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Preface

This volume contains the description of the HOL system’s logic. It is one of four volumes
making up the documentation for HOL:

(i) LOGIC: a formal description of the higher order logic implemented by the HOL

system.

(ii) TUTORIAL: a tutorial introduction to HOL, with case studies.

(iii) DESCRIPTION: a detailed user’s guide for the HOL system;

(iv) REFERENCE: the reference manual for HOL.

These four documents will be referred to by the short names (in small slanted capitals)
given above.

This document, LOGIC, serves as a formal definition of higher order logic in terms of
a set-theoretic semantics. This material was written by Andrew Pitts in 1991, and was
originally part of DESCRIPTION. Because this logic is shared with other theorem-proving
systems (HOL Light, ProofPower), and is similar to that implemented in Isabelle, where
it is called Isabelle/HOL, it is now presented in its own manual.

The HOL system is designed to support interactive theorem proving in higher order
logic (hence the acronym ‘HOL’). To this end, the formal logic is interfaced to a general
purpose programming language (ML, for meta-language) in which terms and theorems
of the logic can be denoted, proof strategies expressed and applied, and logical theories
developed. The version of higher order logic used in HOL is predicate calculus with
terms from the typed lambda calculus (i.e. simple type theory). This was originally
developed as a foundation for mathematics [2]. The primary application area of HOL

was initially intended to be the specification and verification of hardware designs. (The
use of higher order logic for this purpose was first advocated by Keith Hanna [3].)
However, the logic does not restrict applications to hardware; HOL has been applied to
many other areas.

Thus, this document describes the theoretical underpinnings of the HOL system, and
presents it abstractly.

The approach to mechanizing formal proof used in HOL is due to Robin Milner [4],
who also headed the team that designed and implemented the language ML. That work

3



4 Preface

centred on a system called LCF (logic for computable functions), which was intended for
interactive automated reasoning about higher order recursively defined functions. The
interface of the logic to the meta-language was made explicit, using the type structure of
ML, with the intention that other logics eventually be tried in place of the original logic.
The HOL system is a direct descendant of LCF; this is reflected in everything from its
structure and outlook to its incorporation of ML, and even to parts of its implementation.
Thus HOL satisfies the early plan to apply the LCF methodology to other logics.

The original LCF was implemented at Edinburgh in the early 1970’s, and is now re-
ferred to as ‘Edinburgh LCF’. Its code was ported from Stanford Lisp to Franz Lisp by
Gérard Huet at INRIA, and was used in a French research project called ‘Formel’. Huet’s
Franz Lisp version of LCF was further developed at Cambridge by Larry Paulson, and
became known as ‘Cambridge LCF’. The HOL system is implemented on top of an early
version of Cambridge LCF and consequently many features of both Edinburgh and Cam-
bridge LCF were inherited by HOL. For example, the axiomatization of higher order logic
used is not the classical one due to Church, but an equivalent formulation influenced by
LCF.

An enhanced and rationalized version of HOL, called HOL88, was released (in 1988),
after the original HOL system had been in use for several years. HOL90 (released in
1990) was a port of HOL88 to SML [5] by Konrad Slind at the University of Calgary.
It has been further developed through the 1990’s. HOL 4 is the latest version of HOL,
and is also implemented in SML; it features a number of novelties compared to its
predecessors. HOL 4 is also the supported version of the system for the international
HOL community.

We have retroactively decided to number HOL implementations in the following way

1. HOL88 and earlier: implementations based on a Lisp substrate, with Classic ML.

2. HOL90: implementations in Standard ML, principally using the SML/NJ imple-
mentation.

3. HOL98 (Athabasca and Taupo releases): implementations using Moscow ML, and
with a new library and theory mechanism.

4. HOL (Kananaskis releases)

Therefore, with HOL 4, we do away with the habit of associating implementations with
year numbers. Individual releases within HOL 4 will retain the lake-number naming
scheme.

In this document, the acronym ‘HOL’ refers to both the interactive theorem proving
system and to the version of higher order logic that the system supports; where there is
serious ambiguity, the former is called ‘the HOL system’ and the latter ‘the HOL logic’.
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Chapter 1

Syntax and Semantics

1.1 Introduction

This chapter describes the syntax and set-theoretic semantics of the logic supported
by the HOL system, which is a variant of Church’s simple theory of types [2] and will
henceforth be called the HOL logic, or just HOL. The meta-language for this description
will be English, enhanced with various mathematical notations and conventions. The
object language of this description is the HOL logic. Note that there is a ‘meta-language’,
in a different sense, associated with the HOL logic, namely the programming language
ML. This is the language used to manipulate the HOL logic by users of the system. It
is hoped that because of context, no confusion results from these two uses of the word
‘meta-language’. When ML is the object of study (as in [5]), ML is the object language
under consideration—and English is again the meta-language!

The HOL syntax contains syntactic categories of types and terms whose elements are
intended to denote respectively certain sets and elements of sets. This set theoretic
interpretation will be developed along side the description of the HOL syntax, and in
the next chapter the HOL proof system will be shown to be sound for reasoning about
properties of the set theoretic model.1 This model is given in terms of a fixed set of
sets U , which will be called the universe and which is assumed to have the following
properties.

Inhab Each element of U is a non-empty set.

Sub If X ∈ U and ∅ 6= Y ⊆ X, then Y ∈ U .

Prod If X ∈ U and Y ∈ U , then X × Y ∈ U . The set X × Y is the cartesian product,
consisting of ordered pairs (x, y) with x ∈ X and y ∈ Y , with the usual set-
theoretic coding of ordered pairs, viz. (x, y) = {{x}, {x, y}}.

Pow If X ∈ U , then the powerset P (X) = {Y : Y ⊆ X} is also an element of U .

Infty U contains a distinguished infinite set I.

1There are other, ‘non-standard’ models of HOL, which will not concern us here.
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10 CHAPTER 1. SYNTAX AND SEMANTICS

Choice There is a distinguished element ch ∈
∏

X∈U X. The elements of the product∏
X∈U X are (dependently typed) functions: thus for all X ∈ U , X is non-empty

by Inhab and ch(X) ∈ X witnesses this.

There are some consequences of these assumptions which will be needed. In set theory
functions are identified with their graphs, which are certain sets of ordered pairs. Thus
the set X→Y of all functions from a set X to a set Y is a subset of P (X ×Y ); and it is a
non-empty set when Y is non-empty. So Sub, Prod and Pow together imply that U also
satisfies

Fun If X ∈ U and Y ∈ U , then X→Y ∈ U .

By iterating Prod, one has that the cartesian product of any finite, non-zero number of
sets in U is again in U . U also contains the cartesian product of no sets, which is to
say that it contains a one-element set (by virtue of Sub applied to any set in U—Infty
guarantees there is one); for definiteness, a particular one-element set will be singled
out.

Unit U contains a distinguished one-element set 1 = {0}.

Similarly, because of Sub and Infty, U contains two-element sets, one of which will be
singled out.

Bool U contains a distinguished two-element set 2 = {0, 1}.

The above assumptions on U are weaker than those imposed on a universe of sets by
the axioms of Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC), principally
because U is not required to satisfy any form of the Axiom of Replacement. Indeed, it is
possible to prove the existence of a set U with the above properties from the axioms of
ZFC. (For example one could take U to consist of all non-empty sets in the von Neumann
cumulative hierarchy formed before stage ω + ω.) Thus, as with many other pieces of
mathematics, it is possible in principal to give a completely formal version within ZFC

set theory of the semantics of the HOL logic to be given below.

1.2 Types

The types of the HOL logic are expressions that denote sets (in the universe U). Fol-
lowing tradition, σ, possibly decorated with subscripts or primes, is used to range over
arbitrary types.

There are four kinds of types in the HOL logic. These can be described informally by
the following BNF grammar, in which α ranges over type variables, c ranges over atomic
types and op ranges over type operators.
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σ ::= α

type variables

6
| c

atomic types
6

| (σ1, . . . , σn)op︸ ︷︷ ︸
compound types6

| σ1→σ2︸ ︷︷ ︸
function types

(domain σ1, range σ2)

6

In more detail, the four kinds of types are as follows.

1. Type variables: these stand for arbitrary sets in the universe. In Church’s original
formulation of simple type theory, type variables are part of the meta-language
and are used to range over object language types. Proofs containing type vari-
ables were understood as proof schemes (i.e. families of proofs). To support such
proof schemes within the HOL logic, type variables have been added to the object
language type system.2

2. Atomic types: these denote fixed sets in the universe. Each theory determines
a particular collection of atomic types. For example, the standard atomic types
bool and ind denote, respectively, the distinguished two-element set 2 and the
distinguished infinite set I.

3. Compound types: These have the form (σ1, . . . , σn)op, where σ1, . . . , σn are the
argument types and op is a type operator of arity n. Type operators denote opera-
tions for constructing sets. The type (σ1, . . . , σn)op denotes the set resulting from
applying the operation denoted by op to the sets denoted by σ1, . . . , σn. For ex-
ample, list is a type operator with arity 1. It denotes the operation of forming all
finite lists of elements from a given set. Another example is the type operator prod
of arity 2 which denotes the cartesian product operation. The type (σ1, σ2)prod is
written as σ1 × σ2.

4. Function types: If σ1 and σ2 are types, then σ1→σ2 is the function type with
domain σ1 and range σ2. It denotes the set of all (total) functions from the set
denoted by its domain to the set denoted by its range. (In the literature σ1→σ2 is
written without the arrow and backwards—i.e. as σ2σ1.) Note that syntactically
→ is simply a distinguished type operator of arity 2 written with infix notation. It
is singled out in the definition of HOL types because it will always denote the same
operation in any model of a HOL theory—in contrast to the other type operators
which may be interpreted differently in different models. (See Section 1.2.2.)

It turns out to be convenient to identify atomic types with compound types con-
structed with 0-ary type operators. For example, the atomic type bool of truth-values
can be regarded as being an abbreviation for ()bool. This identification will be made

2This technique was invented by Robin Milner for the object logic PPλ of his LCF system.
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in the technical details that follow, but in the informal presentation atomic types will
continue to be distinguished from compound types, and ()c will still be written as c.

1.2.1 Type structures

The term ‘type constant’ is used to cover both atomic types and type operators. It is
assumed that an infinite set TyNames of the names of type constants is given. The greek
letter ν is used to range over arbitrary members of TyNames, c will continue to be used
to range over the names of atomic types (i.e. 0-ary type constants), and op is used to
range over the names of type operators (i.e. n-ary type constants, where n > 0).

It is assumed that an infinite set TyVars of type variables is given. Greek letters α, β, . . .,
possibly with subscripts or primes, are used to range over Tyvars. The sets TyNames and
TyVars are assumed disjoint.

A type structure is a set Ω of type constants. A type constant is a pair (ν, n) where
ν ∈ TyNames is the name of the constant and n is its arity. Thus Ω ⊆ TyNames×NN (where
NN is the set of natural numbers). It is assumed that no two distinct type constants have
the same name, i.e. whenever (ν, n1) ∈ Ω and (ν, n2) ∈ Ω, then n1 = n2.

The set TypesΩ of types over a structure Ω can now be defined as the smallest set such
that:

• TyVars ⊆ TypesΩ.

• If (ν, 0) ∈ Ω then ()ν ∈ TypesΩ.

• If (ν, n) ∈ Ω and σi ∈ TypesΩ for 1 ≤ i ≤ n, then (σ1, . . . , σn)ν ∈ TypesΩ.

• If σ1 ∈ TypesΩ and σ2 ∈ TypesΩ then σ1→σ2 ∈ TypesΩ.

The type operator→ is assumed to associate to the right, so that

σ1→σ2→ . . .→σn→σ

abbreviates

σ1→(σ2→ . . .→(σn→σ) . . .)

The notation tyvars(σ) is used to denote the set of type variables occurring in σ.

1.2.2 Semantics of types

A model M of a type structure Ω is specified by giving for each type constant (ν, n) an
n-ary function

M(ν) : Un −→ U
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Thus given sets X1, . . . , Xn in the universe U , M(ν)(X1, . . . , Xn) is also a set in the
universe. In case n = 0, this amounts to specifying an element M(ν) ∈ U for the atomic
type ν.

Types containing no type variables are called monomorphic, whereas those that do
contain type variables are called polymorphic. What is the meaning of a polymorphic
type? One can only say what set a polymorphic type denotes once one has instantiated
its type variables to particular sets. So its overall meaning is not a single set, but is
rather a set-valued function, Un −→ U , assigning a set for each particular assignment
of sets to the relevant type variables. The arity n corresponds to the number of type
variables involved. It is convenient in this connection to be able to consider a type
variable to be involved in the semantics of a type σ whether or not it actually occurs in
σ, leading to the notion of a type-in-context.

A type context, αs, is simply a finite (possibly empty) list of distinct type variables
α1, . . . , αn. A type-in-context is a pair, written αs.σ, where αs is a type context, σ is a
type (over some given type structure) and all the type variables occurring in σ appear
somewhere in the list αs. The list αs may also contain type variables which do not occur
in σ.

For each σ there are minimal contexts αs for which αs.σ is a type-in-context, which
only differ by the order in which the type variables of σ are listed in αs. In order to select
one such context, let us assume that TyVars comes with a fixed total order and define
the canonical context of the type σ to consist of exactly the type variables it contains,
listed in order.3

Let M be a model of a type structure Ω. For each type-in-context αs.σ over Ω, define
a function

[[αs.σ]]M : Un −→ U

(where n is the length of the context) by induction on the structure of σ as follows.

• If σ is a type variable, it must be αi for some unique i = 1, . . . , n and then [[αs.σ]]M
is the ith projection function, which sends (X1, . . . , Xn) ∈ Un to Xi ∈ U .

• If σ is a function type σ1→σ2, then [[αs.σ]]M sendsXs ∈ Un to the set of all functions
from [[αs.σ1]]M(Xs) to [[αs.σ2]]M(Xs). (This makes use of the property Fun of U .)

• If σ is a compound type (σ1, . . . , σm)ν, then [[αs.σ]]M sends Xs to M(ν)(S1, . . . , Sm)

where each Sj is [[αs.σj]]M(Xs).

One can now define the meaning of a type σ in a model M to be the function

[[σ]]M : Un −→ U

3It is possible to work with unordered contexts, specified by finite sets rather than lists, but we choose
not to do that since it mildly complicates the definition of the semantics to be given below.
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given by [[αs.σ]]M , where αs is the canonical context of σ. If σ is monomorphic, then
n = 0 and [[σ]]M can be identified with the element [[σ]]M() of U . When the particular
model M is clear from the context, [[ ]]M will be written [[ ]].

To summarize, given a model in U of a type structure Ω, the semantics interprets
monomorphic types over Ω as sets in U and more generally, interprets polymorphic
types involving n type variables as n-ary functions Un −→ U on the universe. Function
types are interpreted by full function sets.

Examples Suppose that Ω contains a type constant (b, 0) and that the model M assigns
the set 2 to b. Then:

1. [[b→b→b]] = 2→2→2 ∈ U .

2. [[(α→b)→α]] : U −→ U is the function sending X ∈ U to (X→2)→X ∈ U .

3. [[α, β.(α→b)→α]] : U2 −→ U is the function sending (X, Y ) ∈ U2 to (X→2)→X ∈
U .

Remark A more traditional approach to the semantics would involve giving meanings
to types in the presence of ‘environments’ assigning sets in U to all type variables. The
use of types-in-contexts is almost the same as using partial environments with finite
domains—it is just that the context ties down the admissible domain to a particular
finite (ordered) set of type variables. At the level of types there is not much to choose
between the two approaches. However for the syntax and semantics of terms to be given
below, where there is a dependency both on type variables and on individual variables,
the approach used here seems best.

1.2.3 Instances and substitution

If σ and τ1, . . . , τn are types over a type structure Ω,

σ[τ1, . . . , τp/β1, . . . , βp]

will denote the type resulting from the simultaneous substitution for each i = 1, . . . , p

of τi for the type variable βi in σ. The resulting type is called an instance of σ. The
following lemma about instances will be useful later; it is proved by induction on the
structure of σ.

Lemma 1 Suppose that σ is a type containing distinct type variables β1, . . . , βp and that
σ′ = σ[τ1, . . . , τn/β1, . . . , βp] is an instance of σ. Then the types τ1, . . . , τp are uniquely
determined by σ and σ′.

We also need to know how the semantics of types behaves with respect to substitution:
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Lemma 2 Given types-in-context βs.σ and αs.τi (i = 1, . . . , p, where p is the length of βs),
let σ′ be the instance σ[τs/βs]. Then αs.σ′ is also a type-in-context and its meaning in any
model M is related to that of βs.σ as follows. For all Xs ∈ Un (where n is the length of αs)

[[αs.σ′]](Xs) = [[βs.σ]]([[αs.τ1]](Xs), . . . , [[αs.τp]](Xs))

Once again, the lemma can be proved by induction on the structure of σ.

1.3 Terms

The terms of the HOL logic are expressions that denote elements of the sets denoted
by types. The meta-variable t is used to range over arbitrary terms, possibly decorated
with subscripts or primes.

There are four kinds of terms in the HOL logic. These can be described approximately
by the following BNF grammar, in which x ranges over variables and c ranges over
constants.

t ::= x

variables

6
| c

constants
6

| t t′︸︷︷︸
function applications

(function t, argument t′)

6

| λx. t︸︷︷︸
λ-abstractions

6

Informally, a λ-term λx. t denotes a function v 7→ t[v/x], where t[v/x] denotes the
result of substituting v for x in t. An application t t′ denotes the result of applying the
function denoted by t to the value denoted by t′. This will be made more precise below.

The BNF grammar just given omits mention of types. In fact, each term in the HOL

logic is associated with a unique type. The notation tσ is traditionally used to range
over terms of type σ. A more accurate grammar of terms is:

tσ ::= xσ | cσ | (tσ′→σ t
′
σ′)σ | (λxσ1 . tσ2)σ1→σ2

In fact, just as the definition of types was relative to a particular type structure Ω,
the formal definition of terms is relative to a given collection of typed constants over Ω.
Assume that an infinite set Names of names is given. A constant over Ω is a pair (c, σ),
where c ∈ Names and σ ∈ TypesΩ. A signature over Ω is just a set ΣΩ of such constants.

The set TermsΣΩ
of terms over ΣΩ is defined to be the smallest set closed under the

following rules of formation:

1. Constants: If (c, σ) ∈ ΣΩ and σ′ ∈ TypesΩ is an instance of σ, then (c, σ′) ∈
TermsΣΩ

. Terms formed in this way are called constants and are written cσ′.
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2. Variables: If x ∈ Names and σ ∈ TypesΩ, then var xσ ∈ TermsΣΩ
. Terms formed

in this way are called variables. The marker var is purely a device to distinguish
variables from constants with the same name. A variable var xσ will usually be
written as xσ, if it is clear from the context that x is a variable rather than a
constant.

3. Function applications: If tσ′→σ ∈ TermsΣΩ
and t′σ′ ∈ TermsΣΩ

, then (tσ′→σ t
′
σ′)σ ∈

TermsΣΩ
. (Terms formed in this way are sometimes called combinations.)

4. λ-Abstractions: If var xσ1 ∈ TermsΣΩ
and tσ2 ∈ TermsΣΩ

, then (λxσ1 . tσ2)σ1→σ2 ∈
TermsΣΩ

.

Note that it is possible for constants and variables to have the same name. It is also
possible for different variables to have the same name, if they have different types.

The type subscript on a term may be omitted if it is clear from the structure of the
term or the context in which it occurs what its type must be.

Function application is assumed to associate to the left, so that t t1 t2 . . . tn abbrevi-
ates ( . . . ((t t1) t2) . . . tn).

The notation λx1 x2 · · · xn. t abbreviates λx1. (λx2. · · · (λxn. t) · · · ).
A term is called polymorphic if it contains a type variable. Otherwise it is called

monomorphic. Note that a term tσ may be polymorphic even though σ is monomor-
phic — for example, (fα→b xα)b, where b is an atomic type. The expression tyvars(tσ)

denotes the set of type variables occurring in tσ.
An occurrence of a variable xσ is called bound if it occurs within the scope of a textu-

ally enclosing λxσ, otherwise the occurrence is called free. Note that λxσ does not bind
xσ′ if σ 6= σ′. A term in which all occurrences of variables are bound is called closed.

1.3.1 Terms-in-context

A context αs,xs consists of a type context αs together with a list xs = x1, . . . , xm of distinct
variables whose types only contain type variables from the list αs.

The condition that xs contains distinct variables needs some comment. Since a vari-
able is specified by both a name and a type, it is permitted for xs to contain repeated
names, so long as different types are attached to the names. This aspect of the syntax
means that one has to proceed with caution when defining the meaning of type variable
instantiation, since instantiation may cause variables to become equal ‘accidentally’: see
Section 1.3.3.

A term-in-context αs,xs.t consists of a context together with a term t satisfying the
following conditions.

• αs contains any type variable that occurs in xs and t.
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• xs contains any variable that occurs freely in t.

• xs does not contain any variable that occurs bound in t.

The context αs,xs may contain (type) variables which do not appear in t. Note that the
combination of the second and third conditions implies that a variable cannot have both
free and bound occurrences in t. For an arbitrary term, there is always an α-equivalent
term which satisfies this condition, obtained by renaming the bound variables as nec-
essary.4 In the semantics of terms to be given below we will restrict attention to such
terms. Then the meaning of an arbitrary term is taken to be the meaning of some
α-variant of it having no variable both free and bound. (The semantics will equate α-
variants, so it does not matter which is chosen.) Evidently for such a term there is a
minimal context αs,xs, unique up to the order in which variables are listed, for which
αs,xs.t is a term-in-context. As for type variables, we will assume given a fixed total
order on variables. Then the unique minimal context with variables listed in order will
be called the canonical context of the term t.

1.3.2 Semantics of terms

Let ΣΩ be a signature over a type structure Ω (see Section 1.3). A model M of ΣΩ is
specified by a model of the type structure plus for each constant (c, σ) ∈ ΣΩ an element

M(c, σ) ∈
∏

Xs∈Un

[[σ]]M(Xs)

of the indicated cartesian product, where n is the number of type variables occurring in
σ. In other words M(c, σ) is a (dependently typed) function assigning to each Xs ∈ Un
an element of [[σ]]M(Xs). In the case that n = 0 (so that σ is monomorphic), [[σ]]M was
identified with a set in U and then M(c, σ) can be identified with an element of that set.

The meaning of HOL terms in such a model will now be described. The semantics
interprets closed terms involving no type variables as elements of sets in U (the partic-
ular set involved being derived from the type of the term as in Section 1.2.2). More
generally, if the closed term involves n type variables then it is interpreted as an ele-
ment of a product

∏
Xs∈Un Y (Xs), where the function Y : Un −→ U is derived from the

type of the term (in a type context derived from the term). Thus the meaning of the
term is a (dependently typed) function which, when applied to any meanings chosen
for the type variables in the term, yields a meaning for the term as an element of a set
in U . On the other hand, if the term involves m free variables but no type variables,
then it is interpreted as a function Y1 × · · · × Ym→Y where the sets Y1, . . . , Ym in U are
the interpretations of the types of the free variables in the term and the set Y ∈ U is

4Recall that two terms are said to be α-equivalent if they differ only in the names of their bound
variables.
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the interpretation of the type of the term; thus the meaning of the term is a function
which, when applied to any meanings chosen for the free variables in the term, yields
a meaning for the term. Finally, the most general case is of a term involving n type
variables and m free variables: it is interpreted as an element of a product∏

Xs∈Un

Y1(Xs)× · · · × Ym(Xs)→ Y (Xs)

where the functions Y1, . . . , Ym, Y : Un −→ U are determined by the types of the free
variables and the type of the term (in a type context derived from the term).

More precisely, given a term-in-context αs,xs.t over ΣΩ suppose

• t has type τ

• xs = x1, . . . , xm and each xj has type σj

• αs = α1, . . . , αn.

Then since αs,xs.t is a term-in-context, αs.τ and αs.σj are types-in-context, and hence
give rise to functions [[αs.τ ]]M and [[αs.σj]]M from Un to U as in section 1.2.2. The mean-
ing of αs,xs.t in the model M will be given by an element

[[αs,xs.t]]M ∈
∏

Xs∈Un

(
m∏
j=1

[[αs.σj]]M(Xs)

)
→[[αs.τ ]]M(Xs).

In other words, given

Xs = (X1, . . . , Xn) ∈ Un

ys = (y1, . . . , ym) ∈ [[αs.σ1]]M(Xs)× · · · × [[αs.σm]]M(Xs)

one gets an element [[αs,xs.t]]M(Xs)(ys) of [[αs.τ ]]M(Xs). The definition of [[αs,xs.t]]M pro-
ceeds by induction on the structure of the term t, as follows. (As before, the subscript
M will be dropped from the semantic brackets [[ ]] when the particular model involved
is clear from the context.)

• If t is a variable, it must be xj for some unique j = 1, . . . ,m, so τ = σj and then
[[αs,xs.t]](Xs)(ys) is defined to be yj.

• Suppose t is a constant cσ′, where (c, σ) ∈ ΣΩ and σ′ is an instance of σ. Then
by Lemma 1 of 1.2.3, σ′ = σ[τ1, . . . , τp/β1, . . . , βp] for uniquely determined types
τ1, . . . , τp (where β1, . . . , βp are the type variables occurring in σ). Then define
[[αs,xs.t]](Xs)(ys) to be M(c, σ)([[αs.τ1]](Xs), . . . , [[αs.τp]](Xs)), which is an element
of [[αs.τ ]](Xs) by Lemma 2 of 1.2.3 (since τ is σ′).
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• Suppose t is a function application term (t1 t2) where t1 is of type τ ′→τ and t2 is
of type τ ′. Then f = [[αs,xs.t1]](Xs)(ys), being an element of [[αs.τ ′→τ ]](Xs), is a
function from the set [[αs.τ ′]](Xs) to the set [[αs.τ ]](Xs) which one can apply to the
element y = [[αs,xs.t2]](Xs)(ys). Define [[αs,xs.t]](Xs)(ys) to be f(y).

• Suppose t is the abstraction term λx.t2where x is of type τ1 and t2 of type τ2.
Thus τ = τ1→τ2 and [[αs.τ ]](Xs) is the function set [[αs.τ1]](Xs)→[[αs.τ2]](Xs). Define
[[αs,xs.t]](Xs)(ys) to be the element of this set which is the function sending y ∈
[[αs.τ1]](Xs) to [[αs,xs,x.t2]](Xs)(ys, y). (Note that since αs,xs.t is a term-in-context,
by convention the bound variable x does not occur in xs and thus αs,xs,x.t2 is also
a term-in-context.)

Now define the meaning of a term tτ in a model M to be the dependently typed function

[[tτ ]] ∈
∏

Xs∈Un

(
m∏
j=1

[[αs.σj]](Xs)

)
→[[αs.τ ]](Xs)

given by [[αs,xs.tτ ]], where αs,xs is the canonical context of tτ . So n is the number of type
variables in tτ , αs is a list of those type variables, m is the number of ordinary variables
occurring freely in tτ (assumed to be distinct from the bound variables of tτ) and the σj
are the types of those variables. (It is important to note that the list αs, which is part of
the canonical context of t, may be strictly bigger than the canonical type contexts of σj
or τ . So it would not make sense to write just [[σj]] or [[τ ]] in the above definition.)

If tτ is a closed term, then m = 0 and for each Xs ∈ Un one can identify [[tτ ]] with the
element [[tτ ]](Xs)() ∈ [[αs.τ ]](Xs). So for closed terms one gets

[[tτ ]] ∈
∏

Xs∈Un

[[αs.τ ]](Xs)

where αs is the list of type variables occurring in tτ and n is the length of that list. If
moreover, no type variables occur in tτ , then n = 0 and [[tτ ]] can be identified with the
element [[tτ ]]() of the set [[τ ]] ∈ U .

The semantics of terms appears somewhat complicated because of the possible de-
pendency of a term upon both type variables and ordinary variables. Examples of how
the definition of the semantics works in practice can be found in Section 2.4.2, where
the meaning of several terms denoting logical constants is given.

1.3.3 Substitution

Since terms may involve both type variables and ordinary variables, there are two dif-
ferent operations of substitution on terms which have to be considered—substitution of
types for type variables and substitution of terms for variables.
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Substituting types for type variables in terms

Suppose t is a term, with canonical context αs,xs say, where αs = α1, . . . , αn, xs =

x1, . . . , xm and where for j = 1, . . . ,m the type of the variable xj is σj. If αs′.τi (i =

1, . . . , n) are types-in-context, then substituting the types τi for the type variables αi in
the list xs, one obtains a new list of variables xs′. Thus the jth entry of xs′ has type
σ′j = σj[τs/αs]. Only substitutions with the following property will be considered.

In instantiating the type variables αs with the types τs, no two distinct vari-
ables in the list xs become equal in the list xs′.5

This condition ensures that αs′, xs′ really is a context. Then one obtains a new term-in-
context αs′,xs′.t′ by substituting the types τs = τ1, . . . , τn for the type variables αs in t

(with suitable renaming of bound occurrences of variables to make them distinct from
the variables in xs′). The notation

t[τs/αs]

is used for the term t′.

Lemma 3 The meaning of αs′,xs′.t′ in a model is related to that of t as follows. For all
Xs′ ∈ Un′ (where n′ is the length of αs′)

[[αs′,xs′.t′]](Xs′) = [[t]]([[αs′.τ1]](Xs′), . . . , [[αs′.τn]](Xs′)).

Lemma 2 in 1.2.3 is needed to see that both sides of the above equation are elements
of the same set of functions. The validity of the equation is proved by induction on the
structure of the term t.

Substituting terms for variables in terms

Suppose t is a term, with canonical context αs,xs say, where αs = α1, . . . , αn, xs =

x1, . . . , xm and where for j = 1, . . . ,m the type of the variable xj is σj. If one has terms-
in-context αs,xs′.tj for j = 1, . . . ,m with tj of the same type as xj, say σj, then one
obtains a new term-in-context αs,xs′.t′′ by substituting the terms ts = t1, . . . , tm for the
variables xs in t (with suitable renaming of bound occurrences of variables to prevent
the free variables of the tj becoming bound after substitution). The notation

t[ts/xs]

is used for the term t′′.

5Such an identification of variables could occur if the variables had the same name component and
their types became equal on instantiation.
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Lemma 4 The meaning of αs,xs′.t′′ in a model is related to that of t as follows. For all
Xs ∈ Un and all ys′ ∈ [[αs.σ′1]]× · · · × [[αs.σ′m′ ]] (where σ′j is the type of x′j)

[[αs,xs′.t′′]](Xs)(ys′) = [[t]](Xs)([[αs,xs′.t1]](Xs)(ys′), . . . , [[αs,xs′.tm]](Xs)(ys′))

Once again, this result is proved by induction on the structure of the term t.

1.4 Standard notions

Up to now the syntax of types and terms has been very general. To represent the
standard formulas of logic it is necessary to impose some specific structure. In particular,
every type structure must contain an atomic type bool which is intended to denote the
distinguished two-element set 2 ∈ U , regarded as a set of truth-values. Logical formulas
are then identified with terms of type bool. In addition, various logical constants are
assumed to be in all signatures. These requirements are formalized by defining the
notion of a standard signature.

1.4.1 Standard type structures

A type structure Ω is standard if it contains the atomic types bool (of booleans or truth-
values) and ind (of individuals). (In the literature, the symbol o is often used instead
of bool and ι instead of ind.)

A model M of Ω is standard if M(bool) and M(ind) are respectively the distinguished
sets 2 and I in the universe U .

It will be assumed from now on that type structures and their models are standard.

1.4.2 Standard signatures

A signature ΣΩ is standard if it contains the following three primitive constants:

⇒bool→bool→bool

=α→α→bool

ε(α→bool)→α

The intended interpretation of these constants is that⇒ denotes implication, =σ→σ→bool

denotes equality on the set denoted by σ, and ε(σ→bool)→σ denotes a choice function on
the set denoted by σ. More precisely, a model M of ΣΩ will be called standard if

• M(⇒, bool→bool→bool) ∈ (2→2→2) is the standard implication function, send-
ing b, b′ ∈ 2 to

(b⇒ b′) =

{
0 if b = 1 and b′ = 0
1 otherwise
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• M(=, α→α→bool) ∈
∏

X∈U .X→X→2 is the function assigning to each X ∈ U
the equality test function, sending x, x′ ∈ X to

(x =X x′) =

{
1 if x = x′

0 otherwise

• M(ε, (α→bool)→α) ∈
∏

X∈U .(X→2)→X is the function assigning to each X ∈ U
the choice function sending f ∈ (X→2) to

chX(f) =

{
ch(f−1{1}) if f−1{1} 6= ∅
ch(X) otherwise

where f−1{1} = {x ∈ X : f(x) = 1}. (Note that f−1{1} is in U when it is non-
empty, by the property Sub of the universe U given in Section 1.1. The function
ch is given by property Choice.)

It will be assumed from now on that signatures and their models are standard.

Remark This particular choice of primitive constants is arbitrary. The standard collec-
tion of logical constants includes T (‘true’), F (‘false’), ⇒ (‘implies’), ∧ (‘and’), ∨ (‘or’),
¬ (‘not’), ∀ (‘for all’), ∃ (‘there exists’), = (‘equals’), ι (‘the’), and ε (‘a’). This set is
redundant, since it can be defined (in a sense explained in Section 2.5.1) from various
subsets. In practice, it is necessary to work with the full set of logical constants, and the
particular subset taken as primitive is not important. The interested reader can explore
this topic further by reading Andrews’ book [1] and the references it contains.

Terms of type bool are called formulas.
The following notational abbreviations are used:

Notation Meaning
tσ = t′σ =σ→σ→bool tσ t

′
σ

t⇒ t′ ⇒bool→bool→bool tbool t
′
bool

εxσ. t ε(σ→bool)→σ(λxσ. t)

These notations are special cases of general abbreviatory conventions supported by the
HOL system. The first two are infixes and the third is a binder (see DESCRIPTION’s sections
on parsing and pretty-printing).



Chapter 2

Theories

2.1 Introduction

The result, if any, of a session with the HOL system is an object called a theory. This
object is closely related to what a logician would call a theory, but there are some differ-
ences arising from the needs of mechanical proof. A HOL theory, like a logician’s theory,
contains sets of types, constants, definitions and axioms. In addition, however, a HOL

theory, at any point in time, contains an explicit list of theorems that have already been
proved from the axioms and definitions. Logicians have no need to distinguish theorems
actually proved from those merely provable; hence they do not normally consider sets
of proven theorems as part of a theory; rather, they take the theorems of a theory to
be the (often infinite) set of all consequences of the axioms and definitions. A related
difference between logicians’ theories and HOL theories is that for logicians, theories
are static objects, but in HOL they can be thought of as potentially extendable. For ex-
ample, the HOL system provides tools for adding to theories and combining theories. A
typical interaction with HOL consists in combining some existing theories, making some
definitions, proving some theorems and then saving the new results.

The purpose of the HOL system is to provide tools to enable well-formed theories
to be constructed. The HOL logic is typed: each theory specifies a signature of type
and individual constants; these then determine the sets of types and terms as in the
previous chapter. All the theorems of such theories are logical consequences of the
definitions and axioms of the theory. The HOL system ensures that only well-formed
theories can be constructed by allowing theorems to be created only by formal proof .
Explicating this involves defining what it means to be a theorem, which leads to the
description of the proof system of HOL, to be given below. It is shown to be sound for
the set theoretic semantics of HOL described in the previous chapter. This means that a
theorem is satisfied by a model if it has a formal proof from axioms which are themselves
satisfied by the model. Since a logical contradiction is not satisfied by any model, this
guarantees in particular that a theory possessing a model is necessarily consistent, i.e.
a logical contradiction cannot be formally proved from its axioms.

This chapter also describes the various mechanisms by which HOL theories can be
extended to new theories. Each mechanism is shown to preserve the property of pos-
sessing a model. Thus theories built up from the initial HOL theory (which does possess

23
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a model) using these mechanisms are guaranteed to be consistent.

2.2 Sequents

The HOL logic is phrased in terms of hypothetical assertions called sequents. Fixing a
(standard) signature ΣΩ, a sequent is a pair (Γ, t) where Γ is a finite set of formulas over
ΣΩ and t is a single formula over ΣΩ.1 The set of formulas Γ forming the first component
of a sequent is called its set of assumptions and the term t forming the second component
is called its conclusion. When it is not ambiguous to do so, a sequent ({}, t) is written as
just t.

Intuitively, a model M of ΣΩ satisfies a sequent (Γ, t) if any interpretation of relevant
free variables as elements of M making the formulas in Γ true, also makes the formula
t true. To make this more precise, suppose Γ = {t1, . . . , tp} and let αs,xs be a context
containing all the type variables and all the free variables occurring in the formulas
t, t1, . . . , tp. Suppose that αs has length n, that xs = x1, . . . , xm and that the type of xj is
σj. Since formulas are terms of type bool, the semantics of terms defined in the previous
chapter gives rise to elements [[αs,xs.t]]M and [[αs,xs.tk]]M (k = 1, . . . , p) in

∏
Xs∈Un

(
m∏
j=1

[[αs.σj]]M(Xs)

)
→ 2

Say that the model M satisfies the sequent (Γ, t) and write

Γ |=M t

if for all Xs ∈ Un and all ys ∈ [[αs.σ1]]M(Xs)× · · · × [[αs.σm]]M(Xs) with

[[αs,xs.tk]]M(Xs)(ys) = 1

for all k = 1, . . . , p, it is also the case that

[[αs,xs.t]]M(Xs)(ys) = 1.

(Recall that 2 is the set {0, 1}.)
In the case p = 0, the satisfaction of ({}, t) by M will be written |=M t. Thus |=M t

means that the dependently typed function

[[t]]M ∈
∏

Xs∈Un

(
m∏
j=1

[[αs.σj]]M(Xs)

)
→ 2

is constant with value 1 ∈ 2.

1Note that the type subscript is omitted from terms when it is clear from the context that they are
formulas, i.e. have type bool.
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2.3 Logic

A deductive system D is a set of pairs (L, (Γ, t)) where L is a (possibly empty) list of
sequents and (Γ, t) is a sequent.

A sequent (Γ, t) follows from a set of sequents ∆ by a deductive system D if and only
if there exist sequents (Γ1, t1), . . . , (Γn, tn) such that:

1. (Γ, t) = (Γn, tn), and

2. for all i such that 1 ≤ i ≤ n

(a) either (Γi, ti) ∈ ∆ or

(b) (Li, (Γi, ti)) ∈ D for some list Li of members of ∆ ∪ {(Γ1, t1), . . . , (Γi−1, ti−1)}
.

The sequence (Γ1, t1), · · · , (Γn, tn) is called a proof of (Γ, t) from ∆ with respect to D.
Note that if (Γ, t) follows from ∆, then (Γ, t) also follows from any ∆′ such that

∆ ⊆ ∆′. This property is called monotonicity.
The notation t1, . . . , tn `D,∆ t means that the sequent ({t1, . . . , tn}, t) follows from ∆

by D. If either D or ∆ is clear from the context then it may be omitted. In the case that
there are no hypotheses (i.e. n = 0), just ` t is written.

In practice, a particular deductive system is usually specified by a number of (schematic)
rules of inference, which take the form

Γ1 ` t1 · · · Γn ` tn
Γ ` t

The sequents above the line are called the hypotheses of the rule and the sequent be-
low the line is called its conclusion. Such a rule is schematic because it may contain
metavariables standing for arbitrary terms of the appropriate types. Instantiating these
metavariables with actual terms, one gets a list of sequents above the line and a single
sequent below the line which together constitute a particular element of the deductive
system. The instantiations allowed for a particular rule may be restricted by imposing a
side condition on the rule.

2.3.1 The HOL deductive system

The deductive system of the HOL logic is specified by eight rules of inference, given
below. The first three rules have no hypotheses; their conclusions can always be de-
duced. The identifiers in square brackets are the names of the ML functions in the HOL

system that implement the corresponding inference rules (see DESCRIPTION). Any side
conditions restricting the scope of a rule are given immediately below it.
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Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (λx. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

Γ1 ` t1 = t′1 · · · Γn ` tn = t′n Γ ` t[t1, . . . , tn]

Γ1 ∪ · · · ∪ Γn ∪ Γ ` t[t′1, . . . , t
′
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t′1, . . . , t

′
n] denotes the result of replacing each selected

occurrence of ti by t′i (for 1≤i≤n), with suitable renaming of variables to prevent
free variables in t′i becoming bound after substitution.

Abstraction [ABS]

Γ ` t1 = t2
Γ ` (λx. t1) = (λx. t2)

• Provided x is not free in Γ.

Type instantiation [INST TYPE]

Γ ` t

Γ[σ1, . . . , σn/α1, . . . , αn] ` t[σ1, . . . , σn/α1, . . . , αn]

• Where t[σ1, . . . , σn/α1, . . . , αn] is the result of substituting, in parallel, the types σ1,
. . . , σn for type variables α1, . . . , αn in t, and where Γ[σ1, . . . , σn/α1, . . . , αn] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.



2.3. LOGIC 27

Discharging an assumption [DISCH]

Γ ` t2
Γ− {t1} ` t1 ⇒ t2

• Where Γ− {t1} is the set subtraction of {t1} from Γ.

Modus Ponens [MP]

Γ1 ` t1 ⇒ t2 Γ2 ` t1
Γ1 ∪ Γ2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PPλ, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined
in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the
hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and ⇒ are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.
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2.4 HOL Theories

A HOL theory T is a 4-tuple:

T = 〈StrucT , SigT ,AxiomsT ,TheoremsT 〉

where

(i) StrucT is a type structure called the type structure of T ;

(ii) SigT is a signature over StrucT called the signature of T ;

(iii) AxiomsT is a set of sequents over SigT called the axioms of T ;

(iv) TheoremsT is a set of sequents over SigT called the theorems of T , with the
property that every member follows from AxiomsT by the HOL deductive sys-
tem.

The sets TypesT and TermsT of types and terms of a theory T are, respectively, the
sets of types and terms constructable from the type structure and signature of T , i.e.:

TypesT = TypesStrucT
TermsT = TermsSigT

A model of a theory T is specified by giving a (standard) model M of the underlying
signature of the theory with the property that M satisfies all the sequents which are
axioms of T . Because of the Soundness Theorem 2.3.2, it follows that M also satisfies
any sequents in the set of given theorems, TheoremsT .

2.4.1 The theory MIN

The minimal theory MIN is defined by:

MIN = 〈{(bool, 0), (ind, 0)}, {⇒bool→bool→bool,=α→α→bool, ε(α→bool)→α}, {}, {}〉

Since the theory MIN has a signature consisting only of standard items and has no ax-
ioms, it possesses a unique standard model, which will be denoted Min.

Although the theory MIN contains only the minimal standard syntax, by exploiting the
higher order constructs of HOL one can construct a rather rich collection of terms over
it. The following theory introduces names for some of these terms that denote useful
logical operations in the model Min.

In the implementation, the theory MIN is given the name min, and also contains the
distinguished binary type operator→, for constructing function spaces.
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2.4.2 The theory LOG

The theory LOG has the same type structure as MIN. Its signature contains the constants
in MIN and the following constants:

Tbool

∀(α→bool)→bool

∃(α→bool)→bool

Fbool

¬bool→bool

∧bool→bool→bool

∨bool→bool→bool

One One(α→β)→bool

Onto(α→β)→bool

Type Definition(α→bool)→(β→α)→bool

The following special notation is used in connection with these constants:

Notation Meaning
∀xσ. t ∀(λxσ. t)
∀x1 x2 · · · xn. t ∀x1. (∀x2. · · · (∀xn. t) · · · )
∃xσ. t ∃(λxσ. t)
∃x1 x2 · · · xn. t ∃x1. (∃x2. · · · (∃xn. t) · · · )
t1 ∧ t2 ∧ t1 t2
t1 ∨ t2 ∨ t1 t2

The axioms of the theory LOG consist of the following sequents:

` T = ((λxbool. x) = (λxbool. x))
` ∀ = λPα→bool. P = (λx. T)
` ∃ = λPα→bool. P (ε P )
` F = ∀bbool. b
` ¬ = λb. b⇒ F
` ∧ = λb1 b2. ∀b. (b1 ⇒ (b2 ⇒ b))⇒ b
` ∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ ((b2 ⇒ b)⇒ b)
` One One = λfα→β. ∀x1 x2. (f x1 = f x2)⇒ (x1 = x2)
` Onto = λfα→β. ∀y. ∃x. y = f x
` Type Definition = λPα→bool repβ→α.One One rep ∧

(∀x. P x = (∃y. x = rep y))

Finally, as for the theory MIN, the set TheoremsLOG is taken to be empty.
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Note that the axioms of the theory LOG are essentially definitions of the new constants
of LOG as terms in the original theory MIN. (The mechanism for making such extensions
of theories by definitions of new constants will be set out in general in Section 2.5.1.)
The first seven axioms define the logical constants for truth, universal quantification,
existential quantification, falsity, negation, conjunction and disjunction. Although these
definitions may be obscure to some readers, they are in fact standard definitions of these
logical constants in terms of implication, equality and choice within higher order logic.
The next two axioms define the properties of a function being one-one and onto; they
will be used to express the axiom of infinity (see Section 2.4.3), amongst other things.
The last axiom defines a constant used for type definitions (see Section 2.5.4).

The unique standard model Min of MIN gives rise to a unique standard model of LOG.
This is because, given the semantics of terms set out in Section 1.3.2, to satisfy the
above equations one is forced to interpret the new constants in the following way:

• [[Tbool]] = 1 ∈ 2

• [[∀(α→bool)→bool]] ∈
∏

X∈U(X→2)→2 sends X ∈ U and f ∈ X→2 to

[[∀]](X)(f) =

{
1 if f−1{1} = X
0 otherwise

• [[∃(α→bool)→bool]] ∈
∏

X∈U(X→2)→2 sends X ∈ U and f ∈ X→2 to

[[∃]](X)(f) =

{
1 if f−1{1} 6= ∅
0 otherwise

• [[Fbool]] = 0 ∈ 2

• [[¬bool→bool]] ∈ 2→2 sends b ∈ 2 to

[[¬]](b) =

{
1 if b = 0
0 otherwise

• [[∧bool→bool→bool]] ∈ 2→2→2 sends b, b′ ∈ 2 to

[[∧]](b)(b′) =

{
1 if b = 1 = b′

0 otherwise

• [[∨bool→bool→bool]] ∈ 2→2→2 sends b, b′ ∈ 2 to

[[∨]](b)(b′) =

{
0 if b = 0 = b′

1 otherwise
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• [[One One(α→β)→bool]] ∈
∏

(X,Y )∈U2(X→Y )→2 sends (X, Y ) ∈ U2 and f ∈ (X→Y )

to

[[One One]](X, Y )(f) =

{
0 if f(x) = f(x′) for some x 6= x′ in X
1 otherwise

• [[Onto(α→β)→bool]] ∈
∏

(X,Y )∈U2(X→Y )→2 sends (X, Y ) ∈ U2 and f ∈ (X→Y ) to

[[Onto]](X, Y )(f) =

{
1 if {f(x) : x ∈ X} = Y
0 otherwise

• [[Type Definition(α→bool)→(β→α)→bool]] ∈
∏

(X,Y )∈U2(X→2)→(Y→X)→2
sends (X, Y ) ∈ U2, f ∈ (X→2) and g ∈ (Y→X) to

[[Type Definition]](X, Y )(f)(g) =


1 if [[One One]](Y,X)(g) = 1

and f−1{1} = {g(y) : y ∈ Y }
0 otherwise.

Since these definitions were obtained by applying the semantics of terms to the left
hand sides of the equations which form the axioms of LOG, these axioms are satisfied
and one obtains a model of the theory LOG.

2.4.3 The theory INIT

The theory INIT is obtained by adding the following four axioms to the theory LOG.

BOOL CASES AX ` ∀b. (b = T) ∨ (b = F)

ETA AX ` ∀fα→β. (λx. f x) = f

SELECT AX ` ∀Pα→bool x. P x⇒ P (ε P )

INFINITY AX ` ∃find→ind. One One f ∧ ¬(Onto f)

The unique standard model of LOG satisfies these four axioms and hence is the unique
standard model of the theory INIT. (For axiom SELECT AX one needs to use the definition
of [[ε]] given in Section 1.4.2; for axiom INFINITY AX one needs the fact that [[ind]] = I is
an infinite set.)

The theory INIT is the initial theory of the HOL logic. A theory which extends INIT

will be called a standard theory.
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2.4.4 Implementing theories LOG and INIT

The implementation combines the theories LOG and INIT into a theory bool. It includes
all of the constants and axioms from those theories, and includes a number of derived
results about those constants. For more on the implementation’s bool theory, see DE-

SCRIPTION.

2.4.5 Consistency

A (standard) theory is consistent if it is not the case that every sequent over its signature
can be derived from the theory’s axioms using the HOL logic, or equivalently, if the
particular sequent ` F cannot be so derived.

The existence of a (standard) model of a theory is sufficient to establish its consis-
tency. For by the Soundness Theorem 2.3.2, any sequent that can be derived from
the theory’s axioms will be satisfied by the model, whereas the sequent ` F is never
satisfied in any standard model. So in particular, the initial theory INIT is consistent.

However, it is possible for a theory to be consistent but not to possess a standard
model. This is because the notion of a standard model is quite restrictive—in particular
there is no choice how to interpret the integers and their arithmetic in such a model.
The famous incompleteness theorem of Gödel ensures that there are sequents which are
satisfied in all standard models (i.e. which are ‘true’), but which are not provable in the
HOL logic.

2.5 Extensions of theories

A theory T ′ is said to be an extension of a theory T if:

(i) StrucT ⊆ StrucT ′.

(ii) SigT ⊆ SigT ′.

(iii) AxiomsT ⊆ AxiomsT ′.

(iv) TheoremsT ⊆ TheoremsT ′.

In this case, any model M ′ of the larger theory T ′ can be restricted to a model of the
smaller theory T in the following way. First, M ′ gives rise to a model of the structure
and signature of T simply by forgetting the values of M ′ at constants not in StrucT or
SigT . Denoting this model by M , one has for all σ ∈ TypesT , t ∈ TermsT and for all
suitable contexts that

[[αs.σ]]M = [[αs.σ]]M ′

[[αs,xs.t]]M = [[αs,xs.t]]M ′ .
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Consequently if (Γ, t) is a sequent over SigT (and hence also over SigT ′), then Γ |=M t if
and only if Γ |=M ′ t. Since AxiomsT ⊆ AxiomsT ′ and M ′ is a model of T ′, it follows that
M is a model of T . M will be called the restriction of the model M ′ of the theory T ′ to
the subtheory T .

There are two main mechanisms for making extensions of theories in HOL:

• Extension by a constant specification (see Section 2.5.2).

• Extension by a type specification (see Section 2.5.5).3

The first mechanism allows ‘loose specification’ of constants (as in the Z notation [6], for
example); the latter allows new types and type-operators to be introduced. As special
cases (when the thing being specified is uniquely determined) one also has:

• Extension by a constant definition (see Section 2.5.1).

• Extension by a type definition (see Section 2.5.4).

These mechanisms are described in the following sections. They all produce definitional
extensions in the sense that they extend a theory by adding new constants and types
which are defined in terms of properties of existing ones. Their key property is that the
extended theory possesses a (standard) model if the original theory does. So a series of
these extensions starting from the theory INIT is guaranteed to result in a theory with a
standard model, and hence in a consistent theory. It is also possible to extend theories
simply by adding new uninterpreted constants and types. This preserves consistency,
but is unlikely to be useful without additional axioms. However, when adding arbitrary
new axioms, there is no guarantee that consistency is preserved. The advantages of
postulation over definition have been likened by Bertrand Russell to the advantages of
theft over honest toil.4 As it is all too easy to introduce inconsistent axiomatizations,
users of the HOL system are strongly advised to resist the temptation to add axioms, but
to toil through definitional theories honestly.

2.5.1 Extension by constant definition

A constant definition over a signature ΣΩ is a formula of the form cσ = tσ, such that:

(i) c is not the name of any constant in ΣΩ;

(ii) tσ a closed term in TermsΣΩ
.

(iii) all the type variables occurring in tσ also occur in σ

3This theory extension mechanism is not implemented in the HOL4 system.
4See page 71 of Russell’s book Introduction to Mathematical Philosophy.
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Given a theory T and such a constant definition over SigT , then the definitional exten-
sion of T by cσ = tσ is the theory T +def 〈cσ = tσ〉 defined by:

T +def 〈cσ = tσ〉 = 〈 StrucT , SigT ∪ {(c, σ)},
AxiomsT ∪ {cσ = tσ}, TheoremsT 〉

Note that the mechanism of extension by constant definition has already been used
implicitly in forming the theory LOG from the theory MIN in Section 2.4.2. Thus with the
notation of this section one has

LOG = MIN +def 〈T = ((λxbool. x) = (λxbool. x))〉
+def 〈∀ = λPα→bool. P = (λx. T)〉
+def 〈∃ = λPα→bool. P (ε P )〉
+def 〈F = ∀bbool. b〉
+def 〈¬ = λb. b⇒ F〉
+def 〈∧ = λb1 b2. ∀b. (b1 ⇒ (b2 ⇒ b))⇒ b〉
+def 〈∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ ((b2 ⇒ b)⇒ b)〉
+def 〈One One = λfα→β. ∀x1 x2. (f x1 = f x2)⇒ (x1 = x2)〉
+def 〈Onto = λfα→β. ∀y. ∃x. y = f x〉
+def 〈Type Definition = λPα→bool repβ→α.

One One rep ∧
(∀x. P x = (∃y. x = rep y))〉

If T possesses a standard model then so does the extension T +def 〈cσ = tσ〉. This
will be proved as a corollary of the corresponding result in Section 2.5.2 by showing
that extension by constant definition is in fact a special case of extension by constant
specification. (This reduction requires that one is dealing with standard theories in
the sense of section 2.4.3, since although existential quantification is not needed for
constant definitions, it is needed to state the mechanism of constant specification.)

Remark Condition (iii) in the definition of what constitutes a correct constant definition
is an important restriction without which consistency could not be guaranteed. To see
this, consider the term ∃fα→α. One One f ∧ ¬(Onto f), which expresses the proposition
that (the set of elements denoted by the) type α is infinite. The term contains the type
variable α, whereas the type of the term, bool, does not. Thus by (iii)

cbool = ∃fα→α. One One f ∧ ¬(Onto f)

is not allowed as a constant definition. The problem is that the meaning of the right
hand side of the definition varies with α, whereas the meaning of the constant on the
left hand side is fixed, since it does not contain α. Indeed, if we were allowed to extend
the consistent theory INIT by this definition, the result would be an inconsistent theory.
For instantiating α to ind in the right hand side results in a term that is provable from
the axioms of INIT, and hence cbool = T is provable in the extended theory. But equally,
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instantiating α to bool makes the negation of the right hand side provable from the
axioms of INIT, and hence cbool = F is also provable in the extended theory. Combining
these theorems, one has that T = F, i.e. F is provable in the extended theory.

2.5.2 Extension by constant specification

Constant specifications introduce constants (or sets of constants) that satisfy arbitrary
given (consistent) properties. For example, a theory could be extended by a constant
specification to have two new constants b1 and b2 of type bool such that ¬(b1 = b2).
This specification does not uniquely define b1 and b2, since it is satisfied by either b1 = T

and b2 = F, or b1 = F and b2 = T. To ensure that such specifications are consistent,
they can only be made if it has already been proved that the properties which the new
constants are to have are consistent. This rules out, for example, introducing three
boolean constants b1, b2 and b3 such that b1 6= b2, b1 6= b3 and b2 6= b3.

Suppose ∃x1 · · ·xn. t is a formula, with x1, . . . , xn distinct variables. If ` ∃x1 · · ·xn. t,
then a constant specification allows new constants c1, . . . , cn to be introduced satisfying:

` t[c1, · · · , cn/x1, · · · , xn]

where t[c1, · · · , cn/x1, · · · , xn] denotes the result of simultaneously substituting c1, . . . , cn
for x1, . . . , xn respectively. Of course the type of each constant ci must be the same as
the type of the corresponding variable xi. To ensure that this extension mechanism
preserves the property of possessing a model, a further more technical requirement is
imposed on these types: they must each contain all the type variables occurring in t.
This condition is discussed further in Section 2.5.3 below.

Formally, a constant specification for a theory T is given by

Data

〈(c1, . . . , cn), λx1σ1
, . . . , xnσn . tbool〉

Conditions

(i) c1, . . . , cn are distinct names that are not the names of any constants in SigT .

(ii) λx1σ1
· · ·xnσn . tbool ∈ TermsT .

(iii) tyvars(tbool) = tyvars(σi) for 1 ≤ i ≤ n.

(iv) ∃x1σ1
· · · xnσn . t ∈ TheoremsT .

The extension of a standard theory T by such a constant specification is denoted by

T +spec〈(c1, . . . , cn), λx1σ1
, . . . , xnσn . tbool〉
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and is defined to be the theory:

〈StrucT ,
SigT ∪ {c1σ1

, . . . , cnσn},
AxiomsT ∪ {t[c1, . . . , cn/x1, . . . , xn]},
TheoremsT 〉

Proposition The theory T +spec〈(c1, . . . , cn), λx1σ1
, . . . , xnσn . tbool〉 has a standard model if

the theory T does.

Proof Suppose M is a standard model of T . Let αs = α1, . . . , αm be the list of distinct
type variables occurring in the formula t. Then αs,xs.t is a term-in-context, where xs =

x1, . . . , xn. (Change any bound variables in t to make them distinct from xs if necessary.)
Interpreting this term-in-context in the model M yields

[[αs,xs.t]]M ∈
∏

Xs∈Um

(
n∏
i=1

[[αs.σi]]M(Xs)

)
→2

Now ∃xs. t is in TheoremsT and hence by the Soundness Theorem 2.3.2 this sequent is
satisfied by M . Using the semantics of ∃ given in Section 2.4.2, this means that for all
Xs ∈ Um the set

S(Xs) = {ys ∈ [[αs.σ1]]M(Xs)× · · · × [[αs.σn]]M(Xs) : [[αs,xs.t]]M(Xs)(ys) = 1}

is non-empty. Since it is also a subset of a finite product of sets in U , it follows that it is
an element of U (using properties Sub and Prod of the universe). So one can apply the
global choice function ch ∈

∏
X∈U X to select a specific element

(s1(Xs), . . . , sn(Xs)) = ch(S(Xs)) ∈
n∏
i=1

[[αs.σi]]M(Xs)

at which [[αs,xs.t]]M(Xs) takes the value 1. Extend M to a model M ′ of the signature
of T +spec〈(c1, . . . , cn), λx1σ1

, . . . , xnσn . tbool〉 by defining its value at each new constant
(ci, σi) to be

M ′(ci, σi) = si ∈
∏

Xs∈Um

[[σi]]M(Xs).

Note that the Condition (iii) in the definition of a constant specification ensures that αs
is the canonical context of each type σi, so that [[σi]] = [[αs.σi]] and thus si is indeed an
element of the above product.

Since t is a term of the subtheory T of T +spec〈(c1, . . . , cn), λx1σ1
, . . . , xnσn . tbool〉, as

remarked at the beginning of Section 2.5, one has that [[αs,xs.t]]M ′ = [[αs,xs.t]]M . Hence
by definition of the si, for all Xs ∈ Um

[[αs,xs.t]]M ′(Xs)(s1(Xs), . . . , sn(Xs)) = 1
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Then using Lemma 4 in Section 1.3.3 on the semantics of substitution together with the
definition of [[ci]]M ′, one finally obtains that for all Xs ∈ Um

[[t[c1, . . . , cn/x1, . . . , xn]]]M ′(Xs) = 1

or in other words that M ′ satisfies t[c1, . . . , cn/x1, . . . , xn]. Hence M ′ is a model of
T +spec〈(c1, . . . , cn), λx1σ1

, . . . , xnσn . tbool〉, as required.

The constants which are asserted to exist in a constant specification are not neces-
sarily uniquely determined. Correspondingly, there may be many different models of
T +spec〈(c1, . . . , cn), λx1σ1

, . . . , xnσn . tbool〉 whose restriction to T is M ; the above con-
struction produces such a model in a uniform manner by making use of the global
choice function on the universe.

Extension by a constant definition, cσ = tσ, is a special case of extension by constant
specification. For let t′ be the formula xσ = tσ, where xσ is a variable not occurring in
tσ. Then clearly ` ∃xσ. t′ and one can apply the method of constant specification to
obtain the theory

T +spec〈c, λxσ. t′〉

But since t′[cσ/xσ] is just cσ = tσ, this extension yields exactly T +def 〈cσ = tσ〉. So as
a corollary of the Proposition, one has that for each standard model M of T , there is
a standard model M ′ of T +def 〈cσ = tσ〉 whose restriction to T is M . In contrast with
the case of constant specifications, M ′ is uniquely determined by M and the constant
definition.

2.5.3 Remarks about constants in HOL

Note how Condition (iii) in the definition of a constant specification was needed in the
proof that the extension mechanism preserves the property of possessing a standard
model. Its role is to ensure that the introduced constants have, via their types, the
same dependency on type variables as does the formula loosely specifying them. The
situation is the same as that discussed in the Remark in Section 2.5.1. In a sense, what
is causing the problem in the example given in that Remark is not so much the method
of extension by introducing constants, but rather the syntax of HOL which does not
allow constants to depend explicitly on type variables (in the way that type operators
can). Thus in the example one would like to introduce a ‘polymorphic’ constant cbool(α)

explicitly depending upon α, and define it to be ∃fα→α. One One f ∧ ¬(Onto f). Then
in the extended theory one could derive cbool(ind) = T and cbool(bool) = F, but now no
contradiction results since cbool(ind) and cbool(bool) are different.

In the current version of HOL, constants are (name,type)-pairs. One can envision
a slight extension of the HOL syntax with ‘polymorphic’ constants, specified by pairs
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(c, αs.σ) where now αs.σ is a type-in-context and the list αs may well contain extra type
variables not occurring in σ. Such a pair would give rise to the particular constant
term cσ(αs), and more generally to constant terms cσ′(τs) obtained from this one by
instantiating the type variables αi with types τi (so σ′ is the instance of σ obtained by
substituting τs for αs). This new syntax of polymorphic constants is comparable to the
existing syntax of compound types (see section 1.2): an n-ary type operator op gives
rise to a compound type (α1, . . . , αn)op depending upon n type variables. Similarly, the
above syntax of polymorphic constants records how they depend upon type variables
(as well as which generic type the constant has).

However, explicitly recording dependency of constants on type variables makes for a
rather cumbersome syntax which in practice one would like to avoid where possible. It
is possible to avoid it if the type context αs in (c, αs.σ) is actually the canonical context
of σ, i.e. contains exactly the type variables of σ. For then one can apply Lemma 1
of Section 1.2.3 to deduce that the polymorphic constant cσ′(τs) can be abbreviated to
the ordinary constant cσ′ without ambiguity—the missing information τs can be recon-
structed from σ′ and the information about the constant c given in the signature. From
this perspective, the rather technical side Conditions (iii) in Sections 2.5.1 and 2.5.2
become rather less mysterious: they precisely ensure that in introducing new constants
one is always dealing just with canonical contexts, and so can use ordinary constants
rather than polymorphic ones without ambiguity. In this way one avoids complicat-
ing the existing syntax at the expense of restricting somewhat the applicability of these
theory extension mechanisms.

2.5.4 Extension by type definition

Every (monomorphic) type σ in the initial theory INIT determines a set [[σ]] in the uni-
verse U . However, there are many more sets in U than there are types in INIT. In
particular, whilst U is closed under the operation of taking a non-empty subset of [[σ]],
there is no corresponding mechanism for forming a ‘subtype’ of σ. Instead, subsets are
denoted indirectly via characteristic functions, whereby a closed term p of type σ→bool
determines the subset {x ∈ [[σ]] : [[p]](x) = 1} (which is a set in the universe provided
it is non-empty). However, it is useful to have a mechanism for introducing new types
which are subtypes of existing ones. Such types are defined in HOL by introducing a
new type constant and asserting an axiom that characterizes it as denoting a set in bi-
jection (i.e. one-to-one correspondence) with a non-empty subset of an existing type
(called the representing type). For example, the type num is defined to be equal to a
countable subset of the type ind, which is guaranteed to exist by the axiom INFINITY AX

(see Section 2.4.3).
As well as defining types, it is also convenient to be able to define type operators.

An example would be a type operator inj which mapped a set to the set of one-to-
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one (i.e. injective) functions on it. The subset of σ→σ representing (σ)inj would be
defined by the predicate One One. Another example would be a binary cartesian product
type operator prod. This is defined by choosing a representing type containing two
type variables, say σ[α1;α2], such that for any types σ1 and σ2, a subset of σ[σ1;σ2]

represents the cartesian product of σ1 and σ2. The details of such a definition are given
in DESCRIPTION’s section on the theory of cartesian products.

Types in HOL must denote non-empty sets. Thus it is only consistent to define a new
type isomorphic to a subset specified by a predicate p, if there is at least one thing for
which p holds, i.e. ` ∃x. p x. For example, it would be inconsistent to define a binary
type operator iso such that (σ1, σ2)iso denoted the set of one-to-one functions from σ1

onto σ2 because for some values of σ1 and σ2 the set would be empty; for example
(ind, bool)iso would denote the empty set. To avoid this, a precondition of defining a
new type is that the representing subset is non-empty.

To summarize, a new type is defined by:

1. Specifying an existing type.

2. Specifying a subset of this type.

3. Proving that this subset is non-empty.

4. Specifying that the new type is isomorphic to this subset.

In more detail, defining a new type (α1, . . . , αn)op consists in:

1. Specifying a type-in-context, α1, . . . , αn.σ say. The type σ is called the representing
type, and the type (α1, . . . , αn)op is intended to be isomorphic to a subset of σ.

2. Specifying a closed term-in-context, α1, . . . , αn, .p say, of type σ→bool. The term p

is called the characteristic function. This defines the subset of σ to which (α1, . . . , αn)op
is to be isomorphic.5

3. Proving ` ∃xσ. p x.

4. Asserting an axiom saying that (α1, . . . , αn)op is isomorphic to the subset of σ
selected by p.

To make this formal, the theory LOG provides the polymorphic constant Type Definition

defined in Section 2.4.2. The formula ∃f(α1,...,αn)op→σ. Type Definition p f asserts that

5The reason for restricting p to be closed, i.e. to have no free variables, is that otherwise for consis-
tency the defined type operator would have to depend upon (i.e. be a function of) those variables. Such
dependent types are not (yet!) a part of the HOL system.
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there exists a one-to-one map f from (α1, . . . , αn)op onto the subset of elements of σ for
which p is true. Hence, the axiom that characterizes (α1, . . . , αn)op is:

` ∃f(α1,...,αn)op→σ. Type Definition p f

Defining a new type (α1, . . . , αn)op in a theory T thus consists of introducing op as a
new n-ary type operator and the above axiom as a new axiom. Formally, a type definition
for a theory T is given by

Data

〈(α1, . . . , αn)op, σ, pσ→bool〉

Conditions

(i) (op, n) is not the name of a type constant in StrucT .

(ii) α1, . . . , αn.σ is a type-in-context with σ ∈ TypesT .

(iii) pσ→bool is a closed term in TermsT whose type variables occur in α1, . . . , αn.

(iv) ∃xσ. p x ∈ TheoremsT .

The extension of a standard theory T by a such a type definition is denoted by

T +tydef〈(α1, . . . , αn)op, σ, p〉

and defined to be the theory

〈StrucT ∪ {(op, n)},
SigT ,
AxiomsT ∪ {∃f(α1,...,αn)op→σ. Type Definition p f},
TheoremsT 〉

Proposition The theory T +tydef 〈(α1, . . . , αn)op, σ, p〉 has a standard model if the theory
T does.

Instead of giving a direct proof of this result, it will be deduced as a corollary of the
corresponding proposition in the next section.

2.5.5 Extension by type specification

(Note: This theory extension mechanism is not implemented in the HOL4 system. It
was proposed by T. Melham and refines a suggestion from R. Jones and R. Arthan.)

The type definition mechanism allows one to introduce new types by giving a concrete
representation of the type as a ‘subtype’ of an existing type. One might instead wish
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to introduce a new type satisfying some property without having to give an explicit
representation for the type. For example, one might want to extend INIT with an atomic
type one satisfying ` ∀fα→one gα→one. f = g without choosing a specific type in INIT and
saying that one is in bijection with a one-element subset of it. (The idea being that the
choice of representing type is irrelevant to the properties of one that can be expressed
in HOL.) The mechanism described in this section provides one way of achieving this
while at the same time preserving the all-important property of possessing a standard
model and hence maintaining consistency.

Each closed formula q involving a single type variable α can be thought of as specify-
ing a property q[τ/α] of types τ . Its interpretation in a model is of the form

[[α, .q]] ∈
∏
X∈U

[[α.bool]](X) =
∏
X∈U

2 = U→2

which is a characteristic function on the universe, determining a subset {X ∈ U :

[[α, .q]](X) = 1} consisting of those sets in the universe for which the property q holds.
The most general way of ensuring the consistency of introducing a new atomic type ν
satisfying q[ν/α] would be to prove ‘∃α. q’. However, such a formula with quantification
over types is not6 a part of the HOL logic and one must proceed indirectly—replacing
the formula by (a logically weaker) one that can be expressed formally with HOL syntax.
The formula used is

(∃fα→σ. Type Definition p f) ⇒ q

where σ is a type, pσ→bool is a closed term and neither involve the type variable α. This
formula says ‘q holds of any type which is in bijection with the subtype of σ determined
by p’. If this formula is provable and if the subtype is non-empty, i.e. if

∃xσ. p x

is provable, then it is consistent to introduce an extension with a new atomic type ν
satisfying q[ν/α].

In giving the formal definition of this extension mechanism, two refinements will
be made. Firstly, σ is allowed to be polymorphic and hence a new type constant of
appropriate arity is introduced, rather than just an atomic type. Secondly, the above
existential formulas are permitted to be proved (in the theory to be extended) from
some hypotheses.7 Thus a type specification for a theory T is given by

Data

〈(α1, . . . , αn)op, σ, p, α,Γ, q〉

Conditions
6yet!
7This refinement increases the applicability of the extension mechanism without increasing its expres-

sive power. A similar refinement could have be made to the other theory extension mechanisms.



42 CHAPTER 2. THEORIES

(i) (op, n) is a type constant that is not in StrucT .

(ii) α1, . . . , αn.σ is a type-in-context with σ ∈ TypesT .

(iii) pσ→bool is a closed term in TermsT whose type variables occur in αs = α1, . . . , αn.

(iv) α is a type variable distinct from those in αs.

(v) Γ is a list of closed formulas in TermsT not involving the type variable α.

(vi) q is a closed formula in TermsT .

(vii) The sequents

(Γ , ∃xσ. p x)

(Γ , (∃fα→σ. Type Definition p f) ⇒ q)

are in TheoremsT .

The extension of a standard theory T by such a type specification is denoted

T +tyspec〈(α1, . . . , αn)op, σ, p, α,Γ, q〉

and is defined to be the theory

〈StrucT ∪ {(op, n)},
SigT ,
AxiomsT ∪ {(Γ, q[(α1, . . . , αn)op/α])},
TheoremsT 〉

Example To carry out the extension of INIT mentioned at the start of this section, one
forms

INIT+tyspec〈()one, bool, p, α, ∅, q〉

where p is the term λbbool. b and q is the formula ∀fβ→α gβ→α. f = g. Thus the re-
sult is a theory extending INIT with a new type constant one satisfying the axiom
∀fβ→one gβ→one. f = g.

To verify that this is a correct application of the extension mechanism, one has to
check Conditions (i) to (vii) above. Only the last one is non-trivial: it imposes the
obligation of proving two sequents from the axioms of INIT. The first sequent says that
p defines an inhabited subset of bool, which is certainly the case since T witnesses this
fact. The second sequent says in effect that any type α that is in bijection with the subset
of bool defined by p has the property that there is at most one function to it from any
given type β; the proof of this from the axioms of INIT is left as an exercise.
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Proposition The theory T +tyspec〈(α1, . . . , αn)op, σ, p, α,Γ, q〉 has a standard model if the
theory T does.

Proof Write αs for α1, . . . , αn, and suppose that αs′ = α′1, . . . , α
′
m is the list of type

variables occurring in Γ and q, but not already in the list αs, α.
Suppose M is a standard model of T . Since αs, .p is a term-in-context of type σ→bool,

interpreting it in M yields

[[αs, .p]]M ∈
∏

Xs∈Un

[[αs.σ→bool]]M(Xs) =
∏

Xs∈Un

[[αs.σ]]M(Xs)→2.

There is no loss of generality in assuming that Γ consists of a single formula γ. (Just
replace Γ by the conjunction of the formulas it contains, with the convention that this
conjunction is T if Γ is empty.) By assumption on αs′ and by Condition (iv), αs, αs′, .γ is
a term-in-context. Interpreting it in M yields

[[αs, αs′.γ]]M ∈
∏

(Xs,Xs′)∈Un+m

[[αs, αs′.bool]]M(Xs,Xs′) = Un+m→2

Now (γ, ∃xσ. p x) is in TheoremsT and hence by the Soundness Theorem 2.3.2 this
sequent is satisfied by M . Using the semantics of ∃ given in Section 2.4.2 and the
definition of satisfaction of a sequent from Section 2.2, this means that for all (Xs,Xs′) ∈
Un+m if [[αs, αs′.γ]]M(Xs,Xs′) = 1, then the set

{y ∈ [[αs.σ]]M : [[αs, .p]](Xs)(y) = 1}

is non-empty. (This uses the fact that p does not involve the type variables αs′, so that by
Lemma 4 in Section 1.3.3 [[αs, αs′.p]]M(Xs,Xs′) = [[αs, .p]]M(Xs).) Since it is also a subset
of a set in U , it follows by property Sub of the universe that this set is an element of U .
So defining

S(Xs) =

{
{y ∈ [[αs.σ]]M : [[αs, .p]](Xs)(y) = 1} if [[αs, .γ]]M(Xs,Xs′) = 1, some Xs′

1 otherwise

one has that S is a function Un→U . Extend M to a model of the signature of T ′ by
defining its value at the new n-ary type constant op to be this function S. Note that
the values of σ, p, γ and q in M ′ are the same as in M , since these expressions do not
involve the new type constant op.

For each Xs ∈ Un define iXs to be the inclusion function for the subset S(Xs) ⊆
[[αs.σ]]M if [[αs, αs′.γ]]M(Xs,Xs′) = 1 for some Xs′, and otherwise to be the function
1→[[αs.σ]]M sending 0 ∈ 1 to ch([[αs.σ]]M). Then iXs ∈ (S(Xs)→[[αs.σ]]M ′(Xs)) because
[[αs.σ]]M ′ = [[αs.σ]]M . Using the semantics of Type Definition given in Section 2.4.2, one
has that for any (Xs,Xs′) ∈ Un+m, if [[αs, αs′.γ]]M ′(Xs,Xs′) = 1 then

[[Type Definition]]M ′([[αs.σ]]M ′ , S(Xs))([[αs, .p]]M ′)(iXs) = 1.
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Thus M ′ satisfies the sequent

(γ , ∃f(αs)op→σ. Type Definition p f).

But since the sequent (γ, (∃fα→σ. Type Definition p f) ⇒ q) is in TheoremsT , it is satisfied
by the model M and hence also by the model M ′ (since the sequent does not involve the
new type constant op). Instantiating α to (αs)op in this sequent (which is permissible
since by Condition (iv) α does not occur in γ), one thus has that M ′ satisfies the sequent

(γ , (∃f(αs)op→σ. Type Definition p f)⇒ q[(αs)op/α]).

Applying Modus Ponens, one concludes that M ′ satisfies (γ , q[(αs)op/α]) and therefore
M ′ is a model of T ′, as required.

An extension by type definition is in fact a special case of extension by type specifica-
tion. To see this, suppose 〈(α1, . . . , αn)op, σ, pσ→bool〉 is a type definition for a theory T .
Choosing a type variable α different from α1, . . . , αn, let q denote the formula

∃fα→σ. Type Definition p f

Then 〈(α1, . . . , αn)op, σ, p, α, ∅, q〉 satisfies all the conditions necessary to be a type spec-
ification for T . Since q[(α1, . . . , αn)op/α] is just ∃f(α1,...,αn)op→σ. Type Definition p f , one
has that

T +tydef〈(α1, . . . , αn)op, σ, p〉 = T +tyspec〈(α1, . . . , αn)op, σ, p, α, ∅, q〉

Thus the Proposition in Section 2.5.4 is a special case of the above Proposition.
In an extension by type specification, the property q which is asserted of the newly

introduced type constant need not determine the type constant uniquely (even up to
bijection). Correspondingly there may be many different standard models of the ex-
tended theory whose restriction to T is a given model M . By contrast, a type definition
determines the new type constant uniquely up to bijection, and any two models of the
extended theory which restrict to the same model of the original theory will be isomor-
phic.
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