also be used to define non-recursive functions.

Define

‘f x (y,z) = (x + 1 = y DIV z)‘;

Define may also be used to define non-recursive functions with complex pattern-
matching. The pattern-matching pre-processing of Define can be convenient for this
purpose, but can also generate a large number of equations. For example:

Define

‘(g (0,_,_,_,_) = 1) /\

(g (_,0,_,_,_) = 2) /\

(g (_,_,0,_,_) = 3) /\

(g (_,_,_,0,_) = 4) /\

(g (_,_,_,_,0) = 5)‘

yields a definition with thirty-one clauses.

4.5.2 When termination is not automatically proved

If the termination proof for a prospective definition fails, the invocation of Define (or
xDefine) fails. In such situations, the ML function Hol_defn should be used.

Hol_defn : string -> term quotation -> Defn.defn

Hol_defn makes the requested definition, but defers the proof of termination to the
user. For setting up termination proofs, there are several useful entrypoints, namely
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Defn.tgoal : Defn.defn -> GoalstackPure.proofs

Defn.tprove : Defn.defn * tactic -> thm * thm

Defn.tgoal is analogous to set_goal and Defn.tprove is analogous to prove. Thus,
Defn.tgoal is used to take the result of Hol_defn and set up a goal for proving termi-
nation of the definition.

Example. An invocation of Define on the following equations for Quicksort will cur-
rently fail, since the termination proof is currently beyond the capabilities of the naive
termination prover. Instead, we make an application of Hol_defn:

1val qsort_def =

Hol_defn "qsort"

‘(qsort ord [] = []) /\

(qsort ord (h::t) =

qsort ord (FILTER (\x. ord x h) t)

++ [h] ++

qsort ord (FILTER (\x. ~(ord x h)) t))‘

which returns the following value of type defn, but does not try to prove termination.
2HOL function definition (recursive)

Equation(s) :

[...] |- qsort ord [] = []

[...]

|- qsort ord (h::t) =

qsort ord (FILTER (\x. ord x h) t) ++ [h] ++

qsort ord (FILTER (\x. ~ord x h) t)

Induction :

[...]

|- !P.

(!ord. P ord []) /\

(!ord h t.

P ord (FILTER (\x. ~ord x h) t) /\

P ord (FILTER (\x. ord x h) t) ==>

P ord (h::t)) ==>

!v v1. P v v1

Termination conditions :

0. !t h ord. R (ord,FILTER (\x. ~ord x h) t) (ord,h::t)

1. !t h ord. R (ord,FILTER (\x. ord x h) t) (ord,h::t)

2. WF R

The type defn has a prettyprinter installed for it: the above output is typical, show-
ing the components of a defn in an understandable format. Although it is possible to
directly work with elements of type defn, it is more convenient to invoke Defn.tgoal,
which sets up a termination proof in a goalstack.
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3Defn.tgoal qsort_def;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

?R.

(!t h ord. R (ord,FILTER (\x. ~ord x h) t) (ord,h::t)) /\

(!t h ord. R (ord,FILTER (\x. ord x h) t) (ord,h::t)) /\ WF R

The goal is to find a wellfounded relation on the arguments to qsort and show that the
arguments to qsort are in the relation. The function WF_REL_TAC is almost invariably
used at this point to initiate the termination proof. Clearly, qsort terminates because the
list argument gets shorter. Invoking WF_REL_TAC with the appropriate measure function
results in two subgoals, both of which are easy to prove.

4- e (WF_REL_TAC ‘measure (LENGTH o SND)‘);

OK..

2 subgoals:

> val it =

!t h ord. LENGTH (FILTER (\x. ord x h) t) < LENGTH (h::t)

!t h ord. LENGTH (FILTER (\x. ~ord x h) t) < LENGTH (h::t)

Execution of WF_REL_TAC has automatically proved the wellfoundedness of the termi-
nation relation measure (LENGTH o SND) and the remainder of the goal has been sim-
plified into a pair of easy goals. Once both goals are proved, we can encapsulate the
termination proof with tDefine, which takes a quotation (representing desired recur-
sion equations) and a tactic t, defines the specified function, calculates the termination
conditions, and applies t to them. If the termination conditions are proved by t then
the recursion equations and induction theorem are stored in the current theory segment
before the recursion equations are returned:

5- val qsort_def = tDefine "qsort"

‘(qsort ord [] = []) /\

(qsort ord (h::t) =

qsort ord (FILTER (\x. ord x h) t) ++ [h] ++

qsort ord (FILTER (\x. ~(ord x h)) t))‘

(WF_REL_TAC ‘measure (LENGTH o SND)‘ THEN ...);

> val qsort_def =

|- (qsort ord [] = []) /\

(qsort ord (h::t) =

qsort ord (FILTER (\x. ord x h) t) ++ [h] ++

qsort ord (FILTER (\x. ~ord x h) t)) : thm
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The custom induction theorem for a function can be obtained by using fetch, which
returns named elements in the specified theory.1

6- fetch "-" "qsort_ind";

> val qsort_ind =

|- !P.

(!ord. P ord []) /\

(!ord h t.

P ord (FILTER (\x. ~ord x h) t) /\

P ord (FILTER (\x. ord x h) t) ==> P ord (h::t))

==>

!v v1. P v v1 : thm

The induction theorem produced by Define and tDefine can be applied by recInduct.
See Section 5.3 for details.

4.5.2.1 Techniques for proving termination

There are two problems to deal with when trying to prove termination. First, one has to
understand, intuitively and then mathematically, why the function under consideration
terminates. Second, one must be able to phrase this in HOL. In the following, we shall
give a few examples of how this is done.

There are a number of basic and advanced means of specifying wellfounded relations.
The most common starting point for dealing with termination problems for recursive
functions is to find some function, known as a a measure under which the arguments of
a function call are larger than the arguments to any recursive calls that result.

For a very simple starter example, consider the following definition of a function that
computes the greatest common divisor of two numbers:

1- val gcd_defn =

Hol_defn "gcd"

‘(gcd (0,n) = n) /\

(gcd (m,n) = gcd (n MOD m, m))‘;

- Defn.tgoal gcd_defn;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

?R. WF R /\ !v2 n. R (n MOD SUC v2,SUC v2) (SUC v2,n)

The invocation gcd(m,n) recurses in its first argument, and since we know that m is not
0, it is the case that n MOD m is smaller than m. The way to phrase the termination of

1In a call to fetch, the first argument denotes a theory; the current theory may be specified by "-".



4.5. RECURSIVE FUNCTIONS 145

gcd in HOL is to use a ‘measure‘ function to map from the domain of gcd—a pair of
numbers—to a number. The definition of measure in HOL is equivalent to

|- measure f x y = (f x < f y).

Now we must pick out the argument position to measure and invoke WF_REL_TAC:

2- e (WF_REL_TAC ‘measure FST‘);

OK..

1 subgoal:

> val it =

!v2 n. n MOD SUC v2 < SUC v2

This goal is easy to prove with a few simple arithmetic facts.

Weighting Functions Sometimes one needs a measure function that is itself recursive.
For example, consider a type of binary trees and a function that linearizes trees. The
algorithm works by rotating the tree until it gets a Leaf in the left branch, then it
recurses into the right branch. At the end of execution the tree has been linearized.

1- Hol_datatype

‘btree = Leaf

| Brh of btree => btree‘;

- val Unbal_defn =

Hol_defn "Unbal"

‘(Unbal Leaf = Leaf)

/\ (Unbal (Brh Leaf bt) = Brh Leaf (Unbal bt))

/\ (Unbal (Brh (Brh bt1 bt2) bt) = Unbal (Brh bt1 (Brh bt2 bt)))‘;

- Defn.tgoal Unbal_defn;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

?R. WF R /\

(!bt. R bt (Brh Leaf bt)) /\

!bt bt2 bt1. R (Brh bt1 (Brh bt2 bt)) (Brh (Brh bt1 bt2) bt)

Since the size of the tree is unchanged in the last clause in the definition of Unbal, a
simple size measure will not work. Instead, we can assign weights to nodes in the tree
such that the recursive calls of Unbal decrease the total weight in every case. One such
assignment is

2Define

‘(Weight (Leaf) = 0) /\

(Weight (Brh x y) = (2 * Weight x) + (Weight y) + 1)‘
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Now we can invoke WF_REL_TAC:

3e (WF_REL_TAC ‘measure Weight‘);

OK..

2 subgoals:

> val it =

!bt. Weight bt < Weight (Brh Leaf bt)

!bt bt2 bt1.

Weight (Brh bt1 (Brh bt2 bt)) < Weight (Brh (Brh bt1 bt2) bt)

Both of these goals are quite easy to prove. The technique of ‘weighting‘ nodes in a
datatype in order to prove termination also goes by the name of polynomial interpreta-
tion. It must be admitted that finding the correct weighting for a termination proof is
more an art than a science. Typically, one makes a guess and then tries the termination
proof to see if it works.

Lexicographic Combinations Occasionally, there’s a combination of factors that com-
plicate the termination argument. For example, the following specification describes a
naive pattern matching algorithm on strings (represented as lists here). The function
takes four arguments: the first, p, is the remainder of the pattern being matched. The
second, rst , is the remainder of the string being searched. The third argument, p0, holds
the original pattern to be matched. The fourth argument, s, is the string being searched.

1val match_defn =

Hol_defn "match"

‘(match [] __ __ __ = T) /\

(match __ [] __ __ = F) /\

(match (a::pp) (b::ss) p0 s =

if a=b then match pp ss p0 s

else

if NULL(s) then F

else

match p0 (TL s) p0 (TL s))‘;

- val Match = Define ‘Match pat str = match pat str pat str‘;

The first clause of the definition states that if p becomes exhausted, then a match has
been found; the function returns T. The second clause represents the case where s

becomes exhausted but p is not, in which case the function returns F. The remaining
case is when there’s more searching to do; the function checks if the head of the pattern
p is the same as the head of rst . If yes, then the search proceeds recursively, using the
tail of p and the tail of rst . If no, that means that p has failed to match, so the algorithm
advances one character ahead in s and starts matching from the beginning of p0. If s is
empty, however, then we return F. Note that rst and s both represent the string being
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searched: rst is a ‘local‘ version of s: we recurse into rst as long as there are matches
with the pattern p. However, if the search eventually fails, then s, which ‘remembers‘
where the search started from, is used to restart the search.

So much for the behaviour of the function. Why does it terminate? There are two re-
cursive calls. The first call reduces the size of p and rst , and leaves the other arguments
unchanged. The second call can increase the size of p and rst , but reduces the size s.
This is a classic situation in which to use a lexicographic ordering: some arguments to
the function are reduced in some recursive calls, and some others are reduced in other
recursive calls. Recall that LEX is an infix operator, defined in pairTheory as follows:

|- LEX R1 R2 = \(x,y) (p,q). R1 x p \/ ((x=p) /\ R2 y q)

In the second recursive call, the length of s is reduced, and in the first it stays the same.
This motivates having the length of the s be the first component of the lexicographic
combination, and the length of rst as the second component. Formally, we want to map
from the four-tuple of arguments into a lexicographic combination of relations. This is
enabled by inv_image from relationTheory:

|- inv_image R f = \x y. R (f x) (f y)

The desired relation maps from the four-tuple of arguments into a pair of numbers
(m,n), where m is the length of the fourth argument, and n is the length of the second
argument. These lengths are then compared lexicographically with respect to less-than
(<).

2Defn.tgoal match_defn;

- e (WF_REL_TAC ‘inv_image($< LEX $<) (\(w,x,y,z). (LENGTH z,LENGTH x))‘);

OK..

2 subgoals:

> val it =

!s ss a b.

(a=b) ==> LENGTH s < LENGTH s \/ LENGTH ss < LENGTH (b::ss)

!ss s a b.

~(a = b) /\ ~NULL s ==>

LENGTH (TL s) < LENGTH s \/

(LENGTH (TL s) = LENGTH s) /\ LENGTH (TL s) < LENGTH (b::ss)

The first subgoal needs a case-split on s before it is proved by rewriting, and the second
is also easy to prove by rewriting.

4.5.2.2 How termination conditions are synthesized

It is occasionally important to understand, at least in part, how Hol_defn constructs
termination constraints. In some cases, it is even necessary for users to influence this
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process in order to have correct termination constraints extracted. The process is driven
by so-called congruence theorems for particular HOL constants. For example, consider
the following recursive definition of factorial:

fact n = if n=0 then 1 else n * fact (n-1)

In the absence of knowledge of how the ‘if-then-else‘ construct affects the context of
recursive calls, Hol_defn would extract the termination constraints:

0. WF R

1. !n. R (n - 1) n

which are unprovable, because the context of the recursive call has not been taken ac-
count of. This example is in fact not a problem for HOL, since the following congruence
theorem is known to Hol_defn:

|- !b b’ x x’ y y’.

(b = b’) /\

(b’ ==> (x = x’)) /\

(~b’ ==> (y = y’)) ==>

((if b then x else y) = (if b’ then x’ else y’))

This theorem is understood by Hol_defn as an ordered sequence of instructions to fol-
low when the termination condition extractor hits an ‘if-then-else‘. The theorem is read
as follows: when an instance ‘if B then X else Y ‘ is encountered while the extractor
traverses the function definition, do the following:

1. Traverse B and extract termination conditions TCs(B) from any recursive calls in
it. This returns a theorem TCs(B) ` B = B′.

2. Assume B′ and extract termination conditions from any recursive calls in X. This
returns a theorem TCs(X) ` X = X ′.

3. Assume ¬B′ and extract termination conditions from any recursive calls in Y . This
returns a theorem TCs(Y ) ` Y = Y ′.

4. By equality reasoning with (1), (2), and (3), derive the theorem

TCs(B) ∪ TCs(X) ∪ TCs(Y ) ` (if B then X else Y ) = (if B′ then X ′ else Y ′)

5. Replace if B then X else Y by if B′ then X ′ else Y ′.

The termination conditions are accumulated until the extraction process finishes, and
appear as hypotheses in the final result. Thus the extracted termination conditions for
fact are
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0. WF R

1. !n. ~(n = 0) ==> R (n - 1) n

and are easy to prove. The notion of context of a recursive call is defined by the set
of congruence rules used in extracting termination conditions. This set can be ob-
tained by invoking DefnBase.read_congs, and manipulated by DefnBase.add_cong,
DefnBase.drop_cong and DefnBase.export_cong. The ‘add’ and ‘drop’ functions only
affect the current state of the congruence database; in contrast, the ‘export’ function
provides a way for theories to specify that a particular theorem should be added to the
congruence database in all descendent theories.

Higher Order Recursion and Congruence Rules A ‘higher-order‘ recursion is one in
which a higher-order function is used to apply the recursive function to arguments. In
order for the correct termination conditions to be proved for such a recursion, congru-
ence rules for the higher order function must be known to the termination condition
extraction mechanism. Congruence rules for common higher-order functions, e.g., MAP,
EVERY, and EXISTS for lists, are already known to the mechanism. However, at times,
one must manually prove and install a congruence theorem for a new user-defined
higher-order function.

For example, suppose we define a higher-order function SIGMA for summing the re-
sults of a function in a list.

1Define ‘(SIGMA f [] = 0) /\

(SIGMA f (h::t) = f h + SIGMA f t)‘;

We then use SIGMA in the definition of a function for summing the results of a function
in a arbitrarily (finitely) branching tree.

2Hol_datatype ‘ltree = Node of ’a => ltree list‘;

Defn.Hol_defn

"ltree_sigma"

‘ltree_sigma f (Node v tl) = f v + SIGMA (ltree_sigma f) tl‘;

In this definition, SIGMA is applied to a partial application (ltree_sigma f) of the func-
tion being defined. Such a situation is called a higher-order recursion. Since the recursive
call of ltree_sigma is not fully applied, special efforts have to be made to extract the
correct termination conditions. Otherwise, the following unhappy situation results:
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3HOL function definition (recursive)

Equation(s) :

[..] |- ltree_sigma f (Node v tl)

= f v + SIGMA (\a. ltree_sigma f a) tl

Induction :

[..] |- !P. (!f v tl. (!a. P f a) ==> P f (Node v tl)) ==> !v v1. P v v1

Termination conditions :

0. WF R

1. !tl v f a. R (f,a) (f,Node v tl) : defn

The termination conditions for ltree_sigma seem to require finding a wellfounded re-
lation R such that the pair (f,a) is R-less than (f, Node v tl). However, this is a
hopeless task, since there is no relation between a and Node v tl, besides the fact that
they are both ltrees. The termination condition extractor has not performed properly,
because it didn’t know a congruence rule for SIGMA. Such a congruence theorem is the
following:

SIGMA_CONG =

|- !l1 l2 f g.

(l1=l2) /\ (!x. MEM x l2 ==> (f x = g x)) ==>

(SIGMA f l1 = SIGMA g l2)

Once Hol_defn has been told about this theorem, via DefnBase’s add_cong or export_cong
functions, the termination conditions extracted for the definition are now provable,
since a is a proper subterm of Node v tl.

4val _ = DefnBase.add_cong SIGMA_CONG;

Defn.Hol_defn

"ltree_sigma"

‘ltree_sigma f (Node v tl) = f v + SIGMA (ltree_sigma f) tl‘;

> val it =

HOL function definition (recursive)

Equation(s) : ... (* as before *)

Induction : ... (* as before *)

Termination conditions :

0. WF R

1. !v f tl a. MEM a tl ==> R (f,a) (f,Node v tl)
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4.5.3 Recursion schemas

In higher order logic, very general patterns of recursion, known as recursion schemas or
sometimes program schemas, can be defined. One example is the following:

linRec(x) = if d(x) then e(x) else f(linRec(g x))

In this specification, the variables d, e, f , and g are functions, that, when instantiated
in different ways, allow linRec to implement different recursive functions. In this, linRec
is like many other higher order functions. However, notice that if d(x) = F, f(x) =

x + 1, and g(x) = x, then the resulting instantiation of linRec could be used to obtain a
contradiction:

linRec(x) = linRec(x) + 1

This is not, however, derivable in HOL, because recursion schemas are defined by instan-
tiating the wellfounded recursion theorem, and therefore certain abstract termination
constraints arise that must be satisfied before recursion equations can be used in an un-
fettered manner. The entrypoint for defining a schema is TotalDefn.DefineSchema. On
the linRec example it behaves as follows (note that the schematic variables should only
occur on the right-hand side of the definition when making the definition of a schema):

1- TotalDefn.DefineSchema

‘linRec (x:’a) = if d(x) then e(x) else f(linRec(g x))‘;

<<HOL message: Definition is schematic in the following variables:

"d", "e", "f", "g">>

Equations stored under "linRec_def".

Induction stored under "linRec_ind".

> val it =

[..]

|- linRec d e f g x = if d x then e x else f (linRec d e f g (g x))

The hypotheses of the returned theorem hold the abstract termination constraints. A
similarly constrained induction theorem is also stored in the current theory segment.

2hyp it;

> val it = [‘‘!x. ~d x ==> R (g x) x‘‘, ‘‘WF R‘‘] : term list

These constraints are abstract, since they place termination requirements on variables
that have not yet been instantiated. Once instantiations for the variables are found,
then the constraints may be eliminated by finding a suitable wellfounded relation for R
and then proving the other constraints.
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4.6 Inductive Relations

Inductive definitions are made with the function Hol_reln, found in the bossLib struc-
ture, and the resulting definitions and theorems are handled with functions defined in
the library IndDefLib. The Hol_reln function takes a term quotation as input and at-
tempts to define the relations there specified. The input term quotation must parse to a
term that conforms to the following grammar:

〈inputFormat〉 ::= 〈clause〉 /\ 〈inputFormat〉 | 〈clause〉
〈clause〉 ::= (!x1 . . . xn. 〈hypothesis〉 ==> 〈conclusion〉)

| (!x1 . . . xn. 〈conclusion〉)
〈conclusion〉 ::= 〈con〉 sv1 sv2 . . .

〈hypothesis〉 ::= any term

〈con〉 ::= a new relation constant

The (optional) sv i terms that appear after a constant name are so-called “schematic
variables”. The same variables must always follow all new constants throughout the
definition. These variables and the names of the constants-to-be must not be quantified
over in each 〈clause〉. A 〈clause〉 should have no other free variables. Any that occur
will be universally quantified as part of the process of definition, and a warning mes-
sage emitted. (Universal quantifiers at the head of the clause can be used to bind free
variables, but it is also permissible to use existential quantification in the hypotheses. If
a clause has no free variables, it is permissible to have no universal quantification.)

A successful invocation of Hol_reln returns three theorems (rules , ind , cases). Each
is also stored in the current theory segment.

• rules is a conjunction of implications that will be the same as the input term
quotation; the theorem is saved under the name <stem>_rules, where <stem> is
the name of the first relation defined by the function.

• ind is the induction principle for the relations, saved under the name <stem>_ind.

• cases is the so-called ‘cases’ or ‘inversion’ theorem for the relations, saved under
the name <stem>_cases. A cases theorem is of the form

(!a0 .. an. R1 a0 .. an = <R1’s first rule possibility> \/

<R1’s second rule possibility> \/ ...)

/\

(!a0 .. am. R2 a0 .. am = <R2’s first rule possibility> \/

<R2’s second rule possibility> \/ ...)

/\

...
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and is used to decompose an element in the relation into the possible ways of
obtaining it by the rules.

If the “stem” of the first constant defined in a set of clauses is such that resulting
ML bindings in an exported theory file will result in illegal ML, then the xHol_reln

function should be used. The xHol_reln function is analogous to the xDefine function
for defining recursive functions (see Section 4.5).

Strong Induction Principles So called “strong” versions of induction principles (in
which instances of the relation being defined appear as extra hypotheses), are automat-
ically proved when a definition is made with Hol_reln. The strong induction principle
for a relation is used when the Induct_on tactic is used.

Adding Monotone Operators New constants may occur recursively throughout rules’
hypotheses, as long as it can be shown that the rules remain monotone with respect to
the new constants. Hol_reln automatically attempts to prove such monotonicity results,
using a set of theorems held in a reference IndDefLib.the_monoset. Monotonicity
theorems must be of the form

cond1 ∧ · · · ∧ condm ⇒ (Op arg1 . . . argn ⇒ Op arg ′1 . . . arg
′
n)

where each arg and arg ′ term must be a variable, and where there must be as many
cond i terms as there are arguments to Op that vary. Each cond i must be of the form

∀~v. arg ~v ⇒ arg ′ ~v

where the vector of variables ~v may be empty, and where the arg and arg ′ may actually
be reversed (as in the rule for negation).

For example, the monotonicity rule for conjunction is

(P ⇒ P ′) ∧ (Q⇒ Q′)⇒ (P ∧Q⇒ P ′ ∧Q′)

The monotonicity rule for the EVERY operator in the theory of lists (see Section 3.4.1),
is

(∀x. P (x)⇒ Q(x))⇒ (EVERY P `⇒ EVERY Q `)

With a monotonicity result available for an operator such as EVERY, it is then possible
to write inductive definitions where hypotheses include mention of the new relation as
arguments to the given operators.

Monotonicity results that the user derives may be stored in the global the_monoset
variable by using the export_mono function. This function takes a string naming a
theorem in the current theory segment, and adds that theorem to the monotonicity
theorems immediately, and in such a way that this situation will also obtain when the
current theory is subsequently reloaded.
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Examples A simple example of defining two mutually recursive relations is the fol-
lowing:

1Hol_reln

‘EVEN 0 /\

(!n. ODD n ==> EVEN (n + 1)) /\

(!n. EVEN n ==> ODD (n + 1))‘;

The result is three theorems
2> val it =

(|- EVEN 0 /\

(!n. ODD n ==> EVEN (n + 1)) /\

(!n. EVEN n ==> ODD (n + 1)),

|- !EVEN’ ODD’.

EVEN’ 0 /\

(!n. ODD’ n ==> EVEN’ (n + 1)) /\

(!n. EVEN’ n ==> ODD’ (n + 1))

==>

(!a0. EVEN a0 ==> EVEN’ a0) /\

(!a1. ODD a1 ==> ODD’ a1),

|- (!a0. EVEN a0 = (a0 = 0) \/

?n. (a0 = n + 1) /\ ODD n) /\

(!a1. ODD a1 = ?n. (a1 = n + 1) /\ EVEN n)

) : thm * thm * thm

The next example shows how to inductively define the reflexive and transitive closure
of relation R. Note that R, as a schematic variable, is not quantified in the rules. This is
appropriate because it is RTC R that has the inductive characterisation, not RTC itself.

3- Hol_reln ‘(!x. RTC R x x) /\

(!x z. (?y. R x y /\ RTC R y z) ==> RTC R x z)‘;

> val it =

(|- !R. (!x. RTC R x x) /\

!x z. (?y. R x y /\ RTC R y z) ==> RTC R x z,

|- !R RTC’.

(!x. RTC’ x x) /\

(!x z. (?y. R x y /\ RTC’ y z) ==> RTC’ x z)

==>

(!a0 a1. RTC R a0 a1 ==> RTC’ a0 a1),

|- !R a0 a1. RTC R a0 a1 = (a1 = a0) \/ ?y. R a0 y /\ RTC R y a1

) : thm * thm * thm

The Hol_reln function may be used to define multiple relations, as in the definition of
EVEN and ODD. The relations may or may not be mutually recursive. The clauses for each
relation need not be contiguous.
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4.6.1 Proofs with Inductive Relations

The “rules” theorem of an inductive relation provides a straightforward way of proving
arguments belong to a relation. If confronted with a goal of the form R x y, one might
make progress by performing a MATCH_MP_TAC (or perhaps, an HO_MATCH_MP_TAC) with
one of the implications in the “rules” theorem.

The “cases” theorem can be used for the same purpose because it is an equality, of the
general form R x y ⇐⇒ .... Because the right-hand side of this theorem will often
include other occurrences of the relation, it is generally not safe to simply rewrite with
it. The rewriting-control directives Once, SimpLHS and SimpRHS can be useful here.
In addition, the “cases” theorem can be used as an “elimination” form: if one has an
assumption of the form R x y, rewriting this (perhaps with FULL_SIMP_TAC if the term
occurs in the goal’s assumptions) into the possible ways it may have come about is often
a good approach.

Inductive relations naturally also support proof by induction. Because an inductive
relation is the least relation satisfying the given rules, one can use induction to show
goals of the form

∀x y. R x y ⇒ P

where P is an arbitrary predicate likely including references to variables x and y.
The low-level approach to goals of this form is to apply

HO_MATCH_MP_TAC R_ind

A slightly more high-level approach is use the Induct_on tactic. (This tactic is also used
to perform structural inductions over algebraic data types; see Section 5.3.) When per-
forming a rule induction, the quotation passed to Induct_on should be of the constant
being used. For the sake of aesthetics, the constant may also be applied to arguments.
Thus, one can write

Induct_on ‘R‘

or

Induct_on ‘R x y‘

and the effect will be the same.
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Chapter 5

Libraries

A library is an abstraction intended to provide a higher level of organization for HOL

applications. In general, a library can contain a collection of theories, proof procedures,
and supporting material, such as documentation. Some libraries simply provide proof
procedures, such as simpLib, while others provide theories and proof procedures, such
as intLib. Libraries can include other libraries.

In the HOL system, libraries are typically represented by ML structures named follow-
ing the convention that library x will be found in the ML structure xLib. Loading this
structure should load all the relevant sub-components of the library and set whatever
system parameters are suitable for use of the library.

When the HOL system is invoked in its normal configuration, several useful libraries
are automatically loaded. The most basic HOL library is boolLib, which supports the
definitions of the HOL logic, found in the theory bool, and provides a useful suite of
definition and reasoning tools.

Another pervasively used library is found in the structure Parse (the reader can see
that we are not strictly faithful to our convention about library naming). The parser
library provides support for parsing and ‘pretty-printing’ of HOL types, terms, and theo-
rems.

The boss library provides a basic collection of standard theories and high-level proof
procedures, and serves as a standard platform on which to work. It is preloaded and
opened when the HOL system starts up. It includes boolLib and Parse. Theories pro-
vided include pair, sum, option; the arithmetic theories num, prim rec, arithmetic,
and numeral; and list. Other libraries included in bossLib are goalstackLib, which
provides a proof manager for tactic proofs; simpLib, which provides a variety of sim-
plifiers; numLib, which provides a decision procedure for arithmetic; Datatype, which
provides high-level support for defining algebraic datatypes; and tflLib, which pro-
vides support for defining recursive functions.

5.1 Parsing and Prettyprinting

Every type and term in HOL is ultimately built by application of the primitive (abstract)
constructors for types and terms. However, in order to accommodate a wide variety
of mathematical expression, HOL provides flexible infrastructure for parsing and pret-
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typrinting types and terms through the Parse structure.
The term parser supports type inference, overloading, binders, and various fixity dec-

laration (infix, prefix, postfix, and combinations). There are also flags for controlling
the behaviour of the parser. Further, the structure of the parser is exposed so that new
parsers can be quickly constructed to support user applications.

The parser is parameterized by grammars for types and terms. The behaviour of the
parser and prettyprinter is therefore usually altered by grammar manipulations. These
can be of two kinds: temporary or permanent. Temporary changes should be used
in library implementations, or in script files for those changes that the user does not
wish to have persist in theories descended from the current one. Permanent changes
are appropriate for use in script-files, and will be in force in all descendant theories.
Functions making temporary changes are signified by a leading temp_ in their names.

5.1.1 Parsing types

The language of types is a simple one. An abstract grammar for the language is pre-
sented in Figure 5.1. The actual grammar (with concrete values for the infix symbols
and type operators) can be inspected using the function type_grammar.

τ ::= τ � τ | vtype | tyop | ( tylist ) tyop | τ tyop | ( τ ) | τ[τ]
� ::= -> | # | + | · · ·
vtype ::= ’a | ’b | ’c | · · ·
tylist ::= τ | τ , tylist
tyop ::= bool | list | num | fun | · · ·

Figure 5.1: An abstract grammar for HOL types (τ). Infixes (�) always bind more
weakly than type operators (tyop) (and type-subscripting (τ[τ])), so that τ1 � τ2 tyop
is always parsed as τ1 � (τ2 tyop). Different infixes can have different priorities, and
infixes at different priority levels can associate differently (to the left, to the right, or
not at all). Users can extend the categories � and tyop by making new type definitions,
and by directly manipulating the grammar.

Type infixes Infixes may be introduced with the function add_infix_type. This sets
up a mapping from an infix symbol (such as ->) to the name of an existing type op-
erator (such as fun). The binary symbol needs to be given a precedence level and an
associativity. See REFERENCE for more details.

Type abbreviations Users can abbreviate common type patterns with abbreviations.
This is done with the ML function type_abbrev:

type_abbrev : string * hol_type -> unit



5.1. PARSING AND PRETTYPRINTING 159

An abbreviation is a new type operator, of any number of arguments, that expands into
an existing type. For example, one might develop a light-weight theory of numbers
extended with an infinity, where the representing type was num option (NONE would
represent the infinity value). One might set up an abbreviation infnum that expanded
to this underlying type. Polymorphic patterns are supported as well. For example, as
described in Section 3.5.1, the abbreviation set, of one argument, is such that :’a set

expands into the type :’a -> bool, for any type :’a.
When types come to be printed, the expansion of abbreviations done by the parser

is reversed. For more information see the documentation of type_abbrev in the REFER-

ENCE.

5.1.2 Parsing terms

The term parser provides a grammar-based infrastructure for supporting concrete syn-
tax for formalizations. Usually, the HOL grammar gets extended when a new definition
or constant specification is made. (The introduction of new constants is discussed in
Sections 1.9.3.1 and 1.9.3.2.) However, any identifier can have a parsing status at-
tached at any time. In the following, we explore some of the capabilities of the HOL

term parser.

5.1.2.1 Parser architecture

The parser turns strings into terms. It does this in the following series of phases, all
of which are influenced by the provided grammar. Usually this grammar is the default
global grammar, but users can arrange to use different grammars if they desire. Strictly,
parsing occurs after lexing has split the input into a series of tokens. For more on lexing,
see Section 1.1.

Concrete Syntax: Features such as infixes, binders and mix-fix forms are translated
away, creating an intermediate, “abstract syntax” form (ML type Absyn). The
possible fixities are discussed in Section 5.1.2.7 below. Concrete syntax forms
are added to the grammar with functions such as add_rule and set_fixity (for
which, see the REFERENCE). The action of this phase of parsing is embodied in the
function Absyn.

The Absyn data type is constructed using constructors AQ (an antiquote, see Sec-
tion 5.1.3); IDENT (an identifier); QIDENT (a qualified identifier, given as thy$ident);
APP (an application of one form to another); LAM (an abstraction of a variable
over a body), and TYPED (a form accompanied by a type constraint1, see Sec-
tion 5.1.2.4). At this stage of the translation, there is no distinction made between

1The types in Absyn constraints are not full HOL types, but values from another intermediate type,
Pretype.
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constants and variables: though QIDENT forms must be constants, users are also
able to refer to constants by giving their bare names.

It is possible for names that occur in the Absyn value to be different from any of
the tokens that appeared in the original input. For example, the input

‘‘if P then Q else R‘‘

will turn into

APP (APP (APP (IDENT "COND", IDENT "P"), IDENT "Q"), IDENT "R")

(This is slightly simplified output: the various constructors for Absyn, including
APP, also take location parameters.)

The standard grammar includes a rule that associates the special mix-fix form
for if-then-else expressions with the underlying “name” COND. It is COND that will
eventually be resolved as the constant bool$COND.

If the “quotation” syntax with a bare dollar is used, then this phase of the parser
will not treat strings as part of a special form. For example, ‘‘$if P‘‘ turns into
the Absyn form

APP(IDENT "if", IDENT "P")

not a form involving COND.

More typically, one often writes something like ‘‘$+ x‘‘, which generates the
abstract syntax

APP(IDENT "+", IDENT "x")

Without the dollar-sign, the concrete syntax parser would complain about the fact
that the infix plus did not have a left-hand argument. When the successful result
of parsing is handed to the next phase, the fact that there is a constant called +

will give the input its desired meaning.

Symbols can also be “escaped” by enclosing them in parentheses. Thus, the above
could be written ‘‘(+) x‘‘ for the same effect.

The user can insert intermediate transformation functions of their own design into
the parsing processing at this point. This is done with the function

add_absyn_postprocessor
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The user’s function will be of type Absyn -> Absyn and can perform whatever
changes are appropriate. Like all other aspects of parsing, these functions are part
of a grammar: if the user doesn’t want to see a particular function used, they can
arrange for parsing to be done with respect to a different grammar.

Name Resolution: The bare IDENT forms in the Absyn value are resolved as free vari-
ables, bound names or constants. This process results in a value of the Preterm

data type, which has similar constructors to those in Absyn except with forms for
constants. A string can be converted straight to a Preterm by way of the Preterm

function.

A bound name is the first argument to a LAM constructor, an identifier occurring
on the left-hand side of a case-expression’s arrow, or an identifier occurring within
a set comprehension’s pattern. A constant is a string that is present in the domain
of the grammar’s “overload map”. Free variables are all other identifiers. Free
variables of the same name in a term will all have the same type. Identifiers are
tested to see if they are bound, and then to see if they are constants. Thus it is
possible to write

\SUC. SUC + 3

and have the string SUC be treated as a number in the context of the given abstrac-
tion, rather than as the successor constant.

The “overload map” is a map from strings to lists of terms. The terms are usu-
ally just constants, but can be arbitrary terms (giving rise to “syntactic macros”
or “patterns”). This facility is used to allow a name such as + to map to differ-
ent addition constants in theories such as arithmetic, integer, and words. In
this way the “real” names of the constants can be divorced from what the user
types. In the case of addition, the natural number plus actually is called + (strictly,
arithmetic$+); but over the integers, it is int_add, and over words it is word_add.
(Note that because each constant is from a different theory and thus a different
namespace, they could all have the name +.)

When name resolution determines that an identifier should be treated as a con-
stant, it is mapped to a preterm form that lists all of the possibilities for that string.
Subsequently, because the terms in the range of the overload map will typically
have different types, type inference will often eliminate possibilities from the list.
If multiple possibilities remain after type inference has been performed, then a
warning will be printed, and one of the possibilities will be chosen. (Users can
control which terms are picked when this situation arises.)

When a term in the overload map is chosen as the best option, it is substituted
into the term at appropriate position. If the term is a lambda abstraction, then as
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many β-reductions are done as possible, using any arguments that the term has
been applied to. It is in this way that a syntactic pattern can process arguments.
(See also Section 5.1.2.3 for more on syntactic patterns.)

Type Inference: All terms in the HOL logic are well-typed. The kernel enforces this
through the API for the term data type. (In particular, the mk_comb function checks
that the type of the first argument is a function whose domain is equal to the type
of the second argument.) The parser’s job is to turn user-supplied strings into
terms. For convenience, it is vital that the user not have to provide types for all of
the identifiers they type. (See Section 5.1.2.5 below.)

In the presence of overloaded identifiers, type inference may not be able to assign
a unique type to all constants. If multiple possibilities exist, one will be picked
when the Preterm is finally converted into a genuine term.

Conversion to Term: When a Preterm has been type-checked, the final conversion
from that type to the term type is mostly straightforward. The user can insert
further processing at this point as well, so that a user-supplied function modifies
the result before the parser returns.

5.1.2.2 Unicode characters

It is possible to have the HOL parsing and printing infrastructure use Unicode characters
(written in the UTF-8 encoding). This makes it possible to write and read terms such as

∀x. P x ∧ Q x

rather than

!x. P x /\ Q x

If they wish, users may simply define constants that have Unicode characters in their
names, and leave it at that. The problem with this approach is that standard tools will
likely then create theory files that include (illegal) ML bindings like val →_def = ....
The result will be ...Theory.sig and ...Theory.sml files that fail to compile, even
though the call to export_theory may succeed. This problem can be finessed through
the use of functions like set_MLname, but it’s probably best practice to only use al-
phanumerics in the names of constants, and to then use functions like overload_on and
add_rule to create Unicode syntax for the underlying constant.

If users have fonts with the appropriate repertoire of characters to display their syn-
tax, and are confident that any other users of their theories will too, then this is perfectly
reasonable. However, if users wish to retain some backwards compatibility with pure
ASCII syntax, they can do so by defining a pure ASCII syntax first. Having done this, they
can create a Unicode version of the syntax with the function Unicode.unicode_version.
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Then, while the trace variable "Unicode" is 0, the ASCII syntax will be used for parsing
and printing. If the trace is set to 1, then the Unicode syntax will also work in the parser,
and the pretty-printer will prefer it when terms are printed.

For example, in boolScript.sml, the Unicode character for logical and (∧), is set up
as a Unicode alternative for /\ with the call

val _ = unicode_version {u = UChar.conj, tmnm = "/\\"};

(In this context, the Unicode structure has been open-ed, giving access also to the struc-
ture UChar which contains bindings for the Greek alphabet, and some common mathe-
matical symbols. )

The argument to unicode_version is a record with fields u and tmnm. Both are strings.
The tmnm field can either be the name of a constant, or a token appearing in a concrete
syntax rule (possibly mapping to some other name). If the tmnm is only the name of
a constant, then, with the trace variable enabled, the string u will be overloaded to
the same name. If the tmnm is the same as a concrete syntax rule’s token, then the
behaviour is to create a new rule mapping to the same name, but with the string u used
as the token.

Lexing rules with Unicode characters Roughly speaking, HOL considers characters
to be divided into three classes: alphanumerics, non-aggregating symbols and symbols.
This affects the behaviour of the lexer when it encounters strings of characters. Unless
there is a specific “mixed” token already in the grammar, tokens split when the character
class changes. Thus, in the string

++a

the lexer will see two tokens, ++ and a, because + is a symbol and a is an alphanumeric.
The classification of the additional Unicode characters is very simplistic: all Greek let-
ters except λ are alphanumeric; the logical negation symbol ¬ is non-aggregating; and
everything else is symbolic. (The exception for λ is to allow strings like λx.x to lex into
four tokens.)

5.1.2.3 Syntactic patterns (“macros”)

The “overload map” mentioned previously is actually a combination of maps, one for
parsing, and one for printing. The parsing map is from names to lists of terms, and de-
termines how the names that appear in a Preterm will translate into terms. In essence,
bound names turn into bound variables, unbound names not in the domain of the map
turn into free variables, and unbound names in the domain of the map turn into one of
the elements of the set associated with the given name. Each term in the set of possibil-
ities may have a different type, so type inference will choose from those that have types
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consistent with the rest of the given term. If the resulting list contains more than one
element, then the term appearing earlier in the list will be chosen.

The most common use-case for the overload map is have names map to constants. In
this way, for example, the various numeric theories can map the string "+" to the rele-
vant notions of addition, each of which is a different constant. However, the system has
extra flexibility because names can map to arbitrary terms. For example, it is possible
to map to specific type-instances of constants. Thus, the string "<=>" maps to equality,
but where the arguments are forced to be of type ‘‘:bool‘‘.

Moreover, if the term mapped to is a lambda-abstraction (i.e., of the form λx. M),
then the parser will perform all possible β-reductions for that term and the arguments
accompanying it. For example, in boolTheory and its descendants, the string "<>" is
overloaded to the term ‘‘\x y. ~(x = y)‘‘. Additionally, "<>" is set up at the concrete
syntax level as an infix. When the user inputs ‘‘x <> y‘‘, the resulting Absyn value is

APP(APP(IDENT "<>", IDENT "x"), IDENT "x")

The "x" and "y" identifiers will map to free variables, but the "<>" identifier maps to a
list containing ‘‘\x y. ~(x = y)‘‘. This term has type

:’a -> ’a -> bool

and the polymorphic variables are generalisable, allowing type inference to give appro-
priate (identical) types to x and y. Assuming that this option is the only overloading for
"<>" left after type inference, then the resulting term will be ~(x = y). Better, though
this will be the underlying structure of the term in memory, it will actually print as
‘‘x <> y‘‘.

If the term mapped to in the overload map contains any free variables, these variables
will not be instantiated in any way. In particular, if these variables have polymorphic
types, then the type variables in those types will be constant: not subject to instantiation
by type inference.

Pretty-printing and syntactic patterns The second part of the “overload map” is a
map from terms to strings, specifying how terms should be turned back into identifiers.
(Though it does not actually construct an Absyn value, this process reverses the name
resolution phase of parsing, producing something that is then printed according to the
concrete syntax part of the given grammar.)

Because parsing can map single names to complicated term structures, printing must
be able to take a complicated term structure back to a single name. It does this by
performing term matching.2 If multiple patterns match the same term, then the printer
picks the most specific match (the one that requires least instantiation of the pattern’s

2The matching done is first-order; contrast the higher-order matching done in the simplifier.
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variables). If this still results in multiple, equally specific, possibilities, the most recently
added pattern takes precedence. (Users can thus manipulate the printer’s preferences
by making otherwise redundant calls to the overload_on function.)

In the example of the not-equal-to operator above, the pattern will be ~(?x = ?y),
where the question-marks indicate instantiable pattern variables. If a pattern includes
free variables (recall that the x and y in this example were bound by an abstraction),
then these will not be instantiable.

There is one further nicety in the use of this facility: “bigger” matches, covering more
of a term, take precedence. The difficulty this can cause is illustrated in the IS_PREFIX

pattern from rich listTheory. For the sake of backwards compatibility this identifier
maps to

\x y. isPREFIX y x

where isPREFIX is a constant from listTheory. (The issue is that IS_PREFIX expects
its arguments in reverse order to that expected by isPREFIX.) Now, when this macro
is set up the overload map already contains a mapping from the string "isPREFIX"

to the constant isPREFIX (this happens with every constant definition). But after the
call establishing the new pattern for IS_PREFIX, the isPREFIX form will no longer be
printed. Nor is it enough, to repeat the call

overload_on("isPREFIX", ‘‘isPREFIX‘‘)

Instead (assuming that isPREFIX is indeed the preferred printing form), the call must
be

overload_on("isPREFIX", ‘‘\x y. isPREFIX x y‘‘)

so that isPREFIX’s pattern is as long as IS_PREFIX’s.

5.1.2.4 Type constraints

A term can be constrained to be of a certain type. For example, X:bool constrains the
variable X to have type bool. An attempt to constrain a term inappropriately will raise
an exception: for example,

if T then (X:ind) else (Y:bool)

will fail because both branches of a conditional must be of the same type. Type con-
straints can be seen as a suffix that binds more tightly than everything except function
application. Thus term . . . term : hol type is equal to (term . . . term) : hol type, but
x < y : num is a legitimate constraint on just the variable y.

The inclusion of : in the symbolic identifiers means that some constraints may need
to be separated by white space. For example,
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$=:bool->bool->bool

will be broken up by the HOL lexer as

$=: bool -> bool -> bool

and parsed as an application of the symbolic identifier $=: to the argument list of terms
[bool, ->, bool, ->, bool]. A well-placed space will avoid this problem:

$= :bool->bool->bool

is parsed as the symbolic identifier “=” constrained by a type. Instead of the $, one can
also use parentheses to remove special parsing behaviour from lexemes:

(=):bool->bool->bool

5.1.2.5 Type inference

Consider the term x = T: it (and all of its subterms) has a type in the HOL logic. Now, T
has type bool. This means that the constant = has type xty -> bool -> bool, for some
type xty. Since the type scheme for = is ’a -> ’a -> bool, we know that xty must
in fact be bool in order for the type instance to be well-formed. Knowing this, we can
deduce that the type of x must be bool.

Ignoring the jargon (“scheme” and “instance”) in the previous paragraph, we have
conducted a type assignment to the term structure, ending up with a well-typed term.
It would be very tedious for users to conduct such argumentation by hand for each term
entered to HOL. Thus, HOL uses an adaptation of Milner’s type inference algorithm for
ML when constructing terms via parsing. At the end of type inference, unconstrained
type variables get assigned names by the system. Usually, this assignment does the right
thing. However, at times, the most general type is not what is desired and the user must
add type constraints to the relevant subterms. For tricky situations, the global variable
show_types can be assigned. When this flag is set, the prettyprinters for terms and
theorems will show how types have been assigned to subterms. If you do not want the
system to assign type variables for you, the global variable guessing_tyvars can be set
to false, in which case the existence of unassigned type variables at the end of type
inference will raise an exception.

5.1.2.6 Overloading

A limited amount of overloading resolution is performed by the term parser. For exam-
ple, the ‘tilde’ symbol (~) denotes boolean negation in the initial theory of HOL, and
it also denotes the additive inverse in the integer and real theories. If we load the
integer theory and enter an ambiguous term featuring ~, the system will inform us
that overloading resolution is being performed.
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1- load "integerTheory";

> val it = () : unit

- Term ‘~~x‘;

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ‘~~x‘ : term

- type_of it;

> val it = ‘:bool‘ : hol_type

A priority mechanism is used to resolve multiple possible choices. In the example,
~ could be consistently chosen to have type :bool -> bool or :int -> int, and the
mechanism has chosen the former. For finer control, explicit type constraints may be
used. In the following session, the ~~x in the first quotation has type :bool, while in
the second, a type constraint ensures that ~~x has type :int.

2- show_types := true;

> val it = () : unit

- Term ‘~(x = ~~x)‘;

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ‘~((x :bool) = ~~x)‘ : term

- Term ‘~(x:int = ~~x)‘;

> val it = ‘~((x :int) = ~~x)‘ : term

Note that the symbol ~ stands for two different constants in the second quotation; its
first occurrence is boolean negation, while the other two occurrences are the additive
inverse operation for integers.

5.1.2.7 Fixities

In order to provide some notational flexibility, constants come in various flavours or fix-
ities: besides being an ordinary constant (with no fixity), constants can also be binders,
prefixes, suffixes, infixes, or closefixes. More generally, terms can also be represented
using reasonably arbitrary mixfix specifications. The degree to which terms bind their
associated arguments is known as precedence. The higher this number, the tighter the
binding. For example, when introduced, + has a precedence of 500, while the tighter
binding multiplication (*) has a precedence of 600.

Binders A binder is a construct that binds a variable; for example, the universal quan-
tifier. In HOL, this is represented using a trick that goes back to Alonzo Church: a binder
is a constant that takes a lambda abstraction as its argument. The lambda binding is
used to implement the binding of the construct. This is an elegant and uniform solution.
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Thus the concrete syntax !v. M is represented by the application of the constant ! to
the abstraction (\v. M).

The most common binders are !, ?, ?!, and @. Sometimes one wants to iterate appli-
cations of the same binder, e.g.,

!x. !y. ?p. ?q. ?r. term.

This can instead be rendered

!x y. ?p q r. term.

Infixes Infix constants can associate in one of three different ways: right, left or not
at all. (If + were non-associative, then 3 + 4 + 5 would fail to parse; one would have
to write (3 + 4) + 5 or 3 + (4 + 5) depending on the desired meaning.) The prece-
dence ordering for the initial set of infixes is /\, \/, ==>, =, , (comma3). Moreover, all
of these constants are right associative. Thus

X /\ Y ==> C \/ D, P = E, Q

is equal to

((X /\ Y) ==> (C \/ D)), ((P = E), Q).

An expression

term <infix> term

is internally represented as

((<infix> term) term)

Prefixes Where infixes appear between their arguments, prefixes appear before theirs.
This might initially appear to be the same thing as happens with normal function ap-
plication where the symbol on the left simply has no fixity: is f in f(x) not acting as a
prefix? Actually though, in a term such as f(x), where f and x do not have fixities, the
syntax is treated as if there is an invisible infix function application between the two
tokens: f ·x. This infix operator binds tightly, so that when one writes f x+ y, the parse
is (f · x) + y.4 It is then useful to allow for genuine prefixes so that operators can live
at different precedence levels than function application. An example of this is ~, logical
negation. This is a prefix with lower precedence than function application. Normally

f x y is parsed as (f x) y

3When pairTheory has been loaded.
4There are tighter infix operators: the dot in field selection causes f x.fld to parse as f · (x.fld).
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but

~ x y is parsed as ~ (x y)

because the precedence of ~ is lower than that of function application. The unary
negation symbol would also typically be defined as a prefix, if only to allow one to write

negop negop 3

(whatever negop happened to be) without needing extra parentheses.
On the other hand, the univ syntax for the universal set (see Section 3.5.1) is an

example of a prefix operator that binds more tightly than application. This means that
f univ(:’a) is parsed as f(univ(:’a)), not (f univ)(:’a) (which parse would fail to
type-check).

Suffixes Suffixes appear after their arguments. There are no suffixes introduced into
the standard theories available in HOL, but users are always able to introduce their own
if they choose. Suffixes are associated with a precedence just as infixes and prefixes are.
If p is a prefix, i an infix, and s a suffix, then there are six possible orderings for the
three different operators based on their precedences, giving five parses for p t1 i t2 s

depending on the relative precedences:

Precedences
(lowest to highest) Parses

p, i, s p (t1 i (t2 s))
p, s, i p ((t1 i t2) s)
i, p, s (p t1) i (t2 s)
i, s, p (p t1) i (t2 s)
s, p, i (p (t1 i t2)) s
s, i, p ((p t1) i t2) s

Closefixes Closefix terms are operators that completely enclose their arguments. An
example one might use in the development of a theory of denotational semantics is
semantic brackets. Thus, the HOL parsing facilities can be configured to allow one to
write denotation x as [| x |]. Closefixes are not associated with precedences because
they can not compete for arguments with other operators.

5.1.2.8 Parser tricks and magic

Here we describe how to achieve some useful effects with the parser in HOL.

Aliasing If one wants a special syntax to be an “alias” for a normal HOL form, this is
easy to achieve; both examples so far have effectively done this. However, if one
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just wants to have a normal one-for-one substitution of one string for another, one
can’t use the grammar/syntax phase of parsing to do this. Instead, one can use
the overloading mechanism. For example, let us alias MEM for IS EL. We need to
use the function overload on to overload the original constant for the new name:

val _ = overload_on ("MEM", Term‘IS_EL‘);

Making addition right associative If one has a number of old scripts that assume ad-
dition is right associative because this is how HOL used to be, it might be too
much pain to convert. The trick is to remove all of the rules at the given level of
the grammar, and put them back as right associative infixes. The easiest way to
tell what rules are in the grammar is by inspection (use term_grammar()). With
just arithmeticTheory loaded, the only infixes at level 500 are + and -. So, we
remove the rules for them:

val _ = app temp_remove_rules_for_term ["+", "-"];

And then we put them back with the appropriate associativity:

val _ = app (fn s => temp_add_infix(s, 500, RIGHT)) ["+", "-"];

Note that we use the temp_ versions of these two functions so that other theories
depending on this one won’t be affected. Further note that we can’t have two
infixes at the same level of precedence with different associativities, so we have to
remove both operators, not just addition.

Mix-fix syntax for if-then-else: The first step in bringing this about is to look at the
general shape of expressions of this form. In this case, it will be:

if . . . then . . . else . . .

Because there needs to be a “dangling” term to the right, the appropriate fixity is
Prefix. Knowing that the underlying term constant is called COND, the simplest
way to achieve the desired syntax is:

val _ = add_rule

{term_name = "COND", fixity = Prefix 70,

pp_elements = [TOK "if", BreakSpace(1,0), TM, BreakSpace(1,0),

TOK "then", BreakSpace(1,0), TM, BreakSpace(1,0),

TOK "else", BreakSpace(1,0)],

paren_style = Always,

block_style = (AroundEachPhrase, (PP.CONSISTENT, 0))};
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The actual rule is slightly more complicated, and may be found in the sources for
the theory bool.

Mix-fix syntax for term substitution: Here the desire is to be able to write something
like:

[ t1 / t2 ] t3

denoting the substitution of t1 for t2 in t3, perhaps translating to SUB t1 t2 t3. This
looks like it should be another Prefix, but the choice of the square brackets ([
and ]) as delimiters would conflict with the concrete syntax for list literals if this
was done. Given that list literals are effectively of the CloseFix class, the new
syntax must be of the same class. This is easy enough to do: we set up syntax

[ t1 / t2 ]

to map to SUB t1 t2, a value of a functional type, that when applied to a third
argument will look right.5 The rule for this is thus:

val _ = add_rule

{term_name = "SUB", fixity = Closefix,

pp_elements = [TOK "[", TM, TOK "/", TM, TOK "]"],

paren_style = OnlyIfNecessary,

block_style = (AroundEachPhrase, (PP.INCONSISTENT, 2))};

5.1.2.9 Hiding constants

The following function can be used to hide the constant status of a name from the
quotation parser.

val hide : string -> ({Name : string, Thy : string} list *

{Name : string, Thy : string} list)

Evaluating hide "x" makes the quotation parser treat x as a variable (lexical rules
permitting), even if x is the name of a constant in the current theory (constants and
variables can have the same name). This is useful if one wants to use variables with the
same names as previously declared (or built-in) constants (e.g. o, I, S etc.). The name x

5Note that doing the same thing for the if-then-else example in the previous example would be inap-
propriate, as it would allow one to write

if P then Q else

without the trailing argument.
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is still a constant for the constructors, theories, etc; hide affects parsing and printing by
removing the given name from the “overload map” described above in Section 5.1.2.1.
Note that the effect of hide is temporary; its effects do not persist in theories descended
from the current one. See the REFERENCE entry for hide for more details, including an
explanation of the return type.

The function

reveal : string -> unit

undoes hiding.
The function

hidden : string -> bool

tests whether a string is the name of a hidden constant.

5.1.2.10 Adjusting the pretty-print depth

The following ML reference can be used to adjust the maximum depth of printing

max_print_depth : int ref

The default print depth is −1, which is interpreted as meaning no maximum. Subterms
nested more deeply than the maximum print depth are printed as .... For example:

1- ADD_CLAUSES;

> val it =

|- (0 + m = m) /\ (m + 0 = m) /\ (SUC m + n = SUC (m + n)) /\

(m + SUC n = SUC (m + n)) : thm

- max_print_depth := 3;

> val it = () : unit

- ADD_CLAUSES;

> val it = |- (... + ... = m) /\ (... = ...) /\ ... /\ ... : thm

5.1.3 Quotations and antiquotation

Logic-related syntax in the HOL system is typically passed to the parser in special forms
known as quotations. A basic quotation is delimited by single back-ticks (i.e., ‘, ASCII
character 96). When quotation values are printed out by the ML interactive loop, they
look rather ugly because of the special filtering that is done to these values before the
ML interpreter even sees them:
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1- val q = ‘f x = 3‘;

> val ’a q = [QUOTE " (*#loc 1 11*)f x = 3"] : ’a frag list

Quotations (Moscow ML prints the type as ’a frag list) are the raw input form ex-
pected by the various HOL parsers. They are also polymorphic (to be explained below).
Thus the function Parse.Term function takes a (term) quotation and returns a term,
and is thus of type

term quotation -> term

The term and type parsers can also be called implicitly by using double back-ticks as
delimiters. For the type parser, the first non-space character after the leading delimiter
must also be a colon. Thus:

2- val t = ‘‘p /\ q‘‘;

> val t = ‘‘p /\ q‘‘ : term

- val ty = ‘‘:’a -> bool‘‘;

> val ty = ‘‘:’a -> bool‘‘ : hol_type

The expression bound to ML variable t above is actually expanded to an application
of the function Parse.Term to the quotation argument ‘p /\ q‘. Similarly, the second
expression expands into an application of Parse.Type to the quotation ‘:’a -> bool‘.

The significant advantage of quotations over normal ML strings is that they can in-
clude new-line and backslash characters without requiring special quoting. Newlines
occur whenever terms get beyond the trivial in size, while backslashes occur in not just
the representation of λ, but also the syntax for conjunction and disjunction.

If a quotation is to include a back-quote character, then this should be done by using
the quotation syntax’s own escape character, the caret (^, ASCII character 94). To get
a bare caret, things are slightly more complicated. If a sequence of carets is followed
by white-space (including a newline), then that sequence of carets is passed to the HOL
parser unchanged. Otherwise, one caret can be obtained by writing two in a row. (This
last rule is analogous to the way in ML string syntax treats the back-slash.) Thus:

3- ‘‘f ^‘ x ‘‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c>>

> val it = ‘‘f ‘ x‘‘ : term

- ‘‘f ^ x‘‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c>>

> val it = ‘‘f ^ x‘‘ : term

The rule for carets not followed by white-space is illustrated here, including an exam-
ple of what happens when the quoting rule is not followed:
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4- ‘‘f ^^+ x‘‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c>>

> val it = ‘‘f ^+ x‘‘ : term

- ‘‘f ^+ x‘‘;

! Toplevel input:

! (Parse.Term [QUOTE " (*#loc 2 3*)f ", ANTIQUOTE (+),

! QUOTE " (*#loc 2 7*) x"]);

! ^

! Ill-formed infix expression

The main use of the caret is to introduce antiquotations (as suggested in the last
example above). Within a quotation, expressions of the form ^(t) (where t is an ML
expression of type term or type) are called antiquotations. An antiquotation ^(t) eval-
uates to the ML value of t. For example,‘‘x \/ ^(mk_conj(‘‘y:bool‘‘, ‘‘z:bool‘‘))‘‘

evaluates to the same term as ‘‘x \/ (y /\ z)‘‘. The most common use of antiquota-
tion is when the term t is bound to an ML variable x. In this case ^(x) can be abbreviated
by ^x.

The following session illustrates antiquotation.

1- val y = ‘‘x+1‘‘;

> val y = ‘‘x + 1‘‘ : term

val z = ‘‘y = ^y‘‘;

> val z = ‘‘y = x + 1‘‘ : term

- ‘‘!x:num.?y:num.^z‘‘;

> val it = ‘‘!x. ?y. y = x + 1‘‘ : term

Types may be antiquoted as well:

2- val pred = ‘‘:’a -> bool‘‘;

> val pred = ‘‘:’a -> bool‘‘ : hol_type

- ‘‘:^pred -> bool‘‘;

> val it = ‘‘:(’a -> bool) -> bool‘‘ : hol_type

Quotations are polymorphic, and the type variable of a quotation corresponds to the
type of entity that can be antiquoted into that quotation. Because the term parser
expects only antiquoted terms, antiquoting a type into a term quotation requires the
use of ty_antiq. For example,
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3- ‘‘!P:^pred. P x ==> Q x‘‘;

! Toplevel input:

! Term ‘!P:^pred. P x ==> Q x‘;

! ^^^^

! Type clash: expression of type

! hol_type

! cannot have type

! term

- ‘‘!P:^(ty_antiq pred). P x ==> Q x‘‘;

> val it = ‘!P. P x ==> Q x‘ : term

5.1.4 Backwards compatibility of syntax

This section of the manual documents the (extensive) changes made to the parsing of
HOL terms and types in the Taupo release (one of the HOL3 releases) and beyond from
the point of view of a user who doesn’t want to know how to use the new facilities, but
wants to make sure that their old code continues to work cleanly.

The changes which may cause old terms to fail to parse are:

• The precedence of type annotations has completely changed. It is now a very
tight suffix (though with a precedence weaker than that associated with function
application), instead of a weak one. This means that (x,y:bool # bool) should
now be written as (x,y):bool # bool. The previous form will now be parsed as
a type annotation applying to just the y. This change brings the syntax of the logic
closer to that of SML and should make it generally easier to annotate tuples, as
one can now write

(x : τ1, y : τ2, . . . z : τn)

instead of

(x : τ1, (y : τ2, . . . (z : τn)))

where extra parentheses have had to be added just to allow one to write a fre-
quently occurring form of constraint.

• Most arithmetic operators are now left associative instead of right associative. In
particular, +, −, ∗ and DIV are all left associative. Similarly, the analogous opera-
tors in other numeric theories such as integer and real are also left associative.
This brings the HOL parser in line with standard mathematical practice.
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• The binding equality in let expressions is treated exactly the same way as equali-
ties in other contexts. In previous versions of HOL, equalities in this context have
a different, weak binding precedence.

• The old syntax for conditional expressions has been removed. Thus the string
‘‘p => q | r‘‘ must now be written ‘‘if p then q else r‘‘ instead.

• Some lexical categories are more strictly policed. String literals (strings inside
double quotes) and numerals can’t be used unless the relevant theories have been
loaded. Nor can these literals be used as variables inside binding scopes.

5.2 A Simple Interactive Proof Manager

The goal stack provides a simple interface to tactic-based interactive proof. When one
uses tactics to decompose a proof, many intermediate states arise; the goalstack takes
care of the necessary bookkeeping. The implementation of goalstacks reported here is
a re-design of Larry Paulson’s original conception.

The goalstack library is automatically loaded when HOL starts up.
The abstract types goalstack and proofs are the focus of backwards proof oper-

ations. The type proofs can be regarded as a list of independent goalstacks. Most
operations act on the head of the list of goalstacks; there are also operations so that the
focus can be changed.

5.2.1 Starting a goalstack proof

g : term quotation -> proofs

set_goal : goal -> proofs

Recall that the type goal is an abbreviation for term list * term. To start on a new
goal, one gives set_goal a goal. This creates a new goalstack and makes it the focus of
further operations.

A shorthand for set_goal is the function g: it invokes the parser automatically, and it
doesn’t allow the goal to have any assumptions.

Calling set_goal, or g, adds a new proof attempt to the existing ones, i.e., rather than
overwriting the current proof attempt, the new attempt is stacked on top.

5.2.2 Applying a tactic to a goal

expandf : tactic -> goalstack

expand : tactic -> goalstack

e : tactic -> goalstack
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How does one actually do a goalstack proof then? In most cases, the application of
tactics to the current goal is done with the function expand. In the rare case that one
wants to apply an invalid tactic, then expandf is used. (For an explanation of invalid
tactics, see Chapter 24 of Gordon & Melham.) The abbreviation e may also be used to
expand a tactic.

5.2.3 Undo
b : unit -> goalstack

drop : unit -> proofs

dropn : int -> proofs

backup : unit -> goalstack

restart : unit -> goalstack

set_backup : int -> unit

Often (we are tempted to say usually!) one takes a wrong path in doing a proof, or
makes a mistake when setting a goal. To undo a step in the goalstack, the function
backup and its abbreviation b are used. This will restore the goalstack to its previous
state.

To directly back up all the way to the original goal, the function restart may be used.
Obviously, it is also important to get rid of proof attempts that are wrong; for that there
is drop, which gets rid of the current proof attempt, and dropn, which eliminates the
top n proof attempts.

Each proof attempt has its own undo-list of previous states. The undo-list for each
attempt is of fixed size (initially 12). If you wish to set this value for the current proof
attempt, the function set_backup can be used. If the size of the backup list is set to be
smaller than it currently is, the undo list will be immediately truncated. You can not
undo a “proofs-level” operation, such as set_goal or drop.

5.2.4 Viewing the state of the proof manager

p : unit -> goalstack

status : unit -> proofs

top_goal : unit -> goal

top_goals : unit -> goal list

initial_goal : unit -> goal

top_thm : unit -> thm

To view the state of the proof manager at any time, the functions p and status can
be used. The former only shows the top subgoals in the current goalstack, while the
second gives a summary of every proof attempt.

To get the top goal or goals of a proof attempt, use top_goal and top_goals. To get
the original goal of a proof attempt, use initial_goal.
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Once a theorem has been proved, the goalstack that was used to derive it still exists
(including its undo-list): its main job now is to hold the theorem. This theorem can be
retrieved with top_thm.

5.2.5 Switch focus to a different subgoal or proof attempt

r : int -> goalstack

R : int -> proofs

rotate : int -> goalstack

rotate_proofs : int -> proofs

Often we want to switch our attention to a different goal in the current proof, or a
different proof. The functions that do this are rotate and rotate_proofs, respectively.
The abbreviations r and R are simpler to type in.

5.3 High Level Proof—bossLib

The library bossLib marshals some of the most widely used theorem proving tools in
HOL and provides them with a convenient interface for interaction. The library currently
focuses on three things: definition of datatypes and functions; high-level interactive
proof operations, and composition of automated reasoners. Loading bossLib commits
one to working in a context that already supplies the theories of booleans, pairs, sums,
the option type, arithmetic, and lists.

5.3.1 Support for high-level proof steps

The following functions use information in the database to ease the application of HOL’s
underlying functionality:

type_rws : hol_type -> thm list

Induct : tactic

Cases : tactic

Cases_on : term quotation -> tactic

Induct_on : term quotation -> tactic

The function type_rws will search for the given type in the underlying TypeBase

database and return useful rewrite rules for that type. The rewrite rules of the datatype
are built from the injectivity and distinctness theorems, along with the case constant
definition. The simplification tactics RW_TAC, SRW_TAC, and the simpset (srw_ss())

automatically include these theorems. Other tactics used with other simpsets will need
these theorems to be manually added.
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The Induct tactic makes it convenient to invoke induction. When it is applied to a
goal, the leading universal quantifier is examined; if its type is that of a known datatype,
the appropriate structural induction tactic is extracted and applied.

The Cases tactic makes it convenient to invoke case analysis. The leading universal
quantifier in the goal is examined; if its type is that of a known datatype, the appropriate
structural case analysis theorem is extracted and applied.

The Cases_on tactic takes a quotation, which is parsed into a term M , and then M

is searched for in the goal. If M is a variable, then a variable with the same name is
searched for. Once the term to split over is known, its type and the associated facts
are obtained from the underlying database and used to perform the case split. If some
free variables of M are bound in the goal, an attempt is made to remove (universal)
quantifiers so that the case split has force. Finally, M need not appear in the goal,
although it should at least contain some free variables already appearing in the goal.
Note that the Cases_on tactic is more general than Cases, but it does require an explicit
term to be given.

The Induct_on tactic takes a quotation, which is parsed into a term M , and then M

is searched for in the goal. If M is a variable, then a variable with the same name is
searched for. Once the term to induct on is known, its type and the associated facts
are obtained from the underlying database and used to perform the induction. If M is
not a variable, a new variable v not already occurring in the goal is created, and used
to build a term v = M which the goal is made conditional on before the induction is
performed. First however, all terms containing free variables from M are moved from
the assumptions to the conclusion of the goal, and all free variables of M are universally
quantified. Induct_on is more general than Induct, but it does require an explicit term
to be given.

Three supplementary entry-points have been provided for more exotic inductions:

completeInduct_on performs complete induction on the term denoted by the given
quotation. Complete induction allows a seemingly 6 stronger induction hypoth-
esis than ordinary mathematical induction: to wit, when inducting on n, one
is allowed to assume the property holds for all m smaller than n. Formally:
∀P. (∀x. (∀y. y < x ⊃ P y) ⊃ P x) ⊃ ∀x. P x. This allows the inductive hy-
pothesis to be used more than once, and also allows instantiating the inductive
hypothesis to other than the predecessor.

measureInduct_on takes a quotation, and breaks it apart to find a term and a measure
function with which to induct. For example, if one wanted to induct on the length
of a list L, the invocation measureInduct_on ‘LENGTH L‘ would be be appropri-
ate.

6Complete induction and ordinary mathematical induction are each derivable from the other.
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recInduct takes a induction theorem generated by Define or Hol_defn and applies it
to the current goal.

5.3.2 Automated reasoners

bossLib brings together the most powerful reasoners in HOL and tries to make it easy
to compose them in a simple way. We take our basic reasoners from mesonLib, simpLib,
and numLib, but the point of bossLib is to provide a layer of abstraction so the user
has to know only a few entry-points.7 (These underlying libraries, and others providing
similarly powerful tools are described in detail in sections below.)

PROVE : thm list -> term -> thm

PROVE_TAC : thm list -> tactic

METIS_TAC : thm list -> tactic

METIS_PROVE: thm list -> term -> thm

DECIDE : term quotation -> thm

DECIDE_TAC : tactic

The inference rule PROVE (and the corresponding tactic PROVE TAC) takes a list of theo-
rems and a term, and attempts to prove the term using a first order reasoner. The two
METIS functions perform the same functionality but use a different underlying proof
method. The PROVE entry-points refer to the meson library, which is further described in
Section 5.4.1 below. The METIS system is described in Section 5.4.2. The inference rule
DECIDE (and the corresponding tactic DECIDE TAC) applies a decision procedure that (at
least) handles statements of linear arithmetic.

RW_TAC : simpset -> thm list -> tactic

SRW_TAC : ssfrag list -> thm list -> tactic

&& : simpset * thm list -> simpset (* infix *)

std_ss : simpset

arith_ss : simpset

list_ss : simpset

srw_ss : unit -> simpset

The rewriting tactic RW_TAC works by first adding the given theorems into the given
simpset; then it simplifies the goal as much as possible; then it performs case splits on
any conditional expressions in the goal; then it repeatedly (1) eliminates all hypotheses
of the form v = M or M = v where v is a variable not occurring in M , (2) breaks
down any equations between constructor terms occurring anywhere in the goal. Finally,
RW_TAC lifts let-expressions within the goal so that the binding equations appear as
abbreviations in the assumptions.

7In the mid 1980’s Graham Birtwistle advocated such an approach, calling it ‘Ten Tactic HOL’.
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The tactic SRW_TAC is similar to RW_TAC, but works with respect to an underlying
simpset (accessible through the function srw_ss) that is updated as new context is
loaded. This simpset can be augmented through the addition of “simpset fragments”
(ssfrag values) and theorems. In situations where there are many large types stored in
the system, RW_TAC’s performance can suffer because it repeatedly adds all of the rewrite
theorems for the known types into a simpset before attacking the goal. On the other
hand, SRW_TAC loads rewrites into the simpset underneath srw_ss() just once, making
for faster operation in this situation.
bossLib provides a number of simplification sets. The simpset for pure logic, sums,

pairs, and the option type is named std_ss. The simpset for arithmetic is named
arith_ss, and the simpset for lists is named list_ss. The simpsets provided by bossLib
strictly increase in strength: std_ss is contained in arith_ss, and arith_ss is con-
tained in list_ss. The infix combinator && is used to build a new simpset from a given
simpset and a list of theorems. HOL’s simplification technology is described further in
Section 5.5 below and in the REFERENCE.

by : term quotation * tactic -> tactic (* infix 8 *)

SPOSE_NOT_THEN : (thm -> tactic) -> tactic

The function by is an infix operator that takes a quotation and a tactic tac. The quotation
is parsed into a term M . When the invocation “M by tac” is applied to a goal (A, g),
a new subgoal (A,M) is created and tac is applied to it. If the goal is proved, the
resulting theorem is broken down and added to the assumptions of the original goal;
thus the proof proceeds with the goal ((M :: A), g). (Note however, that case-splitting
will happen if the breaking-down of `M exposes disjunctions.) Thus by allows a useful
style of ‘assertional’ or ‘Mizar-like’ reasoning to be mixed with ordinary tactic proof.8

The SPOSE_NOT_THEN entry-point initiates a proof by contradiction by assuming the
negation of the goal and driving the negation inwards through quantifiers. It provides
the resulting theorem as an argument to the supplied function, which will use the the-
orem to build and apply a tactic.

5.4 First Order Proof—mesonLib and metisLib

First order proof is a powerful theorem-proving technique that can finish off complicated
goals. Unlike tools such as the simplifier, it either proves a goal outright, or fails. It can
not transform a goal into a different (and more helpful) form.

8Proofs in the Mizar system are readable documents, unlike most tactic-based proofs.
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5.4.1 Model elimination—mesonLib

The meson library is an implementation of the model-elimination method for finding
proofs of goals in first-order logic. There are three main entry-points:

MESON_TAC : thm list -> tactic

ASM_MESON_TAC : thm list -> tactic

GEN_MESON_TAC : int -> int -> int -> thm list -> tactic

Each of these tactics attempts to prove the goal. They will either succeed in doing so,
or fail with a “depth exceeded” exception. If the branching factor in the search-space is
high, the meson tactics may also take a very long time to reach the maximum depth.

All of the meson tactics take a list of theorems. These extra facts are used by the
decision procedure to help prove the goal. MESON TAC ignores the goal’s assumptions;
the other two entry-points include the assumptions as part of the sequent to be proved.

The extra parameters to GEN_MESON_TAC provide extra control of the behaviour of the
iterative deepening that is at the heart of the search for a proof. In any given iteration,
the algorithm searches for a proof of depth no more than a parameter d. The default
behaviour for MESON_TAC and ASM_MESON_TAC is to start d at 0, to increment it by one
each time a search fails, and to fail if d exceeds the value stored in the reference value
mesonLib.max_depth. By way of contrast, GEN_MESON_TAC min max step starts d at
min, increments it by step, and gives up when d exceeds max.

The PROVE_TAC function from bossLib performs some normalisation, before passing
a goal and its assumptions to ASM_MESON_TAC. Because of this normalisation, in most
circumstances, PROVE_TAC should be preferred to ASM_MESON_TAC.

5.4.2 Resolution—metisLib

The metis library is an implementation of the resolution method for finding proofs of
goals in first-order logic. There are two main entry-points:

METIS_TAC : thm list -> tactic

METIS_PROVE : thm list -> term -> thm

Both functions take a list of theorems, and these are used as lemmas in the proof.
METIS TAC is a tactic, and will either succeed in proving the goal, or if unsuccessful will
either fail or loop forever. METIS PROVE takes a term t and tries to prove a theorem with
conclusion t: if successful, the theorem ` t is returned. As for METIS TAC, it might fail
or loop forever if the proof search is unsuccessful.

The metisLib family of proof tools implement the ordered resolution and ordered
paramodulation calculus for first order logic, which usually makes them better suited to
goals requiring non-trivial equality reasoning than the tactics in mesonLib.
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5.5 Simplification—simpLib

The simplifier is HOL’s most sophisticated rewriting engine. It is recommended as a
general purpose work-horse during interactive theorem-proving. As a rewriting tool,
the simplifier’s general role is to apply theorems of the general form

` l = r

to terms, replacing instances of l in the term with r. Thus, the basic simplification rou-
tine is a conversion, taking a term t, and returning a theorem ` t = t′, or the exception
UNCHANGED.

The basic conversion is

simpLib.SIMP_CONV : simpLib.simpset -> thm list -> term -> thm

The first argument, a simpset, is the standard way of providing a collection of rewrite
rules (and other data, to be explained below) to the simplifier. There are simpsets
accompanying most of HOL’s major theories. For example, the simpset bool_ss in
boolSimps embodies all of the usual rewrite theorems one would want over boolean
formulas:

1- SIMP_CONV bool_ss [] ‘‘p /\ T \/ ~(q /\ r)‘‘;

> val it = |- p /\ T \/ ~(q /\ r) = p \/ ~q \/ ~r : thm

In addition to rewriting with the obvious theorems, bool_ss is also capable of perform-
ing simplifications that are not expressible as simple theorems:

2- SIMP_CONV bool_ss [] ‘‘?x. (\y. P (f y)) x /\ (x = z)‘‘;

> val it = |- (?x. (\y. P (f y)) x /\ (x = z)) = P (f z) : thm

In this example, the simplifier performed a β-reduction in the first conjunct under the
existential quantifier, and then did an “unwinding” or “one-point” reduction, recognis-
ing that the only possible value for the quantified variable x was the value z.

The second argument to SIMP_CONV is a list of theorems to be added to the provided
simpset, and used as additional rewrite rules. In this way, users can temporarily aug-
ment standard simpsets with their own rewrites. If a particular set of theorems is often
used as such an argument, then it is possible to build a simpset value to embody these
new rewrites.

For example, the rewrite arithmeticTheory.LEFT_ADD_DISTRIB, which states that
p(m+n) = pm+ pn is not part of any of HOL’s standard simpsets. This is because it can
cause an unappealing increase in term size (there are two occurrences of p on the right
hand side of the theorem). Nonetheless, it is clear that this theorem may be appropriate
on occasion:

3- SIMP_CONV bossLib.arith_ss [LEFT_ADD_DISTRIB] ‘‘p * (n + 1)‘‘;

> val it = |- p * (n + 1) = p + n * p : thm
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Note how the arith_ss simpset has not only simplified the intermediate (p * 1) term,
but also re-ordered the addition to put the simpler term on the left, and sorted the
multiplication’s arguments.

5.5.1 Simplification tactics

The simplifier is implemented around the conversion SIMP_CONV, which is a function
for ‘converting’ terms into theorems. To apply the simplifier to goals (alternatively, to
perform tactic-based proofs with the simplifier), HOL provides five tactics, all of which
are available in bossLib.

5.5.1.1 SIMP_TAC : simpset -> thm list -> tactic

SIMP_TAC is the simplest simplification tactic: it attempts to simplify the current goal
(ignoring the assumptions) using the given simpset and the additional theorems. It is no
more than the lifting of the underlying SIMP_CONV conversion to the tactic level through
the use of the standard function CONV_TAC.

5.5.1.2 ASM_SIMP_TAC : simpset -> thm list -> tactic

Like SIMP_TAC, ASM_SIMP_TAC simplifies the current goal (leaving the assumptions un-
touched), but includes the goal’s assumptions as extra rewrite rules. Thus:

41 subgoal:

> val it =

P x

------------------------------------

x = 3

: goalstack

- e (ASM_SIMP_TAC bool_ss []);

OK..

1 subgoal:

> val it =

P 3

------------------------------------

x = 3

: goalstack

In this example, ASM_SIMP_TAC used x = 3 as an additional rewrite rule, and replaced
the x of P x with 3. When an assumption is used by ASM_SIMP_TAC it is converted into
rewrite rules in the same way as theorems passed in the list given as the tactic’s second
argument. For example, an assumption ~P will be treated as the rewrite |- P = F.
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5.5.1.3 FULL_SIMP_TAC : simpset -> thm list -> tactic

The tactic FULL_SIMP_TAC simplifies not only a goal’s conclusion but its assumptions
as well. It proceeds by simplifying each assumption in turn, additionally using earlier
assumptions in the simplification of later assumptions. After being simplified, each
assumption is added back into the goal’s assumption list with the STRIP_ASSUME_TAC

tactic. This means that assumptions that become conjunctions will have each conjunct
assumed separately. Assumptions that become disjunctions will cause one new sub-goal
to be created for each disjunct. If an assumption is simplified to false, this will solve the
goal.

FULL_SIMP_TAC attacks the assumptions in the order in which they appear in the list
of terms that represent the goal’s assumptions. Typically then, the first assumption
to be simplified will be the assumption most recently added. Viewed in the light of
goalstackLib’s printing of goals, FULL_SIMP_TAC works its way up the list of assump-
tions, from bottom to top.

The following demonstrates a simple use of FULL_SIMP_TAC:

5x + y < z

------------------------------------

0. f x < 10

1. x = 4

: goalstack

- e (FULL_SIMP_TAC bool_ss []);

OK..

1 subgoal:

> val it =

4 + y < z

------------------------------------

0. f 4 < 10

1. x = 4

: goalstack

In this example, the assumption x = 4 caused the x in the assumption f x < 10 to be
replaced by 4. The x in the goal was similarly replaced. If the assumptions had appeared
in the opposite order, only the x of the goal would have changed.

The next session more demonstrates more interesting behaviour:
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6> val it =

f x + 1 < 10

------------------------------------

x <= 4

: goalstack

- e (FULL_SIMP_TAC bool_ss [arithmeticTheory.LESS_OR_EQ]);

OK..

2 subgoals:

> val it =

f 4 + 1 < 10

------------------------------------

x = 4

f x + 1 < 10

------------------------------------

x < 4

: goalstack

In this example, the goal was rewritten with the theorem stating

` x ≤ y ≡ x < y ∨ x = y

Turning the assumption into a disjunction resulted in two sub-goals. In the second of
these, the assumption x = 4 further simplified the rest of the goal.

5.5.1.4 RW_TAC : simpset -> thm list -> tactic

Though its type is the same as the simplification tactics already described, RW_TAC is an
“augmented” tactic. It is augmented in two ways:

• When simplifying the goal, the provided simpset is augmented not only with the
theorems explicitly passed in the second argument, but also with all of the rewrite
rules from the TypeBase, and also with the goal’s assumptions.

• RW_TAC also does more than just perform simplification. It also repeatedly “strips”
the goal. For example, it moves the antecedents of implications into the assump-
tions, splits conjunctions, and case-splits on conditional expressions. This be-
haviour can rapidly remove a lot of syntactic complexity from goals, revealing the
kernel of the problem. On the other hand, this aggressive splitting can also result
in a large number of sub-goals. RW_TAC’s augmented behaviours are intertwined
with phases of simplification in a way that is difficult to describe.

5.5.1.5 SRW_TAC : ssfrag list -> thm list -> tactic

The tactic SRW_TAC has a different type from the other simplification tactics. It does
not take a simpset as an argument. Instead its operation always builds on the built-
in simpset srw_ss() (further described in Section 5.5.2.5). The theorems provided as
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SRW_TAC’s second argument are treated in the same way as by the other simplification
tactics. Finally, the list of simpset fragments are merged into the underlying simpset,
allowing the user to merge in additional simplification capabilities if desired.

For example, to include the Presburger decision procedure, one could write

SRW_TAC [ARITH_ss][]

Simpset fragments are described below in Section 5.5.3.
The SRW_TAC tactic performs the same mixture of simplification and goal-splitting as

does RW_TAC. The main differences between the two tactics lie in the fact that the latter
can be inefficient when working with a large TypeBase, and in the fact that working
with SRW_TAC saves one from having to explicitly construct simpsets that include all
of the current context’s “appropriate” rewrites. The latter “advantage” is based on the
assumption that (srw_ss()) never includes inappropriate rewrites. The presence of
unused rewrites is never a concern: the presence of rewrites that do the wrong thing
can be a major irritation.

5.5.2 The standard simpsets

HOL comes with a number of standard simpsets. All of these are accessible from within
bossLib, though some originate in other structures.

5.5.2.1 pure_ss and bool_ss

The pure_ss simpset (defined in structure pureSimps) contains no rewrite theorems at
all, and plays the role of a blank slate within the space of possible simpsets. When con-
structing a completely new simpset, pure_ss is a possible starting point. The pure_ss

simpset has just two components: congruence rules for specifying how to traverse terms,
and a function that turns theorems into rewrite rules. Congruence rules are further de-
scribed in Section 5.5.5; the generation of rewrite rules from theorems is described in
Section 5.5.4.

The bool_ss simpset (defined in structure boolSimps) is often used when other
simpsets might do too much. It contains rewrite rules for the boolean connectives,
and little more. It contains all of the de Morgan theorems for moving negations in over
the connectives (conjunction, disjunction, implication and conditional expressions), in-
cluding the quantifier rules that have ¬(∀x. P (x)) and ¬(∃x. P (x)) on their left-hand
sides. It also contains the rules specifying the behaviour of the connectives when the
constants T and F appear as their arguments. (One such rule is |- T /\ p = p.)

As in the example above, bool_ss also performs β-reductions and one-point unwind-
ings. The latter turns terms of the form

∃x. P (x) ∧ . . . (x = e) . . . ∧Q(x)
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into

P (e) ∧ . . . ∧Q(e)

Similarly, unwinding will turn ∀x. (x = e)⇒ P (x) into P (e).
Finally, bool_ss also includes congruence rules that allow the simplifier to make ad-

ditional assumptions when simplifying implications and conditional expressions. This
feature is further explained in Section 5.5.4 below, but can be illustrated by some ex-
amples (the first also demonstrates unwinding under a universal quantifier):

7- SIMP_CONV bool_ss [] ‘‘!x. (x = 3) /\ P x ==> Q x /\ P 3‘‘;

> val it = |- (!x. (x = 3) /\ P x ==> Q x /\ P 3) = P 3 ==> Q 3 : thm

- SIMP_CONV bool_ss [] ‘‘if ~(x = 3) then P x else Q x‘‘;

> val it = |- (if ~(x = 3) then P x else Q x) =

(if ~(x = 3) then P x else Q 3) : thm

5.5.2.2 std_ss

The std_ss simpset is defined in bossLib, and adds rewrite rules pertinent to the types
of sums, pairs, options and natural numbers to bool_ss.

8- SIMP_CONV std_ss [] ‘‘FST (x,y) + OUTR (INR z)‘‘;

<<HOL message: inventing new type variable names: ’a, ’b>>

> val it = |- FST (x,y) + OUTR (INR z) = x + z : thm

- SIMP_CONV std_ss [] ‘‘case SOME x of NONE => P | SOME y => f y‘‘;

> val it = |- (case SOME x of NONE => P | SOME v => f v) = f x : thm

With the natural numbers, the std_ss simpset can calculate with ground values, and
also includes a suite of “obvious rewrites” for formulas including variables.

9- SIMP_CONV std_ss [] ‘‘P (0 <= x) /\ Q (y + x - y)‘‘;

> val it = |- P (0 <= x) /\ Q (y + x - y) = P T /\ Q x : thm

- SIMP_CONV std_ss [] ‘‘23 * 6 + 7 ** 2 - 31 DIV 3‘‘;

> val it = |- 23 * 6 + 7 ** 2 - 31 DIV 3 = 177 : thm

5.5.2.3 arith_ss

The arith_ss simpset (defined in bossLib) extends std_ss by adding the ability to
decide formulas of Presburger arithmetic, and to normalise arithmetic expressions (col-
lecting coefficients, and re-ordering summands). The underlying natural number deci-
sion procedure is that described in Section 5.7 below.

These two facets of the arith_ss simpset are demonstrated here:
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10- SIMP_CONV arith_ss [] ‘‘x < 3 /\ P x ==> x < 20 DIV 2‘‘;

> val it = |- x < 3 /\ P x ==> x < 20 DIV 2 = T : thm

- SIMP_CONV arith_ss [] ‘‘2 * x + y - x + y‘‘;

> val it = |- 2 * x + y - x + y = x + 2 * y : thm

Note that subtraction over the natural numbers works in ways that can seem unintuitive.
In particular, coefficient normalisation may not occur when first expected:

11- SIMP_CONV arith_ss [] ‘‘2 * x + y - z + y‘‘;

! Uncaught exception:

! UNCHANGED

Over the natural numbers, the expression 2x+ y − z + y is not equal to 2x+ 2y − z. In
particular, these expressions are not equal when 2x+ y < z.

5.5.2.4 list_ss

The last pure simpset value in bossLib, list_ss adds rewrite theorems about the type
of lists to arith_ss. These rewrites include the obvious facts about the list type’s con-
structors NIL and CONS, such as the fact that CONS is injective:

(h1 :: t1 = h2 :: t2) = (h1 = h2) /\ (t1 = t2)

Conveniently, list_ss also includes rewrites for the functions defined by primitive re-
cursion over lists. Examples include MAP, FILTER and LENGTH. Thus:

12- SIMP_CONV list_ss [] ‘‘MAP (\x. x + 1) [1;2;3;4]‘‘;

> val it = |- MAP (\x. x + 1) [1; 2; 3; 4] = [2; 3; 4; 5] : thm

- SIMP_CONV list_ss [] ‘‘FILTER (\x. x < 4) [1;2;y + 4]‘‘;

> val it = |- FILTER (\x. x < 4) [1; 2; y + 4] = [1; 2] : thm

- SIMP_CONV list_ss [] ‘‘LENGTH (FILTER ODD [1;2;3;4;5])‘‘;

> val it = |- LENGTH (FILTER ODD [1; 2; 3; 4; 5]) = 3 : thm

These examples demonstrate how the simplifier can be used as a general purpose sym-
bolic evaluator for terms that look a great deal like those that appear in a functional
programming language. Note that this functionality is also provided by computeLib

(see Section 5.6 below); computeLib is more efficient, but less general than the simpli-
fier. For example:

13- EVAL ‘‘FILTER (\x. x < 4) [1;2;y + 4]‘‘;

> val it =

|- FILTER (\x. x < 4) [1; 2; y + 4] =

1::2::(if y + 4 < 4 then [y + 4] else []) : thm
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5.5.2.5 The “stateful” simpset—srw_ss()

The last simpset exported by bossLib is hidden behind a function. The srw_ss value
has type unit -> simpset, so that one must type srw_ss() in order to get a simpset
value. This use of a function type allows the underlying simpset to be stored in an
ML reference, and allows it to be updated dynamically. In this way, referential trans-
parency is deliberately broken. All of the other simpsets will always behave identi-
cally: SIMP_CONV bool_ss is the same simplification routine wherever and whenever it
is called.

In contrast, srw_ss is designed to be updated. When a theory is loaded, when a new
type is defined, the value behind srw_ss() changes, and the behaviour of SIMP_CONV
applied to (srw_ss()) changes with it. The design philosophy behind srw_ss is that it
should always be a reasonable first choice in all situations where the simplifier is used.

This versatility is illustrated in the following example:

14- Hol_datatype ‘tree = Leaf | Node of num => tree => tree‘;

<<HOL message: Defined type: "tree">>

> val it = () : unit

- SIMP_CONV (srw_ss()) [] ‘‘Node x Leaf Leaf = Node 3 t1 t2‘‘;

<<HOL message: Initialising SRW simpset ... done>>

> val it =

|- (Node x Leaf Leaf = Node 3 t1 t2) =

(x = 3) /\ (Leaf = t1) /\ (Leaf = t2) : thm

- load "pred_setTheory";

> val it = () : unit

- SIMP_CONV (srw_ss()) [] ‘‘x IN { y | y < 6}‘‘;

> val it = |- x IN {y | y < 6} = x < 6 : thm

Users can augment the stateful simpset themselves with the function

BasicProvers.export_rewrites : string list -> unit

The strings passed to export_rewrites are the names of theorems in the current seg-
ment (those that will be exported when export_theory is called). Not only are these
theorems added to the underlying simpset in the current session, but they will be added
in future sessions when the current theory is reloaded.
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15- val tsize_def = Define‘

(tsize Leaf = 0) /\

(tsize (Node n t1 t2) = n + tsize t1 + tsize t2)

‘;

Definition has been stored under "tsize_def".

> val tsize_def =

|- (tsize Leaf = 0) /\

!n t1 t2. tsize (Node n t1 t2) = n + tsize t1 + tsize t2 : thm

- val _ = BasicProvers.export_rewrites ["tsize_def"];

- SIMP_CONV (srw_ss()) [] ‘‘tsize (Node 4 (Node 6 Leaf Leaf) Leaf)‘‘;

> val it = |- tsize (Node 4 (Node 6 Leaf Leaf) Leaf) = 10 : thm

As a general rule, (srw_ss()) includes all of its context’s “obvious rewrites”, as well
as code to do standard calculations (such as the arithmetic performed in the above
example). It does not include decision procedures that may exhibit occasional poor
performance, so the simpset fragments containing these procedures should be added
manually to those simplification invocations that need them.

5.5.3 Simpset fragments

The simpset fragment is the basic building block that is used to construct simpset values.
There is one basic function that performs this construction:

op ++ : simpset * ssfrag -> simpset

where ++ is an infix. In general, it is best to build on top of the pure_ss simpset or
one of its descendants in order to pick up the default “filter” function for converting
theorems to rewrite rules. (This filtering process is described below in Section 5.5.4.3.)

For major theories (or groups thereof), a collection of relevant simpset fragments
is usually found in the module <thy>Simps, with <thy> the name of the theory. For
example, simpset fragments for the theory of natural numbers are found in numSimps,
and fragments for lists are found in listSimps.

Some of the distribution’s standard simpset fragments are described in Table 5.1.
These and other simpset fragments are described in more detail in the REFERENCE.

Simpset fragments are ultimately constructed with the SSFRAG constructor:

SSFRAG : {

convs : convdata list,

rewrs : thm list,

ac : (thm * thm) list,

filter : (controlled_thm -> controlled_thm list) option,

dprocs : Traverse.reducer list,

congs : thm list,

name : string option

} -> ssfrag
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BOOL_ss Standard rewrites for the boolean operators (conjunc-
tion, negation &c), as well as a conversion for performing
β-reduction. (In boolSimps.)

CONG_ss Congruence rules for implication and conditional expres-
sions. (In boolSimps.)

ARITH_ss The natural number decision procedure for universal
Presburger arithmetic. (In numSimps.)

PRED_SET_AC_ss AC-normalisation for unions and intersections over sets.
(In pred_setSimps.)

Table 5.1: Some of HOL’s standard simpset fragments

A complete description of the various fields of the record passed to SSFRAG, and their
meaning is given in REFERENCE. The rewrites function provides an easy route to con-
structing a fragment that just includes a list of rewrites:

rewrites : thm list -> ssfrag

5.5.4 Rewriting with the simplifier

Rewriting is the simplifier’s “core operation”. This section describes the action of rewrit-
ing in more detail.

5.5.4.1 Basic rewriting

Given a rewrite rule of the form

` ` = r

the simplifier will perform a top-down scan of the input term t, looking for matches (see
Section 5.5.4.4 below) of ` inside t. This match will occur at a sub-term of t (call it t0)
and will return an instantiation. When this instantiation is applied to the rewrite rule,
the result will be a new equation of the form

` t0 = r′

Because the system then has a theorem expressing an equivalence for t0 it can create
the new equation

` (. . . t0 . . .)︸ ︷︷ ︸
t

= (. . . r′ . . .)

The traversal of the term to be simplified is repeated until no further matches for the
simplifier’s rewrite rules are found. The traversal strategy is
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1. While there are any matches for stored rewrite rules at this level, continue to apply
them. The order in which rewrite rules are applied can not be relied on, except
that when a simpset includes two rewrites with exactly the same left-hand sides,
the rewrite added later will get matched in preference. (This allows a certain
amount of rewrite-overloading in the construction of simpsets.)

2. Recurse into the term’s sub-terms. The way in which terms are traversed at
this step can be controlled by congruence rules (an advanced feature, see Sec-
tion 5.5.5.1 below)

3. If step 2 changed the term at all, try another phase of rewriting at this level. If
this fails, or if there was no change from the traversal of the sub-terms, try any
embedded decision procedures (see Section 5.5.5.3). If the rewriting phase or any
of the decision procedures altered the term, return to step 1. Otherwise, finish.

5.5.4.2 Conditional rewriting

The above description is a slight simplification of the true state of affairs. One partic-
ularly powerful feature of the simplifier is that it really uses conditional rewrite rules.
These are theorems of the form

` P ⇒ (` = r)

When the simplifier finds a match for term ` during its traversal of the term, it attempts
to discharge the condition P . If the simplifier can simplify the term P to truth, then the
instance of ` in the term being traversed can be replaced by the appropriate instantiation
of r.

When simplifying P (a term that does not necessarily even occur in the original),
the simplifier may find itself applying another conditional rewrite rule. In order to
stop excessive recursive applications, the simplifier keeps track of a stack of all the
side-conditions it is working on. The simplifier will give up on side-condition prov-
ing if it notices a repetition in this stack. There is also a user-accessible variable,
Cond_rewr.stack_limit which specifies the maximum size of stack the simplifier is
allowed to use.

Conditional rewrites can be extremely useful. For example, theorems about division
and modulus are frequently accompanied by conditions requiring the divisor to be non-
zero. The simplifier can often discharge these, particularly if it includes an arithmetic
decision procedure. For example, the theorem MOD_MOD from the theory arithmetic

states

` 0 < n ⇒ (kMODn) MODn = kMODn
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The simplifier (specifically, SIMP_CONV arith_ss [MOD_MOD]) can use this theorem to
simplify the term (k MOD (x + 1)) MOD (x + 1): the arithmetic decision procedure
can prove that 0 < x + 1, justifying the rewrite.

Though conditional rewrites are powerful, not every theorem of the form described
above is an appropriate choice. A badly chosen rewrite may cause the simplifier’s per-
formance to degrade considerably, as it wastes time attempting to prove impossible
side-conditions. For example, the simplifier is not very good at finding existential wit-
nesses. This means that the conditional rewrite

` x < y ∧ y < z ⇒ (x < z = >)

will not work as one might hope. In general, the simplifier is not a good tool for per-
forming transitivity reasoning. (Try first-order tools such as PROVE_TAC instead.)

5.5.4.3 Generating rewrite rules from theorems

There are two routes by which a theorem for rewriting can be passed to the simplifier:
either as an explicit argument to one of the ML functions (SIMP_CONV, ASM_SIMP_TAC etc)
that take theorem lists as arguments, or by being included in a simpset fragment which
is merged into a simpset. In both cases, these theorems are transformed before being
used. The transformations applied are designed to make interactive use as convenient
as possible.

In particular, it is not necessary to pass the simplifier theorems that are exactly of the
form

` P ⇒ (` = r)

Instead, the simplifier will transform its input theorems to extract rewrites of this form
itself. The exact transformation performed is dependent on the simpset being used:
each simpset contains its own “filter” function which is applied to theorems that are
added to it. Most simpsets use the filter function from the pure_ss simpset (see Sec-
tion 5.5.2.1). However, when a simpset fragment is added to a full simpset, the frag-
ment can specify an additional filter component. If specified, this function is of type
controlled_thm -> controlled_thm list, and is applied to each of the theorems pro-
duced by the existing simpset’s filter. (A “controlled” theorem is one that is accompanied
by a piece of “control” data expressing the limit (if any) on the number of times it can
be applied. See Section 5.5.5.4 for how users can introduce these limits. The “control”
type appears in the ML module BoundedRewrites.)

The rewrite-producing filter in pure_ss strips away conjunctions, implications and
universal quantifications until it has either an equality theorem, or some other boolean
form. For example, the theorem ADD_MODULUS states

` (∀n x. 0 < n⇒ ((x+ n) MODn = xMODn)) ∧
(∀n x. 0 < n⇒ ((n+ x) MODn = xMODn))
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This theorem becomes two rewrite rules

` 0 < n⇒ ((x+ n) MODn = xMODn)
` 0 < n⇒ ((n+ x) MODn = xMODn)

If looking at an equality where there are variables on the right-hand side that do not
occur on the left-hand side, the simplifier transforms this to the rule

` (` = r) = >

Similarly, if a boolean negation ¬P , becomes the rule

` P = ⊥

and other boolean formulas P become

` P = >

Finally, if looking at an equality whose left-hand side is itself an equality, and where
the right-hand side is not an equality as well, the simplifier transforms (x = y) = P into
the two rules

` (x = y) = P
` (y = x) = P

This is generally useful. For example, a theorem such as

` ¬(SUCn = 0)

will cause the simplifier to rewrite both (SUCn = 0) and (0 = SUCn) to false.
The restriction that the right-hand side of such a rule not itself be an equality is a

simple heuristic that prevents some forms of looping.

5.5.4.4 Matching rewrite rules

Given a rewrite theorem ` ` = r, the first stage of performing a rewrite is determining
whether or not ` can be instantiated so as to make it equal to the term that is being
rewritten. This process is known as matching. For example, if ` is the term SUC(n),
then matching it against the term SUC(3) will succeed, and find the instantiation n 7→ 3.
In contrast with unification, matching is not symmetrical: a pattern SUC(3) will not
match the term SUC(n).

The simplifier uses a special form of higher-order matching. If a pattern includes a
variable of some function type (f say), and that variable is applied to an argument a
that includes no variables except those that are bound by an abstraction at a higher
scope, then the combined term f(a) will match any term of the appropriate type as long
as the only occurrences of the bound variables in a are in sub-terms matching a.
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Assume for the following examples that the variable x is bound at a higher scope.
Then, if f(x) is to match x+ 4, the variable f will be instantiated to (λx. x+ 4). If f(x)

is to match 3 + z, then f will be instantiated to (λx. 3 + z). Further f(x + 1) matches
x+ 1 < 7, but does not match x+ 2 < 7.

Higher-order matching of this sort makes it easy to express quantifier movement re-
sults as rewrite rules, and have these rules applied by the simplifier. For example, the
theorem

` (∃x. P (x) ∨Q(x)) = (∃x. P (x)) ∨ (∃x. Q(x))

has two variables of a function-type (P and Q), and both are applied to the bound
variable x. This means that when applied to the input

∃z. z < 4 ∨ z + x = 5 ∗ z

the matcher will find the instantiation

P 7→ (λz. z < 4)
Q 7→ (λz. z + x = 5 ∗ z)

Performing this instantiation, and then doing some β-reduction on the rewrite rule,
produces the theorem

` (∃z. z < 4 ∨ z + x = 5 ∗ z) = (∃z. z < 4) ∨ (∃z. z + x = 5 ∗ z)

as required.
Another example of a rule that the simplifier will use successfully is

` f ◦ (λx. g(x)) = (λx. f(g(x)))

The presence of the abstraction on the left-hand side of the rule requires an abstraction
to appear in the term to be matched, so this rule can be seen as an implementation of a
method to move abstractions up over function compositions.

An example of a possible left-hand side that will not match as generally as might be
liked is (∃x. P (x + y)). This is because the predicate P is applied to an argument that
includes the free variable y.

5.5.5 Advanced features

This section describes some of the simplifier’s advanced features.
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5.5.5.1 Congruence rules

Congruence rules control the way the simplifier traverses a term. They also provide a
mechanism by which additional assumptions can be added to the simplifier’s context,
representing information about the containing context. The simplest congruence rules
are built into the pure_ss simpset. They specify how to traverse application and ab-
straction terms. At this fundamental level, these congruence rules are little more than
the rules of inference ABS

Γ ` t1 = t2
Γ ` (λx. t1) = (λx. t2)

(where x 6∈ Γ) and MK_COMB

Γ ` f = g ∆ ` x = y

Γ ∪∆ ` f(x) = g(y)

When specifying the action of the simplifier, these rules should be read upwards. With
ABS, for example, the rule says “when simplifying an abstraction, simplify the body t1 to
some new t2, and then the result is formed by re-abstracting with the bound variable x.”

Further congruence rules should be added to the simplifier in the form of theorems,
via the congs field of the records passed to the SSFRAG constructor. Such congruence
rules should be of the form

cond1 ⇒ cond2 ⇒ . . . (E1 = E2)

where E1 is the form to be rewritten. Each cond i can either be an arbitrary boolean
formula (in which case it is treated as a side-condition to be discharged) or an equation
of the general form

∀~v. ctxt1 ⇒ ctxt2 ⇒ . . . (V1(~v) = V2(~v))

where the variable V2 must occur free in E2.
For example, the theorem form of MK_COMB would be

` (f = g)⇒ (x = y)⇒ (f(x) = g(y))

and the theorem form of ABS would be

` (∀x. f(x) = g(x))⇒ (λx. f(x)) = (λx. g(x))

The form for ABS demonstrates how it is possible for congruence rules to handle bound
variables. Because the congruence rules are matched with the higher-order match of
Section 5.5.4.4, this rule will match all possible abstraction terms.

These simple examples have not yet demonstrated the use of ctxt conditions on sub-
equations. An example of this is the congruence rule (found in CONG_ss) for implica-
tions. This states

` (P = P ′)⇒ (P ′ ⇒ (Q = Q′))⇒ (P ⇒ Q = P ′ ⇒ Q′)
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This rule should be read: “When simplifying P ⇒ Q, first simplify P to P ′. Then assume
P ′, and simplify Q to Q′. Then the result is P ′ ⇒ Q′.”

The rule for conditional expressions is

` (P = P ′)⇒ (P ′ ⇒ (x = x′))⇒ (¬P ′ ⇒ (y = y′)) ⇒
(if P then x else y = if P ′ then x′ else y′)

This rule allows the guard to be assumed when simplifying the true-branch of the con-
ditional, and its negation to be assumed when simplifying the false-branch.

The contextual assumptions from congruence rules are turned into rewrites using the
mechanisms described in Section 5.5.4.3.

Congruence rules can be used to achieve a number of interesting effects. For example,
a congruence can specify that sub-terms not be simplified if desired. This might be used
to prevent simplification of the branches of conditional expressions:

` (P = P ′)⇒ (if P then x else y = if P ′ then x else y)

If added to the simplifier, this rule will take precedence over any other rules for con-
ditional expressions (masking the one above from CONG_ss, say), and will cause the
simplifier to only descend into the guard. With the standard rewrites (from BOOL_ss):

` if > then x else y = x
` if ⊥ then x else y = y

users can choose to have the simplifier completely ignore a conditional’s branches until
that conditional’s guard is simplified to either true or false.

5.5.5.2 AC-normalisation

The simplifier can be used to normalise terms involving associative and commutative
constants. This process is known as AC-normalisation. The simplifier will perform AC-
normalisation for those constants which have their associativity and commutativity the-
orems provided in a constituent simpset fragment’s ac field.

For example, the following simpset fragment will cause AC-normalisation of disjunc-
tions

SSFRAG {ac = [(DISJ_ASSOC, DISJ_COMM)],

rewrs = [], filter = NONE, convs = [],

dprocs = [], congs = []}

The pair of provided theorems must state

x⊕ y = y ⊕ x
x⊕ (y ⊕ z) = (x⊕ y)⊕ z
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for a constant ⊕. The theorems may be universally quantified, and the associativity
theorem may be oriented either way. Further, either the associativity theorem or the
commutativity theorem may be the first component of the pair. Assuming the simpset
fragment above is bound to the ML identifier DISJ_ss, its behaviour is demonstrated in
the following example:

16- SIMP_CONV (bool_ss ++ DISJ_ss) [] ‘‘p /\ q \/ r \/ P z‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = |- p /\ q \/ r \/ P z = r \/ P z \/ p /\ q : thm

The order of operands in the AC-normal form that the simplifer’s AC-normalisation
works toward is unspecified. However, the normal form is always right-associated. Note
also that the arith_ss simpset, and the ARITH_ss fragment which is its basis, have their
own bespoke normalisation procedures for addition over the natural numbers. Mixing
AC-normalisation, as described here, with arith_ss can cause the simplifier to go into
an infinite loop.

AC theorems can also be added to simpsets via the theorem-list part of the tactic and
conversion interface, using the special rewrite form AC:

17- SIMP_CONV bool_ss [AC DISJ_ASSOC DISJ_COMM] ‘‘p /\ q \/ r \/ P z‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = |- p /\ q \/ r \/ P z = r \/ P z \/ p /\ q : thm

See Section 5.5.5.4 for more on special rewrite forms.

5.5.5.3 Embedding code

The simplifier features two different ways in which user-code can be embedded into its
traversal and simplification of input terms. By embedding their own code, users can
customise the behaviour of the simplifier to a significant extent.

User conversions The simpler of the two methods allows the simplifier to include
user-supplied conversions. These are added to simpsets in the convs field of simpset
fragments. This field takes lists of values of type

{ name: string,

trace: int,

key: (term list * term) option,

conv: (term list -> term -> thm) -> term list -> term -> thm}

The name and trace fields are used when simplifier tracing is turned on. If the conver-
sion is applied, and if the simplifier trace level is greater than or equal to the trace field,
then a message about the conversion’s application (including its name) will be emitted.

The key field of the above record is used to specify the sub-terms to which the conver-
sion should be applied. If the value is NONE, then the conversion will be tried at every
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position. Otherwise, the conversion is applied at term positions matching the provided
pattern. The first component of the pattern is a list of variables that should be treated
as constants when finding pattern matches. The second component is the term pattern
itself. Matching against this component is not done by the higher-order match of Sec-
tion 5.5.4.4, but by a higher-order “term-net”. This form of matching does not aim to be
precise; it is used to efficiently eliminate clearly impossible matches. It does not check
types, and does not check multiple bindings. This means that the conversion will not
only be applied to terms that are exact matches for the supplied pattern.

Finally, the conversion itself. Most uses of this facility are to add normal HOL conver-
sions (of type term->thm), and this can be done by ignoring the conv field’s first two
parameters. For a conversion myconv, the standard idiom is to write K (K myconv). If
the user desires, however, their code can refer to the first two parameters. The second
parameter is the stack of side-conditions that have been attempted so far. The first en-
ables the user’s code to call back to the simplifier, passing the stack of side-conditions,
and a new side-condition to solve. The term argument must be of type :bool, and the
recursive call will simplify it to true (and call EQT_ELIM to turn a term t into the theorem
` t). This restriction may be lifted in a future version of HOL but as it stands, the re-
cursive call can only be used for side-condition discharge. Note also that it is the user’s
responsibility to pass an appropriately updated stack of side-conditions to the recursive
invocation of the simplifier.

A user-supplied conversion should never return the reflexive identity (an instance of
` t = t). This will cause the simplifier to loop. Rather than return such a result, raise a
HOL_ERR or Conv.UNCHANGED exception. (Both are treated the same by the simplifier.)

Context-aware decision procedures Another, more involved, method for embedding
user code into the simplifier is via the dprocs field of the simpset fragment structure.
This method is more general than adding conversions, and also allows user code to
construct and maintain its own bespoke logical contexts.

The dprocs field requires lists of values of the type Traverse.reducer. These values
are constructed with the constructor REDUCER:

REDUCER : {initial : context,

addcontext : context * thm list -> context,

apply : {solver : term list -> term -> thm,

context : context,

stack : term list} -> term -> thm}

-> reducer

The context type is an alias for the built-in ML type exn, that of exceptions. The ex-
ceptions here are used as a “universal type”, capable of storing data of any type. For
example, if the desired data is a pair of an integer and a boolean, then the following
declaration could be made:
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exception my_data of int * bool

It is not necessary to make this declaration visible with a wide scope. Indeed, only
functions accessing and creating contexts of this form need to see it. For example:

fun get_data c = (raise c) handle my_data (i,b) => (i,b)

fun mk_ctxt (i,b) = my_data(i,b)

When creating a value of reducer type, the user must provide an initial context, and
two functions. The first, addcontext, is called by the simplifier’s traversal mechanism to
give every embedded decision procedure access to theorems representing new context
information. For example, this function is called with theorems from the current as-
sumptions in ASM_SIMP_TAC, and with the theorems from the theorem-list arguments to
all of the various simplification functions. As a term is traversed, the congruence rules
governing this traversal may also provide additional theorems; these will also be passed
to the addcontext function. (Of course, it is entirely up to the addcontext function as
to how these theorems will be handled; they may even be ignored entirely.)

When an embedded reducer is applied to a term, the provided apply function is
called. As well as the term to be transformed, the apply function is also passed a record
containing a side-condition solver, the decision procedure’s current context, and the
stack of side-conditions attempted so far. The stack and solver are the same as the
additional arguments provided to user-supplied conversions. The power of the reducer
abstraction is having access to a context that can be built appropriately for each decision
procedure.

Decision procedures are applied last when a term is encountered by the simplifier.
More, they are applied after the simplifier has already recursed into any sub-terms and
tried to do as much rewriting as possible. This means that although simplifier rewriting
occurs in a top-down fashion, decision procedures will be applied bottom-up and only
as a last resort.

As with user-conversions, decision procedures must raise an exception rather than
return instances of reflexivity.

5.5.5.4 Special rewrite forms

Some of the simplifier’s features can be accessed in a relatively simple way by using
ML functions to construct special theorem forms. These special theorems can then be
passed in the simplification tactics’ theorem-list arguments.

Two of the simplifier’s advanced features, AC-normalisation and congruence rules can
be accessed in this way. Rather than construct a custom simpset fragment including the
required AC or congruence rules, the user can instead use the functions AC or Cong:

AC : thm -> thm -> thm

Cong : thm -> thm
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For example, if the theorem value

AC DISJ_ASSOC DISJ_COMM

appears amongst the theorems passed to a simplification tactic, then the simplifier will
perform AC-normalisation of disjunctions. The Cong function provides a similar inter-
face for the addition of new congruence rules.

Two other functions provide a crude mechanism for controlling the number of times
an individual rewrite will be applied.

Once : thm -> thm

Ntimes : thm -> int -> thm

A theorem “wrapped” in the Once function will only be applied once when the simplifier
is applied to a given term. A theorem wrapped in Ntimes will be applied as many times
as given in the integer parameter.

Simplifying at particular sub-terms We have already seen (Section 5.5.5.1 above)
that the simplifier’s congruence technology can be used to force the simplifier to ig-
nore particular terms. The example in the section above discussed how a congruence
rule might be used to ensure that only the guards of conditional expressions should be
simplified.

In many proofs, it is common to want to rewrite only on one side or the other of
a binary connective (often, this connective is an equality). For example, this occurs
when rewriting with equations from complicated recursive definitions that are not just
structural recursions. In such definitions, the left-hand side of the equation will have a
function symbol attached to a sequence of variables, e.g.:

|- f x y = ... f (g x y) z ...

Theorems of a similar shape are also returned as the “cases” theorems from inductive
definitions.

Whatever their origin, such theorems are the classic example of something to which
one would want to attach the Once qualifier. However, this may not be enough: one
may wish to prove a result such as

f (constructor x) y = ... f (h x y) z ...

(With relations, the goal may often feature an implication instead of an equality.) In this
situation, one often wants to expand just the instance of f on the left, leaving the other
occurrence alone. Using Once will expand only one of them, but without specifying
which one is to be expanded.

The solution to this problem is to use special congruence rules, constructed as special
forms that can be passed as theorems like Once. The functions
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SimpL : term -> thm

SimpR : term -> thm

construct congruence rules to force rewriting to the left or right of particular terms.
For example, if opn is a binary operator, SimpL ‘‘(opn)‘‘ returns Cong applied to the
theorem

|- (x = x’) ==> (opn x y = opn x’ y)

Because the equality case is so common, the special values SimpLHS and SimpRHS are
provided to force simplification on the left or right of an equality respectively. These are
just defined to be applications of SimpL and SimpR to equality.

Note that these rules apply throughout a term, not just to the uppermost occurrence of
an operator. Also, the topmost operator in the term need not be that of the congruence
rule. This behaviour is an automatic consequence of the implementation in terms of
congruence rules.

5.5.5.5 Limiting simplification

In addition to the Once and Ntimes theorem-forms just discussed, which limit the num-
ber of times a particular rewrite is applied, the simplifier can also be limited in the total
number of rewrites it performs. The limit function (in simpLib and bossLib)

limit : int -> simpset -> simpset

records a numeric limit in a simpset. When a limited simpset then works over a term,
it will never apply more than the given number of rewrites to that term. When condi-
tional rewrites are used, the rewriting done in the discharge of side-conditions counts
against the limit, as long as the rewrite is ultimately applied. The application of user-
provided congruence rules, user-provided conversions and decision procedures also all
count against the limit.

When the simplifier yields control to a user-provided conversion or decision proce-
dure it cannot guarantee that these functions will ever return (and they may also take
arbitrarily long to work, often a worry with arithmetic decision procedures), but use of
limit is otherwise a good method for ensuring that simplification terminates.

5.5.5.6 Rewriting with arbitrary pre-orders

In addition to simplifying with respect to equality, it is also possible to use the simpli-
fier to “rewrite” with respect to a relation that is reflexive and transitive (a preorder).
This can be a very powerful way of working with transition relations in operational
semantics.

Imagine, for example, that one has set up a “deep embedding” of the λ-calculus.
This will entail the definition of a new type (lamterm, say) within the logic, as well
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as definitions of appropriate functions (e.g., substitution) and relations over lamterm.
One is likely to work with the reflexive and transitive closure of β-reduction (→∗β). This
relation has congruence rules such as

M1 →∗β M2

M1N →∗β M2N

N1 →∗β N2

M N1 →∗β M N2

M1 →∗β M2

(λv.M1) →∗β (λv.M2)

and one important rewrite

(λv.M)N →∗β M [v := N ]

Having to apply these rules manually in order to show that a given starting term can
reduce to particular destination is usually very painful, involving many applications, not
only of the theorems above, but also of the theorems describing reflexive and transitive
closure (see Section 3.5.3).

Though the λ-calculus is non-deterministic, it is also confluent, so the following the-
orem holds:

β-nf N M1 →∗β M2

M1 →∗β N = M2 →∗β N

This is the critical theorem that justifies the switch from rewriting with equality to
rewriting with →∗β. It says that if one has a term M1 →∗β N , with N a β-normal form,
and if M1 rewrites to M2 under→∗β, then the original term is equal to M2 →∗β N . With
luck, M2 will actually be syntactically identical to N , and the reflexivity of→∗β will prove
the desired result. Theorems such as these, that justify the switch from one rewriting
relation to another are known as weakening congruences.

When adjusted appropriately, the simplifier can be modified to exploit the five theo-
rems above, and automatically prove results such as

u((λf x.f(f x))v)→∗β u(λx.v(v x))

(on the assumption that the terms u and v are λ-calculus variables, making the result a
β-normal form).

In addition, one will quite probably have various rewrite theorems that one will want
to use in addition to those specified above. For example, if one has earlier proved a
theorem such as

K xy →∗β x

then the simplifier can take this into account as well.
The function achieving all this is
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simpLib.add_relsimp : {trans: thm, refl: thm, weakenings: thm list,

subsets: thm list, rewrs : thm list} ->

simpset -> simpset

The fields of the record that is the first argument are:

trans The theorem stating that the relation is transitive, in the form ∀xyz.R x y ∧
Ry z ⇒ Rxz.

refl The theorem stating that the relation is reflexive, in the form ∀x.R xx.

weakenings A list of weakening congruences, of the general form P1 ⇒ P2 ⇒ · · · (t1 =

t2), where at least one of the Pi will presumably mention the new relation R

applied to a variable that appears in t1. Other antecedents may be side-conditions
such as the requirement in the example above that the term N be in β-normal
form.

subsets Theorems of the form R′ x y ⇒ Rxy. These are used to augment the resulting
simpset’s “filter” so that theorems in the context mentioning R′ will derive useful
rewrites involvingR. In the example of β-reduction, one might also have a relation
→∗wh for weak-head reduction. Any weak-head reduction is also a β-reduction, so
it can be useful to have the simplifier automatically “promote” facts about weak-
head reduction to facts about β-reduction, and to then use them as rewrites.

rewrs Possibly conditional rewrites, presumably mostly of the form P ⇒ R t1 t2. Rewrites
over equality can also be included here, allowing useful additional facts to be in-
cluded. For example, when working with the λ-calculus, one might include both
the rewrite for K above, as well as the definition of substitution.

The application of this function to a simpset ss will produce an augmented ss that has
all of ss’s existing behaviours, as well as the ability to rewrite with the given relation.

5.6 Efficient Applicative Order Reduction—computeLib

Section 4.1 and Section 4.5 show the ability of HOL to represent many of the standard
constructs of functional programming. If one then wants to ‘run’ functional programs
on arguments, there are several choices. First, one could apply the simplifier, as demon-
strated in Section 5.5. This allows all the power of the rewriting process to be brought to
bear, including, for example, the application of decision procedures to prove constraints
on conditional rewrite rules. Second, one could write the program, and all the programs
it transitively depends on, out to a file in a suitable concrete syntax, and invoke a com-
piler or interpreter. This functionality is available in HOL via use of EmitML.exportML.
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Third, computeLib can be used. This library supports call-by-value evaluation of HOL

functions by deductive steps. In other words, it is quite similar to having an ML in-
terpreter inside the HOL logic, working by forward inference. When used in this way,
functional programs can be executed more quickly than by using the simplifier.

The most accessible entry-points for using the computeLib library are the conversion
EVAL and its tactic counterpart EVAL_TAC. These depend on an internal database that
stores function definitions. In the following example, loading sortingTheory augments
this database with relevant definitions, that of Quicksort (QSORT) in particular, and then
we can evaluate QSORT on a concrete list.

1- load "sortingTheory";

- EVAL ‘‘QSORT (<=) [76;34;102;3;4]‘‘;

> val it = |- QSORT $<= [76; 34; 102; 3; 4] = [3; 4; 34; 76; 102] : thm

Often, the argument to a function has no variables: in that case application of EVAL
ought to return a ground result, as in the above example. However, EVAL can also
evaluate functions on arguments with variables—so-called symbolic evaluation—and in
that case, the behaviour of EVAL depends on the structure of the recursion equations.
For example, in the following session, if there is sufficient information in the input,
symbolic execution can deliver an interesting result. However, if there is not enough
information in the input to allow the algorithm any traction, no expansion will take
place.

2- EVAL ‘‘REVERSE [u;v;w;x;y;z]‘‘;

> val it = |- REVERSE [u; v; w; x; y; z] = [z; y; x; w; v; u] : thm

- EVAL ‘‘REVERSE alist‘‘;

> val it = |- REVERSE alist = REVERSE alist : thm

5.6.1 Dealing with divergence

The major difficulty with using EVAL is termination. All too often, symbolic evaluation
with EVAL will diverge, or generate enormous terms. The usual cause is conditionals
with variables in the test. For example, the following definition is provably equal to
FACT,

3Define ‘fact n = if n=0 then 1 else n * fact (n-1)‘;

> val it = |- fact n = (if n = 0 then 1 else n * fact (n - 1)) : thm

But the two definitions evaluate completely differently.
4EVAL ‘‘FACT n‘‘;

> val it = |- FACT n = FACT n : thm

- EVAL ‘‘fact n‘‘;

<.... interrupt key struck ...>

> Interrupted.
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The primitive-recursive definition of FACT does not expand at all, while the destructor-
style recursion of fact never stops expanding. A rudimentary monitoring facility shows
the behaviour, first on a ground argument, then on a symbolic argument.

5- val [fact] = decls "fact";

- computeLib.monitoring := SOME (same_const fact);

- EVAL ‘‘fact 4‘‘;

fact 4 = (if 4 = 0 then 1 else 4 * fact (4 - 1))

fact 3 = (if 3 = 0 then 1 else 3 * fact (3 - 1))

fact 2 = (if 2 = 0 then 1 else 2 * fact (2 - 1))

fact 1 = (if 1 = 0 then 1 else 1 * fact (1 - 1))

fact 0 = (if 0 = 0 then 1 else 0 * fact (0 - 1))

> val it = |- fact 4 = 24 : thm

- EVAL ‘‘fact n‘‘;

fact n = (if n = 0 then 1 else n * fact (n - 1))

fact (n - 1) = (if n - 1 = 0 then 1 else (n - 1) * fact (n - 1 - 1))

fact (n - 1 - 1) =

(if n - 1 - 1 = 0 then 1 else (n - 1 - 1) * fact (n - 1 - 1 - 1))

fact (n - 1 - 1 - 1) =

(if n - 1 - 1 - 1 = 0 then

1

else

(n - 1 - 1 - 1) * fact (n - 1 - 1 - 1 - 1))

.

.

.

In each recursive expansion, the test involves a variable, and hence cannot be reduced
to either T or F. Thus, expansion never stops.

Some simple remedies can be adopted in trying to deal with non-terminating symbolic
evaluation.

• RESTR_EVAL_CONV behaves like EVAL except it takes an extra list of constants. Dur-
ing evaluation, if one of the supplied constants is encountered, it will not be ex-
panded. This allows evaluation down to a specified level, and can be used to
cut-off some looping evaluations.

• set_skip can also be used to control evaluation. See the REFERENCE entry for
CBV_CONV for discussion of set_skip.

Custom evaluators For some problems, it is desirable to construct a customized eval-
uator, specialized to a fixed set of definitions. The compset type found in computeLib is
the type of definition databases. The functions new_compset, bool_compset, add_funs,
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and add_convs provide the standard way to build up such databases. Another quite use-
ful compset is reduceLib.num_compset, which may be used for evaluating terms with
numbers and booleans. Given a compset, the function CBV_CONV generates an evaluator:
it is used to implement EVAL. See REFERENCE for more details.

Dealing with Functions over Peano Numbers Functions defined by pattern-matching
over Peano-style numbers are not in the right format for EVAL, since the calculations
will be asymptotically inefficient. Instead, the same definition should be used over
numerals, which is a positional notation described in Section 3.3.3. However, it is
preferable for proofs to work over Peano numbers. In order to bridge this gap, the
function numLib.SUC_TO_NUMERAL_DEFN_CONV is used to convert a function over Peano
numbers to one over numerals, which is the format that EVAL prefers. Define will
automatically call SUC_TO_NUMERAL_DEFN_CONV on its result.

Storing definitions Define automatically adds its definition to the global compset
used by EVAL and EVAL_TAC. However, when Hol_defn is used to define a function, its
defining equations are not added to the global compset until tprove is used to prove
the termination constraints. Moreover, tprove does not add the definition persistently
into the global compset. Therefore, one must use add_persistent_funs in a theory to
be sure that definitions made by Hol_defn are available to EVAL in descendant theories.
Another point: one must call add_persistent_funs before export_theory is called.

5.7 Arithmetic Libraries—numLib, intLib and realLib

Each of the arithmetic libraries of HOL provide a suite of definitions and theorems as
well as automated inference support.

numLib The most basic numbers in HOL are the natural numbers. The numLib li-
brary encompasses the theories numTheory, prim_recTheory, arithmeticTheory, and
numeralTheory. This library also incorporates an evaluator for numeric expression from
reduceLib and a decision procedure for linear arithmetic ARITH_CONV. The evaluator
and the decision procedure are integrated into the simpset arith_ss used by the simpli-
fier. As well, the linear arithmetic decision procedure can be directly invoked through
DECIDE and DECIDE_TAC, both found in bossLib.

intLib The intLib library comprises integerTheory, an extensive theory of the inte-
gers, plus two decision procedures for full Presburger arithmetic. These are available
as intLib.COOPER_CONV and intLib.ARITH_CONV. These decision procedures are able
to deal with linear arithmetic over the integers and the natural numbers, as well as
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dealing with arbitrary alternation of quantifiers. The ARITH_CONV procedure is an im-
plementation of the Omega Test, and seems to generally perform better than Cooper’s
algorithm. There are problems for which this is not true however, so it is useful to have
both procedures available.

realLib The realLib library provides a foundational development of the real numbers
and analysis. See Section 3.3.6 for a quick description of the theories. Also provided is
a theory of polynomials, in polyTheory. A decision procedure for linear arithmetic on
the real numbers is also provided by realLib, under the name REAL_ARITH_CONV and
REAL_ARITH_TAC.

5.8 Bit Vector Library—wordsLib

The library wordsLib provides tool support for bit-vectors, this includes facilities for:
evaluation, parsing, pretty-printing and simplification.

5.8.1 Evaluation

The library wordsLib should be loaded when evaluating ground bit-vector terms. This
library provides a compset words_compset, which can be used in the construction of
custom compsets and conversions.

1- load "wordsLib";

> val it = () : unit

- EVAL ‘‘8w + 9w:word4‘‘;

> val it = |- 8w + 9w = 1w : thm

Note that a type annotation is used here to designate the word size. When the word
size is represented by a type variable (i.e. for arbitrary length words), evaluation may
give partial or unsatisfactory results.

5.8.2 Parsing and pretty-printing

Words can be parsed in binary, decimal and hexadecimal. For example:

2- ‘‘0b111011w : word8‘‘;

> val it = ‘‘58w‘‘ : term

- ‘‘0x3Aw : word8‘‘;

> val it = ‘‘58w‘‘ : term

It is possible to parse octal numbers, but this must be enabled first by setting the refer-
ence base_tokens.allow_octal_input to true. For example:
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3- ‘‘072w : word8‘‘;

> val it = ‘‘72w‘‘ : term

- base_tokens.allow_octal_input:=true;

> val it = () : unit

- ‘‘072w : word8‘‘;

> val it = ‘‘58w‘‘ : term

Words can be pretty-printed using the standard number bases. For example, the
function wordsLib.output_words_as_bin will select binary format:

4- wordsLib.output_words_as_bin();

> val it = () : unit

- EVAL ‘‘($FCP ODD):word16‘‘;

> val it = |- $FCP ODD = 0b1010101010101010w : thm

The function output_words_as is more flexible and allows the number base to vary de-
pending on the word length and numeric value. The default pretty-printer (installed
when loading wordsLib) prints small values in decimal and large values in hexadeci-
mal. The function output_words_as_oct will automatically enable the parsing of octal
numbers.

The trace variable "word printing" provides an alternative method for changing the
output number base — it is particularly suited to temporarily selecting a number base,
for example:

5- Feedback.trace ("word printing", 1) Parse.print_term ‘‘32w‘‘;

<<HOL message: inventing new type variable names: ’a>>

0b100000w> val it = () : unit

The choices are as follows: 0 (default) – small numbers decimal, large numbers hex-
adecimal; 1 – binary; 2 – octal; 3 – decimal; and 4 – hexadecimal.

5.8.2.1 Types

You may have noticed that :word4 and :word8 have been used as convenient parsing
abbreviations for :bool[4] and :bool[8] — this facility is available for many standard
word sizes. Users wishing to use this notation for non-standard word sizes can use the
function wordsLib.mk_word_size:

6- ‘‘:word15‘‘;

! Uncaught exception:

! HOL_ERR

- wordsLib.mk_word_size 15;

> val it = () : unit

- ‘‘:word15‘‘;

> val it = ‘‘:bool[15]‘‘ : hol_type
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5.8.2.2 Operator overloading

The symbols for the standard arithmetic operations (addition, subtraction and multipli-
cation) are overloaded with operators from other standard theories, i.e. for the natural,
integer, rational and real numbers. In many cases type inference will resolve overload-
ing, however, in some cases this is not possible. The choice of operator will then depend
upon the order in which theories are loaded. To change this behaviour the functions
wordsLib.deprecate_word and wordsLib.prefer_word are provided. For example, in
the following session, the selection of word operators is deprecated:

7- type_of ‘‘a + b‘‘;

<<HOL message: more than one resolution of overloading was possible>>

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘:bool[’a]‘‘ : hol_type

- wordsLib.deprecate_word();

> val it = () : unit

- type_of ‘‘a + b‘‘;

<<HOL message: more than one resolution of overloading was possible>>

> val it = ‘‘:num‘‘ : hol_type

In the above, natural number addition is chosen in preference to word addition. Con-
versely, words are preferred over the integers below:

8- load "intLib"; ...

- type_of ‘‘a + b‘‘;

<<HOL message: more than one resolution of overloading was possible>>

> val it = ‘‘:int‘‘ : hol_type

- wordsLib.prefer_word();

> val it = () : unit

- type_of ‘‘a + b‘‘;

<<HOL message: more than one resolution of overloading was possible>>

<<HOL message: inventing new type variable names: ’a>>

> it = ‘‘:bool[’a]‘‘ : hol_type

Of course, type annotations could have been added to avoid this problem entirely. Note
that, unlike deprecate_int, the function deprecate_word does not remove the over-
loadings, it simply lowers their priority.

5.8.2.3 Guessing word lengths

It can be a nuisance to add type annotations when specifying the return type for oper-
ations such as: word_extract, word_concat, concat_word_list and word_replicate.
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This is because there is often a “standard” length that could be guessed, e.g. concate-
nation usually sums the constituent word lengths. A facility for word length guessing
is controlled by the reference wordsLib.guessing_word_lengths, which is false by de-
fault. The guesses are made during a post-processing step that occurs after the applica-
tion of Parse.Term. This is demonstrated below.

9- wordsLib.guessing_word_lengths:=true;

> val it = () : unit

- ‘‘concat_word_list [(4 >< 1) (w:word32); w2; w3]‘‘;

<<HOL message: inventing new type variable names: ’a, ’b>>

<<HOL message: assigning word length: ’a <- 4>>

<<HOL message: assigning word length: ’b <- 12>>

> val it =

‘‘concat_word_list [(4 >< 1) w; w2; w3]‘‘

: term

In the example above, word length guessing is turned on. Two guesses are made: the
extraction is expected to give a four bit word, and the concatenation gives a twelve bit
word (3 × 4). If non-standard numeric lengths are required then type annotations can
be added to avoid guesses being made. With guessing turned off the result types would
remain as invented type variables, i.e. as alpha and beta above.

5.8.3 Simplification and conversions

The following simpset fragments are provided:

SIZES_ss evaluates a group of functions that operate over numeric types, such as
dimindex and dimword.

BIT_ss tries to simplify occurrences of the function BIT.

WORD_LOGIC_ss simplifies bitwise logic operations.

WORD_ARITH_ss simplifies word arithmetic operations. Subtraction is replaced with
multiplication by -1.

WORD_SHIFT_ss simplifies shift operations.

WORD_ss contains all of the above fragments, and also does some extra ground term
evaluation. This fragment is added to srw_ss.

WORD_ARITH_EQ_ss simplifies ‘‘a = b‘‘ to ‘‘a - b = 0w‘‘.

WORD_BIT_EQ_ss aggressively expands non-arithmetic bit-vector operations into Boolean
expressions. (Should be used with care – it includes fcpLib.FCP_ss.)
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WORD_EXTRACT_ss simplification for a variety of operations: word-to-word conversions;
concatenation; shifts and bit-field extraction. Can be used in situations where
WORD_BIT_EQ_ss is unsuitable.

WORD_MUL_LSL_ss simplifies multiplication by a word literal into a sum of partial prod-
ucts.

Many of these simpset fragments have corresponding conversions. For example, the
conversion WORD_ARITH_CONV is based on WORD_ARITH_EQ_ss, however, it does some
extra work to ensure that ‘‘a = b‘‘ and ‘‘b = a‘‘ convert into the same expression.
Therefore, this conversion is suited to reasoning about the equality of arithmetic word
expressions.

The behaviour of the fragments listed above are demonstrated using the following
function:

10- fun conv ss = SIMP_CONV (pure_ss++ss) [];

> val conv = fn : ssfrag -> term -> thm

The following session demonstrates SIZES_ss:

11- conv wordsLib.SIZES_ss ‘‘dimindex(:12)‘‘;

> val it = |- dimindex (:12) = 12 : thm

- conv wordsLib.SIZES_ss ‘‘FINITE univ(:32)‘‘;

> val it = |- FINITE univ(:32) <=> T : thm

The fragment BIT_ss converts BIT into membership test over a set of (high) bit posi-
tions:

12- conv wordsLib.BIT_ss ‘‘BIT 3 5‘‘;

> val it = |- BIT 3 5 <=> (3 = 0) \/ (3 = 2) : thm

- conv wordsLib.BIT_ss ‘‘BIT i 123‘‘;

> val it = |- BIT i 123 <=> i IN {0; 1; 3; 4; 5; 6} :

thm

This simplification provides some support for reasoning about bitwise operations over
arbitrary word lengths. The arithmetic, logic and shift fragments help tidy up basic
word expressions:
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13- conv wordsLib.WORD_LOGIC_ss ‘‘a && 12w || 11w && a‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it =

|- a && 12w || 11w && a = 15w && a :

thm

- conv wordsLib.WORD_ARITH_ss ‘‘3w * b + a + 2w * b - a * 4w:word2‘‘;

> val it =

|- 3w * b + a + 2w * b - a * 4w = a + b

: thm

- conv wordsLib.WORD_SHIFT_ss ‘‘0w << 12 + a >>> 0 + b << 2 << 3‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it =

|- 0w << 12 + a >>> 0 + b << 2 << 3 = 0w + a + b << (2 + 3)

: thm

The remaining fragments are not included in wordsLib.WORD_ss or srw_ss. The bit
equality fragment is demonstrated below.

14- SIMP_CONV (std_ss++wordsLib.WORD_BIT_EQ_ss) [] ‘‘a && b = ~0w : word2‘‘;

> val it =

|- (a && b = ~0w) <=> (a ’ 1 /\ b ’ 1) /\ a ’ 0 /\ b ’ 0

: thm

The extract fragment is useful for reasoning about bit-field operations and is best used
in combination with wordsLib.SIZES_ss or wordsLib.WORD_ss, for example:

15- SIMP_CONV (std_ss++wordsLib.SIZES_ss++wordsLib.WORD_EXTRACT_ss) []

‘‘(4 -- 1) ((a:word3) @@ (b:word2)) : word5‘‘;

> val it =

|- (4 -- 1) (a @@ b) = (2 >< 0) a << 1 || (1 >< 1) b

: thm

Finally, the fragment WORD_MUL_LSL_ss is demonstrated below.

16- conv wordsLib.WORD_MUL_LSL_ss ‘‘5w * a : word8‘‘;

> val it = |- 5w * a = a << 2 + a : thm

Rewriting with the theorem wordsTheory.WORD_MUL_LSL provides an means to undo
this simplification, for example:

17- SIMP_CONV (std_ss++wordsLib.WORD_ARITH_ss) [wordsTheory.WORD_MUL_LSL]

‘‘a << 2 + a : word8‘‘;

> val it = |- a << 2 + a = 5w * a : thm

Obviously, without adding safeguards, this rewrite theorem cannot be deployed when
used in combination with the WORD_MUL_LSL_ss fragment.
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5.8.3.1 Decision procedures

A decision procedure for words is provided in the form of blastLib.BBLAST_PROVE.
This procedure uses bit-blasting — converting word expressions into propositions and
then using a SAT solver to decide the goal.9 This approach is reasonably general and
can tackle a wide range of bit-vector problems. However, there are some limitations:
the approach only works for constant word lengths, linear arithmetic (multiplication by
literals) and for shifts and bit-field extractions with respect to literal values. Also note
that some problems will be potentially slow to prove, e.g. when word sizes are large
and/or when there are many nested additions (perhaps through multiplication).

The following examples show BBLAST_PROVE in use:

18- blastLib.BBLAST_PROVE ‘‘a + 2w <+ 4w = a <+ 2w \/ 13w <+ a :word4‘‘;

> val it =

|- a + 2w <+ 4w <=> a <+ 2w \/ 13w <+ a

: thm

- blastLib.BBLAST_PROVE ‘‘w2w (a:word8) <+ 256w : word16‘‘;

> val it = |- w2w a <+ 256w : thm

The decision procedure BBLAST_PROVE is based on the conversion BBLAST_CONV. This
conversion can be used to convert bit-vector problems into a propositional form; for
example:

19- blastLib.BBLAST_CONV ‘‘(((a : word16) + 5w) << 3) ’ 5‘‘;

> val it =

|- ((a + 5w) << 3) ’ 5 <=> (~a ’ 2 <=> ~(a ’ 1 /\ a ’ 0))

: thm

There are also bit-blasting tactics: BBLAST_TAC and FULL_BBLAST_TAC; with only the
latter making use of goal assumptions.

5.9 The HolSat Library

The purpose of HolSatLib is to provide a platform for experimenting with combinations
of theorem proving and SAT solvers. Only black box functionality is provided at the
moment; an incremental interface is not available.
HolSatLib provides a function SAT PROVE for propositional satisfiability testing and

for proving propositional tautologies. It uses an external SAT solver (currently MiniSat
1.14p) to find an unsatisfiability proof or satisfying assignment, and then reconstructs
the proof or checks the assignment deductively in HOL.

Alternatively, the function SAT ORACLE has the same behaviour as SAT PROVE but as-
serts the result of the solver without proof. The theorem thus asserted is tagged with

9This approach enables counter-examples to be given when a goal’s negation is satisfiable.
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“HolSatLib” to indicate that it is unchecked. Since proof reconstruction can be expen-
sive, the oracle facility can be useful during prototyping, or if proof is not required.

The following example illustrates the use of HolSatLib for proving propositional tau-
tologies:

1- load "HolSatLib"; open HolSatLib;

(* output omitted *)

> val it = () : unit

- show_tags := true;

> val it = () : unit

- SAT_PROVE ‘‘(a ==> b) /\ (b ==> a) = (a=b)‘‘;

> val it = [oracles: DISK_THM] [axioms: ] []

|- (a ==> b) /\ (b ==> a) = (a = b) : thm

- SAT_PROVE ‘‘(a ==> b) ==> (a=b)‘‘

handle HolSatLib.SAT_cex th => th;

> val it = [oracles: DISK_THM] [axioms: ] []

|- ~a /\ b ==> ~((a ==> b) ==> (a = b)) : thm

- SAT_ORACLE ‘‘(a ==> b) /\ (b ==> a) = (a=b)‘‘;

> val it = [oracles: DISK_THM, HolSatLib] [axioms: ] []

|- (a ==> b) /\ (b ==> a) = (a = b) : thm

Setting show tags to true makes the HOL top-level print theorem tags. The DISK THM

oracle tag has nothing to do with HolSatLib. It just indicates the use of theorems from
HOL libraries read in from permanent storage.

Note that in the case where the putative tautology has a falsifying interpretation,
a counter-model can be obtained by capturing the special exception SAT cex, which
contains a theorem asserting the counter-model.

The next example illustrates using HolSatLib for satisfiability testing. The idea is to
negate the target term before passing it to HolSatLib.

2- SAT_PROVE ‘‘~((a ==> b) ==> (a=b))‘‘

handle HolSatLib.SAT_cex => th;

> val it = [oracles: DISK_THM ] [axioms: ] []

|- a /\ ~b ==> ~~((a ==> b) ==> (a = b)) : thm

- SAT_PROVE ‘‘~(a /\ ~a)‘‘;

> val it = [oracles: DISK_THM ] [axioms: ] []

|- ~(a /\ ~a) : thm

As expected, if the target term is unsatisfiable we get a theorem saying as much.
HolSatLib can only handle purely propositional terms (atoms must be propositional

variables or constants) involving the usual propositional connectives as well as Boolean-
valued conditionals. If you wish to prove tautologies that are instantiations of proposi-
tional terms, use tautLib (see §5.9.1 below).
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If MiniSat failed to build when HOL was built, or proof replay fails for some other rea-
son, SAT PROVE falls back to a DPLL-based propositional tautology prover implemented
in SML, due to Michael Norrish (see the HOL Tutorial). HolSatLib prints out a warning
if this happens. On problems with more than a thousand or so clauses (in conjunctive
normal form (CNF)), the SML prover will likely take too long to be of any use.
HolSatLib will delete temporary files generated by the SAT solver, such as the proof

file and any statistics. This is to avoid accumulating thousands of possibly large files.
Currently HolSatLib has only been tested on Linux, and on Windows XP using MinGW.

5.9.1 tautLib

tautLib predates HolSatLib by over a decade. It used a Boolean case analysis algorithm
suggested by Tom Melham and implemented by R. J. Boulton. This algorithm has since
been superseded and the functions in the tautLib signature now act as wrappers around
calls to HolSatLib. However, the wrappers are able to provide the following extra
functionality on top of HolSatLib:

1. They can handle top level universal quantifiers.

2. They can reason about (the propositional structure of) terms that are instances
of purely propositional terms. This is done by a preprocessing step that replaces
each unique instantiation with a fresh propositional variable.

For details, see the source file src/taut/tautLib.sml which contains comprehensive
comments. Note however that the extra functionality in tautLib was not engineered
for very large problems and can become a performance bottleneck.

5.9.2 Support for other SAT solvers

The ZChaff SAT solver has a proof production mode and is supported by HolSatLib.
However, the ZChaff end user license is not compatible with the HOL license, so we are
unable to distribute it with HOL. If you wish to use ZChaff, download and unpack it in
the directory src/HolSat/sat solvers/ under the main HOL directory, and compile it
with proof production mode enabled (which is not the default). This should create a
binary zchaff in the directory src/HolSat/sat solvers/zchaff/. ZChaff can now be
used as the external proof engine instead of MiniSat, by using the HolSatLib functions
described above, prefixed with a “Z”, e.g., ZSAT PROVE.

A file resolve trace may be created in the current working directory, when working
with ZChaff. This is the proof trace file produced by ZChaff, and is hardwired.

Other SAT solvers are currently not supported. If you would like such support to be
added for your favourite solver, please send a feature request via http://github.com/

mn200/HOL.

http://github.com/mn200/HOL
http://github.com/mn200/HOL
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5.9.3 The general interface

The functions described above are wrappers for the function GEN SAT, which is the single
entry point for HolSatLib. GEN SAT can be used directly if more flexibility is required.
GEN SAT takes a single argument, of type sat config, defined in satConfig.sml. This
is an opaque record type, currently containing the following fields:

1. term : Term.term

The input term.

2. solver : SatSolvers.sat solver

The external SAT solver to use. The default is SatSolvers.minisatp. If ZChaff is
installed (see §5.9.2), then SatSolvers.zchaff may also be used.

3. infile : string option

The name of a file in DIMACS format.10. Overrides term if set. The input term is
instead read from the file.

4. proof : string option

The name of a proof trace file. Overrides solver if set. The file must be in the
native format of HolSatLib, and must correspond to a proof for infile, which
must also be set. The included version of MiniSat has been modified to produce
proofs in the native format, and ZChaff proofs are translated to this format using
the included proof translator src/HolSat/sat solvers/zc2hs (type zc2hs -h for
usage help). zc2hs is used internally by ZSAT PROVE etc.

5. is cnf : bool

If true then the input term is expected to be a negated CNF term. This is set
automatically if infile is set. Typically a user will never need to modify this field
directly.

6. is proved : bool

If true then HOL will prove the SAT solver’s results.

A special value base config : sat config is provided for which the term is T, the
solver is MiniSat, the options are unset, the CNF flag is false and the proof flag is true.
This value can be inspected and modified using getter and setter functions provided in
src/HolSat/satConfig.sig. For example, to invoke ZChaff (assuming it is installed),
on a file unsat.cnf containing an unsatisfiable problem, we do:

10http://www.satlib.org/Benchmarks/SAT/satformat.ps

http://www.satlib.org/Benchmarks/SAT/satformat.ps
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3- open satConfig;

(* output omitted *)

- val c = (set_infile "unsat.cnf" o set_solver SatSolvers.zchaff) base_config;

> val c = <sat_config> : sat_config

- GEN_SAT c;

> val it = [oracles: DISK_THM ] [axioms: ] []

|- ~<unsat.cnf term here> : thm

If the problem were satisfiable, the model can be captured via exception, as shown
earlier.

Normally, HolSatLib will delete the files generated by the SAT solver, such as the
output proof, counter-model, and result status. However, if infile is set, the files are
not deleted, in case they are required elsewhere.

5.9.4 Notes

On Linux and MacOS, g++ must be installed on the system for MiniSat and zc2hs to
build.

Temporary files are generated using the Moscow ML function FileSys.tmpName. This
usually writes to the standard temporary file space on the operating system. If that
file space is full, or if it is inaccessible for some other reason, HolSatLib calls may fail
mysteriously.

The function dimacsTools.readDimacs file reads a DIMACS format file and returns
a CNF HOL term corresponding to the SAT problem in the file named by file. Since
DIMACS uses numbers to denote variables, and numbers are not legal identifiers in
HOL, each variable number is prefixed with the string “v”. This string is defined in the
reference variable dimacsTools.prefix and can be changed if required. This function
can be used independently of HolSatLib to read in DIMACS format files.

5.10 The HolQbf Library

HolQbfLib provides a rudimentary platform for experimenting with combinations of
theorem proving and Quantified Boolean Formulae (QBF) solvers. HolQbfLib was de-
veloped as part of a research project on Expressive Multi-theory Reasoning for Interactive
Verification (EPSRC grant EP/F067909/1) from 2008 to 2011. It is loosely inspired by
HolSatLib (Section 5.9), and has been described in parts in the following publications:

• Tjark Weber: Validating QBF Invalidity in HOL4. In Matt Kaufmann and Lawrence
C. Paulson, editors, Interactive Theorem Proving, First International Conference,
ITP 2010, Edinburgh, UK, July 11–14, 2010. Proceedings, volume 6172 of Lecture
Notes in Computer Science, pages 466–480. Springer, 2010.
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• Ramana Kumar and Tjark Weber: Validating QBF Validity in HOL4. In Marko C.
J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors,
Interactive Theorem Proving, Second International Conference, ITP 2011, Berg en
Dal, The Netherlands, August 22–25, 2011. Proceedings, volue 6898 of Lecture
Notes in Computer Science, pages 168–183. Springer, 2011.

HolQbfLib uses an external QBF solver, Squolem, to decide Quantified Boolean Formu-
lae.

5.10.1 Installing Squolem

HolQbfLib has been tested with (the x86 Linux version of) Squolem 2.02 (release date
2010-11-10). This is Squolem’s latest version at the time of writing. Squolem can be
obtained from http://www.cprover.org/qbv/download.html. After installation, you
must make the executable available as squolem2, e.g., by placing it into a folder that is
in your $PATH. This name is currently hard-coded: there is no configuration option to
tell HOL about the location and name of the Squolem executable.

5.10.2 Interface

The library provides four functions, each of type term -> thm, to invoke Squolem:
decide, decide_prenex, disprove, and prove. These are defined in the HolQbfLib

structure, which is the library’s main entry point.

Calling prove φ will invoke Squolem on the QBF φ to establish its validity. If this
succeeds, prove will then validate the certificate of validity generated by Squolem in
HOL to return a theorem ` φ.

Similarly, calling disprove φ will invoke Squolem to establish that φ is invalid. If this
succeeds, disprove will then validate the certificate of invalidity generated by Squolem
in HOL to return a theorem φ ` ⊥.

decide_prenex φ combines the functionality of prove and disprove into a single
function. It will invoke Squolem on φ and return either ` φ or φ ` ⊥, depending on
Squolem’s answer.

Finally, decide does the same job as decide_prenex but accepts QBFs in a less re-
stricted form. Restrictions on φ are described below.

http://www.cprover.org/qbv/download.html
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1- load "HolQbfLib";

metis: r[+0+3]#

r[+0+6]#

> val it = () : unit

- open HolQbfLib;

> val decide = fn: term -> thm

val decide_prenex = fn: term -> thm

val disprove = fn: term -> thm

val prove = fn: term -> thm

- show_assums := true;

> val it = () : unit

- decide ‘‘?x. x‘‘;

<<HOL message: HolQbfLib: calling external command

’squolem2 -c /tmp/filedH1K2x >/dev/null 2>&1’>>

> val it = [] |- ?x. x: thm

- decide ‘‘(?y. x \/ y) ==> ~x‘‘;

> val it = [!x. (?y. x \/ y) ==> ~x] |- F: thm

- decide ‘‘~(?x. x ==> y) \/ (?x. y ==> x)‘‘;

<<HOL message: HolQbfLib: calling external command

’squolem2 -c /tmp/fileyap3oD >/dev/null 2>&1’>>

> val it = [] |- ~(?x. x ==> y) \/ ?x. y ==> x: thm

- decide_prenex ‘‘!x. ?y. x /\ y‘‘;

<<HOL message: HolQbfLib: calling external command

’squolem2 -c /tmp/fileZAGj4m >/dev/null 2>&1’>>

> val it = [!x. ?y. x /\ y] |- F : thm

- disprove ‘‘!x. ?y. x /\ y‘‘;

<<HOL message: HolQbfLib: calling external command

’squolem2 -c /tmp/file0Pw2Tg >/dev/null 2>&1’>>

> val it = [!x. ?y. x /\ y] |- F : thm

- prove ‘‘?x. x‘‘;

<<HOL message: HolQbfLib: calling external command

’squolem2 -c /tmp/fileKi4Lkz >/dev/null 2>&1’>>

- val it = [] |- ?x. x: thm

Supported subset of higher-order logic The argument given to decide must be a
Boolean term built using only conjunction, disjunction, implication, negation, univer-
sal/existential quantification, and variables. Free variables are considered universally
quantified. Every quantified variable must occur.

The argument given to the other functions must be a QBF in prenex form, i.e., a term
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of the form Q1x1. Q2x2. . . . Qnxn. φ, where

• n ≥ 0,

• each Qi is an (existential or universal) quantifier,

• Qn is the existential quantifier,

• each xi is a Boolean variable,

• φ is a propositional formula in CNF, i.e., a conjunction of disjunctions of (possibly
negated) Boolean variables,

• φ must actually contain each xi,

• all xi must be distinct, and

• φ does not contain variables other than x1, . . . , xn.

The behavior is undefined if any of these restrictions are violated.

Support for the QDIMACS file format The QDIMACS standard defines an input file
format for QBF solvers. HolQbfLib provides a structure QDimacs that implements (parts
of) the QDIMACS standard, version 1.1 (released on December 21, 2005), as described
at http://www.qbflib.org/qdimacs.html. The QDimacs structure does not require
Squolem (or any other QBF solver) to be installed.
QDimacs.write_qdimacs_file path φ creates a QDIMACS file (with name path)

that encodes the QBF φ, where φ must meet the requirements detailed above. The
function returns a dictionary that maps each variable in φ to its corresponding variable
index (a positive integer) used in the QDIMACS file.
QDimacs.read_qdimacs_file f path parses an existing QDIMACS file (with name

path) and returns the encoded QBF as a HOL term. Since variables are only given as
integers in the QDIMACS format, variables in HOL are obtained by applying f (which
is a function of type int -> term) to each integer. f is expected to return Boolean
variables only, not arbitrary HOL terms.

Tracing Tracing output can be controlled via Feedback.set_trace "HolQbfLib". See
the source code in QbfTrace.sml for possible values.

Communication between HOL and Squolem is via temporary files. These files are
located in the standard temporary directory, typically /tmp on Unix machines. The
actual file names are generated at run-time, and can be shown by setting the above
tracing variable to a sufficiently high value.

http://www.qbflib.org/qdimacs.html
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The default behavior of HolQbfLib is to delete temporary files after successful invo-
cation of Squolem. This also can be changed via the above tracing variable. If there is
an error, files are retained in any case (but note that the operating system may delete
temporary files automatically, e.g., when HOL exits).

5.10.3 Wishlist

The following features have not been implemented yet. Please submit additional feature
requests (or code contributions) via http://github.com/mn200/HOL.

Support for other QBF solvers So far, Squolem is the only QBF solver that has been
integrated with HOL. Several other QBF solvers can produce proofs, and it would be nice
to offer HOL users more choice (also because Squolem’s performance is not necessarily
state-of-the-art anymore).

QBF solvers as a web service The need to install a QBF solver locally poses an entry
barrier. It would be much more convenient to have a web server running one (or sev-
eral) QBF solvers, roughly similar to the “System on TPTP” interface that G. Sutcliffe
provides for first-order theorem provers (http://www.cs.miami.edu/~tptp/cgi-bin/
SystemOnTPTP).

5.11 The HolSmt library

The purpose of HolSmtLib is to provide a platform for experimenting with combina-
tions of interactive theorem proving and Satisfiability Modulo Theories (SMT) solvers.
HolSmtLib was developed as part of a research project on Expressive Multi-theory Rea-
soning for Interactive Verification (EPSRC grant EP/F067909/1) from 2008 to 2011. It
is loosely inspired by HolSatLib (Section 5.9), and has been described in parts in the
following publications:

• Tjark Weber: SMT Solvers: New Oracles for the HOL Theorem Prover. To appear in
International Journal on Software Tools for Technology Transfer (STTT), 2011.

• Sascha Böhme, Tjark Weber: Fast LCF-Style Proof Reconstruction for Z3. In Matt
Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem Proving, First
International Conference, ITP 2010, Edinburgh, UK, July 11–14, 2010. Pro-
ceedings, volume 6172 of Lecture Notes in Computer Science, pages 179–194.
Springer, 2010.

HolSmtLib uses external SMT solvers to prove instances of SMT tautologies, i.e., formu-
las that are provable using (a combination of) propositional logic, equality reasoning,

http://github.com/mn200/HOL
http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
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linear arithmetic on integers and reals, and decision procedures for bit vectors and ar-
rays. The supported fragment of higher-order logic varies with the SMT solver used,
and is discussed in more detail below. At least for Yices, it is a superset of the fragment
supported by bossLib.DECIDE (and the performance of HolSmtLib, especially on big
problems, should be much better).

5.11.1 Interface

The library currently provides three tactics to invoke different SMT solvers, namely
YICES_TAC, Z3_ORACLE_TAC, and Z3_TAC. These tactics are defined in the HolSmtLib

structure, which is the library’s main entry point. Given a goal (Γ, ϕ) (where Γ is a list
of assumptions, and ϕ is the goal’s conclusion), each tactic returns (i) an empty list of
new goals, and (ii) a validation function that returns a theorem Γ′ ` ϕ (with Γ′ ⊆ Γ).
These tactics fail if the SMT solver cannot prove the goal.11 In other words, these tactics
solve the goal (or fail). As with other tactics, Tactical.TAC_PROOF can be used to derive
functions of type goal -> thm.

For each tactic, the HolSmtLib structure additionally provides a corresponding func-
tion of type term -> thm. These functions are called YICES_PROVE, Z3_ORACLE_PROVE,
and Z3_PROVE, respectively. Applied to a formula ϕ, they return the theorem ∅ ` ϕ (or
fail).

Oracles vs. proof reconstruction YICES_TAC and Z3_ORACLE_TAC use the SMT solver
(Yices and Z3, respectively) as an oracle: the solver’s result is trusted. Bugs in the SMT
solver or in HolSmtLib could potentially lead to inconsistent theorems. Accordingly, the
derived theorem is tagged with an oracle tag.
Z3_TAC, on the other hand, performs proof reconstruction. It requests a detailed

proof from Z3, which is then checked in HOL. One obtains a proper HOL theorem; no
(additional) oracle tags are introduced. However, Z3’s proofs do not always contain
enough information to allow efficient checking in HOL; therefore, proof reconstruction
may be slow or fail.

Supported subsets of higher-order logic YICES_TAC employs a translation into Yices’s
native input format. The interface supports types bool, num, int, real, -> (i.e., func-
tion types), prod (i.e., tuples), fixed-width word types, inductive data types, records,
and the following terms: equality, Boolean connectives (T, F, ==>, /\, \/, negation,
if-then-else, bool-case), quantifiers (!, ?), numeric literals, arithmetic operators
(SUC, +, -, *, /, unary minus, DIV, MOD, ABS, MIN, MAX), comparison operators (<, <=,

11Internally, the goal’s assumptions and the negated conclusion are passed to the SMT solver. If the
SMT solver determines that these formulas are unsatisfiable, then the (unnegated) conclusion must be
provable from the assumptions.
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>, >=, both on num, int, and real), function application, lambda abstraction, tuple
selectors FST and SND, and various word operations.

Z3 is integrated via a more restrictive translation into SMT-LIB 2 format, described
below. Therefore, Yices is typically the solver of choice at the moment (unless you
need proof reconstruction, which is available for Z3 only). However, there are a few
operations (e.g., specific word operations) that are supported by the SMT-LIB format,
but not by Yices. See selftest.sml for further details.

Terms of higher-order logic that are not supported by the respective target solver/
translation are typically treated in one of three ways:

1. Some unsupported terms are replaced by equivalent suppported terms during a
pre-processing step. For instance, all tactics first generalize the goal’s conclusion
by stripping outermost universal quantifiers, and attempt to eliminate certain set
expressions by rewriting them into predicate applications: e.g., y IN {x | P x}
is replaced by P y. The resulting term is β-normalized. Depending on the target
solver, further simplifications are performed.

2. Remaining unsupported constants are treated as uninterpreted, i.e., replaced by
fresh variables. This should not affect soundness, but it may render goals unprov-
able and lead to spurious counterexamples. To see all fresh variables introduced
by the translation, you can set HolSmtLib’s tracing variable (see below) to a suffi-
ciently high value.

3. Various syntactic side conditions are currently not enforced by the translation and
may result in invalid input to the SMT solver. For instance, Yices only allows
linear arithmetic (i.e., multiplication by constants) and word-shifts by numeric
literals (constants). If the goal is outside the allowed syntactic fragment, the
SMT solver will typically fail to decide the problem. HolSmtLib at present only
provides a generic error message in this case. Inspecting the SMT solver’s output
might provide further hints.
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1- load "HolSmtLib"; open HolSmtLib;

(* output omitted *)

> val it = () : unit

- show_tags := true;

> val it = () : unit

- YICES_PROVE ‘‘(a ==> b) /\ (b ==> a) = (a=b)‘‘;

> val it = [oracles: DISK_THM, HolSmtLib] [axioms: ] []

|- (a ==> b) /\ (b ==> a) = (a = b) : thm

- Z3_ORACLE_PROVE ‘‘(a ==> b) /\ (b ==> a) = (a=b)‘‘;

> val it = [oracles: DISK_THM, HolSmtLib] [axioms: ] []

|- (a ==> b) /\ (b ==> a) = (a = b) : thm

- Z3_PROVE ‘‘(a ==> b) /\ (b ==> a) = (a=b)‘‘;

> val it = [oracles: DISK_THM] [axioms: ] []

|- (a ==> b) /\ (b ==> a) = (a = b) : thm

Support for the SMT-LIB 2 file format SMT-LIB (see http://combination.cs.uiowa.
edu/smtlib/) is the standard input format for SMT solvers. HolSmtLib supports (a sub-
set of) version 2.0 of this format. A translation of HOL terms into SMT-LIB 2 format is
available in SmtLib.sml, and a parser for SMT-LIB 2 files (translating them into HOL

types, terms, and formulas) can be found in SmtLib_Parser.sml, with auxiliary func-
tions in SmtLib_{Logics,Theories}.sml.

The SMT-LIB 2 translation supports types bool, int and real, fixed-width word types,
and the following terms: equality, Boolean connectives, quantifiers, numeric literals,
arithmetic operators, comparison operators, function application, and various word
operations. Notably, the SMT-LIB interface does not support type num, data types or
records, and higher-order formulas. See the files mentioned above and the examples in
selftest.sml for further details.

Tracing Tracing output can be controlled via Feedback.set_trace "HolSmtLib". See
the source code in Library.sml for possible values.

Communication between HOL and external SMT solvers is via temporary files. These
files are located in the standard temporary directory, typically /tmp on Unix machines.
The actual file names are generated at run-time, and can be shown by setting the above
tracing variable to a sufficiently high value.

The default behavior of HolSmtLib is to delete temporary files after successful invoca-
tion of the SMT solver. This also can be changed via the above tracing variable. If there
is an error, files are retained in any case (but note that the operating system may delete
temporary files automatically, e.g., when HOL exits).

http://combination.cs.uiowa.edu/smtlib/
http://combination.cs.uiowa.edu/smtlib/
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5.11.2 Installing SMT solvers

HolSmtLib has been tested with Yices 1.0.29 and Z3 2.19. Later versions may or may
not work. (Yices 2 is not supported.) To use HolSmtLib, you need to install at least one
of these SMT solvers on your machine. As mentioned before, Yices supports a larger
fragment of higher-order logic than Z3, but proof reconstruction has been implemented
only for Z3.

Yices is available for various platforms from http://yices.csl.sri.com/. After in-
stallation, you must set the environment variable $HOL4 YICES EXECUTABLE to the name
of the Yices executable, e.g., /bin/yices, before you invoke HOL.

The Z3 website, http://research.microsoft.com/en-us/um/redmond/projects/z3/,
provides Windows and Linux versions of the solver. Alternatively, the Windows ver-
sion can be installed on Linux and Mac OS X—see the instructions at http://www4.

in.tum.de/~boehmes/z3.html.12 After installation, you must set the environment vari-
able $HOL4 Z3 EXECUTABLE to the name of the Z3 executable, e.g., /bin/z3, before you
invoke HOL.

It should be relatively straightforward to integrate other SMT solvers that support
the SMT-LIB 2 input format as oracles. However, this will involve a (typically small)
amount of Standard ML programming, e.g., to interpret the solver’s output. See Z3.sml

for some relevant code.

5.11.3 Wishlist

The following features have not been implemented yet. Please submit additional feature
requests (or code contributions) via http://github.com/mn200/HOL.

Counterexamples For satisfiable input formulas, SMT solvers typically return a satis-
fying assignment. This assignment could be displayed to the HOL user as a counterex-
ample. It could also be turned into a theorem, similar to the way HolSatLib treats
satisfying assignments.

Proof reconstruction for other SMT solvers Proof reconstruction has been imple-
mented only for Z3. Several other SMT solvers can produce proofs, and it would be
nice to offer HOL users more choice. However, in the absence of a standard proof for-
mat for SMT solvers, it is perhaps not worth the implementation effort.

Support for Z3’s SMT-LIB extensions Z3 supports extensions of the SMT-LIB lan-
guage, e.g., data types. HolSmtLib does not utilize these extensions yet when calling

12Later versions of Z3 than 2.19 are available for Mac OS X directly, but not supported by HOL.

http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www4.in.tum.de/~boehmes/z3.html
http://www4.in.tum.de/~boehmes/z3.html
http://github.com/mn200/HOL
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Z3. This would require the translation for Z3 to be distinct from the generic SMT-LIB
translation.

SMT solvers as a web service The need to install an SMT solver locally poses an
entry barrier. It would be much more convenient to have a web server running one (or
several) SMT solvers, roughly similar to the “System on TPTP” interface that G. Sutcliffe
provides for first-order theorem provers (http://www.cs.miami.edu/~tptp/cgi-bin/
SystemOnTPTP). For Isabelle/HOL, such a web service has been installed by S. Böhme in
Munich, but unfortunately it is not publicly available. Perhaps the SMT-EXEC initiative
(http://www.smtexec.org/) could offer hardware or implementation support.

http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
http://www.smtexec.org/


Chapter 6

Miscellaneous Features

This section describes some of the features that exist for managing the interface to the
HOL system.

• The help system.

• The trace system for controlling feedback and printing.

• Holmake: a tool for dependency maintenance in large developments.

• Functions for counting the number of primitive inferences done in an evaluation,
and timing it.

• A tool for embedding pretty-printed HOL theorems, terms and types in LATEX doc-
uments.

6.1 Help

There are several kinds of help available in HOL, all accessible through the same incan-
tation:

help <string>;

The kinds of help available are:

Moscow ML help. (When using Moscow ML HOL) This is uniformly excellent. Infor-
mation for library routines is available, whether the library is loaded or not via
help "Lib".

HOL overview. This is a short summary of important information about HOL.

HOL help. This on-line help is intended to document all HOL-specific functions avail-
able to the user. It is very detailed and often accurate; however, it can be out-of-
date, refer to earlier versions of the system, or even be missing!

229
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HOL structure information. For most structures in the HOL source, one can get a list-
ing of the entrypoints found in the accompanying signature. This is helpful for
locating functions and is automatically derived from the system sources, so it is
alway up-to-date.

Theory facts. These are automatically derived from theory files, so they are always up-
to-date. The signature of each theory is available (since theories are represented
by structures in HOL). Also, each axiom, definition, and theorem in the theory can
be accessed by name in the help system; the theorem itself is given.

Therefore the following example queries can be made:

help "installPP" Moscow ML help
help "hol" HOL overview
help "aconv" on-line HOL help
help "Tactic" HOL source structure information
help "boolTheory" theory structure signature
help "list_Axiom" theory structure signature and theorem statement

6.2 The Trace System

The trace system gives the user one central interface with which to control most of
HOL’s many different flags, though they be scattered all over the system, and defined
in different modules. These flags are typically those that determine the level to which
HOL tools provide information to the user while operating. For example, a trace level of
zero will usually make a tool remain completely silent while it operates. The tool may
still raise an exception when it fails, but it won’t also output any messages saying so.

There are three core functions, all in the Feedback structure:

traces : unit ->

{default: int, max: int, name: string, trace_level: int} list

set_trace : string -> int -> unit

trace : (string * int) -> (’a -> ’b) -> (’a -> ’b)

The traces function returns a list of all the traces in the system. The set_trace

function allows the user to set a trace directly. The effect of this might be seen in
a subsequent call to traces(). Finally, the trace function allows for a trace to be
temporarily set while a function executes, restoring the trace to its old value when the
function returns (whether normally, or with an exception).
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6.3 Maintaining HOL Formalizations with Holmake

The purpose of Holmake is to maintain dependencies in a HOL source directory. A single
invocation of Holmake will compute dependencies between files, (re)compile plain ML
code, (re)compile and execute theory scripts, and (re)compile the resulting theory mod-
ules. Holmake does not require the user to provide any explicit dependency information
themselves. Holmake can be very convenient to use, but there are some conventions and
restrictions on it that must be followed, described below.
Holmake can be accessed through

<hol-dir>/bin/Holmake.

The development model that Holmake is designed to support is that there are two
modes of work: theory construction and system revision. In ‘theory construction’ mode,
the user builds up a theory by interacting with HOL, perhaps over many sessions. In
‘system rebuild’ mode, a component that others depend on has been altered, so all
modules dependent on it have to be brought up to date. System rebuild mode is simpler
so we deal with it first.

6.3.1 System rebuild

A system rebuild happens when an existing theory has been improved in some way
(augmented with a new theorem, a change to a definition, etc.), or perhaps some sup-
port ML code has been modified or added to the formalization under development. The
user needs to find and recompile just those modules affected by the change. This is what
an invocation of Holmake does, by identifying the out-of-date modules and re-compiling
and re-executing them.

6.3.2 Theory construction

To start a theory construction, some context (semantic, and also proof support) is estab-
lished, typically by loading parent theories and useful libraries. In the course of build-
ing the theory, the user keeps track of the ML—which, for example, establishes context,
makes definitions, builds and invokes tactics, and saves theorems—in a text file. This
file is used to achieve inter-session persistence of the theory being constructed. For ex-
ample, the text file resulting from session n is “use”-d to start session n + 1; after that,
theory construction resumes.

Once the user finishes the perhaps long and arduous task of constructing a theory, the
user should

1. make the script separately compilable;
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2. invoke Holmake. This will (a) compile and execute the script file; and (b) compile
the resulting theory file. After this, the theory file is available for use.

6.3.3 Making the script separately compilable

First, the invocation

val _ = export_theory();

should be added at the end of the file. When the script is finally executed, this call
writes the theory to disk.

Second, we address a crucial environmental issue: if a theory script has been con-
structed using <holdir>/bin/hol, then it has been developed in an environment where
some commonly used structures, e.g., Tactic, have already been loaded and opened for
the user’s convenience. When we wish to apply Holmake to a script developed in this
way, we have to take some extra steps to ensure that the compilation environment also
provides these structures. In the common case, this is simple; one must only add, at the
head of the theory script, the following “boilerplate”:

open HolKernel Parse boolLib;

This will duplicate the starting environment that one obtains with hol.bare and
hol.bare.noquote. If the script was developed interactively with hol or hol.noquote,
then one must also add

open bossLib

Now the script should be separately compilable. Invoke Holmake to check; the ML com-
piler will flag any unaccounted-for identifiers it finds. The user has to resolve these,
either by using the ‘dot’ notation to locate the identifier for the compiler, or by open-
ing the relevant module. This “compile/resolve-identifier” loop should continue until
Holmake succeeds in compiling the module.

The following notes may be of some further help.

1. The filenames of theory scripts must follow the following convention: a HOL the-
ory script for theory “x” should be named xScript.sml. When export_theory is
called during an invocation of Holmake, the files xTheory.sig and xTheory.sml

will be generated and then compiled.

2. In ML, modules are not allowed to include unbound top-level expressions. Hence,
something like the following is not allowed:

new_theory "ted";
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To make ML happy, one must instead write something like

val _ = new_theory "ted";

This is because (due to restrictions imposed by Moscow ML) the script file is re-
quired to be an ML structure, and the contents of a structure must be declarations,
not expressions. Indeed, one is allowed to (and often will) omit the bracketing
structure foo = struct - end lines, but the contents of the file are still inter-
preted as if belonging to a structure.

3. In the interactive system, one has to explicitly load modules; on the other hand,
the batch compiler will load modules automatically. For example, in order to exe-
cute open Foo (or refer to values in structure Foo) in the interactive system, one
must first have executed load "Foo". (This is on the assumption that structure
Foo is defined in a file Foo.sml.) Contrarily, the batch compiler will reject files
having occurrences of load, since load is only defined for the interactive system.

4. Take care not to have the string “Theory” embedded in the name of any of your
files. HOL generates files containing this string, and when it cleans up after itself,
it removes such files using a regular expression. This will also remove other files
with names containing “Theory”. For example, if, in your development directory,
you had a file of ML code named MyTheory.sml and you were also managing a
HOL development there with Holmake, then MyTheory.sml would get deleted if
Holmake clean were invoked.

6.3.4 Summary

A complete theory construction might be performed by the following steps:

• Construct theory script, perhaps over many sessions;

• Transform script into separately compilable form;

• Invoke Holmake to generate the theory and compile it.

After that, the theory is usable as an ML module. This flow is demonstrated in the Euclid
example of TUTORIAL.

Alternatively, and probably with the help of one of the editor modes,1 one can develop
a theory with a script file that is always separately compilable.

1There are editor modes for emacs and vim.
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6.3.5 What Holmake doesn’t do

Holmake only works properly on the current directory. Holmake will rebuild files in the
current directory if something it depends on from another directory is fresher than it is,
but it will not do any analysis on files in other directories.

However, one can indicate that there is a dependency on other directories by using
the -I flag, or the INCLUDES variable in a Holmakefile. Such a specification will cause
Holmake to look in the specified directories for other theory files that the current di-
rectory may depend on. Moreover, by default Holmake will recursively call itself on all
those “include” directories before doing anything in the current directory. In this way,
one can get a staged application of Holmake across multiple directories.2

6.3.6 Holmake’s command-line arguments

Like make, Holmake takes command-line arguments corresponding to the targets that
the user desires to build. If there are none, then Holmake will attempt to build all ML
modules and HOL theories it can detect in the current directory. In addition, there are
three special targets that can be used:

clean Removes all compiled files (unless over-ridden by a make-file target of the same
name, see section 6.3.7 below).

cleanDeps Removes all of the pre-computed dependency files. This can be an important
thing to do if, for example, you have introduced a new .sig file on top of an
existing .sml file.

cleanAll Removes all compiled files as well as all of the hidden dependency informa-
tion.

Finally, users can directly affect the workings of Holmake with the following command-
line options:

-I <directory> Look in specified directory for additional Moscow ML object files, in-
cluding other HOL theories. This option can be repeated, with multiple -I’s to
allow for multiple directories to be referenced. As above, directories specified in
this way will also be rebuilt before the current targets are built.

-d <file> Ignore the given file and don’t try to build it. The file may be rebuilt anyway
if other files you have specified depend on it. This is useful to stop Holmake from
attempting to compile files that are interactive scripts (include use of load or use,
for example).

2See Recursive Make Considered Harmful by Peter Miller for why this is not ideal.
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-f <theory> Toggles whether or not a theory should be built in “fast” mode. Fast
building causes tactic proofs (invocations of prove and store thm) to automati-
cally succeed. This lack of soundness is marked by the fast proof oracle tag. This
tag will appear on all theorems proved in this way and all subsequent theorems
that depend on such theorems. Holmake’s default is not to build in fast mode.

--fast Makes Holmake’s default be to build in fast mode (see above).

--help or -h Prints out a useful option summary and exits.

--holdir <directory> Associate this build with the given HOL directory, rather than
the one this version of Holmake was configured to use by default.

--holmakefile <file> Use the given file as a make-file. See section 6.3.7 below for
more on this.

--interactive or -i Causes the HOL code that runs when a theory building file is
executed to have the flag Globals.interactive set to true. This will alter the
diagnostic output of a number of functions within the system.

-k or --keep-going Causes Holmake to try to build all specified targets, rather than
stopping as soon as one fails to build.

--logging Causes Holmake to record the times taken to build any theory files it en-
counters. The times are logged in a file in the current directory. The name of this
file includes the time when Holmake completed, and when on a Unix system, the
name of the machine where the job was run. If Holmake exits unsuccessfully, the
filename is preceded by the string “bad-”. Each line in the log-file is of the form
theory-name time-taken, with the time recorded in seconds.

--no holmakefile Do not use a make-file, even if a file called Holmakefile is present
in the current directory.

--no overlay Do not use an overlay file. All HOL builds require the presence of a
special overlay file from the kernel when compiling scripts and libraries. This is
not appropriate for compiling code that has no connection to HOL, so this option
makes the compilation not use the overlay file. This option is also used in building
the kernel before the overlay itself has been compiled.

--no prereqs Do not recursively attempt to build “include” directories before working
in the current directory.

--no sigobj Do not link against HOL system’s directory of HOL system files. Use of this
option goes some way towards turning Holmake into a general Moscow ML make
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system. However, it will still attempt to do “HOL things” with files whose names
end in Script and Theory. This option implies --no overlay.

--overlay <file> Use the given file as the overlay rather than the default.

--qof Standing for “quit on failure”. If a tactic fails to prove a theorem, quit the build.
The default is to use mk thm to assert that the failed goal is true so that the build
can continue and other theorems proved.

--quiet Minimise the amount of output produced by Holmake. Fatal error messages
will still be written to the standard error stream. Note that other programs called
by Holmake will not be affected.

--rebuild deps or -r Forces Holmake to always rebuild the dependency information
for files it examines, whether or not it thinks it needs to. This option is imple-
mented by having Holmake wipe all of its dependency cache (as per the cleanDeps

option above) before proceeding with the build.

Holmake should never exit with the Moscow ML message “Uncaught exception”. Such
behaviour is a bug, please report it!

6.3.7 Using a make-file with Holmake

Holmake will use a make-file to augment its behaviour if one is present in the current
directory. By default it will look for a file called Holmakefile, but it can be made to
look at any file at all with the --holmakefile command-line option. The combination
of Holmake and a make-file is supposed to behave as much as possible like a standard
implementation of make.

A make-file consists of two types of entries, variable definitions and rules. Outside
of these entries, white-space is insignificant, but newline and TAB characters are very
significant within them. Comments can be started with hash (#) characters and last until
the end of the line. Quoting is generally done with use of the back-slash (\) character.
In particular, a backslash-newline pair always allows a line to be continued as if the
newline wasn’t present at all.

A variable definition is of the form

Ident = text <NEWLINE>

and a rule is of the form

text : text <NEWLINE>(<TAB>text <NEWLINE>)∗

Henceforth, the text following a TAB character in a rule will be referred to as the com-
mand text. Text elsewhere will be referred to as normal text. Normal text has comments
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stripped from it, so hash characters there must be escaped with a back-slash charac-
ter. An Ident is any non-empty sequence of alpha-numeric characters, including the
underscore ( ).

In some contexts, normal text is interpreted as a list of words. These lists use white-
space as element separators. If a word needs to include white-space itself, those white-
space characters should be escaped with back-slashes.

Variable definitions The text on the RHS of a variable definition can be substituted
into any other context by using a variable reference, of the form $(VARNAME). References
are evaluated late, not at time of definition, so it is quite permissible to have forward
references. On the other hand, this makes it impossible to write things like

VAR = $(VAR) something new

because the evaluation of $(VAR) would lead to an infinite loop. GNU make’s facility for
immediate definition of variables with := is not supported.

Note also that white-space around the equals-sign in a variable definition is stripped.
This means that

VAR =<whitespace><NEWLINE>

gives VAR the empty string as its value.3

Finally, note that the text inside a variable reference is itself evaluated. This means
that one can write something like $(FOO $(OS)) and have this first expand the OS vari-
able, presumably giving rise to some useful string (such as unix), and then have the
resulting variable (FOO unix, say) expanded. This effectively allows the construction of
functions by cases (define variables FOO unix, FOO macos etc; then use the nested vari-
able reference above). If the internal variable expands to something containing spaces,
this will not turn a normal variable reference into a function call (see below). On the
other hand, if the initial reference contains a space, the function name component will
be expanded, allowing implementation of a function by cases determining which text-
manipulation function should be called.

Rules Make-file rules are interpreted in the same way as by traditional make. The files
specified after the colon (if any) are those files that each target (the files before the
colon) is said to “depend” on. If any of these are newer than a target, then Holmake

rebuilds that target according to the commands. If there are no dependencies, then

3It is possible to give a variable a value of pure whitespace by writing

NOTHING =

ONE SPACE = $(NOTHING) $(NOTHING)



238 CHAPTER 6. MISCELLANEOUS FEATURES

the commands are executed iff the target doesn’t exist. If there are no commands, and
the target is not of a type that Holmake already knows how to build, then it will just
make sure that the dependencies are up to date (this may or may not create the target).
If there are no commands attached to a rule, and the target is one that Holmake does
know how to build, then the rule’s extra dependencies are added to those that Holmake
has managed to infer for itself, and Holmake will build the target using its built-in rule.
If commands are provided for a type of file that Holmake knows how to build itself,
then the make-file’s commands and dependencies take precedence, and only they will
be executed.

If a command-line is preceded by a hyphen (-) character, then the rest of the line
is executed, but its error-code is ignored. (Normally, a command-line raising an error
will cause Holmake to conclude that the target can not be built.) If a command-line is
preceded by an at-sign (@), then that command-line will not be echoed to the screen
when it is run. These two options can be combined in either order at the start of a
command-line.

Command text is interpreted only minimally by Holmake. On Unix, back-slashes are
not interpreted at all. On Windows, back-slashes followed by newlines are turned into
spaces. Otherwise, command text is passed as is to the underlying command interpreter
(/bin/sh say, on Unix, or COMMAND.COM on Windows). In particular, this means that
hash-characters do not start comments on command-lines, and such “comments” will
be passed to the shell, which may or may not treat them as comments when it sees
them.

Functions Holmake supports some simple functions for manipulating text. All func-
tions are written with the general form $(function-name arg 1,arg 2...,argn). Ar-
guments can not include commas (use variable references to variables whose value are
commas instead), but can otherwise be arbitrary text.

$(dprot arg) quotes (or “protects”) the space characters that occur in a string so that
the string will be treated as a unit if it occurs in a rule’s dependency list. For
example, the file

dep = foo bar

target: $(dep)

do_something

will see target as having two dependencies, not one, because spaces are used to
delimit dependencies. If a dependency’s name includes spaces, then this function
can be used to quote them for Holmake’s benefit. Note that the dprot function
does not do the same thing as protect on either Unix or Windows systems.
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$(findstring arg1,arg2) checks if arg1 occurs in (is a sub-string of) arg2. If it does
so occur, the result is arg1, otherwise the result is the empty string.

$(if arg1,arg2,arg3) examines arg1. If it is the empty string, then the value of the
whole is equal to the value of arg3. Otherwise, the value is that of arg2.

$(patsubst arg1,arg2,text) splits text into component words, and then transforms
each word by attempting to see if it matches the pattern in arg1. If so, it re-
places that word with arg2 (suitably instantiated). If not, the word is left alone.
The modified words are then reassembled into a white-space separated list and
returned as the value.

A pattern is any piece of text including no more than one occurrence of the per-
cent (%) character. The percent character matches any non-empty string. All other
characters must be matched literally. The instantiation for % is remembered when
the replacement is constructed. Thus,

$(patsubst %.sml,%.uo,$(SMLFILES))

turns a list of files with suffixes .sml into the same list with the suffixes replaced
with .uo.

$(protect arg) wraps arg in appropriate quote characters to ensure that it will pass
through the operating system’s command shell unscathed. This is important in the
presence of file-names that include spaces or other shell-significant characters like
less-than and greater-than. Those make-file variables that point directly at exe-
cutables (MOSMLC, MOSMLLEX etc) are automatically protected in this way. Others,
which might be used in concatenation with other elements, are not so protected.
Thus, if DIR might include spaces, one should write

$(protect $(DIR)/subdirectory/program)

so that the above will be read as one unit by the underlying shell.

$(subst arg1,arg2,text) replaces every occurrence of arg1 in text with arg2.

Special and pre-defined variables If defined, the INCLUDES variable is used to add
directories to the list of directories consulted when files are compiled and linked. The
effect is as if the directories specified had all been included on the command-line with
-I options. The PRE INCLUDES variable works similarly, but the directories specified here
are placed before the -I <holdir> option that is used in invocations of compiler. This
option gives the user a way of over-riding code in the core distribution as the compiler
will find their code before the distribution’s.
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The OPTIONS variable is used for the specification of just four possible options (others
are ignored): NO SIGOBJ, NO OVERLAY, NO PREREQS and QUIT ON FAILURE. The OPTIONS

variable should be a list of strings, containing some of the above four options. Those
present are enabled. These have the same effect as the corresponding command-line
options. The EXTRA CLEANS variable is used to specify the name of additional files that
should be deleted when a Holmake clean command is issued.

Within a command, the variable $< is used to stand for the name of the first depen-
dency of the rule. The variable $@ is used to stand for the target of the rule.

Finally there are variables that expand to program names and other useful informa-
tion:

CP This variable is replaced by an operating-system appropriate program to perform a
file copy. The file to be copied is the first argument, the second is the place to copy
to. The second argument can be a directory. (Under Unix, CP expands to /bin/cp;
under Windows, it expands to copy.)

HOLDIR The root of the HOL installation.

HOLMOSMLC This variable is replaced by an invocation of the Moscow ML compiler along
with the -q flag (necessary for handling quotations), and the usual -I include
specifications (pre-includes, the hol-directory include, and the normal includes).

HOLMOSMLC-C This variable is the same as HOLMOSMLC except that it finishes with a clos-
ing -c option (hence the name) followed by the name of the system’s overlay file.
This is needed for compilation of HOL source files, but not for linking of HOL
object code, which can be done with HOLMOSMLC.

ML SYSNAME The name of the ML system being used: either mosml or poly.

MLLEX This is the path of the mllex tool that is built as part of HOL’s configuration.

MLYACC This is the path of the mlyacc tool that is built as part of HOL’s configuration.

MOSMLC This is replaced by an invocation of the compiler along with just the normal
includes.

MOSMLLEX This is replaced by an invocation of the mosmllex program that comes with
the Moscow ML distribution.

MOSMLYAC This is replaced by an invocation of the mosmlyac program that comes with
the Moscow ML distribution.

MV This variable is replaced by an operating-system appropriate program to perform a
file movement. The file to be moved is the first argument, the second is the place



6.3. MAINTAINING HOL FORMALIZATIONS WITH HOLMAKE 241

to move to. The second argument can be a directory. (Under Unix, MV expands to
mv; under Windows, it expands to rename.)

OS This variable is replaced by the name of the current operating system, which will be
one of the strings "linux", "solaris", "macosx", "unix" (for all other Unices), or
"winNT", for all Microsoft Windows operating systems (those of the 21st century,
anyway).

SIGOBJ Effectively $(HOLDIR)/sigobj, where HOL object code is stored.

UNQUOTE The location of the quotation-filter executable.

The MOSMLLEX and MOSMLYAC abbreviations are really only useful if the originals aren’t
necessarily going to be on the user’s “path”. For backwards compatibility, the five vari-
ables above including the sub-string “MOSML” in their names can also be used by simply
writing their names directly (i.e., without the enclosing $(...)), as long as these refer-
ences occur first on a command-line.

If a reference is made to an otherwise undefined string, then it is treated as a reference
to an environment variable. If there is no such variable in the environment, then the
variable is silently given the empty string as its value.

Conditional Parts of Makefiles As in GNU make, parts of a Holmakefile can be in-
cluded or excluded dynamically, depending on tests that can be performed on strings
including variables. This is similar to the way directives such as #ifdef can be used to
control the C preprocessor.

There are four possible directives in a Holmakefile: ifdef, ifndef, ifeq and ifneq.
The versions including the extra ‘n’ character reverse the boolean sense of the test. Con-
ditional directives can be chained together with else directives, and must be terminated
by the endif command. The following example is a file that only has any content if the
POLY variable is defined, which happens when Poly/ML is the underlying ML system.

ifdef POLY

TARGETS = target1 target2

target1: dependency1

build_command -o target1 dependency1

endif

The next example includes chained else commands:

ifeq "$(HOLDIR)" "foo"

VAR = X

else ifneq "$(HOLDIR)" "bar"

VAR = Y

else

VAR = Z

endif
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The ifneq and ifeq forms test for string equality. They can be passed their arguments
as in the example, or delimited with apostrophes, or in parentheses with no delimiters,
as in:

ifeq ($(HOLDIR),$(OTHERDIR))

VAR = value

endif

The definedness tests ifdef and ifndef test if a name has a non-null expansion in
the current environment. This test is just of one level of expansion. In the following
example, VAR is defined even though it ultimately expands to the emptry string, but
NULL is not. The variable FOOBAR is also not defined.

NULL =

VAR = $(NULL)

Note that environment variables with non-empty values are also considered to be de-
fined.

6.4 Generating and Using Heaps in Poly/ML HOL

Poly/ML has a nice facility whereby the state of one of its interactive sessions can be
stored on disk and then reloaded. This allows for an efficient resumption of work in
a known state. The HOL implementation uses this facility to implement the hol exe-
cutable. In Poly/ML, hol starts immediately. In Moscow ML, hol starts up by visibly
(and relatively slowly) “loading” the various source files that provide the system’s func-
tionality (e.g., bossLib).

Users can use the same basic technology to “dump” heaps of their own. Such heaps
can be preloaded with source code implementing special-purpose reasoning facilities,
and with various necessary background theories. This can make developing big mecha-
nisations considerably more pleasant.

6.4.1 Generating HOL Heaps

The easiest way to generate a HOL heap is to use the buildheap executable that is built
as part of the standard build process for (Poly/ML) HOL. This program takes a list of
object files to include in a heap, an optional heap to build upon (use the -b command-
line switch; the default is to use the heap behind the core hol executable), and an
optional name for the new heap (the default is the traditional Unix a.out). Thus the
command-line

buildheap -o realheap transcTheory polyTheory
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ifdef POLY

HOLHEAP = realheap

OBJNAMES = polyTheory transcTheory

DEPS = $(patsubst %,$(dprot $(SIGOBJ)/%),$(OBJNAMES))

$(HOLHEAP): $(DEPS)

$(protect $(HOLDIR)/bin/buildheap) -o $@ $(OBJNAMES)

endif

Figure 6.1: A Holmakefile fragment for building a custom HOL heap embodying the
standard real number theories. If the heap’s dependencies are not core HOL theories
as they are here, then both the dependency line and the arguments to buildheap will
need to be adjusted to link to the directory containing the files. For core HOL theories,
the dependency has to mention the SIGOBJ directory, but when passing arguments to
buildheap, that information doesn’t need to be provided as SIGOBJ is always consulted
by all HOL builds. Finally, note how the use of the dprot and protect functions will
ensure that Holmake will do the right thing even when HOLDIR contains spaces.

would build a heap in the current directory called realheap, and would preload it with
the standard theories of transcendental numbers and real-valued polynomials.

A reasonable way to manage the generation of heaps is to use a Holmakefile. For
example, the realheap above might be generated with the source in Figure 6.1. The
use of the special variable HOLHEAP has a number of nice side effects. First, it makes the
given file a dependency of all other products in the current directory. This means that
the HOL heap will be built first. Secondly, the other products in the current directory
will be built on top of that heap, not the default heap behind hol.

6.4.2 Using HOL Heaps

As just described, if a Holmakefile specifies a HOLHEAP, then files in that directory will
be built on top of that heap rather than the default. This is also true if the speci-
fied heap is in another directory (i.e., the HOLHEAP line might specify a file such as
otherdir/myheap). In this case, the Holmakefile won’t (shouldn’t) include instructions
on how to build that heap, but the advantages of that heap are still available. Again,
that heap is also considered a dependency for all files in the current directory, so that
they will be rebuilt if it is newer than they are.
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It is obviously important to be able to use heaps interactively. If the standard hol

executable is invoked in a directory where there is a Holmakefile specifying a heap, the
default heap will not be used and the given heap will be used instead. The fact that this
is happening is mentioned as the interactive session begins. For example:

---------------------------------------------------------------------

HOL-4 [Kananaskis 8 (stdknl, built Tue Jul 24 16:48:44 2012)]

For introductory HOL help, type: help "hol";

---------------------------------------------------------------------

[extending loadPath with Holmakefile INCLUDES variable]

[In non-standard heap: computability-heap]

Poly/ML 5.4.1 Release

>

Finally, note that heaps are required to be built first in a directory, and that heaps em-
body theories or ML sources that are ancestral to the directory in which the heap occurs.
This has the unfortunate consequence that one cannot package up a heap embodying
the standard theories for the real numbers in src/real, but that such a heap has to built
in some other directory. This is counter-intuitive.

6.5 Timing and Counting Theorems

HOL can be made to record its use of primitive inferences, axioms, definitions and use
of oracles. Such recording is enabled with the function

val counting_thms : bool -> unit

(This function as with all the others in this section is found in the Count structure.)

Calling counting_thms true enables counting, and counting_thms false disables
it. The default is for counting to be disabled. If it is enabled, whenever HOL performs
a primitive inference (or accepts an axiom or definition) a counter is incremented. A
total count as well as counts per primitive inference are maintained. The value of this
counter is returned by the function:
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val thm_count : unit ->

{ASSUME : int, REFL : int, BETA_CONV : int, SUBST : int,

ABS : int, DISCH : int, MP : int, INST_TYPE : int, MK_COMB : int,

AP_TERM : int, AP_THM : int, ALPHA : int, ETA_CONV : int,

SYM : int, TRANS : int, EQ_MP : int, EQ_IMP_RULE : int,

INST : int, SPEC : int, GEN : int, EXISTS : int, CHOOSE : int,

CONJ : int, CONJUNCT1 : int, CONJUNCT2 : int, DISJ1 : int,

DISJ2 : int, DISJ_CASES : int, NOT_INTRO : int, NOT_ELIM : int,

CCONTR : int, GEN_ABS : int, definition : int, axiom : int,

from_disk : int, oracle :int, total :int }

This counter can be reset with the function:

val reset_thm_count : unit -> unit

Finally, the Count structure also includes another function which easily enables the
number of inferences performed by an ML procedure to be assessed:

val apply : (’a -> ’b) -> ’a -> ’b

An invocation, Count.apply f x, applies the function f to the argument x and per-
forms a count of inferences during this time. This function also records the total time
taken in the execution of the application.

For example, timing the action of numLib’s ARITH_CONV:

2- Count.apply numLib.ARITH_CONV ‘‘x > y ==> 2 * x > y‘‘;

runtime: 0.010s, gctime: 0.000s, systime: 0.000s.

Axioms asserted: 0.

Definitions made: 0.

Oracle invocations: 0.

Theorems loaded from disk: 0.

HOL primitive inference steps: 165.

Total: 165.

> val it = |- x > y ==> 2 * x > y = T : thm

6.6 Embedding HOL in LATEX

When writing documents in LATEX about one’s favourite HOL development, one fre-
quently wants to include pretty-printed terms, types and theorems from that develop-
ment. Done manually, this will typically require involved use of the alltt environment,
and cutting and pasting from a HOL session or theory file. The result is that one must
also keep two copies of HOL texts synchronised: if the HOL development changes, the
LATEX document should change as well.
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This manual, and error-prone process is not necessary: the standard HOL distribution
comes with a tool called munge.exe to automate the process, and to remove the dupli-
cate copies of HOL text. (Strictly speaking, the distribution comes with a tool that itself
creates munge.exe; see Section 6.6.2 below.) The basic philosophy is that a LATEX docu-
ment can be written “as normal”, but that three new LATEX-like commands are available
to the author.

The commands are not really processed by LATEX: instead the source file must first be
passed through the munge.exe filter. For example, one might write a document called
article.htex. This document contains instances of the new commands, and cannot be
processed as is by LATEX. Instead one first runs

munge.exe < article.htex > article.tex

and then runs LATEX on article.tex. One would probably automate this process with a
makefile of course.

6.6.1 Munging Commands

Before Starting In order to use the munger, one must “include” (use the \usepackage

command) the holtexbasic.sty style-file, which is found in the HOL source directory
src/TeX.

There are then three commands for inserting text corresponding to HOL entities into
LATEX documents: \HOLtm, \HOLty and \HOLthm. Each takes one argument, specifying
something of the corresponding HOL type. In addition, options can be specified in
square brackets, just as would be done with a genuine LATEX command. For example,
one can write

\HOLtm[tt]{P(SUC n) /\ q}

and one will get

P (SUC n) ∧ q

or something very close to it, appearing in the resulting document.4 Note how the
spacing in the input (nothing between the P and the SUC n) is not reflected in the
output; this is because the input is parsed and pretty-printed with HOL. This means that
if the HOL input is malformed, the munge.exe program will report errors. Note also how
the system knows that P, n and q are variables, and that SUC is not. This analysis would
not be possible without having HOL actually parse and print the term itself.

The default behaviours of each command are as follows:

4The output is a mixture of typewriter font and math-mode characters embedded in a \texttt block
within an \mbox.
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\HOLty{string} Parses the string argument as a type (the input must include the leading
colon), and prints it. The output is suited for inclusion in the normal flow of LATEX
(it is an \mbox).

\HOLtm{string} Parses the string argument as a term, and prints it. Again, the output is
wrapped in an \mbox.

Important: If the string argument includes a right-brace character (i.e., the char-
acter }, which has ASCII code 125), then it must be escaped by preceding it with
a backslash (\). Otherwise, the munger’s lexer will incorrectly determine that the
argument ends at that right-brace character rather than at a subsequent one.

\HOLthm{thmspecifier} The argument should be of the form 〈theory〉.〈theorem-name〉.
For example, \HOLthm{bool.AND_CLAUSES}. This prints the specified theorem
with a leading turnstile. However, as a special case, if the theorem specified is
a “datatype theorem” (with a name of the form datatype 〈type-name〉), a BNF-
style description of the given type (one that has been defined with Hol_datatype)
will be printed. Datatype theorems with these names are automatically generated
when Hol_datatype is run.

By default, the output is not wrapped in an \mbox, making it best suited for inclu-
sion in an environment such as alltt. (The important characteristics of the alltt

environment are that it respects layout in terms of newlines, while also allowing
the insertion of LATEX commands. The verbatim environment does the former, but
not the latter.)

Munging Command Options There are a great many options for controlling the be-
haviour of each of these commands. Some apply to all three commands, others are
specific to a subset. If multiple options are desired, they should be separated by com-
mas. For example: \HOLthm[nosp,p/t,>>]{bool.AND CLAUSES}.

alltt Makes the argument suitable for inclusion in an alltt environment. This is the
default for \HOLthm.

case (Only for use with \HOLtm.) Causes the string to be parsed in such a way that any
embedded case terms are only partly parsed, allowing their input form to appear
when they are output. This preserves underscore-patterns, for example.

conjn (Only for use with \HOLthm.) Extracts the nth conjunct of a theorem. The con-
juncts are numbered starting at 1, not 0. For example,

\HOLthm[conj3]{bool.AND_CLAUSES}
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extracts the conjunct ` F ∧ t ⇐⇒ F.

def (Only for use with \HOLthm.) Causes the theorem to be split into its constituent
conjuncts, for each conjunct to have any outermost universal quantifiers removed,
and for each to be printed on a line of its own. The turnstiles usually printed in
front of theorems are also omitted. This works well with definitions (or character-
ising theorems) over multiple data type constructors, changing

` (FACT 0 = 1) ∧ (∀n. FACT (SUC n) = SUC n * FACT n)

into

FACT 0 = 1

FACT (SUC n) = SUC n * FACT n

K (Only for use with \HOLtm.) The argument must be the name of a theorem (as per
the \HOLthm command), and the theorem should be of the form

` f x t

for some term t. The command prints the term t. The expectation is that f will
be the combinator K from combin (see Section 3.2.2), and that x will be truth (T),
allowing t to be anything at all. In this way, large complicated terms that are not
themselves theorems (or even of boolean type), can be stored in HOL theories,
and then printed in LATEX documents.

merge, nomerge (For use with \HOLtm and \HOLthm.) By default, the HOL pretty-printer
is paranoid about token-merging, and will insert spaces between the tokens it
emits to try to ensure that what is output can be read in again without error. This
behaviour can be frustrating when getting one’s LATEX to look “just so”, so it can be
turned off with the nomerge option.

Additionally, this behaviour can be turned off globally with the --nomergeanalysis
option to the munger. If this has been made the default, it may be useful to oc-
casionally turn the merge analysis back on for a particular term or theorem; this
is done with the merge option. (In interactive HOL, the token-merging analysis is
controlled by a trace variable called "pp avoids symbol merges".)

nodollarparens (For use with \HOLtm and \HOLthm.) Causes the default escaping of
syntactic sugar to be suppressed. The default behaviour is to use parentheses, so
that

\HOLtm{$/\ p}
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would get printed as (∧) p. Note that this doesn’t reflect the default behaviour
in the interactive loop, which is to use dollar-signs (as in the input above); see
Section 5.1.2.1. However, with the nodollarparens option specified, nothing at
all is printed to indicate that the special syntax has been “escaped”.

nosp (Only for use with \HOLthm.) By default, arguments to \HOLthm are fully spe-
cialised (i.e., they have SPEC_ALL applied to them), removing outermost universal
quantifiers. The nosp option prevents this.

nostile (Only for use with \HOLthm.) By default, arguments to \HOLthm are printed
with a turnstile (`). If this option is present, the turnstile is not printed (and the
theorem will have its left margin three spaces further left).

of (Only for use with \HOLty.) The argument is a string that parses to a term, not a
type. The behaviour is to print the type of this term. Thus \HOLty[of]{p /\ q}
will print bool.

If the string includes right-braces, they must be escaped with back-slashes, just as
with the arguments to \HOLtm.

rule (Only for use with \HOLtm and \HOLthm.) Prints a term (or a theorem’s conclusion)
using the \infer command (available as part of the proof.sty package). This
gives a nice, “natural deduction” presentation. For example, the term

(p \/ q) /\ (p ==> r) /\ (q ==> r) ==> r

will print as

p ∨ q p⇒ r q ⇒ r
r

Conjuncts to the left of the outermost implication (if any) will be split into hy-
potheses separated by whitespace. For large rules, this style of presentation breaks
down, as there may not be enough horizontal space on the page to fit in all the
hypotheses. In this situation, the stackedrule option is appropriate.

The term or theorem must be within a LATEX math-environment (it is typeset as if
inline, with the tt option).

showtypes (For use with \HOLthm and \HOLtm.) Causes the term or theorem to be
printed with the types trace set to level 1 (equivalent to having the show_types

reference set to true).

stackedrule (For use with \HOLthm and \HOLtm.) This is similar to the rule option,
but causes implication hypotheses to be presented as a “stack”, centered in a LATEX
array on top of one another. Thus,
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(p \/ q) /\ (p ==> r) /\ (q ==> r) ==> r

will print as

p ∨ q
p⇒ r
q ⇒ r
r

For this purely propositional example with single-letter variable names, the result
looks a little odd, but if the hypotheses are textually larger, this option is indis-
pensable.

tt Causes the term to be type-set as the argument to a LATEX command \HOLinline. The
default definition for \HOLinline is

\newcommand{\HOLinline}[1]{\mbox{\textup{\texttt{#1}}}}

This makes the argument suitable for inclusion in standard LATEX positions. This is
the default for \HOLtm and \HOLty. (The \HOLinline command is defined in the
holtexbasic.sty style file.)

width=n Causes the argument to be typeset in lines of width n. The default width is 63,
which seems to work well with 11pt fonts. This default can also be changed at the
time the munge.exe command is run (see Section 6.6.3 below).

>> Indents the argument. This option only makes sense when used with the alltt

option (the additional spaces will have no effect when inside an \mbox). The
default indentation is two spaces; if a different indentation is desired, the option
can be followed by digits specifying the number of space characters desired. For
example, \HOLthm[>>10,...]{...} will indent by 10 spaces.

Note that simply placing a command such as \HOLthm within its alltt block with
a given indentation, for example

\begin{alltt}
\HOLthm{bool.AND_CLAUSES}

\end{alltt}

will not do the right thing if the output spans multiple lines. Rather the first line
of HOL output will be indented, and the subsequent lines will not. The >> option
lets the pretty-printer know that it is printing with a given indentation, affecting
all lines of its output.
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nm1/nm2 (For use with \HOLtm and \HOLthm.) Causes name nm1 to be substituted
for name nm2 in the term or theorem. This will rename both free and bound
variables, wherever they occur throughout a term. Because it uses instantiation,
free variables in theorem hypotheses will get renamed, but bound variables in
hypotheses are not affected. (Hypotheses are not printed by default anyway of
course.)

If nm1 and nm2 both begin with the colon character then they are parsed as types,
and type instantiation is performed on the term or theorem argument instead of
variable substitution.

6.6.2 Creating a Munger

The HOL distribution comes with a tool called mkmunge.exe. This executable is used to
create munge executables that behave as described in this section. A typical invocation
of mkmunge.exe is

mkmunge.exe 〈thy1〉Theory ... 〈thyn〉Theory

Each commandline argument to mkmunge.exe is the name of a HOL object file, so in
addition to theory files, one can also include special purpose SML such as monadsyntax.

The mkmunge.exe program can also take an optional -o argument that is used to
specify the name of the output munger (the default is munge.exe). For example

mkmunge.exe -o bagtexprocess bagTheory

The theories specified as arguments to mkmunge.exe determine what theorems are
in scope for calls to \HOLthm, and also determine the grammars that will govern the
parsing and printing of the HOL types, terms and theorems.

6.6.3 Running a Munger

Once created, a munger can be run as a filter command, consuming its standard input,
and writing to standard output. It may also write error messages and warnings to its
standard error.

Thus, a standard pattern of use is something like

munge.exe < article.htex > article.tex

However, there are two ways of further modifying the behaviour of the munger, with
command-line options.
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Overrides Most importantly, one can specify an “overrides file” to provide token-to-
LATEX replacements of what is pretty-printed. The command-line would then look like

munge.exe overrides_file < article.htex > article.tex

The overrides file is a text file containing lines of the form

tok width tex

where tok is a HOL token, width is a number giving the width of the LATEX, and tex is a
LATEX string.

As a very simple example, an overrides file might consist of just one line:

pi1 2 \ensuremath{\pi_1}

This would cause the string pi1 (presumably occurring in the various HOL entities as a
variable name) to be replaced with the rather prettier π1. The 2 records the fact that the
printer should record the provided LATEX as being 2 characters wide. This is important
for the generation of reasonable line-breaks.

Overrides for HOL tokens can also be provided within HOL theories, using the TeX notation

command (see Section 6.6.5 below).

Default width A munger can specify the default width in which HOL will print its
output with a -w option. For example,

munge.exe -w70 < article.htex > article.tex

This default width can be overridden on a case-by-case basis with the width= option to
any of the commands within a LATEX document.

Preventing Merge Analysis As mentioned above in the description of the merge and
nomerge options to the \HOLtm and \HOLthm commands, the munger can be configured
to not do token-merging avoidance by passing the --nomergeanalysis option to the
munger.

The -w, --nomergeanalysis and overrides file options can be given in any order.

6.6.4 Holindex

Till now, it has been explained how the munger can be used as a preprocessor of LATEX
sources. Sometimes a tighter interaction with LATEX is beneficial. Holindex is a LATEX
package that provides genuine LATEX commands for inserting HOL-theorems, types and
terms as well as many related commands. This allows it to generate an index of all
HOL-theorems, types and terms that occur in the document as well as providing citation
commands for HOL entities in this index. Holindex can be found in src/TeX/. There is
also a demonstration file available in this directory.



6.6. EMBEDDING HOL IN LATEX 253

Using Holindex To use Holindex add \usepackage{holindex} to the header of the
LATEX source file article.tex. Holindex loads the underscore package which might
cause trouble with references and citations. In order to avoid problems, holindex

should be included after packages like natbib. Holindex is used like BibTex or MakeIn-
dex. A run of LATEX on jobname.tex creates an auxiliary file called article.hix. The
munger is used to process this file via

munge.exe -index article

This call generates two additional auxiliary files, article.tde and article.tid. The
following runs of LATEX use these files. After modifying the source file, the munger can
be rerun to update article.tde and article.tid. If you are using emacs with AUCTeX
to write your latex files, you might want to add

(eval-after-load "tex" ’(add-to-list ’TeX-command-list

’("Holindex" "munge.exe -index %s"

TeX-run-background t t :help "Run Holindex") t))

to your emacs configuration file. This will allow you to run Holindex using AUCTeX.

Holindex commands

\blockHOLthm{id}, \blockHOLtm{id}, \blockHOLty{id} These commands typeset the
theorem, term or type with the given id as the argument to a LATEX command
\HOLblock. They are intended for typesetting multiple lines in a new block. For
theorem ids of the form theory.thm are predefined. All other ids have to be de-
fined before usage as explained below.

\inlineHOLthm{id}, \inlineHOLtm{id}, \inlineHOLty{id} These commands are sim-
ilar to \blockHOLthm{id}, \blockHOLtm{id} and \blockHOLty{id}. However,
they are intended for inline typesetting and use \HOLinline instead of \HOLblock.

\citeHOLthm{id}, \citeHOLtm{id}, \citeHOLty{id} These commands cite a theorem,
term or type.

\mciteHOLthm{id,id,...id}, \mciteHOLtm{ids}, \mciteHOLty{ids} These commands
cite multiple theorems, terms or types.

\citePureHOLthm{id}, \citePureHOLtm{id}, \citePureHOLty{id} These commands
cite a theorems, terms or types. They just typeset the number instead of the
verbose form used by the citeHOL and mciteHOL commands.

\citeHiddenHOLthm{id}, \citeHiddenHOLtm{id}, \citeHiddenHOLty{id} These com-
mands cite a theorems, terms or types, but not typeset anything. These commands
can be used to add a page to the list of pages a theorem, term or type is cited.
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\printHOLIndex, \printHOLShortIndex, \printHOLLongIndex These commands type-
set the index of all theorems, terms and types cited in the document. There are two
types of entries in the index: long and short ones. Short entries contain a unique
number, the label of the theorem, term or type and the pages it is cited. Long en-
tries contain additionally a representation as it would be inserted by \blockHOL...
as well as an optional description. Theorems use by default short entries, while
terms and types use long ones. It is possible to change for each item whether a
long or short entry should be used. \printHOLIndex prints the default index with
mixed long and short entries. \printHOLLongIndex typesets just long entries and
\printHOLShortIndex just short ones.

Defining and formating Terms, Types and Theorems Most of the Holindex com-
mands require an identifier of a theorem, term or type as arguments. Theorem iden-
tifiers of the form theory.theorem are predefined. All other identifiers need defining.
Additionally one might want to change the default formating options for these new
identifiers as well as the old ones. HOL definition files can be used for defining and
setting the formating options of identifiers. They are used by putting the command
\useHOLfile{filename.hdf } in the header of your latex source file. These file use a
syntax similar to BibTex. They consist of a list of entries of the form

@EntryType{id,

option = value,

boolFlag,

...

}

There are the following entry types

Thm, Theorem used to define and format a theorem. If the identifier is of the form
theory.theorem, the content option can be skipped. Otherwise, the content

option should be of this form and a new identifier is defined for the given theorem.
This is for example useful if the theorem name contains special characters or if a
theorem should be printed with different formatting options.

Term used to define and format a term.

Type used to define and format a type.

Thms, Theorems used to set formating options for a list of theorems. For example one
might want to print long index entries for all theorems in a specific theory. For the
Theorems entry the id part of the entry is given in the form ids = [id,id,...].
These ids may be theorem ids or special ids of the form theorem.thmprefix*. The
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id arithmetic.LESS EQ* for example represents all theorem in theory arithmetic

whose name starts with LESS EQ.

Options are name/value pairs. The value has to be quoted using quotation marks or
HOL’s quotation syntax. There are the following option names available:

content the content. For a term or type that’s it’s HOL definition. For theorems it is of
the form theory.theorem.

options formating options for the munger as described in section 6.6.1. Please use the
Holindex commands for typsetting inline or as a block instead of the options tt or
alltt.

label the label that will appear in the index. For theorems the label is by default it’s
name and the label given here will be added after the name.

comment latex code that gets typeset as a comment / description for long index entries.

latex the latex code for the item. There are very rare cases, when it might be useful to
provide handwritten LATEX code instead of the one generated by the munger. This
option overrides the LATEX produced by the munger. It is recommended to use it
very carefully.

Besides options, there are also boolean flags that change the formating of entries:

force-index adds the entry to the index, even if it is not cited in the document.

long-index use a long index-entry.

short-index use a long index-entry.

Here is an example of such a HOL definition file:

@Term{term_id_1,

content = ‘‘SOME_FUN = SUC a < 0 /\ 0 > SUC b‘‘,

options = "width=20",

label = "a short description of term from external file",

comment = "some lengthy\\comment

with \textbf{formats} and newlines",

force_index

}

@Type{type_id_1,

content = ‘‘:bool‘‘
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}

@Thm{arithmetic.LESS_SUCC_EQ_COR,

force-index, long-index

}

@Thm{thm_1,

label = "(second instance)",

content = "arithmetic.LESS_SUC_EQ_COR"

}

@Theorems{

ids = [arithmetic.LESS_ADD_SUC,

arithmetic.LESS_EQ*],

force-index

}

Configuring Holindex There are some commands that can be used to change the
overall behaviour of Holindex. They should be used in the header directly after holindex
is included.

\setHOLlinewidth sets the default line-width. This corresponds to the -w option of the
munger.

\setHOLoverrides sets the “overrides file” to provide token-to-LATEX replacements of
what is pretty-printed.

\useHOLfile is used to include a HOL definition file. Several such files might be in-
cluded.

Additional Documentation For more information about Holindex, please refer to the
demonstration file src/TeX/holindex-demo.tex. This file contains documentation for
rarely used commands as well as explanations of how to customise Holindex.

6.6.5 Making HOL Theories LATEX-ready

Though one might specify all one’s desired token-replacements in an overrides file,
there is also support for specifying token replacements in the theory where tokens are
first “defined”. (Of course, tokens aren’t defined per se, but the definition of particular
constants will naturally give rise to the generation of corresponding tokens when those
constants appear in HOL terms, types or theorems.)
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A token’s printing form is given in a script-file with the TeX_notation command (from
the TexTokenMap module). This function has type

{ hol : string, TeX : string * int } -> unit

The hol field specifies the string of the token as HOL prints it. The TeX field specifies
both the string that should be emitted into the LATEX output, and the width that this
string should be considered to have (as in the overrides file).

For example, in boolScript.sml, there are calls:

val _ = TeX_notation { hol = "!", TeX = ("\\HOLTokenForall{}", 1)}
val _ = TeX_notation { hol = UChar.forall,

TeX = ("\\HOLTokenForall{}", 1)}

The UChar structure is a local binding in the script-file that points at the standard list of
UTF8-encoded Unicode strings in the distribution (UnicodeChars). Note also how the
backslashes that are necessary for the LATEX command have to be doubled because they
are appearing in an SML string.

Finally, rather than mapping the token directly to the string \forall as one might ex-
pect, the mapping introduces another level of indirection by mapping to \HOLTokenForall.
Bindings for this, and a number of other LATEX commands are made in the file

src/TeX/holtexbasic.sty

which will need to be included in the LATEX source file. (Such bindings can be overridden
with the use of the command \renewcommand.)

Finally, all theory-bindings made with TeX_notation can be overridden with overrides

files referenced at the time a munger is run.
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Index

α-convertibility, in HOL logic
determination of, 17

- (abbreviation, of HOL theory part names), 33
^ (antiquotation, in HOL logic), 174
@ (choice function, in HOL logic), 61, 63
/\ (conjunction, in HOL logic), 60, 63
+ (disjoint union type operator, in HOL logic),

70
\/ (disjunction, in HOL logic), 60, 63
= (equality, in HOL logic), 59, 63
$ (escape, in HOL logic parser), 63, 160, 248
? (existential quantifier, in HOL logic), 60, 63
?! (exists unique, in HOL logic), 60
** (exponentiation, in HOL logic), 76
\ (function abstraction binder, in HOL logic),

63
:> ((reversed) function application operator),

in HOL logic, 65
o (function composition operator), in HOL

logic, 65
=+ (function override opreator), in HOL logic,

65
-> (function type operator, in HOL logic), 22
>= (greater or equal, in HOL logic), 76
> (greater than, in HOL logic), 76
==> (implication, in HOL logic), 63
<= (less or equal, in HOL logic), 76
< (less than, in HOL logic), 74
[ · · · ; · · · ] (lists, the HOL theory of), 90–95
* (multiplication, in HOL logic), 76
~ (negation, in HOL logic), 60, 63
, (pair constructor, in HOL logic), 66
## (PAIR_MAP function), 67
# (product type operator, in HOL logic), 66
- (subtraction, in HOL logic), 76
‘‘· · ·‘‘ (term quotes, in ML), 18–19

|- (theorem marker, in HOL logic), 24
‘‘:· · ·‘‘ (type quotes, in ML), 18–19
’a, ’b, . . . (type variables, in HOL logic), 22
! (universal quantifier, in HOL logic), 60, 63
0 (zero, in HOL logic), 73

abbreviations
tactic-based proof, 180

ABS, 27
ABS_PAIR_THM, 67
abstraction rule, in HOL logic

ML function for, 27
aconv, 17
ADD, 76
ADD_ASSUM, 45
add_relsimp, 204
algebraic data types, see Hol_datatype
ALL_DISTINCT, the HOL constant, 93
ancestry, 30
ancestry, of HOL system theories, 29
antiquotation, in HOL logic terms, 159, 174
AP_TERM, 45, 47
AP_THM, 45, 47
apostrophe, lexical handling of, 14
APPEND, the HOL constant, 92
arith_ss (simplification set), 188, 199
arithmetic, the HOL theory of, 76
ASM_SIMP_TAC, 184
ASSUME, 25, 40
assumption introduction, in HOL logic

ML function for, 25
axiom, 33
axiom of choice, 61
axiom of dependent choice (DC), 75
axiom of infinity, 61
axioms
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declaration of, in HOL logic, 32
dispensibility of adding, 61
in bool theory, 60, 61, 66
in natural deduction, 23
in num theory, 73
non-primitive, of HOL logic

for lists, 91
for natural numbers, 73
for products, 66

of choice, 61, 75
primitive, of HOL logic, 60–61
retrieval of, in HOL system, 33

axioms, 33

beta-conversion, in HOL logic
ML function for, 26
not expressible as a theorem, 44

BETA_CONV, 26
bijection of types, in HOL logic, 36
binders, in HOL logic, 63

parsing of, 68
bit vectors, the HOL theory of, 83–90
body, 17
bool, the HOL theory, 60
bool, the type in HOL logic, 16, 18
BOOL_CASES_AX, 61
bool_ss (simplification set), 187
bossLib, 178
bvar, 17

C, the HOL constant, 65
cardinality of (finite) sets, 105
case expressions, 134–136

over lists, 91
over strings, 101

CCONTR, 45, 58
character literals, 100
characteristic functions

as basis for HOL theory of sets, 102
characteristic predicate, of type definitions, 35,

59
characterizing theorem

for lists, 91
for numbers, 73

characters, the HOL theory of, 100
choice axiom, 61
choice operator, in HOL logic

inference rules for, 52, 53
primitive axiom for, 61
syntax of, 63

CHOOSE, 45, 54
Church, A., 59, 60
combin, 65
combinations, in HOL logic

abbreviation for multiple, 22, 64
constructor for, 17
destructor for, 17
quotation of, 22

combinators, in HOL logic, 65, 248
complex numbers, the HOL theory of, 83
compound types, in HOL logic

constructors for, 15, 22
destructors for, 16

concatenation, of lists
in HOL logic, 92

concl, 24
conclusions

of inference rules, 25
of sequents, 23
of theorems, 23

COND, the HOL constant, 61
conditionals, in HOL logic, 61, 63

definitional axiom for, 61
printing of, 15, 170

congruence rules
in simplification, 197
in termination analysis, 147–150

CONJ, 45, 55
CONJUNCT1, 45, 56
CONJUNCT2, 45, 56
conjunction, in HOL logic

constructor for, 63
definitional axiom for, 60
inference rule for, 55
syntax of, 63

CONS, the HOL constant, 90
consistency, of HOL logic, 24
constant definition extension, of HOL logic

ML function for, 34
constant specification extension, of HOL logic

ML function for, 34
constants, 33
constants, in HOL logic

constructor for, 17
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declaration of, 32
destructor for, 17
fully-qualified names of, 20, 65
hiding status of, 171
primitive logical, 59

contradiction rule, in HOL logic, 58
Count.apply, 245
counting inferences, in HOL proofs, 40, 41, 43,

244–245
counting_thms, 244
current_theory, 30
CURRY, the HOL constant, 67

data types
definition in HOL, see also Hol_datatype,

123
decision procedures

first-order logic, 181
Presburger arithmetic over integers, 208
Presburger arithmetic over natural num-

bers, 208
propositional satisfiability, 215
QBF, 219
SMT, 223

declared constants, in HOL logic, 63
deductive systems, 23
default print depth, for HOL logic, 172
Define, 137
define_new_type_bijections, 36
defining mechanisms, for HOL logic, 34
definition, 33
definitional axioms, 36
definitional extension, of HOL logic, 33
definitional theories, 61
definitions, 33
definitions, adding to HOL logic, 34
derived rules, in HOL logic

importance of, 40
justification of, 41
list and derivations of some, 45–58
list of axiomatic, 45
pre-defined, 44

dest_abs, 17
dest_comb, 17
dest_thm, 23
dest_thy_const, 17
dest_thy_type, 16

dest_var, 17
dest_vartype, 16
DISCH, 27
discharging assumptions, in HOL logic

ML function for, 27
DISJ1, 45, 56
DISJ2, 45, 57
DISJ_CASES, 45, 57
disjoint unions, the HOL theory of, 70
disjunction, in HOL logic

constructor for, 63
definitional axiom for, 60
inference rule for, 56–58
syntax of, 63

DIV, the HOL constant, 76

EL, the HOL constant, 92
EMPTYSTRING, the HOL constant, 101
epsilon operator, 59
EQ_IMP_RULE, 45, 48
EQ_MP, 45, 47
EQT_ELIM, 48
EQT_INTRO, 45, 49
equality, in HOL logic, 59, 60

MP rule for, 47
other rules for, 48–50
primitive axiom for, 60
symmetry rule for, 46
syntax of, 63
transitivity rule for, 46

equational theorems, in HOL logic
use of in rewriting, 42
use of in the simplifier, 194

ETA_AX, 61
ETA_CONV, 45, 51
EVEN, the HOL constant, 77
EVERY, the HOL constant, 93
existential quantifier, in HOL logic

abbreviation for multiple, 22, 64
definitional axiom for, 60
in infinity axiom, 61
inference rules for, 53–54
syntax of, 63

EXISTS, 45, 53
exists unique, in HOL logic

definitional axiom for, 60
EXISTS, the HOL constant (over lists), 93
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EXP, the HOL constant, 76
export_mono (ML function), 153
export_rewrites, 190
export_theory, 32
EXT, 45, 52
extension, of HOL logic

by constant definition, 34
by constant specification, 34
by type definition, 35–36
definitional, 33

extensionality rule, in HOL logic, 52

F (falsity), the HOL constant
axiom for, 24
definitional axiom for, 60
rules of inference for, 58

FACT, the HOL constant, 77
families of inferences, in HOL logic, 25, 44
FILTER, the HOL constant, 93
finiteness

of multi-sets, 111
of sets, 104

FLAT, the HOL constant, 92
FOLDL, the HOL constant, 93
FOLDR, the HOL constant, 93
follows from, in natural deduction, 23
formulas as terms, in HOL logic, 23
free variables, in HOL logic, 49, 51–54
FRONT, the HOL constant, 94
FST, the HOL constant

definition of, 67
FULL_SIMP_TAC, 155, 185
function abstraction, in HOL logic, 18

abbreviation for multiple, 68
constructor for, 17
destructor for, 17
inference rules for, 27
paired, 68–69
relation to let-terms, 69
subterms of, 68
symbol for, 22
uncurrying, in paired, 68–69

function application, in HOL logic
constructor for, 17, 22
destructor for, 17
inference rules for, 47
syntax of, 22

function composition, in HOL logic, 65
of finite maps, 119

function types, in HOL logic
constructors for, 15
destructors for, 16

FUNPOW, the HOL constant, 77

GEN, 45, 50
generalization rule, in HOL logic, 50
generic types, in HOL logic, 32

HD, the HOL constant, 91
heaps (in Poly/ML), 242–244
hidden, 172
hide, 171
higher-order matching, 195
Hilbert, D., 59
HOL, 60
HOL system

adjustment of user interface of, 172, 229
hiding constants in, 171–172
typical work in, 30

Hol_datatype, 123–131
printing in LATEX, 247

Hol_defn, 141
Hol_reln, defining inductive relations, 152
Holmake, 231–242

conditional inclusion of sections, 241
functions for text-manipulation, 238
variables in makefiles, 239

HolQbfLib, 219–223
HolSatLib, 215–219

SAT_ORACLE, 215
SAT_PROVE, 215

HolSmtLib, 223–228
\HOLthm (munging command), 247
\HOLtm (munging command), 247
\HOLty (munging command), 247
Huet, G., 42
hyp, 24
hyp_set, 23
hypotheses

of sequents, 23
of theorems, 23

I, the HOL constant, 65
identifiers, in HOL logic, 13–14

non-aggregating characters, 14, 163
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ifdef (Holmake directive), 242
ifeq (Holmake directive), 242
iff, in HOL logic

definitional axiom for, 60
ifndef (Holmake directive), 242
ifneq (Holmake directive), 242
implication, in HOL logic, 59

inference rules for, 45, 48
primitive axiom for, 61
syntax of, 63

Induct_on (ML induction tactic), 155, 178,
179

induction theorems, in HOL logic
for algebraic data types, 127, 178
for finite bags, 111
for finite sets, 104
for lists, 91
for natural numbers, 73

inductive relations, 152–155
Hol_reln (ML function), 152
monotone operators for, 153
performing proofs, 155
xHol_reln (ML function), 153

inference rules, of HOL logic
derived, 45–58
primitive, 25–28
some not properly derived, 44–45

inference schemes, in HOL logic, 25
inference, in natural deduction, 23
inferences, in HOL logic

as ML function applications, 40
counting of, 244–245
in derived rules, 40
notation for, 25

INFINITY_AX, 61
infixes, in HOL logic, 63
INL, the HOL constant, 70
INR, the HOL constant, 70
INST_TYPE, 27, 42
integers, the HOL theory of, 80
INV_SUC, 73
ISL, the HOL constant, 70
isPREFIX, the HOL constant, 94
ISR, the HOL constant, 70
itself, the HOL type operator, 71

K, the HOL constant, 65, 248

labelled paths, the HOL theory of, 98–100
LAST, the HOL constant, 94
LATEX

embedding in HOL, 245–257
“lazy” lists, the HOL theory of, 96–98
LCF, 18, 19, 60

Cambridge, 42
Edinburgh, 42

Leisenring, A., 59
LENGTH, the HOL constant, 92
LESS, 74
less than, in HOL logic, 74
LET, the HOL constant, 61, 69
let-terms, in HOL logic

as abbreviations, 69
constant for, 61
definitional axiom for, 61

lhs, 17
list theorems, in HOL logic, 90
list, the type operator in HOL logic, 90
list_Axiom, 91
list_mk_abs, 22, 64
list_mk_comb, 22, 64
list_mk_conj, 64
list_mk_disj, 64
list_mk_exists, 22, 64
list_mk_forall, 22, 64
list_mk_imp, 64
list_size, the HOL constant, 92
list_ss (simplification set), 189
lists, the HOL theory of, 90–95
load (ML function), 31, 232, 233
logical constants, in HOL logic, 60

MAP, the HOL constant, 92
MAP2, the HOL constant, 92
mapping functions, in the HOL logic

for labelled paths, 99
for lists, 92
for options, 72
for pairs, 67
for possibly infinite sequences, 96

matching
higher-order, 195
in pretty-printing terms, 164

MAX, the HOL constant, 77
max_print_depth, 172



INDEX 265

measure_def, 76
MEM, the HOL constant, 92
meson (model elimination) procedure, 182
metis (resolution) procedure, 182
Milner, R., 13, 19, 42
min, 29
MIN, the HOL constant, 77
min, the HOL theory, 59
MK_ABS, 45
mk_abs, 17, 22
MK_COMB, 45
mk_comb, 17, 22, 162
mk_cond, 63
mk_conj, 63
mk_cons, 63
mk_const, 22
mk_disj, 63
mk_eq, 63
mk_exists, 63
mk_forall, 63
mk_imp, 63
mk_let, 63
mk_list, 63
mk_neg, 63
mk_oracle_thm

type of, 28
mk_pair, 63
mk_select, 63
mk_thm, 29
mk_thy_const, 17
mk_type, 15, 22
mk_var, 16, 22
mk_vartype, 15, 22
MOD, the HOL constant, 76
model elimination method for first-order logic,

182
Modus Ponens, in HOL logic

ML function for, 28
Moscow ML, 229, 233, 242
MP, 28
MULT, 76
munging (producing LATEX from HOL), 245

command options, 247
creating a munger, 251
Holindex, 252
running a munger, 251

natural deduction, 23
presentation style for the LATEX munger,

249
negation, in HOL logic

constructor for, 63
definitional axiom for, 60
syntax of, 63

new_axiom, 32
new_constant, 32
new_definition, 34
new_recursive_definition, 75
new_specification, 35
new_theory, 31
new_type, 32
new_type_definition, 36, 66
NIL, the HOL constant, 90
NOT_SUC, 73
Ntimes (controlling rewrite applications), 202
NULL, the HOL constant, 91
num, the theory in HOL logic, 73
num, the type in HOL logic, 78
num_Axiom, 73
num_CONV, 45, 79
numerals, in HOL logic

construction of, 78
parsing, 79

ODD, the HOL constant, 77
Once (controlling rewrite applications), 155,

202
one, the HOL theory and type, 71
one-to-one predicate, in HOL logic

definitional axiom for, 61
one_Axiom, 71
ONE_ONE_DEF, 61
onto predicate, in HOL logic

definitional axiom for, 61
ONTO_DEF, 61
options, the HOL theory of, 71
OUTL, the HOL constant, 70
OUTR, the HOL constant, 70

PAIR, 67
PAIR_EQ, 67
pairing constructor, in HOL logic, 66

associativity of, 66
definition of, 67
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pairs, in HOL logic, 66–67
in abstractions, 68–69
parsing of, 68

parents, 33
parents, of HOL theories, 29
parsing, of HOL logic

grammars for, 20, 158, 159
hiding constant status in, 171–172
of binders, 68
of function abstractions, 68
of let-terms, 69
of list expressions, 90
of numerals, 79
of paired abstractions, 68
of pairs, 66
of quotation syntax, 18, 172–175
of standard notations, 63
of sum types, 70
overloading, 161, 163, 166–167, 171
preterms, 161
syntactic patterns, 163–165
Unicode characters, 162–163

paths (reduction sequences), the HOL theory
of, 98–100

Paulson, L., 42
Peano’s axioms, 73
permutations (of lists), the HOL theory of, 95
Poly/ML, 242
PPλ (same as PPLAMBDA), of LCF system, 73
prim_rec, the HOL theory, 73–74
primitive constants, of HOL logic, 59
primitive inference, in natural deduction, 23
primitive recursion theorem

automated use of, in HOL system, 74–91
for lists, 91
for numbers, 73

primitive recursive definitions, in HOL logic
justification of, 74

primitive recursive functions, 73
print_theory, 33
printing, in HOL logic

grammars for, 20
of hypotheses of theorems, 24
of list expressions, 90
of quotation syntax, 18
of theorems, 24
of theories, 33

of types, 18
structural depth adjustment in, 172

probability, the HOL theory of, 83
prod, the HOL type operator, 66
product types

in HOL logic, 66–67
proof

in natural deduction, 23
the notion of, in HOL system, 40

proof steps, as ML function applications, 40
proofs, in HOL logic

as generated by derived rules, 40
as ML function applications, 40

prove_abs_fn_one_one, 37
prove_abs_fn_onto, 37
prove_rep_fn_one_one, 37
prove_rep_fn_onto, 37
pure_ss, 187

QBF, see HolQbfLib
quotation, in HOL logic, 18

of non-primitive terms, 63–64
of primitive terms, 22
of types, 22
parser for, 18, 63, 172

quotient types, definition of, 131

rand, 17
rationals, the HOL theory of, 81–82
rator, 17
real numbers, the HOL theory of, 82–83
record types, 129

field selection notation, 129, 168
recursive definitions, in classical logics, 73
recursive definitions, in HOL logic

automated, for numbers, 74
reduction sequences, the HOL theory of, 98–

100
REFL, 25
reflexivity, in HOL logic

ML function for, 25
representing types, in HOL logic

pair example of, 66–67
reset_thm_count, 245
resolution method for first-order logic, 182
restricted quantification, 62
reveal, 172
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REWRITE_RULE, 42–43
rewriting

rules for, 42–43
rhs, 17
RIGHT_BETA, 54
RIGHT_LIST_BETA, 55
rules in HOL logic, some not properly derived,

44–45
RW_TAC, 180, 186

S, the HOL constant, 65
SAT solvers, see HolSatLib
save_thm, 32
saving theorems, 32
SELECT_AX, 61
SELECT_ELIM, 53
SELECT_INTRO, 52
selectors, in HOL logic

for lists, 91
for pairs, 67

sequents
in natural deduction, 23
representation of, in HOL logic, 23

sessions, with HOL system, 30
set theory notation, 106
sets, the HOL theory of, 102
show_assums, 24
SIMP_TAC, 184
SimpLHS, 155, 203
simplification, 183–205

AC-normalisation, 198
at particular sub-terms, 202
conditional rewriting, 193
congruence rules, 197
guaranteeing termination, 194, 202, 203
simpset fragments, 191
tactics, 184
with pre-orders, 203

SimpRHS, 155, 203
SMT solvers, see HolSmtLib
SND, the HOL constant

definition of, 67
sorting, the HOL theory of, 95
SPEC, 45, 49
specialization rule, in HOL logic, 49
specification of constants, in HOL logic, 34–35
Squolem, see HolQbfLib

srw_ss (simplification set), 190
SRW_TAC, 180, 186
std_ss (simplification set), 188
string literals, 101
STRING, the HOL constant, 101
strings, the HOL theory of, 100–102
SUB, 76
SUBS, 45
SUBS_OCCS, 45
SUBST, 26
SUBST_CONV, 45
substitution rule, in HOL logic

ML function for, 26
sums (disjoint unions), the HOL theory of, 70
SYM, 45, 46
symmetry of equality rule, in HOL logic, 46
syntactic macros, 161

T

definitional axiom for, 60
rules of inference for, 48–50

Tag.read

making tags, 28
term constructors, in HOL logic, 16, 22–64
term destructors, in HOL logic, 17
terms, in HOL logic

antiquotation, 174
as logical formulas, 23
conditional, 61
constructors for, 16, 22–64
function abstraction, 68
let-, 69
non-primitive, 63
pair, 68–69
primitive, 22

theorem, 33
theorem notation, in HOL logic, 24–25
theorems, 33
theorems, in HOL logic

as inference rules, 44
destructors for, 23
equational, 42
rules inexpressible as, 44
saving of, 32

theorems, in natural deduction, 23
theories, in HOL logic

creation of, 31
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extension of, 33–36
functions for accessing, 33
hierarchies of, 29, 33, 59
naming of, 30
representation of, 29

theory segments, 29
thm, 39
thm (ML type), 23, 25
thm_count, 245
timing of HOL evaluations, 244–245
TL, the HOL constant, 91
tokens, 13–15

parsing numerals, 79
suppressing parsing behaviour of, 63, 160,

248
Unicode characters, 14, 163

traces, controlling HOL feedback, 230
TRANS, 45, 46
transitivity of equality rule, in HOL logic, 46
truth values, in HOL logic, 16

constants for, 60
definition of, 60

turnstile notation, 23–24
ty_antiq, 174
. . ._TY_DEF, 36
type abbreviations, 158
type checking, in HOL logic

antiquotation in, 174
of quotation syntax, 18–22

type constants, in HOL logic, 15
type constraint

in HOL logic, 19
in HOL parser, 165

type constructors
in HOL logic, 15, 22

type definition extension, in HOL logic
ML function for, 35–36

type definitions, in HOL logic, 35–36
algebraic types, 123
defining bijections for, 36–37
introduction of, 35
maintenance of TypeBase, 123
properties of bijections for, 37
quotients, 131–134
record types, 129

type destructors, in HOL logic, 16
type inference

in HOL parser, 19, 161, 162, 166
type instantiation, in HOL logic

in rewriting rule, 42
ML function for, 27

type operators, in HOL logic
declaration, 32
definitional axioms for, 36
for pairs, 66

‘:· · ·‘ (type quotes, in ML), 22
type variables, in HOL logic

constructor for, 15, 22
destructors for, 16
differences from classical, 60
names of, 13

TYPE_DEFINITION, 36
type_of, 17
type_rws, 178
TypeBase, 123, 130, 178, 186
types, 33
types, in HOL logic, 15

constructors for, 15, 22
destructors for, 16
determination of, 17
instantiation of, 27
parsing of, 158–159
tools for construction of, 90

UNCURRY, the HOL constant, 67
UNDISCH, 41, 45
Unicode, 14, 162
universal quantifier, in HOL logic

abbreviation for multiple, 22, 64
definitional axiom for, 60
in four primitive axioms, 60
inference rules for, 50, 52
syntax of, 63

universal set, 103, 169
UTF-8, 162

variables, in HOL logic
constructor for, 16, 22
destructor for, 17
multiple bound, 22, 64
names of, 13–14
syntax of, 22
with constant names, 65, 171

W, the HOL constant, 65
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Wadsworth, C., 42
wellfounded, 75
WF_LESS, 76
WF_measure, 76
WF_PRED, 76

xDefine, 139
xHol_reln, defining inductive relations, 153
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