
[For HOL Kananaskis-7] August 8, 2011

The HOL System
REFERENCE

Preface

This volume is the reference manual for the HOL system. It is one of four documents
making up the documentation for HOL:

(i) LOGIC: a formal description of the higher order logic implemented by the HOL
system.

(ii) TUTORIAL: a tutorial introduction to HOL, with case studies.

(iii) DESCRIPTION: a detailed user’s guide for the HOL system;

(iv) REFERENCE: the reference manual for HOL.

These four documents will be referred to by the short names (in small slanted capitals)
given above.

This document, REFERENCE, provides documentation on all the pre-defined ML vari-
able bindings in the HOL system. These include: general-purpose functions, such as
ML functions for list processing, arithmetic, input/output, and interface configuration;
functions for processing the types and terms of the HOL logic, for setting up theories,
and for using the subgoal package; primitive and derived forward inference rules; tac-
tics and tacticals; and pre-proved built-in theorems.

The manual entries for these ML identifiers are divided into two chapters. The first
chapter is an alphabetical sequence of manual entries for all ML identifiers in the system
except those identifiers that are bound to theorems. The theorems are listed in the
second chapter, roughly grouped into sections based on subject matter.

The REFERENCE volume is purely for reference and browsing. It is generated from the
same database that is used by the help system. For an introduction to the HOL system,
see TUTORIAL; for a systematic presentation, see DESCRIPTION and LOGIC.

3

4 Preface

Acknowledgements

The bulk of HOL is based on code written by—in alphabetical order—Hasan Amjad,
Richard Boulton, Anthony Fox, Mike Gordon, Elsa Gunter, John Harrison, Peter Home-
ier, Gérard Huet (and others at INRIA), Joe Hurd, Ramana Kumar, Ken Friis Larsen, Tom
Melham, Robin Milner, Lockwood Morris, Magnus Myreen, Malcolm Newey, Michael
Norrish, Larry Paulson, Konrad Slind, Don Syme, Thomas Türk, Chris Wadsworth, and
Tjark Weber. Many others have supplied parts of the system, bug fixes, etc.

Current edition

The current edition of all four volumes (LOGIC, TUTORIAL, DESCRIPTION and REFERENCE)
has been prepared by Michael Norrish and Konrad Slind. Further contributions to these
volumes came from: Hasan Amjad, who developed a model checking library and wrote
sections describing its use; Jens Brandt, who developed and documented a library for
the rational numbers; Anthony Fox, who formalized and documented new word theories
and the associated libraries; Mike Gordon, who documented the libraries for BDDs and
SAT; Peter Homeier, who implemented and documented the quotient library; Joe Hurd,
who added material on first order proof search; and Tjark Weber, who wrote libraries
for Satisfiability Modulo Theories (SMT) and Quantified Boolean Formulae (QBF).

The material in the third edition constitutes a thorough re-working and extension of
previous editions. The only essentially unaltered piece is the semantics by Andy Pitts (in
LOGIC), reflecting the fact that, although the HOL system has undergone continual de-
velopment and improvement, the HOL logic is unchanged since the first edition (1988).

5

6 Acknowledgements

Second edition

The second edition of REFERENCE was a joint effort by the Cambridge HOL group.

First edition

The three volumes TUTORIAL, DESCRIPTION and REFERENCE were produced at the Cam-
bridge Research Center of SRI International with the support of DSTO Australia.

The HOL documentation project was managed by Mike Gordon, who also wrote parts
of DESCRIPTION and TUTORIAL using material based on an early paper describing the
HOL system1 and The ML Handbook 2. Other contributers to DESCRIPTION incude Avra
Cohn, who contributed material on theorems, rules, conversions and tactics, and also
composed the index (which was typeset by Juanito Camilleri); Tom Melham, who wrote
the sections describing type definitions, the concrete type package and the ‘resolution’
tactics; and Andy Pitts, who devised the set-theoretic semantics of the HOL logic and
wrote the material describing it.

The original document design used LATEX macros supplied by Elsa Gunter, Tom Melham
and Larry Paulson. The typesetting of all three volumes was managed by Tom Melham.
The cover design is by Arnold Smith, who used a photograph of a ‘snow watching
lantern’ taken by Avra Cohn (in whose garden the original object resides). John Van
Tassel composed the LATEX picture of the lantern.

Many people other than those listed above have contributed to the HOL documenta-
tion effort, either by providing material, or by sending lists of errors in the first edition.
Thanks to everyone who helped, and thanks to DSTO and SRI for their generous sup-
port.

1M.J.C. Gordon, ‘HOL: a Proof Generating System for Higher Order Logic’, in: VLSI Specification,
Verification and Synthesis, edited by G. Birtwistle and P.A. Subrahmanyam, (Kluwer Academic Publishers,
1988), pp. 73–128.

2The ML Handbook, unpublished report from Inria by Guy Cousineau, Mike Gordon, Gérard Huet,
Robin Milner, Larry Paulson and Chris Wadsworth.

Contents

1 Entries 9

7

8 Contents

Chapter 1

Entries

This chapter provides manual entries for pre-defined ML identifiers in the HOL system.
These include: general-purpose functions, such as functions for list processing, arith-
metic, input/output, and interface configuration; functions for processing the types and
terms of the HOL logic, for setting up theories, and for using the subgoal package; prim-
itive and derived forward inference rules; and tactics and tacticals. The arrangement
is alphabetical. If an entry’s title box includes a parenthesised word to the right, this
identifies the ML structure where that identifier is bound. The interactive system starts
with some structures already present, others will need to be load-ed first.

(Lib)

op ## : (’a -> ’b) * (’c -> ’d) -> ’a * ’c -> ’b * ’d

Synopsis
Infix combinator for applying two functions to the two projections of a pair.

Description
An application (f ## g) (x,y) is equal to (f x, g y).

Failure
If f x or g y fails.

Example

- (I ## dest_imp) (strip_forall (Term ‘!x y z. x /\ y ==> z /\ p‘));

> val it = ([‘x‘, ‘y‘, ‘z‘], (‘x /\ y‘, ‘z /\ p‘))

Comments
The ## combinator can be thought of as a map operation for pairs. It is declared as a
right associative infix.

9

10 CHAPTER 1. ENTRIES

See also
Lib.pair.

&& (BasicProvers)

op && : simpset * thm list -> simpset

Synopsis
Infix operator for adding theorems into a simpset.

Description
BasicProvers.&& is identical to bossLib.&&.

See also
bossLib.&&.

&& (bossLib)

op && : simpset * thm list -> simpset

Synopsis
Infix operator for adding theorems into a simpset.

Description
It is occasionally necessary to extend an existing simpset ss with a collection rwlist of
new rewrite rules. To achieve this, one applies the && function via ss && rwlist.

Failure
Never fails.

Example

- open bossLib;

... <output elided> ...

- val ss = boolSimps.bool_ss && pairTheory.pair_rws;

> val ss = <simpset> : simpset

++ 11

Comments
Of limited applicability since most of the tactics for rewriting already include this func-
tionality. However, applications of ZAP_TAC can benefit.

See also
simpLib.++, simpLib.SIMP CONV, bossLib.RW TAC.

++ (simpLib)

op ++ : simpset * ssfrag -> simpset

Synopsis
Infix operator for adding an ssfrag item into a simpset.

Description
bossLib.++ is identical to simpLib.++.

See also
bossLib.++.

-- (Parse)

-- : term quotation -> ’a -> term

Synopsis
Parses a quotation into a term value

Description
An invocation --‘ ... ‘-- is identical to Term ‘ ... ‘.

Failure
As for Parse.Term.

Uses
Turns strings into terms.

12 CHAPTER 1. ENTRIES

See also
Parse.Term, Parse.==.

--> (Type)

op --> : hol_type * hol_type -> hol_type

Synopsis
Right associative infix operator for building a function type.

Description
If ty1 and ty2 are HOL types, then ty1 --> ty2 builds the HOL type ty1 -> ty2.

Failure
Never fails.

Example

- bool --> alpha;

> val it = ‘:bool -> ’a‘ : hol_type

Comments
This operator associates to the right, that is, ty1 --> ty2 --> ty3 is identical to
ty1 --> (ty2 --> ty3).

See also
Type.dom rng, Type.mk type, Type.mk thy type.

== (Parse)

== : hol_type quotation -> ’a -> hol_type

Synopsis
Parses a quotation into a HOL type.

Description
An invocation ==‘ ... ‘== is identical to Type ‘ ... ‘.

A 13

Failure
As for Parse.Type.

Uses
Turns strings into types.

See also
Parse.Term, Parse.--.

A (Lib)

A : (’a -> ’b) -> ’a -> ’b

Synopsis
Combinator for function application

Description
The application A f x equals f x.

Failure
A f never fails. A f x fails if f x fails.

Example

- map2 A [I, K 3, fn x => x + 1] [1,2,3];

> val it = [1, 3, 4] : int list

See also
Lib, Lib.##, Lib.B, Lib.C, Lib.I, Lib.K, Lib.S, Lib.W.

Abbr (BasicProvers)

BasicProvers.Abbr : term quotation -> thm

Synopsis
Signals to simplification tactics that an abbreviation should be used.

14 CHAPTER 1. ENTRIES

Description
The Abbr function is used to signal to various simplification tactics that an abbreviation
in the current goal should be eliminated before simplification proceeds. Each theorem
created by Abbr is removed from the tactic’s theorem-list argument, and causes a call
to Q.UNABBREV_TAC with that Abbr theorem’s argument. Finally, the simplification tactic
continues, with the rest of the theorem-list as its argument. Thus,

tac [..., Abbr‘v‘, ..., Abbr‘u‘, ...]

has the same effect as

Q.UNABBREV_TAC ‘v‘ THEN Q.UNABBREV_TAC ‘u‘ THEN

tac [..., ..., ...]

Every theorem created by Abbr in the argument list is treated in this way. The tactics
that understand Abbr arguments are SIMP_TAC, ASM_SIMP_TAC, FULL_SIMP_TAC, RW_TAC and
SRW_TAC.

Failure
Abbr itself never fails, but the tactic it is used in may do, particularly if the induced calls
to UNABBREV_TAC fail.

Comments
This function is a notational convenience that allows the effect of multiple tactics to be
packaged into just one.

See also
Q.ABBREV TAC, simpLib.SIMP TAC, Q.UNABBREV TAC.

ABBREV_TAC (Q)

Q.ABBREV_TAC : term quotation -> tactic

Synopsis
Introduces an abbreviation into a goal.

Description
The tactic Q.ABBREV_TAC q parses the quotation q in the context of the goal to which it is
applied. The result must be a term of the form v = e with v a variable. The effect of the
tactic is to replace the term e wherever it occurs in the goal by v (or a primed variant of

ABBREV TAC 15

v if v already occurs in the goal), and to add the assumption Abbrev(v = e) to the goal’s
assumptions. Again, if v already occurs free in the goal, then the new assumption will
be Abbrev(v’ = e), with v’ a suitably primed version of v.

It is not an error if the expression e does not occur anywhere within the goal. In this
situation, the effect of the tactic is simply to add the assumption Abbrev(v = e).

The Abbrev constant is defined in markerTheory to be the identity function over
boolean values. It is used solely as a tag, so that abbreviations can be found by other
tools, and so that simplification tactics such as RW_TAC will not eliminate them. When
it sees them as part of its context, the simplifier treats terms of the form Abbrev(v = e)

as assumptions e = v. In this way, the simplifier can use abbreviations to create further
sharing, after an abbreviation’s creation.

Failure
Fails if the quotation is ill-typed. This may happen because variables in the quotation
that also appear in the goal are given the same type in the quotation as they have in
the goal. Also fails if the variable of the equation appears in the expression that it is
supposed to be abbreviating.

Example
Substitution in the goal:

- Q.ABBREV_TAC ‘n = 10‘ ([], ‘‘10 < 9 * 10‘‘);

> val it = ([([‘‘Abbrev(n = 10)‘‘], ‘‘n < 9 * n‘‘)], fn) :

(term list * term) list * (thm list -> thm)

and the assumptions:

- Q.ABBREV_TAC ‘m = n + 2‘ ([‘‘f (n + 2) < 6‘‘], ‘‘n < 7‘‘);

> val it = ([([‘‘Abbrev(m = n + 2)‘‘, ‘‘f m < 6‘‘], ‘‘n < 7‘‘)], fn) :

(term list * term) list * (thm list -> thm)

and both

- Q.ABBREV_TAC ‘u = x ** 32‘ ([‘‘x ** 32 = f z‘‘],

‘‘g (x ** 32 + 6) - 10 < 65‘‘);

> val it =

([([‘‘Abbrev(u = x ** 32)‘‘, ‘‘u = f z‘‘], ‘‘g (u + 6) - 10 < 65‘‘)],

fn) :

(term list * term) list * (thm list -> thm)

Comments
Though it is possible to abbreviate functions, using quotations such as ‘f = \n. n + 3‘,
in this case ABBREV_TAC will not do anything more than replace exact copies of the ab-
straction. Following ABBREV_TAC with

16 CHAPTER 1. ENTRIES

POP_ASSUM (ASSUME_TAC o GSYM o

SIMP_RULE bool_ss [FUN_EQ_THM, markerTheory.Abbrev_def])

will turn the assumption ‘Abbrev(f = (\n. n + 3))‘ into ‘!n. n + 3 = f n‘ which may
find more instances of the desired pattern.

See also
BasicProvers.Abbr, Q.HO MATCH ABBREV TAC, Q.MATCH ABBREV TAC, Q.UNABBREV TAC.

ABS (Thm)

ABS : term -> thm -> thm

Synopsis
Abstracts both sides of an equation.

Description

A |- t1 = t2

------------------------ ABS x [Where x is not free in A]

A |- (\x.t1) = (\x.t2)

Failure
If the theorem is not an equation, or if the variable x is free in the assumptions A.

Example

- let val m = Term ‘m:bool‘

in

ABS m (REFL m)

end;

> val it = |- (\m. m) = (\m. m) : thm

See also
Drule.ETA CONV, Drule.EXT, Drule.MK ABS.

ABS CONV 17

ABS_CONV (Conv)

ABS_CONV : conv -> conv

Synopsis
Applies a conversion to the body of an abstraction.

Description
If c is a conversion that maps a term tm to the theorem |- tm = tm’, then the conversion
ABS_CONV c maps abstractions of the form \x.tm to theorems of the form:

|- (\x.tm) = (\x.tm’)

That is, ABS_CONV c (\x.t) applies c to the body of the abstraction \x.t.

Failure
ABS_CONV c tm fails if tm is not an abstraction or if tm has the form \x.t but the conver-
sion c fails when applied to the term t. The function returned by ABS_CONV c may also
fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps
a term M to a theorem |- M = N).

Example

- ABS_CONV SYM_CONV (Term ‘\x. 1 = x‘)

> val it = |- (\x. 1 = x) = (\x. x = 1) : thm

See also
Conv.RAND CONV, Conv.RATOR CONV, Conv.SUB CONV, Conv.BINDER CONV,

Conv.QUANT CONV, Conv.STRIP BINDER CONV, Conv.STRIP QUANT CONV.

ABS_TAC (Tactic)

ABS_TAC : tactic

Synopsis
Strips lambda abstraction on both sides of an equation.

Description
When applied to a goal of the form A ?- (\x. f x) = (\y. g u), the tactic ABS_TAC

strips away the lambda abstractions:

18 CHAPTER 1. ENTRIES

A ?- (\x. f x) = (\y. g y)

=========================== ABS_TAC

A ?- f x = g x

Failure
Fails unless the goal has the above form, namely an equation both sides of which consist
of a lamdba abstraction.

See also
Tactic.AP TERM TAC, Tactic.AP THM TAC.

Absyn (Parse)

Absyn : term quotation -> Absyn.absyn

Synopsis
Implements the first phase of term parsing; the removal of special syntax.

Description
Absyn takes a quotation and parses it into an abstract syntax tree of type absyn, using
the current term and type grammars. This phase of parsing is unconcerned with types,
and will happily parse meaningless expressions that are syntactically valid.

Example
Absyn will parse the expression ‘let x = e1 in e2‘ into

APP(APP(IDENT "LET", LAM(VIDENT "x", IDENT "e2")), IDENT "e1")

The record syntax ‘rec.fld1‘ is converted into something of the form

APP(IDENT "....fld1", IDENT "rec")

where the dots will actually be equal to the value of GrammarSpecials.recsel_special
(a string).

Failure
Fails if the quotation has a syntax error.

Uses
Absyn is not often used, but may be handy for implementing some weird and wonderful
concrete syntax that surpasses the functionality of the HOL parser.

AC 19

See also
Parse.Term, Parse.term grammar.

AC (simpLib)

AC : thm -> thm -> thm

Synopsis
Packages associativity and commutativity theorems for use in the simplifier.

Description
The AC function combines an associativity and commutativity theorem. The resulting
theorem can be passed to the simplifier as if a rewrite, but will rather be used by the
simplifier as the basis for performing AC-normalisation.

The theorems can be combined in either order, can be partly generalised, and need
not express associativity in any particular direction from left to right.

Failure
AC never fails, but if applied to theorems that are not of the required form, the simplifier
will raise an exception when it attempts to use the result.

Example

- SIMP_CONV bool_ss [AC ADD_COMM ADD_ASSOC] ‘‘3 + x + y + 1‘‘;

> val it = |- 3 + x + y + 1 = x + (y + (1 + 3)) : thm

- SIMP_CONV bool_ss [AC (GSYM ADD_ASSOC) ADD_COMM] ‘‘x + 1 + y + 3‘‘;

> val it = |- x + 1 + y + 3 = x + (y + (1 + 3)) : thm

See also
simpLib.SSFRAG.

AC_CONV (Conv)

AC_CONV : (thm * thm) -> conv

20 CHAPTER 1. ENTRIES

Synopsis
Proves equality of terms using associative and commutative laws.

Description
Suppose _ is a function, which is assumed to be infix in the following syntax, and ath

and cth are theorems expressing its associativity and commutativity; they must be of
the following form, except that any free variables may have arbitrary names and may
be universally quantified:

ath = |- m _ (n _ p) = (m _ n) _ p

cth = |- m _ n = n _ m

Then the conversion AC_CONV(ath,cth) will prove equations whose left and right sides
can be made identical using these associative and commutative laws.

Failure
Fails if the associative or commutative law has an invalid form, or if the term is not an
equation between AC-equivalent terms.

Example
Consider the terms x + SUC t + ((3 + y) + z) and 3 + SUC t + x + y + z. AC_CONV

proves them equal.

- AC_CONV(ADD_ASSOC,ADD_SYM)

(Term ‘x + (SUC t) + ((3 + y) + z) = 3 + (SUC t) + x + y + z‘);

> val it =

|- (x + ((SUC t) + ((3 + y) + z)) = 3 + ((SUC t) + (x + (y + z)))) = T

Comments
Note that the preproved associative and commutative laws for the operators +, *, /\ and
\/ are already in the right form to give to AC_CONV.

See also
Conv.SYM CONV.

ACCEPT_TAC (Tactic)

ACCEPT_TAC : thm_tactic

aconv 21

Synopsis
Solves a goal if supplied with the desired theorem (up to alpha-conversion).

Description
ACCEPT_TAC maps a given theorem th to a tactic that solves any goal whose conclusion
is alpha-convertible to the conclusion of th.

Failure
ACCEPT_TAC th (A,g) fails if the term g is not alpha-convertible to the conclusion of the
supplied theorem th.

Example
ACCEPT_TAC applied to the axiom

BOOL_CASES_AX = |- !t. (t = T) \/ (t = F)

will solve the goal

?- !x. (x = T) \/ (x = F)

but will fail on the goal

?- !x. (x = F) \/ (x = T)

Uses
Used for completing proofs by supplying an existing theorem, such as an axiom, or a
lemma already proved.

See also
Tactic.MATCH ACCEPT TAC.

aconv (Term)

aconv : term -> term -> bool

Synopsis
Tests for alpha-convertibility of terms.

Description
When applied to two terms, aconv returns true if they are alpha-convertible, and false

otherwise. Two terms are alpha-convertible if they differ only in the way that names
have been given to bound variables.

22 CHAPTER 1. ENTRIES

Failure
Never fails.

Example

- aconv (Term ‘?x y. x /\ y‘) (Term ‘?y x. y /\ x‘)

> val it = true : bool

See also
Thm.ALPHA, Drule.ALPHA CONV.

ADD_ASSUM (Drule)

ADD_ASSUM : term -> thm -> thm

Synopsis
Adds an assumption to a theorem.

Description
When applied to a boolean term s and a theorem A |- t, the inference rule ADD_ASSUM

returns the theorem A u {s} |- t.

A |- t

-------------- ADD_ASSUM s

A u {s} |- t

Failure
Fails unless the given term has type bool.

See also
Thm.ASSUME, Drule.UNDISCH.

add_bare_numeral_form (Parse)

add_bare_numeral_form : (char * string option) -> unit

add bare numeral form 23

Synopsis
Adds support for annotated numerals to the parser/pretty-printer.

Description
The function add_bare_numeral_form allows the user to give special meaning to strings of
digits that are suffixed with single characters. A call to this function with pair argument
(c, s) adds c as a possible suffix. Subsequently, if a sequence of digits is parsed, and it
has the character c directly after the digits, then the natural number corresponding to
these digits is made the argument of the “map function” corresponding to s.

This map function is computed as follows: if the s option value is NONE, then the
function is considered to be the identity and never really appears; the digits denote a
natural number. If the value of s is SOME s’, then the parser translates the string to an
application of s’ to the natural number denoted by the digits.

Failure
Fails if the suffix character is not a letter.

Example
The following function, binary_of, defined with equations:

val bthm =

|- binary_of n = if n = 0 then 0

else n MOD 10 + 2 * binary_of (n DIV 10) : thm

can be used to convert numbers whose decimal notation is x, to numbers whose binary
notation is x (as long as x only involves zeroes and ones).

The following call to add_bare_numeral_form then sets up a numeral form that could
be used by users wanting to deal with binary numbers:

- add_bare_numeral_form(#"b", SOME "binary_of");

> val it = () : unit

- Term‘1011b‘;

> val it = ‘1011b‘ : term

- dest_comb it;

> val it = (‘binary_of‘, ‘1011‘) : term * term

Comments
It is highly recommended that users avoid using suffixes that might be interpreted as
hexadecimal digits A to F, in either upper or lower case. Further, HOL convention has it
that suffix character should be lower case.

24 CHAPTER 1. ENTRIES

Uses
If one has a range of values that are usefully indexed by natural numbers, the function
add_bare_numeral_form provides a syntactically convenient way of reading and writing
these values. If there are other functions in the range type such that the mapping
function is a homomorphism from the natural numbers, then add_numeral_form could
be used, and the appropriate operators (+, * etc) overloaded.

See also
Parse.add numeral form.

ADD_CONV (reduceLib)

ADD_CONV : conv

Synopsis
Calculates by inference the sum of two numerals.

Description
If m and n are numerals (e.g. 0, 1, 2, 3,...), then ADD_CONV "m + n" returns the theorem:

|- m + n = s

where s is the numeral that denotes the sum of the natural numbers denoted by m and
n.

Failure
ADD_CONV tm fails unless tm is of the form "m + n", where m and n are numerals.

Example

#ADD_CONV "75 + 25";;

|- 75 + 25 = 100

add_implicit_rewrites (Rewrite)

Rewrite.add_implicit_rewrites: thm list -> unit

add infix 25

Synopsis
Augments the built-in database of simplifications automatically included in rewriting.

Uses
Used to build up the power of the built-in simplification set.

See also
Rewrite.set implicit rewrites.

add_infix (Parse)

add_infix : string * int * HOLgrammars.associativity -> unit

Synopsis
Adds a string as an infix with the given precedence and associativity to the term gram-
mar.

Description
This function adds the given string to the global term grammar such that the string

<str1> s <str2>

will be parsed as

s <t1> <t2>

where <str1> and <str2> have been parsed to two terms <t1> and <t2>. The parsing
process does not pay any attention to whether or not s corresponds to a constant or
not. This resolution happens later in the parse, and will result in either a constant or a
variable with name s. In fact, if this name is overloaded, the eventual term generated
may have a constant of quite a different name again; the resolution of overloading
comes as a separate phase (see the entry for overload_on).

Failure
add_infix fails if the precedence level chosen for the new infix is the same as a different
type of grammar rule (e.g., suffix or binder), or if the specified precedence level has
infixes already but of a different associativity.

It is also possible that the choice of string s will result in an ambiguous grammar. This
will be marked with a warning. The parser may behave in strange ways if it encounters
ambiguous phrases, but will work normally otherwise.

26 CHAPTER 1. ENTRIES

Example
Though we may not have + defined as a constant, we can still define it as an infix for
the purposes of printing and parsing:

- add_infix ("+", 500, HOLgrammars.LEFT);

> val it = () : unit

- val t = Term‘x + y‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c.>>

> val t = ‘x + y‘ : term

We can confirm that this new infix has indeed been parsed that way by taking the
resulting term apart:

- dest_comb t;

> val it = (‘$+ x‘, ‘y‘) : term * term

With its new status, + has to be “quoted” with a dollar-sign if we wish to use it in a
position where it is not an infix, as in the binding list of an abstraction:

- Term‘\$+. x + y‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c.>>

> val it = ‘\$+. x + y‘ : term

- dest_abs it;

> val it = (‘$+‘,‘x + y‘) : term * term

The generation of three new type variables in the examples above emphasises the fact
that the terms in the first example and the body of the second are really no different
from f x y (where f is a variable), and don’t have anything to do with the constant for
addition from arithmeticTheory. The new + infix is left associative:

- Term‘x + y + z‘;

<<HOL message: inventing new type variable names: ’a, ’b.>>

> val it = ‘x + y + z‘ : term

- dest_comb it;

> val it = (‘$+ (x + y)‘, ‘z‘) : term * term

It is also more tightly binding than /\ (which has precedence 400 by default):

- Term‘p /\ q + r‘;

<<HOL message: inventing new type variable names: ’a, ’b.>>

> val it = ‘p /\ q + r‘ : term

- dest_comb it;

> val it = (‘$/\ p‘, ‘q + r‘) : term * term

add infix 27

An attempt to define a right associative operator at the same level fails:

Lib.try add_infix("-", 500, HOLgrammars.RIGHT);

Exception raised at Parse.add_infix:

Grammar Error: Attempt to have differently associated infixes

(RIGHT and LEFT) at same level

Similarly we can’t define an infix at level 900, because this is where the (true prefix)
rule for logical negation (~) is.

- Lib.try add_infix("-", 900, HOLgrammars.RIGHT);

Exception raised at Parse.add_infix:

Grammar Error: Attempt to have different forms at same level

Finally, an attempt to have a second + infix at a different precedence level causes grief
when we later attempt to use the parser:

- add_infix("+", 400, HOLgrammars.RIGHT);

> val it = () : unit

- Term‘p + q‘;

<<HOL warning: Parse.Term: Grammar ambiguous on token pair + and +,

and probably others too>>

<<HOL message: inventing new type variable names: ’a, ’b, ’c>>

> val it = ‘‘p + q‘‘ : term

In this situation, the behaviour of the parser will become quite unpredictable whenever
the + token is encountered. In particular, + may parse with either fixity.

Uses
Most use of infixes will want to have them associated with a particular constant in
which case the definitional principles (new_infixl_definition etc) are more likely to be
appropriate. However, a development of a theory of abstract algebra may well want to
have infix variables such as + above.

Comments
As with other functions in the Parse structure, there is a companion temp_add_infix

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

See also
Parse.add rule, Parse.add listform, Parse.Term.

28 CHAPTER 1. ENTRIES

add_infix_type (Parse)

add_infix_type : {Assoc : associativity,

Name : string,

ParseName : string option,

Prec : int} ->

unit

Synopsis
Adds a type infix.

Description
A call to add_infix_type adds an infix type symbol to the type grammar. The argument
is a record of four values providing information about the infix.

The Assoc field specifies the associativity of the symbol (possible values: LEFT, RIGHT
and NONASSOC). The standard HOL type infixes (+, #, -> and |->) are all right-associative.
The Name field specifies the name of the binary type operator that is being mapped to. If
the name of the type is not the same as the concrete syntax (as in all the standard HOL
examples above), the concrete syntax can be provided in the ParseName field. The Prec

field specifies the binding precedence of the infix. This should be a number less than
100, and probably greater than or equal to 50, where the function -> symbol lies. The
greater the number, the more tightly the symbol attempts to “grab” its arguments.

Failure
Fails if the desired precedence level contains an existing infix with a different associa-
tivity.

Example

- Hol_datatype ‘atree = Nd of ’v => (’k # atree) list‘;

<<HOL message: Defined type: "atree">>

> val it = () : unit

- add_infix_type { Assoc = LEFT, Name = "atree",

ParseName = SOME ">->", Prec = 65 };

> val it = () : unit

- type_of ‘‘Nd‘‘;

<<HOL message: inventing new type variable names: ’a, ’b>>

> val it = ‘‘:’a -> (’b # (’b >-> ’a)) list -> ’b >-> ’a‘‘ : hol_type

add listform 29

add_listform (Parse)

add_listform :

{separator : pp_element list, leftdelim : pp_element list,

rightdelim : pp_element list, cons : string, nilstr : string,

block_info : term_grammar.block_info } ->

unit

Synopsis
Adds a “list-form” to the built-in grammar, allowing the parsing of strings such as
[a; b; c] and {}.

Description
The add_listform function allows the user to augment the HOL parser with rules so that
it can turn a string of the form

<ld> str1 <sep> str2 <sep> ... strn <rd>

into the term

<cons> t1 (<cons> t2 ... (<cons> tn <nilstr>))

where <ld> is the left delimiter string, <rd> the right delimiter, and <sep> is the separator
string from the fields of the record argument to the function. The various stri are
strings representing the ti terms. Further, the grammar will also parse <ld> <rd> into
<nilstr>.

The pp_element lists passed to this function for the separator, leftdelim and
rightdelim fields are interpreted as by the add_rule function. These lists must have
exactly one TOK element (this provides the string that will be printed), and other
formatting elements such as BreakSpace.

The block_info field is a pair consisting of a “consistency” (PP.CONSISTENT, or
PP.INCONSISTENT), and an indentation depth (an integer). The standard value for
this field is (PP.INCONSISTENT,0), which will cause lists too long to fit in a single line to
print with as many elements on the first line as will fit, and for subsequent elements to
appear unindented on subsequent lines. Changing the “consistency” to PP.CONSISTENT

would cause lists too long for a single line to print with one element per line. The
indentation level number specifies the number of extra spaces to be inserted when a
line-break occurs.

30 CHAPTER 1. ENTRIES

In common with the add_rule function, there is no requirement that the cons and
nilstr fields be the names of constants; the parser/grammar combination will generate
variables with these names if there are no corresponding constants.

The HOL pretty-printer is simultaneously aware of the new rule, and terms of the
forms above will print appropriately.

Failure
Fails if any of the pp_element lists are ill-formed: if they include TM, BeginFinalBlock,
or EndInitialBlock elements, or if do not include exactly one TOK element. Subsequent
calls to the term parser may also fail or behave unpredictably if the strings chosen for the
various fields above introduce precedence conflicts. For example, it will almost always
be impossible to use left and right delimiters that are already present in the grammar,
unless they are there as the left and right parts of a closefix.

Example
The definition of the “list-form” for lists in the HOL distribution is:

add_listform {separator = [TOK ";", BreakSpace(1,0)],

leftdelim = [TOK "["], rightdelim = [TOK "]"],

cons = "CONS", nilstr = "NIL",

block_info = (PP.INCONSISTENT, 0)};

while the set syntax is defined similarly:

add_listform {leftdelim = [TOK "{"], rightdelim = TOK ["}"],

separator = [";", BreakSpace(1,0)],

cons = "INSERT", nilstr = "EMPTY",

block_info = (PP.INCONSISTENT, 0)};

Uses
Used to make sequential term structures print and parse more pleasingly.

Comments
As with other parsing functions, there is a temp_add_listform version of this function,
which has the same effect on the global grammar, but which does not cause this effect
to persist when the current theory is exported.

See also
Parse.add rule.

add numeral form 31

add_numeral_form (Parse)

Parse.add_numeral_form : (char * string option) -> unit

Synopsis
Adds support for numerals of differing types to the parser/pretty-printer.

Description
This function allows the user to extend HOL’s parser and pretty-printer so that they
recognise and print numerals. A numeral in this context is a string of digits. Each such
string corresponds to a natural number (i.e., the HOL type num) but add_numeral_form

allows for numerals to stand for values in other types as well.
A call to add_numeral_form(c,s) augments the global term grammar in two ways.

Firstly, in common with the function add_bare_numeral_form (q.v.), it allows the user
to write a single letter suffix after a numeral (the argument c). The presence of this
character specifies s as the “injection function” which is to be applied to the natural
number denoted by the preceding digits.

Secondly, the constant denoted by the s argument is overloaded to be one of the pos-
sible resolutions of an internal, overloaded operator, which is invisibly wrapped around
all numerals that appear without a character suffix. After applying add_numeral_form,
the function denoted by the argument s is now a possible resolution of this overloading,
so numerals can now be seen as members of the range of the type of s.

Finally, if s is not NONE, the constant denoted by s is overloaded to be one of the
possible resolutions of the string &. This operator is thus the standard way of writing
the injection function from :num into other numeric types.

The injection function specifed by argument s is either the constant with name s0, if s
is of the form SOME s0, or the identity function if s is NONE. Using add_numeral_form with
NONE for this parameter is done in the development of arithmeticTheory, and should not
be done subsequently.

Failure
Fails if arithmeticTheory is not loaded, as this is where the basic constants implementing
natural number numerals are defined. Also fails if there is no constant with the given
name, or if it doesn’t have type :num -> ’a for some ’a. Fails if add_bare_numeral_form
would also fail on this input.

Example
The natural numbers are given numeral forms as follows:

32 CHAPTER 1. ENTRIES

val _ = add_numeral_form (#"n", NONE);

This is done in arithmeticTheory so that after it is loaded, one can write numerals and
have them parse (and print) as natural numbers. However, later in the development, in
integerTheory, numeral forms for integers are also introduced:

val _ = add_numeral_form(#"i", SOME "int_of_num");

Here int_of_num is the name of the function which injects natural numbers into integers.
After this call is made, numeral strings can be treated as integers or natural numbers,
depending on the context.

- load "integerTheory";

> val it = () : unit

- Term‘3‘;

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ‘3‘ : term

- type_of it;

> val it = ‘:int‘ : hol_type

The parser has chosen to give the string “3” integer type (it will prefer the most recently
specified possibility, in common with overloading in general). However, numerals can
appear with natural number type in appropriate contexts:

- Term‘(SUC 3, 4 + ~x)‘;

> val it = ‘(SUC 3,4 + ~x)‘ : term

- type_of it;

> val it = ‘:num # int‘ : hol_type

Moreover, one can always use the character suffixes to absolutely specify the type of the
numeral form:

- Term‘f 3 /\ p‘;

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ‘f 3 /\ p‘ : term

- Term‘f 3n /\ p‘;

> val it = ‘f 3 /\ p‘ : term

Comments
Overloading on too many numeral forms is a sure recipe for confusion.

See also
Parse.add bare numeral form, Parse.overload on, Parse.show numeral types.

add rewrites 33

add_rewrites (Rewrite)

add_rewrites : rewrites -> thm list -> rewrites

Synopsis
Add theorems to a collection of rewrite rules.

Description
The function add_rewrites processes each element in a list of theorems and adds the
resulting rewrite rules to a value of type rewrites.

Failure
Never fails.

Example

- load "pairTheory"; open pairTheory;

add_rewrites empty_rewrites (PAIR_MAP_THM::pair_rws);

> val it =

|- (f ## g) (x,y) = (f x,g y);

|- (FST x,SND x) = x;

|- FST (x,y) = x;

|- SND (x,y) = y

Number of rewrite rules = 4

: rewrites

Uses
For building bespoke rewrite rule sets.

See also
Rewrite.bool rewrites, Rewrite.empty rewrites, Rewrite.implicit rewrites,

Rewrite.GEN REWRITE CONV, Rewrite.GEN REWRITE RULE, Rewrite.GEN REWRITE TAC.

34 CHAPTER 1. ENTRIES

add_rule (Parse)

add_rule :

{term_name : string, fixity : fixity,

pp_elements: term_grammar.pp_element list,

paren_style : term_grammar.ParenStyle,

block_style : term_grammar.PhraseBlockStyle *

term_grammar.block_info} -> unit

Synopsis
Adds a parsing/printing rule to the global grammar.

Description
The function add_rule is a fundamental method for adding parsing (and thus printing)
rules to the global term grammar that sits behind the functions Term and --, and the
pretty-printer installed for terms. It is used for everything except the addition of list-
forms, for which refer to the entry for add_listform.

There are five components in the record argument to add_rule. The term_name com-
ponent is the name of the term (whether a constant or a variable) that will be generated
at the head of the function application. Thus, the term_name component when specifying
parsing for conditional expressions is COND.

The following values (all in structure Parse) are useful for constructing fixity values:

val LEFT : HOLgrammars.associativity

val RIGHT : HOLgrammars.associativity

val NONASSOC : HOLgrammars.associativity

val Binder : fixity

val Closefix : fixity

val Infixl : int -> fixity

val Infixr : int -> fixity

val Infix : HOLgrammars.associativity * int -> fixity

val Prefix : int -> fixity

val Suffix : int -> fixity

The Binder fixity is for binders such as universal and existential quantifiers (! and
?). Binders can actually be seen as (true) prefixes (should ‘!x. p /\ q‘ be parsed as
‘(!x. p) /\ q‘ or as ‘!x. (p /\ q)‘?), but the add_rule interface only allows binders
to be added at the one level (the weakest in the grammar). Further, when binders

add rule 35

are added using this interface, all elements of the record apart from the term_name are
ignored, so the name of the binder must be the same as the string that is parsed and
printed (but see also restricted quantifiers: associate_restriction).

The remaining fixities all cause add_rule to pay due heed to the pp_elements (“pars-
ing/printing elements”) component of the record. As far as parsing is concerned, the
only important elements are TOK and TM values, of the following types:

val TM : term_grammar.pp_element

val TOK : string -> term_grammar.pp_element

The TM value corresponds to a “hole” where a sub-term is possible. The TOK value corre-
sponds to a piece of concrete syntax, a string that is required when parsing, and which
will appear when printing. The sequence of pp_elements specified in the record passed
to add_rule specifies the “kernel” syntax of an operator in the grammar. The “kernel” of
a rule is extended (or not) by additional sub-terms depending on the fixity type, thus:

Closefix : [Kernel] (* no external arguments *)

Prefix : [Kernel] _ (* an argument to the right *)

Suffix : _ [Kernel] (* an argument to the left *)

Infix : _ [Kernel] _ (* arguments on both sides *)

Thus simple infixes, suffixes and prefixes would have singleton pp_element lists, con-
sisting of just the symbol desired. More complicated mix-fix syntax can be constructed
by identifying whether or not sub-term arguments exist beyond the kernel of concrete
syntax. For example, syntax for the evaluation relation of an operational semantics
(_ |- _ --> _) is an infix with a kernel delimited by |- and --> tokens. Syntax for
denotation brackets [| _ |] is a closefix with one internal argument in the kernel.

The remaining sorts of possible pp_element values are concerned with pretty-printing.
(The basic scheme is implemented on top of a standard Oppen-style pretty-printing
package.) They are

(* where

type term_grammar.block_info = PP.break_style * int

*)

val BreakSpace : (int * int) -> term_grammar.pp_element

val HardSpace : int -> term_grammar.pp_element

val BeginFinalBlock : term_grammar.block_info -> term_grammar.pp_element

val EndInitialBlock : term_grammar.block_info -> term_grammar.pp_element

val PPBlock : term_grammar.pp_element list * term_grammar.block_info

-> term_grammar.pp_element

36 CHAPTER 1. ENTRIES

val OnlyIfNecessary : term_grammar.ParenStyle

val ParoundName : term_grammar.ParenStyle

val ParoundPrec : term_grammar.ParenStyle

val Always : term_grammar.ParenStyle

val AroundEachPhrase : term_grammar.PhraseBlockStyle

val AroundSamePrec : term_grammar.PhraseBlockStyle

val AroundSameName : term_grammar.PhraseBlockStyle

val NoPhrasing : term_grammar.PhraseBlockStyle

The two spacing values provide ways of specifying white-space should be added when
terms are printed. Use of HardSpace n results in n spaces being added to the term
whatever the context. On the other hand, BreakSpace(m,n) results in a break of width m

spaces unless this makes the current line too wide, in which case a line-break will occur,
and the next line will be indented an extra n spaces.

For example, the add_infix function (q.v.) is implemented in terms of add_rule in
such a way that a single token infix s, has a pp_element list of

[HardSpace 1, TOK s, BreakSpace(1,0)]

This results in chains of infixes (such as those that occur with conjunctions) that break
so as to leave the infix on the right hand side of the line. Under this constraint, printing
can’t break so as to put the infix symbol on the start of a line, because that would imply
that the HardSpace had in fact been broken. (Consequently, if a change to this behaviour
is desired, there is no global way of effecting it, but one can do it on an infix-by-infix
basis by deleting the given rule (see, for example, remove_termtok) and then “putting it
back” with different pretty-printing constraints.)

The PPBlock function allows the specification of nested blocks (blocks in the Oppen
pretty-printing sense) within the list of pp_elements. Because there are sub-terms in
all but the Closefix fixities that occur beyond the scope of the pp_element list, the
BeginFinalBlock and EndInitialBlock functions can also be used to indicate the bound-
ary of blocks whose outer extent is the term beyond the kernel represented by the
pp_element list. There is an example of this below.

The possible ParenStyle values describe when parentheses should be added to terms.
The OnlyIfNecessary value will cause parentheses to be added only when required to
disambiguate syntax. The ParoundName will cause parentheses to be added if necessary,
or where the head symbol has the given term_name and where this term is not the ar-
gument of a function with the same head name. This style of parenthesisation is used
with tuples, for example. The ParoundPrec value is similar, but causes parentheses to be
added when the term is the argument to a function with a different precedence level.
Finally, the Always value causes parentheses always to be added.

add rule 37

The PhraseBlockStyle values describe when pretty-printing blocks involving this term
should be entered. The AroundEachPhrase style causes a pretty-printing block to be cre-
ated around each term. This is not appropriate for operators such as conjunction how-
ever, where all of the arguments to the conjunctions in a list are more pleasingly thought
of as being at the same level. This effect is gained by specifying either AroundSamePrec

or AroundSameName. The former will cause the creation of a new block for the phrase if
it is at a different precedence level from its parent, while the latter creates the block if
the parent name is not the same. The former is appropriate for + and - which are at
the same precedence level, while the latter is appropriate for /\. Finally, the NoPhrasing

style causes there to be no block at all around terms controlled by this rule. The inten-
tion in using such a style is to have block structure controlled by the level above.

Failure
This function will fail if the pp_element list does not have TOK values at the beginning
and the end of the list, or if there are two adjacent TM values in the list. It will fail if the
rule specifies a fixity with a precedence, and if that precedence level in the grammar is
already taken by rules with a different sort of fixity.

Example
There are two conditional expression syntaxes defined in the theory bool. The first is
the traditional HOL88/90 syntax. Because the syntax involves “dangling” terms to the
left and right, it is an infix (and one of very weak precedence at that).

val _ = add_rule{term_name = "COND",

fixity = Infix (HOLgrammars.RIGHT, 3),

pp_elements = [HardSpace 1, TOK "=>",

BreakSpace(1,0), TM,

BreakSpace(1,0), TOK "|",

HardSpace 1],

paren_style = OnlyIfNecessary,

block_style = (AroundEachPhrase,

(PP.INCONSISTENT, 0))};

The second rule added uses the more familiar if-then-else syntax. Here there is only a
“dangling” term to the right of the construction, so this rule’s fixity is of type Prefix. (If
the rule was made a Closefix, strings such as ‘if P then Q else R‘ would still parse,
but so too would ‘if P then Q else‘.) This example also illustrates the use of blocks
within rules to improve pretty-printing.

val _ = add_rule{term_name = "COND", fixity = Prefix 70,

pp_elements = [PPBlock([TOK "if", BreakSpace(1,2),

TM, BreakSpace(1,0),

38 CHAPTER 1. ENTRIES

TOK "then"], (PP.CONSISTENT, 0)),

BreakSpace(1,2), TM, BreakSpace(1,0),

BeginFinalBlock(PP.CONSISTENT, 2),

TOK "else", BreakSpace(1,0)],

paren_style = OnlyIfNecessary,

block_style = (AroundEachPhrase,

(PP.INCONSISTENT, 0))};

Note that the above form is not that actually used in the system. As written, it allows
for pretty-printing some expressions as:

if P then

<very long term> else Q

because the block_style is INCONSISTENT.
The pretty-printer prefers later rules over earlier rules by default (though this choice

can be changed with prefer_form_with_tok (q.v.)), so conditional expressions print us-
ing the if-then-else syntax rather than the _ => _ | _ syntax.

Uses
For making pretty concrete syntax possible.

Comments
Because adding new rules to the grammar may result in precedence conflicts in the
operator-precedence matrix, it is as well with interactive use to test the Term parser
immediately after adding a new rule, as it is only with this call that the precedence
matrix is built.

As with other functions in the Parse structure, there is a companion temp_add_rule

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

An Isabelle-style concrete syntax for specifying rules would probably be desirable as
it would conceal the complexity of the above from most users.

See also
Parse.add listform, Parse.add infix, Parse.prefer form with tok,

Parse.remove rules for term.

add_tag (Thm)

add_tag : tag * thm -> thm

add user printer 39

Synopsis
Adds oracle tags to a theorem.

Description
A call to add_tag(tg,th) returns a th’ such that calling Thm.tag(th’) returns the tag
that is the merge of the tag associated with th (if any) and tg.

Failure
Never fails.

Comments
If an oracle implementation wishes to record additional information about the oracle
mechanisms that have contributed to the ‘proof’ of a theorem (perhaps the use of exist-
ing HOL theorems that will have their own tags), then this function can be used to add
that record.

See also
Thm.mk oracle thm.

add_user_printer (Parse)

add_user_printer : (string * term * userprinter) -> unit

Synopsis
Adds a user specified pretty-printer for a specified type.

Description
The function add_user_printer is used to add a special purpose term pretty-printer to
the interactive system. The pretty-printer is called whenever the term to be printed
matches (with match_term) the term provided as the second parameter of the triple. If
multiple calls to add_user_printer are made with the same string parameter, the older
functions are replaced entirely. If multiple printers match, the more specific match will
be chosen. If two matches are equally specific, the match chosen is unspecified.

The user-supplied function may choose not to print anything for the given term and
hand back control to the standard printer by raising the exception term_pp_types.UserPP_Failed.
All other exceptions will propagate to the top-level. If the system printer receives the
UserPP_Failed exception, it prints out the term using its standard algorithm, but will
again attempt to call the user function on any sub-terms that match the pattern.

The type userprinter is an abbreviation defined in term_grammar to be

40 CHAPTER 1. ENTRIES

type userprinter =

type_grammar.grammar * term_grammar.grammar ->

PPBackend.t ->

sysprinter ->

term_pp_types.ppstream_funs ->

(grav * grav * grav) -> int ->

term -> uprinter

where the type grav (from term_pp_types) is

datatype grav = Top | RealTop | Prec of (int * string)

The type uprinter (standing for ”unit printer”) is a special monadic printing type based
on the smpp module (explained further in the example below). The type sysprinter is
another abbreviation

type sysprinter = (grav * grav * grav) -> int -> term -> uprinter

Thus, when the user’s printing function is called, it is passed ten parameters, including
three ”gravity” values in a triple, and two grammars. The fourth parameter is the sys-
tem’s own printer. The fifth parameter is a record of functions to call for adding a string
to the output, adding a break, adding new lines, defining some styles for printing like
the color, etc. The availability of the system’s printer allows the user function to use the
default printer on sub-terms that it is not interested in. The user function must not call
the sysprinter on the term that it is handed initially as the sysprinter will immediately
call the user printing function all over again. If the user printer wants to give the whole
term back to the system printer, then it must use the UserPP_Failed exception described
above.

Though there are existing functions add_string, add_break etc. that can be used to
manipulate pretty-printing streams, users should prefer instead to use the functions that
are provided in the triple with the sysprinter. This then gives them access to functions
that can prevent inadvertent symbol merges.

The grav type is used to let pretty-printers know a little about the context in which a
term is to be printed out. The triple of gravities is given in the order “parent”, “left” and
“right”. The left and right gravities specify the precedence of any operator that might
be attempting to “grab” arguments from the left and right. For example, the term

(p /\ (if q then r else s)) ==> t

should be pretty-printed as

p /\ (if q then r else s) ==> t

add user printer 41

The system figures this out when it comes to print the conditional expression because it
knows both that the operator to the left has the appropriate precedence for conjunction
but also that there is an operator with implication’s precedence to the right. The issue
arises because conjunction is tighter than implication in precedence, leading the printer
to decide that parentheses aren’t necessary around the conjunction. Similarly, consid-
ered on its own, the conjunction doesn’t require parentheses around the conditional
expression because there is no competition between them for arguments.

The grav constructors Top and RealTop indicate a context analogous to the top of
the term, where there is no binding competition. The constructor RealTop is reserved
for situations where the term really is the top of the tree; Top is used for analogous
situations such when the term is enclosed in parentheses. (In the conditional expression
above, the printing of q will have Top gravities to the left and right.)

The Prec constructor for gravity values takes both a number indicating precedence
level and a string corresponding to the token that has this precedence level. This string
parameter is of most importance in the parent gravity (the first component of the triple)
where it can be useful in deciding whether or not to print parentheses and whether or
not to begin fresh pretty-printing blocks. For example, tuples in the logic look better if
they have parentheses around the topmost instance of the comma-operator, regardless
of whether or not this is required according to precedence considerations. By examining
the parent gravity, a printer can determine more about the term’s context. (Note that
the parent gravity will also be one or other of the left and right gravities; but it is not
possible to tell which.)

The integer parameter to both the system printing function and the user printing
function is the depth of the term. The system printer will stop printing a term if the
depth ever reaches exactly zero. Each time it calls itself recursively, the depth parameter
is reduced by one. It starts out at the value stored in Globals.max_print_depth. Setting
the latter to ~1 will ensure that all of a term is always printed.

Finally, the string parameter to the add_user_printer function is a string correspond-
ing to the ML function. Best practice is probably to define the printing function in
an independent structure and to then have the string be of the form "module.fnname".
This parameter is not present in the accompanying temp_add_user_printer, as this latter
function does not affect the grammar exported to disk with export_theory.

Failure
Will not fail directly, but if the function parameter fails to print all terms of the registered
type in any other way than raising the UserPP_Failed exception, then the pretty-printer
will also fail. If the string parameter does not correspond to valid ML code, then the
theory file generated by export_theory will not compile.

Example
This example uses the system printer to print sub-terms, and concerns itself only with

42 CHAPTER 1. ENTRIES

printing conjunctions. Note how the actions that make up the pretty-printer (combina-
tions of add_string and add_break are combined with the infix >> operator (from the
smpp module).

- fun myprint Gs B sys (ppfns:term_pp_types.ppstream_funs) gravs d t =

let

open Portable term_pp_types smpp

val (str,brk) = (#add_string ppfns, #add_break ppfns);

val (l,r) = dest_conj t

in

str "CONJ:" >>

brk (1,0) >>

sys (Top, Top, Top) (d - 1) l >>

brk (1,0) >> str "and then" >> brk(1,0) >>

sys (Top, Top, Top) (d - 1) r >>

str "ENDCONJ"

end handle HOL_ERR _ => raise term_pp_types.UserPP_Failed;

> val myprint = fn :

’a -> ’b ->

(grav * grav * grav -> int -> term -> (term_pp_types.printing_info,’c)smpp.t) ->

term_pp_types.ppstream_funs -> ’d -> int -> term ->

(term_pp_types.printing_info,unit)smpp.t

- temp_add_user_printer ("myprint", ‘‘p /\ q‘‘, myprint);

> val it = () : unit

- ‘‘p ==> q /\ r‘‘;

> val it = ‘‘p ==> CONJ: q and then r ENDCONJ‘‘ : term

The variables p, q and r as well as the implication are all of boolean type, but are
handled by the system printer. The user printer handles just the special form of the
conjunction. Note that this example actually falls within the scope of the add_rule

functionality.
The next approach to printing conjunctions is not possible with add_rule. This exam-

ple uses the styling and blocking functions to create part of its effect. These functions
(ustyle and ublock respectively) are higher-order functions that take printers as argu-
ments and cause the arguments to be printed with a particular governing style (ustyle),
or indented to reveal block structure (ublock).

- fun myprint2 Gs B sys (ppfns:term_pp_types.ppstream_funs) (pg,lg,rg) d t = let

open Portable term_pp_types PPBackEnd smpp

add user printer 43

val {add_string,add_break,ublock,ustyle,...} = ppfns

val (l,r) = dest_conj t

fun delim wrap body =

case pg of

Prec(_, "CONJ") => body

| _ => wrap body

in

delim (fn bod => ublock CONSISTENT 0

(ustyle [Bold] (add_string "CONJ") >>

add_break (1,2) >>

ublock INCONSISTENT 0 bod >>

add_break (1,0) >>

ustyle [Bold] (add_string "ENDCONJ")))

(sys (Prec(0, "CONJ"), Top, Top) (d - 1) l >>

add_string "," >> add_break (1,0) >>

sys (Prec(0, "CONJ"), Top, Top) (d - 1) r)

end handle HOL_ERR _ => raise term_pp_types.UserPP_Failed;

- temp_add_user_printer ("myprint2", ‘‘p /\ q‘‘, myprint2);

- ‘‘p /\ q /\ r /\ s /\ t /\ u /\ p /\ p /\ p /\ p /\ p /\ p /\

p /\ p /\ p /\ p/\ p /\ p /\ q /\ r /\ s /\ t /\ u /\ v /\

(w /\ x) /\ (p \/ q) /\ r‘‘;

> val it =

‘‘CONJ

p, q, r, s, t, u, p, p, p, p, p, p, p, p, p, p, p, p, q,

r, s, t, u, v, w, x, p \/ q, r

ENDCONJ‘‘ : term

This example also demonstrates using parent gravities to print out a big term. The func-
tion passed as an argument to delim is only called when the parent gravity is not "CONJ".
This ensures that the special delimiters only get printed when the first conjunction is
encountered. Subsequent, internal conjunctions get passed the "CONJ" gravity in the
calls to sys.

A better approach (and certainly a more direct one) would probably be to call
strip_conj and print all of the conjuncts in one fell swoop. Additionally, this example
demonstrates how easy it is to conceal genuine syntactic structure with a pretty-printer.
Finally, it shows how styles can be used.

44 CHAPTER 1. ENTRIES

Uses
For extending the pretty-printer in ways not possible to encompass with the built-in
grammar rules for concrete syntax.

See also
Parse.add rule, Term.match term, Parse.remove user printer.

adjoin_to_theory (Theory)

adjoin_to_theory : thy_addon -> unit

Synopsis
Include arbitrary ML in exported theory.

Description
It often happens that algorithms and flag settings accompany a logical theory (call it
thy). One would want to simply load the thyTheory module and have the appropriate
proof support, etc. loaded automatically as well.

There are several ways to support this. One simple way would be to define another
ML structure, thySupport say, that depended on thyTheory. The algorithms, etc, could
be placed in thySupport and the interested user would know that by loading thySupport,
its contents, and those of thyTheory, would become available. This approach, and ex-
tensions of it are accomodated already in the notion of a HOL library.

However, it is sometimes more appropriate to actually include the support code di-
rectly in thyTheory. The function adjoin_to_theory performs this operation.

A call adjoin_to_theory {sig_ps, struct_ps} adds a signature prettyprinter sig_ps

and a structure prettyprinter struct_ps to an internal queue of prettyprinters. When
export_theory () is eventually called two things happen: (a) the signature file
thyTheory.sig is written, and (b) the structure file thyTheory.sml is written. When
thyTheory.sig is written, each signature prettyprinter in the queue is called, in the
order that they were added to the queue. This printing activity happens after the rest of
the signature (coming from the declarations in the theory) has been written. Similarly,
when thyTheory.sml is written, the structure prettyprinters are invoked in queue order,
after the bindings of the theory have been written.

If sig_ps is NONE, then no signature additions are made. Likewise, if struct_ps is NONE,
then no structure additions are made. (This latter possibility doesn’t seem to be useful.)

after new theory 45

Failure
It is up to the writer of a prettyprinter to ensure that it generates valid ML. If a pret-
typrinter added by a call to adjoin_to_theory fails, thyTheory.sig or thyTheory.sml

could be malformed, and therefore not properly exported, or compiled.

Example
The following excerpt from the script for the theory of pairs is a fairly typical use of
adjoin_to_theory. It adds the declaration of an ML variable pair_rws to the structure
pairTheory.

val _ = adjoin_to_theory

{sig_ps =

SOME(fn ppstrm => PP.add_string ppstrm "val pair_rws:thm list"),

struct_ps =

SOME(fn ppstrm => PP.add_string ppstrm

"val pair_rws = [PAIR, FST, SND];")

}

Comments
The PP structure is documented in the MoscowML library documentation.

See also
Theory.after new theory, Theory.thy addon, BasicProvers.export rewrites.

after_new_theory (Theory)

after_new_theory : (string * string -> unit) -> unit

Synopsis
Initialize package once a theory is declared.

Description
Some HOL infrastructure depends on certain packages being informed each time a
new theory is created. The function after_new_theory supports this. An invocation
after_new_theory f adds the function f to an internal queue of ‘initializers’. All sub-
sequent calls to new_theory will cause each initializer to be run, in queue order. Each
initializer will be given the names of the theory segments from before and after the call
to new_theory as its argument..

46 CHAPTER 1. ENTRIES

Failure
It can be that an initializer fails for some reason when it is executed. Any exceptions
will be caught, and an attempt will be made to print out a message. Then execution of
the remaining initializers will continue.

Example
- fun every8 s (a::b::c::d::e::f::g::h::rst) =

a::b::c::d::e::f::g::h::s::every8 s rst

| every8 s otherwise = otherwise;

> val ’a every8 = fn : ’a -> ’a list -> ’a list

- after_new_theory (fn (old,s) =>

(print ("Ancestors of "^s^":\n ");

print (String.concat (every8 "\n " (commafy (ancestry s))));

print ".\n"));

> val it = () : unit

- new_theory"foo";

<<HOL message: Created theory "foo">>

Ancestors of foo:

one, option, pair, sum,

combin, relation, min, bool,

num, prim_rec, arithmetic, numeral,

ind_type, list.

> val it = () : unit

- new_theory"bar";

Exporting theory "foo" ... done.

<<HOL message: Created theory "bar">>

Ancestors of bar:

one, option, pair, sum,

combin, relation, min, bool,

num, prim_rec, arithmetic, numeral,

ind_type, list, foo.

> val it = () : unit

Comments
Perhaps there should be a before_export_theory call as well?

Uses
Fairly low level system support tasks.

all 47

See also
Theory.adjoin to theory.

all (Lib)

all : (’a -> bool) -> ’a list -> bool

Synopsis
Tests whether a predicate holds throughout a list.

Description
all P [x1,...,xn] equals P x1 andalso andalso P xn. all P [] yields true.

Failure
If P x0,...,P x(j-1) all evaluate to true and P xj raises an exception e, then all P [x0,...,x(j-1),xj,...,xn]

raises e.

Example

- all (equal 3) [3,3,3];

> val it = true : bool

- all (equal 3) [];

> val it = true : bool

- all (fn _ => raise Fail "") [];

> val it = true : bool

- all (fn _ => raise Fail "") [1];

! Uncaught exception:

! Fail ""

See also
Lib.all2, Lib.exists, Lib.first.

all2 (Lib)

all2 : : (’a -> ’b -> bool) -> ’a list -> ’b list -> bool

48 CHAPTER 1. ENTRIES

Synopsis
Tests whether a predicate holds pairwise throughout two lists.

Description
An invocation

all2 P [x1,...,xn] [y1,...,yn]

equals

P x1 y1 andalso andalso P xn yn

Also, all2 P [] [] yields true.

Failure
If P x0,...,P x(j-1) all evaluate to true and P xj raises an exception e, then

all2 P [x0,...,x(j-1),xj,...,xn]

raises e. An invocation all2 P l1 l2 will also raise an exception if the length of l1 is
not equal to the length of l2.

Example

- all2 equal [1,2,3] [1,2,3];

> val it = true : bool

- all2 equal [1,2,3] [1,2,3,4] handle e => Raise e;

Exception raised at Lib.all2:

different length lists

! Uncaught exception:

! HOL_ERR

- all2 (fn _ => fn _ => raise Fail "") [] [];

> val it = true : bool

- all2 (fn _ => fn _ => raise Fail "") [1] [1];

! Uncaught exception:

! Fail ""

See also
Lib.all.

all consts 49

all_consts (Term)

all_consts : unit -> term list

Synopsis
All known constants in the current theory.

Description
An invocation all_consts returns a list of all declared constants in the current theory,
i.e., all constants in the current theory segment and in its ancestry.

Failure
Never fails.

Example

- all_consts();

> val it =

[‘transitive‘, ‘CONS‘, ‘RES_ABSTRACT‘, ‘COND‘, ‘OPTION_MAP‘, ‘FCONS‘,

‘FACT‘, ‘&‘, ‘RPROD‘, ‘mk_list‘, ‘ZIP‘, ‘IS_NUM_REP‘, ‘ABS_sum‘, ‘SUM‘,

‘SUC‘, ‘OPTION_JOIN‘, ‘REP_sum‘, ‘RTC‘, ‘SND‘, ‘RES_SELECT‘, ‘THE‘,

‘APPEND‘, ‘option_REP‘, ‘PRE‘, ‘ABS_num‘, ‘PRIM_REC‘, ‘EXISTS‘, ‘REP_num‘,

‘approx‘, ‘case‘, ‘CONSTR‘, ‘[]‘, ‘$MOD‘, ‘ODD‘, ‘MIN‘, ‘case‘, ‘MEM‘,

‘ISR‘, ‘MAX‘, ‘$LEX‘, ‘ISO‘, ‘case_arrow__magic‘, ‘ISL‘, ‘LET‘, ‘MAP‘,

‘INR‘, ‘INL‘, ‘$EXP‘, ‘FST‘, ‘case‘, ‘mk_rec‘, ‘IS_SOME‘, ‘$DIV‘, ‘ARB‘,

‘option_ABS‘, ‘wellfounded‘, ‘iiSUC‘, ‘SIMP_REC_REL‘, ‘RES_FORALL‘,

‘$==>‘, ‘MK_PAIR‘, ‘ZBOT‘, ‘IS_NONE‘, ‘TYPE_DEFINITION‘, ‘case‘,

‘dest_rec‘, ‘IS_PAIR‘, ‘ONE_ONE‘, ‘case‘, ‘RES_EXISTS_UNIQUE‘, ‘NUMRIGHT‘,

‘NUMPAIR‘, ‘FILTER‘, ‘BOTTOM‘, ‘SOME‘, ‘reflexive‘, ‘EMPTY_REL‘,

‘REVERSE‘, ‘ABS_prod‘, ‘NUMERAL_BIT2‘, ‘NUMERAL_BIT1‘, ‘FRONT‘, ‘OUTR‘,

‘OUTL‘, ‘SIMP_REC‘, ‘measure‘, ‘NUMLEFT‘, ‘REP_prod‘, ‘list1‘, ‘list0‘,

‘NULL‘, ‘ONTO‘, ‘EVERY‘, ‘inv_image‘, ‘list_size‘, ‘NONE‘, ‘ALT_ZERO‘,

‘case__magic‘, ‘UNCURRY‘, ‘UNZIP‘, ‘FOLDR‘, ‘FOLDL‘, ‘iBIT_cases‘,

‘NUMERAL‘, ‘ZRECSPACE‘, ‘iZ‘, ‘case‘, ‘iSUB‘, ‘iSQR‘, ‘ZCONSTR‘, ‘WFREC‘,

‘WF‘, ‘$\/‘, ‘TL‘, ‘TC‘, ‘RC‘, ‘case_split__magic‘, ‘$IN‘, ‘NUMSUM‘, ‘HD‘,

‘EL‘, ‘MAP2‘, ‘CURRY‘, ‘RES_EXISTS‘, ‘LAST‘, ‘NUMSND‘, ‘()‘, ‘$>=‘, ‘$<=‘,

‘INJP‘, ‘INJN‘, ‘INJF‘, ‘$?!‘, ‘INJA‘, ‘$/\‘, ‘IS_SUM_REP‘, ‘RESTRICT‘,

‘iDUB‘, ‘$##‘, ‘FUNPOW‘, ‘NUMFST‘, ‘EVEN‘, ‘SUC_REP‘, ‘$~‘, ‘dest_list‘,

‘$o‘, ‘FNIL‘, ‘W‘, ‘the_fun‘, ‘T‘, ‘S‘, ‘LENGTH‘, ‘PRIM_REC_FUN‘, ‘K‘,

50 CHAPTER 1. ENTRIES

‘I‘, ‘F‘, ‘combin$C‘, ‘$@‘, ‘$?‘, ‘$>‘, ‘$=‘, ‘$<‘, ‘ZERO_REP‘, ‘0‘, ‘$-‘,

‘$,‘, ‘FLAT‘, ‘$+‘, ‘$*‘, ‘$!‘] : term list

See also
Parse.term grammar.

ALL_CONV (Conv)

ALL_CONV : conv

Synopsis
Conversion that always succeeds, raising the UNCHANGED exception.

Description
When applied to a term t, the conversion ALL_CONV raises the special UNCHANGED excep-
tion.

Failure
Never fails.

Uses
Identity element for THENC.

See also
Conv.NO CONV, Thm.REFL.

ALL_EL_CONV (listLib)

ALL_EL_CONV : conv -> conv

Synopsis
Computes by inference the result of applying a predicate to elements of a list.

Description
ALL_EL_CONV takes a conversion conv and a term tm in the following form:

ALL TAC 51

ALL_EL P [x0;...xn]

It returns the theorem

|- ALL_EL P [x0;...xn] = T

if for every xi occurring in the list, conv (--‘P xi‘--) returns a theorem |- P xi = T,
otherwise, if for at least one xi, evaluating conv (--‘P xi‘--) returns the theorem
|- P xi = F, then it returns the theorem

|- ALL_EL P [x0;...xn] = F

Failure
ALL_EL_CONV conv tm fails if tm is not of the form described above, or failure occurs
when evaluating conv (--‘P xi‘--) for some xi.

Example
Evaluating

ALL_EL_CONV bool_EQ_CONV (--‘ALL_EL ($= T) [T;F;T]‘--);

returns the following theorem:

|- ALL_EL($= T)[T;F;T] = F

In general, if the predicate P is an explicit lambda abstraction (\x. P x), the conversion
should be in the form

(BETA_CONV THENC conv’)

See also
listLib.SOME EL CONV, listLib.IS EL CONV, listLib.FOLDL CONV,

listLib.FOLDR CONV, listLib.list FOLD CONV.

ALL_TAC (Tactical)

ALL_TAC : tactic

Synopsis
Passes on a goal unchanged.

52 CHAPTER 1. ENTRIES

Description
ALL_TAC applied to a goal g simply produces the subgoal list [g]. It is the identity for the
THEN tactical.

Failure
Never fails.

Example
The tactic

INDUCT_THEN numTheory.INDUCTION THENL [ALL_TAC, tac]

applied to a goal g, applies INDUCT_THEN numTheory.INDUCTION to g to give a basis and
step subgoal; it then returns the basis unchanged, along with the subgoals produced by
applying tac to the step.

Uses
Used to write tacticals such as REPEAT. Also, it is often used as a place-holder in building
compound tactics using tacticals such as THENL.

See also
Prim rec.INDUCT THEN, Tactical.NO TAC, Tactical.REPEAT, Tactical.THENL.

ALL_THEN (Thm_cont)

ALL_THEN : thm_tactical

Synopsis
Passes a theorem unchanged to a theorem-tactic.

Description
For any theorem-tactic ttac and theorem th, the application ALL_THEN ttac th results
simply in ttac th, that is, the theorem is passed unchanged to the theorem-tactic.
ALL_THEN is the identity theorem-tactical.

Failure
The application of ALL_THEN to a theorem-tactic never fails. The resulting theorem-tactic
fails under exactly the same conditions as the original one.

all thys 53

Uses
Writing compound tactics or tacticals, e.g. terminating list iterations of theorem-
tacticals.

See also
Tactical.ALL TAC, Tactical.FAIL TAC, Tactical.NO TAC, Thm cont.NO THEN,

Thm cont.THEN TCL, Thm cont.ORELSE TCL.

all_thys (DB)

all_thys : unit -> data list

Synopsis
All theorems, axioms, and definitions in the currently loaded theory segments.

Description
An invocation all_thys() returns everything that has been stored in all theory segments
currently loaded.

Example

- length (all_thys());

> val it = 736 : int

See also
DB.thy, DB.theorems, DB.definitions, DB.axioms, DB.find, DB.match.

all_vars (Term)

all_vars : term -> term list

Synopsis
Returns the set of all variables in a term.

Description
An invocation all_vars ty returns a list representing the set of all bound and free term
variables occurring in tm.

54 CHAPTER 1. ENTRIES

Failure
Never fails.

Example

- all_vars (Term ‘!x y. x /\ y /\ y ==> z‘);

> val it = [‘z‘, ‘y‘, ‘x‘] : term list

Comments
Code should not depend on how elements are arranged in the result of all_vars.

See also
Term.free vars, Term.all varsl.

all_varsl (Term)

all_varsl : term list -> term list

Synopsis
Returns the set of all variables in a list of terms.

Description
An invocation all_varsl [t1,...,tn] returns a list representing the set of all term vari-
ables occurring in t1,...,tn.

Failure
Never fails.

Example

- all_varsl [Term ‘x /\ y /\ y ==> x‘,

Term ‘!a. a ==> p ==> y‘];

> val it = [‘x‘, ‘y‘, ‘p‘, ‘a‘] : term list

Comments
Code should not depend on how elements are arranged in the result of all_varsl.

See also
Term.FVL, Term.free vars lr, Term.free vars, Term.free varsl, Term.empty varset,

Type.type vars.

allowed term constant 55

allowed_term_constant (Lexis)

Lexis.allowed_term_constant : string -> bool

Synopsis
Tests if a string has a permissible name for a term constant.

Description
When applied to a string, allowed_term_constant returns true if the string is a permis-
sible constant name for a term, that is, if it is an identifier (see the DESCRIPTION for
more details), and false otherwise.

Failure
Never fails.

Example
The following gives a sample of some allowed and disallowed constant names:

- map Lexis.allowed_term_constant ["pi", "@", "a name", "+++++", "10"];

> val it = [true, true, false, true, false] : bool list

Comments
Note that this function only performs a lexical test; it does not check whether there is
already a constant of that name in the current theory.

See also
Theory.constants, Lexis.allowed type constant.

allowed_type_constant (Lexis)

allowed_type_constant : string -> bool

Synopsis
Tests if a string has a permissible name for a type constant.

Description
When applied to a string, allowed_type_constant returns true if the string is a permis-
sible constant name for a type operator, and false otherwise.

56 CHAPTER 1. ENTRIES

Failure
Never fails.

Example
The following gives a sample of some allowed and disallowed names for type operators:

- map Lexis.allowed_type_constant ["list", "’a", "fun", "->", "#", "fun2"];

> val it = [true, false, true, false, false, true] : bool list

Comments
Note that this function only performs a lexical test; it does not check whether there is
already a type operator of that name in the current theory.

This function is not currently enforced by the system, as it was found that more
flexibilty in naming was preferable.

See also
Lexis.allowed term constant.

ALPHA (Thm)

ALPHA : term -> term -> thm

Synopsis
Proves equality of alpha-equivalent terms.

Description
When applied to a pair of terms t1 and t1’ which are alpha-equivalent, ALPHA returns
the theorem |- t1 = t1’.

------------- ALPHA t1 t1’

|- t1 = t1’

Failure
Fails unless the terms provided are alpha-equivalent.

See also
Term.aconv, Drule.ALPHA CONV, Drule.GEN ALPHA CONV.

alpha 57

alpha (Type)

alpha : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.alpha is bound to the type variable ’a.

See also
Type.beta, Type.gamma, Type.delta, Type.bool.

ALPHA_CONV (Drule)

ALPHA_CONV : term -> conv

Synopsis
Renames the bound variable of a lambda-abstraction.

Description
If x is a variable of type ty and M is an abstraction (with bound variable y of type ty and
body t), then ALPHA_CONV x M returns the theorem:

|- (\y.t) = (\x’. t[x’/y])

where the variable x’:ty is a primed variant of x chosen so as not to be free in \y.t.

Failure
ALPHA_CONV x tm fails if x is not a variable, if tm is not an abstraction, or if x is a variable
v and tm is a lambda abstraction \y.t but the types of v and y differ.

See also
Thm.ALPHA, Drule.GEN ALPHA CONV.

58 CHAPTER 1. ENTRIES

ancestry (Theory)

ancestry : string -> string list

Synopsis
Returns the (proper) ancestry of a theory in a list.

Description
A call to ancestry thy returns a list of all the proper ancestors (i.e. parents, parents of
parents, etc.) of the theory thy. The shorthand "-" may be used to denote the name of
the current theory segment.

Failure
Fails if thy is not an ancestor of the current theory.

Example

- load "bossLib";

> val it = () : unit

- current_theory();

> val it = "scratch" : string

- ancestry "-";

> val it =

["one", "option", "pair", "sum", "combin", "relation", "min", "bool",

"num", "prim_rec", "arithmetic", "numeral", "ind_type", "list"] :

string list

See also
Theory.parents.

AND_CONV (reduceLib)

AND_CONV : conv

AND EL CONV 59

Synopsis
Simplifies certain boolean conjunction expressions.

Description
If tm corresponds to one of the forms given below, where t is an arbitrary term of type
bool, then AND_CONV tm returns the corresponding theorem. Note that in the last case
the conjuncts need only be alpha-equivalent rather than strictly identical.

AND_CONV "T /\ t" = |- T /\ t = t

AND_CONV "t /\ T" = |- t /\ T = t

AND_CONV "F /\ t" = |- F /\ t = F

AND_CONV "t /\ F" = |- t /\ F = F

AND_CONV "t /\ t" = |- t /\ t = t

Failure
AND_CONV tm fails unless tm has one of the forms indicated above.

Example

#AND_CONV "(x = T) /\ F";;

|- (x = T) /\ F = F

#AND_CONV "T /\ (x = T)";;

|- T /\ (x = T) = (x = T)

#AND_CONV "(?x. x=T) /\ (?y. y=T)";;

|- (?x. x = T) /\ (?y. y = T) = (?x. x = T)

AND_EL_CONV (listLib)

AND_EL_CONV : conv

Synopsis
Computes by inference the result of taking the conjunction of the elements of a boolean
list.

Description
For any object language list of the form --‘[x1;x2;...;xn]‘--, where x1, x2, ..., xn are
boolean expressions, the result of evaluating

60 CHAPTER 1. ENTRIES

AND_EL_CONV (--‘AND_EL [x1;x2;...;xn]‘--)

is the theorem

|- AND_EL [x1;x2;...;xn] = b

where b is either the boolean constant that denotes the conjunction of the elements of
the list, or a conjunction of those xi that are not boolean constants.

Example

- AND_EL_CONV (--‘AND_EL [T;F;F;T]‘--);

|- AND_EL [T;F;F;T] = F

- AND_EL_CONV (--‘AND_EL [T;T;T]‘--);

|- AND_EL [T;T;T] = T

- AND_EL_CONV (--‘AND_EL [T;x;y]‘--);

|- AND_EL [T; x; y] = x /\ y

- AND_EL_CONV (--‘AND_EL [x;F;y]‘--);

|- AND_EL [x; F; y] = F

Failure
AND_EL_CONV tm fails if tm is not of the form described above.

AND_EXISTS_CONV (Conv)

AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification outwards through a conjunction.

Description
When applied to a term of the form (?x.P) /\ (?x.Q), where x is free in neither P nor
Q, AND_EXISTS_CONV returns the theorem:

|- (?x. P) /\ (?x. Q) = (?x. P /\ Q)

AND FORALL CONV 61

Failure
AND_EXISTS_CONV fails if it is applied to a term not of the form (?x.P) /\ (?x.Q), or if it
is applied to a term (?x.P) /\ (?x.Q) in which the variable x is free in either P or Q.

Comments
It may be easier to use higher order rewriting with some of BOTH_EXISTS_AND_THM,
LEFT_EXISTS_AND_THM, and RIGHT_EXISTS_AND_THM.

See also
Conv.EXISTS AND CONV, Conv.LEFT AND EXISTS CONV, Conv.RIGHT AND EXISTS CONV.

AND_FORALL_CONV (Conv)

AND_FORALL_CONV : conv

Synopsis
Moves a universal quantification outwards through a conjunction.

Description
When applied to a term of the form (!x.P) /\ (!x.Q), the conversion AND_FORALL_CONV

returns the theorem:

|- (!x.P) /\ (!x.Q) = (!x. P /\ Q)

Failure
Fails if applied to a term not of the form (!x.P) /\ (!x.Q).

Comments
It may be easier to use higher order rewriting with FORALL_AND_THM.

See also
Conv.FORALL AND CONV, Conv.LEFT AND FORALL CONV, Conv.RIGHT AND FORALL CONV.

AND_PEXISTS_CONV (PairRules)

AND_PEXISTS_CONV : conv

62 CHAPTER 1. ENTRIES

Synopsis
Moves a paired existential quantification outwards through a conjunction.

Description
When applied to a term of the form (?p. t) /\ (?p. u), where no variables in p are
free in either t or u, AND_PEXISTS_CONV returns the theorem:

|- (?p. t) /\ (?p. u) = (?p. t /\ u)

Failure
AND_PEXISTS_CONV fails if it is applied to a term not of the form (?p. t) /\ (?p. u), or
if it is applied to a term (?p. t) /\ (?p. u) in which variables from p are free in either
t or u.

See also
Conv.AND EXISTS CONV, PairRules.PEXISTS AND CONV,

PairRules.LEFT AND PEXISTS CONV, PairRules.RIGHT AND PEXISTS CONV.

AND_PFORALL_CONV (PairRules)

AND_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification outwards through a conjunction.

Description
When applied to a term of the form (!p. t) /\ (!p. t), the conversion AND_PFORALL_CONV

returns the theorem:

|- (!p. t) /\ (!p. u) = (!p. t /\ u)

Failure
Fails if applied to a term not of the form (!p. t) /\ (!p. t).

See also
Conv.AND FORALL CONV, PairRules.PFORALL AND CONV,

PairRules.LEFT AND PFORALL CONV, PairRules.RIGHT AND PFORALL CONV.

ANTE CONJ CONV 63

ANTE_CONJ_CONV (Conv)

ANTE_CONJ_CONV : conv

Synopsis
Eliminates a conjunctive antecedent in favour of implication.

Description
When applied to a term of the form (t1 /\ t2) ==> t, the conversion ANTE_CONJ_CONV

returns the theorem:

|- (t1 /\ t2 ==> t) = (t1 ==> t2 ==> t)

Failure
Fails if applied to a term not of the form "(t1 /\ t2) ==> t".

Uses
Somewhat ad-hoc, but can be used (with CONV_TAC) to transform a goal of the form
?- (P /\ Q) ==> R into the subgoal ?- P ==> (Q ==> R), so that only the antecedent P
is moved into the assumptions by DISCH_TAC.

See also
Tactic.CONV TAC, Tactic.DISCH TAC.

ANTE_RES_THEN (Thm_cont)

ANTE_RES_THEN : thm_tactical

Synopsis
Resolves implicative assumptions with an antecedent.

Description
Given a theorem-tactic ttac and a theorem A |- t, the function ANTE_RES_THEN produces
a tactic that attempts to match t to the antecedent of each implication

Ai |- !x1...xn. ui ==> vi

64 CHAPTER 1. ENTRIES

(where Ai is just !x1...xn. ui ==> vi) that occurs among the assumptions of a goal.
If the antecedent ui of any implication matches t, then an instance of Ai u A |- vi is
obtained by specialization of the variables x1, ..., xn and type instantiation, followed
by an application of modus ponens. Because all implicative assumptions are tried, this
may result in several modus-ponens consequences of the supplied theorem and the
assumptions. Tactics are produced using ttac from all these theorems, and these tactics
are applied in sequence to the goal. That is,

ANTE_RES_THEN ttac (A |- t) g

has the effect of:

MAP_EVERY ttac [A1 u A |- v1, ..., Am u A |- vm] g

where the theorems Ai u A |- vi are all the consequences that can be drawn by a (sin-
gle) matching modus-ponens inference from the implications that occur among the as-
sumptions of the goal g and the supplied theorem A |- t. Any negation ~v that appears
among the assumptions of the goal is treated as an implication v ==> F. The sequence in
which the theorems Ai u A |- vi are generated and the corresponding tactics applied
is unspecified.

Failure
ANTE_RES_THEN ttac (A |- t) fails when applied to a goal g if any of the tactics pro-
duced by ttac (Ai u A |- vi), where Ai u A |- vi is the ith resolvent obtained from
the theorem A |- t and the assumptions of g, fails when applied in sequence to g.

Uses
Painfully detailed proof hacking.

See also
Tactic.IMP RES TAC, Thm cont.IMP RES THEN, Drule.MATCH MP, Tactic.RES TAC,

Thm cont.RES THEN.

AP_TERM (Thm)

AP_TERM : term -> thm -> thm

Synopsis
Applies a function to both sides of an equational theorem.

Description
When applied to a term f and a theorem A |- x = y, the inference rule AP_TERM returns
the theorem A |- f x = f y.

AP TERM TAC 65

A |- x = y

---------------- AP_TERM f

A |- f x = f y

Failure
Fails unless the theorem is equational and the supplied term is a function whose domain
type is the same as the type of both sides of the equation.

See also
Tactic.AP TERM TAC, Thm.AP THM, Tactic.AP THM TAC, Thm.MK COMB.

AP_TERM_TAC (Tactic)

AP_TERM_TAC : tactic

Synopsis
Strips a function application from both sides of an equational goal.

Description
AP_TERM_TAC reduces a goal of the form A ?- f x = f y by stripping away the function
applications, giving the new goal A ?- x = y.

A ?- f x = f y

================ AP_TERM_TAC

A ?- x = y

Failure
Fails unless the goal is equational, with both sides being applications of the same func-
tion.

See also
Thm.AP TERM, Thm.AP THM, Tactic.AP THM TAC, Tactic.ABS TAC.

AP_THM (Thm)

AP_THM : thm -> term -> thm

66 CHAPTER 1. ENTRIES

Synopsis
Proves equality of equal functions applied to a term.

Description
When applied to a theorem A |- f = g and a term x, the inference rule AP_THM returns
the theorem A |- f x = g x.

A |- f = g

---------------- AP_THM (A |- f = g) x

A |- f x = g x

Failure
Fails unless the conclusion of the theorem is an equation, both sides of which are func-
tions whose domain type is the same as that of the supplied term.

See also
Tactic.AP THM TAC, Thm.AP TERM, Drule.ETA CONV, Drule.EXT, Conv.FUN EQ CONV,

Thm.MK COMB.

AP_THM_TAC (Tactic)

AP_THM_TAC : tactic

Synopsis
Strips identical operands from functions on both sides of an equation.

Description
When applied to a goal of the form A ?- f x = g x, the tactic AP_THM_TAC strips away
the operands of the function application:

A ?- f x = g x

================ AP_THM_TAC

A ?- f = g

Failure
Fails unless the goal has the above form, namely an equation both sides of which consist
of function applications to the same arguments.

See also
Thm.AP TERM, Tactic.AP TERM TAC, Thm.AP THM, Tactic.ABS TAC, Drule.EXT.

append 67

append (Lib)

append : ’a list -> ’a list -> ’a list

Synopsis
Curried form of list append

Description
The function append is a curried form of the standard operation for appending two ML
lists.

Failure
Never fails.

Example

- append [1] [2,3] = [1] @ [2,3];

> val it = true : bool

APPEND_CONV (listLib)

APPEND_CONV : conv

Synopsis
Computes by inference the result of appending two object-language lists.

Description
For any pair of object language lists of the form --‘[x1;...;xn]‘-- and --‘[y1;...;ym]‘--,
the result of evaluating

APPEND_CONV (--‘APPEND [x1;...;xn] [y1;...;ym]‘--)

is the theorem

|- APPEND [x1;...;xn] [y1;...;ym] = [x1;...;xn;y1;...;ym]

68 CHAPTER 1. ENTRIES

The length of either list (or both) may be 0.

Failure
APPEND_CONV tm fails if tm is not of the form --‘APPEND l1 l2‘--, where l1 and
l2 are (possibly empty) object-language lists of the forms --‘[x1;...;xn]‘-- and
--‘[y1;...;ym]‘--.

apply (Count)

apply : (’a -> ’b) -> ’a -> ’b

Synopsis
Counts primitive inferences performed when a function is applied.

Description
The apply function provides a way of counting the primitive inferences that are per-
formed when a function is applied to its argument. The reporting of the count is done
when the function terminates (normally, or with an exception). The reporting also in-
cludes timing information about the function call.

Example

- Count.apply (CONJUNCTS o SPEC_ALL) AND_CLAUSES;

runtime: 0.000s, gctime: 0.000s, systime: 0.000s.

Axioms asserted: 0.

Definitions made: 0.

Oracle invocations: 0.

Theorems loaded from disk: 0.

HOL primitive inference steps: 9.

Total: 9.

> val it =

[|- T /\ t = t, |- t /\ T = t, |- F /\ t = F, |- t /\ F = F,

|- t /\ t = t] : thm list

Failure
The call to apply f x will raise an exception if f x would. It will still report elapsed
time and inference counts up to the point of the exception being raised.

apropos 69

See also
Count.thm count.

apropos (DB)

apropos : term -> data list

Synopsis
Attempt to find matching theorems in the currently loaded theories.

Description
An invocation DB.apropos M collects all theorems, definitions, and axioms of the cur-
rently loaded theories that have a subterm that matches M. If there are no matches, the
empty list is returned.

Failure
Never fails.

Example

- DB.apropos (Term ‘(!x y. P x y) ==> Q‘);

<<HOL message: inventing new type variable names: ’a, ’b>>

> val it =

[(("ind_type", "INJ_INVERSE2"),

(|- !P.

(!x1 y1 x2 y2. (P x1 y1 = P x2 y2) = (x1 = x2) /\ (y1 = y2)) ==>

?X Y. !x y. (X (P x y) = x) /\ (Y (P x y) = y), Thm)),

(("pair", "pair_induction"),

(|- (!p_1 p_2. P (p_1,p_2)) ==> !p. P p, Thm))] :

((string * string) * (thm * class)) list

Comments
The notion of matching is a restricted version of higher-order matching.

For finer control over the theories searched, use DB.match.

See also
DB.match, DB.find.

70 CHAPTER 1. ENTRIES

arb (boolSyntax)

arb : term

Synopsis
Constant denoting arbitrary items.

Description
The ML variable boolSyntax.arb is bound to the term bool$ARB.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.bool case.

ARITH_CONV (numLib)

ARITH_CONV : conv

Synopsis
Partial decision procedure for a subset of linear natural number arithmetic.

Description
ARITH_CONV is a partial decision procedure for Presburger natural arithmetic. Presburger
natural arithmetic is the subset of arithmetic formulae made up from natural number
constants, numeric variables, addition, multiplication by a constant, the relations <,
<=, =, >=, > and the logical connectives ~, /\, \/, ==>, = (if-and-only-if), ! (‘forall’) and
? (‘there exists’). Products of two expressions which both contain variables are not
included in the subset, but the functions SUC and PRE which are not normally included
in a specification of Presburger arithmetic are allowed in this HOL implementation.
ARITH_CONV further restricts the subset as follows: when the formula has been put

in prenex normal form it must contain only one kind of quantifier, that is the quanti-
fiers must either all be universal (‘forall’) or all existential. Variables may appear free
(unquantified) provided any quantifiers that do appear in the prenex normal form are
universal; free variables are taken as being implicitly universally quantified so mixing
them with existential quantifiers would violate the above restriction.

ARITH CONV 71

Given a formula in the permitted subset, ARITH_CONV attempts to prove that it is equal
to T (true). For universally quantified formulae the procedure only works if the formula
would also be true of the non-negative rationals; it cannot prove formulae whose truth
depends on the integral properties of the natural numbers. The procedure is also in-
complete for existentially quantified formulae, but in this case there is no rule-of-thumb
for determining whether the procedure will work.

The function features a number of preprocessors which extend the coverage beyond
the subset specified above. In particular, natural number subtraction and conditional
statements are allowed. Another permits substitution instances of universally quantified
formulae to be accepted. Note that Boolean-valued variables are not allowed.

Failure
The function can fail in two ways. It fails if the argument term is not a formula in the
specified subset, and it also fails if it is unable to prove the formula. The failure strings
are different in each case. However, the function may announce that it is unable to
prove a formula that one would expect it to reject as being outside the subset. This is
due to it looking for substitution instances; it has generalised the formula so that the
new formula is in the subset but is not valid.

Example
A simple example containing a free variable:

- ARITH_CONV ‘‘m < SUC m‘‘;

> val it = |- m < (SUC m) = T : thm

A more complex example with subtraction and universal quantifiers, and which is not
initially in prenex normal form:

#ARITH_CONV

"!m p. p < m ==> !q r. (m < (p + q) + r) ==> ((m - p) < q + r)";;

|- (!m p. p < m ==> (!q r. m < ((p + q) + r) ==> (m - p) < (q + r))) = T

Two examples with existential quantifiers:

#ARITH_CONV "?m n. m < n";;

|- (?m n. m < n) = T

#ARITH_CONV "?m n. (2 * m) + (3 * n) = 10";;

|- (?m n. (2 * m) + (3 * n) = 10) = T

An instance of a universally quantified formula involving a conditional statement and
subtraction:

72 CHAPTER 1. ENTRIES

#ARITH_CONV

"((p + 3) <= n) ==> (!m. ((m EXP 2 = 0) => (n - 1) | (n - 2)) > p)";;

|- (p + 3) <= n ==> (!m. ((m EXP 2 = 0) => n - 1 | n - 2) > p) = T

Failure due to mixing quantifiers:

#ARITH_CONV "!m. ?n. m < n";;

evaluation failed ARITH_CONV -- formula not in the allowed subset

Failure because the truth of the formula relies on the fact that the variables cannot have
fractional values:

#ARITH_CONV "!m n. ~(SUC (2 * m) = 2 * n)";;

evaluation failed ARITH_CONV -- cannot prove formula

See also
Arith.NEGATE CONV, Arith.EXISTS ARITH CONV, Arith.FORALL ARITH CONV,

Arith.INSTANCE T CONV, Arith.PRENEX CONV, Arith.SUB AND COND ELIM CONV.

ARITH_FORM_NORM_CONV (Arith)

ARITH_FORM_NORM_CONV : conv

Synopsis
Normalises an unquantified formula of linear natural number arithmetic.

Description
ARITH_FORM_NORM_CONV converts a formula of natural number arithmetic into a disjunc-
tion of conjunctions of less-than-or-equal-to inequalities. The arithmetic expressions are
only allowed to contain natural number constants, numeric variables, addition, the SUC

function, and multiplication by a constant. The formula must not contain quantifiers,
but may have disjunction, conjunction, negation, implication, equality on Booleans (if-
and-only-if), and the natural number relations: <, <=, =, >=, >. The formula must not
contain products of two expressions which both contain variables.

The inequalities in the result are normalised so that each variable appears on only
one side of the inequality, and each side is a linear sum in which any constant appears
first followed by products of a constant and a variable. The variables are ordered lexi-
cographically, and if the coefficient of the variable is 1, the product of 1 and the variable
appears in the term rather than the variable on its own.

arith ss 73

Failure
The function fails if the argument term is not a formula in the specified subset.

Example

#ARITH_FORM_NORM_CONV "m < n";;

|- m < n = (1 + (1 * m)) <= (1 * n)

#ARITH_FORM_NORM_CONV

"(n < 4) ==> ((n = 0) \/ (n = 1) \/ (n = 2) \/ (n = 3))";;

|- n < 4 ==> (n = 0) \/ (n = 1) \/ (n = 2) \/ (n = 3) =

4 <= (1 * n) \/

(1 * n) <= 0 /\ 0 <= (1 * n) \/

(1 * n) <= 1 /\ 1 <= (1 * n) \/

(1 * n) <= 2 /\ 2 <= (1 * n) \/

(1 * n) <= 3 /\ 3 <= (1 * n)

Uses
Useful in constructing decision procedures for linear arithmetic.

arith_ss (bossLib)

arith_ss : simpset

Synopsis
Simplification set for arithmetic.

Description
The simplification set arith_ss is a version of std_ss enhanced for arithmetic. It in-
cludes many arithmetic rewrites, an evaluation mechanism for ground arithmetic terms,
and a decision procedure for linear arithmetic. It also incorporates a cache of success-
fully solved conditions proved when conditional rewrite rules are successfully applied.

The following rewrites are currently used to augment those already present from
std_ss:

|- !m n. (m * n = 0) = (m = 0) \/ (n = 0)

|- !m n. (0 = m * n) = (m = 0) \/ (n = 0)

|- !m n. (m + n = 0) = (m = 0) /\ (n = 0)

74 CHAPTER 1. ENTRIES

|- !m n. (0 = m + n) = (m = 0) /\ (n = 0)

|- !x y. (x * y = 1) = (x = 1) /\ (y = 1)

|- !x y. (1 = x * y) = (x = 1) /\ (y = 1)

|- !m. m * 0 = 0

|- !m. 0 * m = 0

|- !x y. (x * y = SUC 0) = (x = SUC 0) /\ (y = SUC 0)

|- !x y. (SUC 0 = x * y) = (x = SUC 0) /\ (y = SUC 0)

|- !m. m * 1 = m

|- !m. 1 * m = m

|- !x.((SUC x = 1) = (x = 0)) /\ ((1 = SUC x) = (x = 0))

|- !x.((SUC x = 2) = (x = 1)) /\ ((2 = SUC x) = (x = 1))

|- !m n. (m + n = m) = (n = 0)

|- !m n. (n + m = m) = (n = 0)

|- !c. c - c = 0

|- !m. SUC m - 1 = m

|- !m. (0 - m = 0) /\ (m - 0 = m)

|- !a c. a + c - c = a

|- !m n. (m - n = 0) = m <= n

|- !m n. (0 = m - n) = m <= n

|- !n m. n - m <= n

|- !n m. SUC n - SUC m = n - m

|- !m n p. m - n > p = m > n + p

|- !m n p. m - n < p = m < n + p /\ 0 < p

|- !m n p. m - n >= p = m >= n + p \/ 0 >= p

|- !m n p. m - n <= p = m <= n + p

|- !n. n <= 0 = (n = 0)

|- !m n p. m + p < n + p = m < n

|- !m n p. p + m < p + n = m < n

|- !m n p. m + n <= m + p = n <= p

|- !m n p. n + m <= p + m = n <= p

|- !m n p. (m + p = n + p) = (m = n)

|- !m n p. (p + m = p + n) = (m = n)

|- !x y w. x + y < w + x = y < w

|- !x y w. y + x < x + w = y < w

|- !m n. (SUC m = SUC n) = (m = n)

|- !m n. SUC m < SUC n = m < n

|- !n m. SUC n <= SUC m = n <= m

|- !m i n. SUC n * m < SUC n * i = m < i

|- !p m n. (n * SUC p = m * SUC p) = (n = m)

|- !m i n. (SUC n * m = SUC n * i) = (m = i)

arith ss 75

|- !n m. ~(SUC n <= m) = m <= n

|- !p q n m. (n * SUC q ** p = m * SUC q ** p) = (n = m)

|- !m n. ~(SUC n ** m = 0)

|- !n m. ~(SUC (n + n) = m + m)

|- !m n. ~(SUC (m + n) <= m)

|- !n. ~(SUC n <= 0)

|- !n. ~(n < 0)

|- !n. (MIN n 0 = 0) /\ (MIN 0 n = 0)

|- !n. (MAX n 0 = n) /\ (MAX 0 n = n)

|- !n. MIN n n = n

|- !n. MAX n n = n

|- !n m. MIN m n <= m /\ MIN m n <= n

|- !n m. m <= MAX m n /\ n <= MAX m n

|- !n m. (MIN m n < m = ~(m = n) /\ (MIN m n = n)) /\

(MIN m n < n = ~(m = n) /\ (MIN m n = m)) /\

(m < MIN m n = F) /\ (n < MIN m n = F)

|- !n m. (m < MAX m n = ~(m = n) /\ (MAX m n = n)) /\

(n < MAX m n = ~(m = n) /\ (MAX m n = m)) /\

(MAX m n < m = F) /\ (MAX m n < n = F)

|- !m n. (MIN m n = MAX m n) = (m = n)

|- !m n. MIN m n < MAX m n = ~(m = n)

The decision procedure proves valid purely univeral formulas constructed using vari-
ables and the operators SUC,PRE,+,-,<,>,<=,>=. Multiplication by constants is acco-
modated by translation to repeated addition. An attempt is made to generalize sub-
formulas of type num not fitting into this syntax.

Comments
The philosophy behind this simpset is fairly conservative. For example, some poten-
tial rewrite rules, e.g., the recursive clauses for addition and multiplication, are not
included, since it was felt that their incorporation too often resulted in formulas becom-
ing more complex rather than simpler. Also, transitivity theorems are avoided because
they tend to make simplification diverge.

See also
BasicProvers.RW TAC, BasicProvers.SRW TAC, simpLib.SIMP TAC, simpLib.SIMP CONV,

simpLib.SIMP RULE, BasicProvers.bool ss, bossLib.std ss, bossLib.list ss.

76 CHAPTER 1. ENTRIES

ASM_CASES_TAC (Tactic)

ASM_CASES_TAC : term -> tactic

Synopsis
Given a term, produces a case split based on whether or not that term is true.

Description
Given a term u, ASM_CASES_TAC applied to a goal produces two subgoals, one with u as
an assumption and one with ~u:

A ?- t

================================ ASM_CASES_TAC u

A u {u} ?- t A u {~u} ?- t

ASM_CASES_TAC u is implemented by DISJ_CASES_TAC(SPEC u EXCLUDED_MIDDLE), where
EXCLUDED_MIDDLE is the axiom |- !u. u \/ ~u.

Failure
By virtue of the implementation (see above), the decomposition fails if EXCLUDED_MIDDLE
cannot be instantiated to u, e.g. if u does not have boolean type.

Example
The tactic ASM_CASES_TAC u can be used to produce a case analysis on u:

- let val u = Term ‘u:bool‘

val g = Term ‘(P:bool -> bool) u‘

in

ASM_CASES_TAC u ([],g)

end;

([([‘u‘], ‘P u‘),

([‘~u‘], ‘P u‘)], fn) : tactic_result

Uses
Performing a case analysis according to whether a given term is true or false.

See also
Tactic.BOOL CASES TAC, Tactic.COND CASES TAC, Tactic.DISJ CASES TAC, Thm.SPEC,

Tactic.STRUCT CASES TAC, BasicProvers.Cases, bossLib.Cases on.

ASM MESON TAC 77

ASM_MESON_TAC (mesonLib)

ASM_MESON_TAC : thm list -> tactic

Synopsis
Performs first order proof search to prove the goal, using the assumptions and the the-
orems given.

Description
ASM_MESON_TAC is identical in behaviour to MESON_TAC except that it uses the assumptions
of a goal as well as the provided theorems.

Failure
ASM_MESON_TAC fails if it can not find a proof of the goal with depth less than or equal to
the mesonLib.max_depth value.

See also
mesonLib.GEN MESON TAC, mesonLib.MESON TAC.

ASM_REWRITE_RULE (Rewrite)

ASM_REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem including built-in rewrites and the theorem’s assumptions.

Description
ASM_REWRITE_RULE rewrites using the tautologies in basic_rewrites, the given list of the-
orems, and the set of hypotheses of the theorem. All hypotheses are used. No ordering
is specified among applicable rewrites. Matching subterms are searched for recursively,
starting with the entire term of the conclusion and stopping when no rewritable expres-
sions remain. For more details about the rewriting process, see GEN_REWRITE_RULE. To
avoid using the set of basic tautologies, see PURE_ASM_REWRITE_RULE.

Failure
ASM_REWRITE_RULE does not fail, but may result in divergence. To prevent divergence
where it would occur, ONCE_ASM_REWRITE_RULE can be used.

78 CHAPTER 1. ENTRIES

See also
Rewrite.GEN REWRITE RULE, Rewrite.ONCE ASM REWRITE RULE,

Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE,

Rewrite.REWRITE RULE.

ASM_REWRITE_TAC (Rewrite)

ASM_REWRITE_TAC : thm list -> tactic

Synopsis
Rewrites a goal using built-in rewrites and the goal’s assumptions.

Description
ASM_REWRITE_TAC generates rewrites with the tautologies in basic_rewrites, the set
of assumptions, and a list of theorems supplied by the user. These are applied top-
down and recursively on the goal, until no more matches are found. The order
in which the set of rewrite equations is applied is an implementation matter and
the user should not depend on any ordering. Rewriting strategies are described in
more detail under GEN_REWRITE_TAC. For omitting the common tautologies, see the
tactic PURE_ASM_REWRITE_TAC. To rewrite with only a subset of the assumptions use
FILTER_ASM_REWRITE_TAC.

Failure
ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For rewriting
to a limited depth, see ONCE_ASM_REWRITE_TAC. The resulting tactic may not be valid if
the applicable replacement introduces new assumptions into the theorem eventually
proved.

Example
The use of assumptions in rewriting, specially when they are not in an obvious equa-
tional form, is illustrated below:

- let val asm = [Term ‘P x‘]

val goal = Term ‘P x = Q x‘

in

ASM_REWRITE_TAC[] (asm, goal)

end;

val it = ([([‘P x‘], ‘Q x‘)], fn) : tactic_result

ASM SIMP RULE 79

- let val asm = [Term ‘~P x‘]

val goal = Term ‘P x = Q x‘

in

ASM_REWRITE_TAC[] (asm, goal)

end;

val it = ([([‘~P x‘], ‘~Q x‘)], fn) : tactic_result

See also
Rewrite.FILTER ASM REWRITE TAC, Rewrite.FILTER ONCE ASM REWRITE TAC,

Rewrite.GEN REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC, Rewrite.ONCE REWRITE TAC,

Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,

Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC, Tactic.SUBST TAC.

ASM_SIMP_RULE (simpLib)

ASM_SIMP_RULE : simpset -> thm list -> thm -> thm

Synopsis
Simplifies a theorem, using the theorem’s assumptions as rewrites in addition to the
provided rewrite theorems and simpset.

Failure
Never fails, but may diverge.

Example

- ASM_SIMP_RULE bool_ss [] (ASSUME (Term ‘x = 3‘))

> val it = [.] |- T : thm

Uses
The assumptions can be used to simplify the conclusion of the theorem. For exam-
ple, if the conclusion of a theorem is an implication, the antecedent together with the
hypotheses may help simplify the conclusion.

See also
simpLib.SIMP CONV, simpLib.SIMP RULE.

80 CHAPTER 1. ENTRIES

ASM_SIMP_TAC (bossLib)

ASM_SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplifies a goal using the simpset, the provided theorems, and the goal’s assumptions.

Description
ASM_SIMP_TAC does a simplification of the goal, adding both the assumptions and the
provided theorem to the given simpset as rewrites. This simpset is then applied to the
goal in the manner explained in the entry for SIMP_CONV.
ASM_SIMP_TAC is to SIMP_TAC, as ASM_REWRITE_TAC is to REWRITE_TAC.

Failure
ASM_SIMP_TAC never fails, though it may diverge.

Example
The simple goal x < y ?- x + y < y + y can be proved by using bossLib.arith_ss and
the assumption by

ASM_SIMP_TAC bossLib.arith_ss []

See also
bossLib.++, bossLib.bool ss, bossLib.FULL SIMP TAC, simpLib.mk simpset,

bossLib.SIMP CONV, bossLib.SIMP TAC.

ASM_SIMP_TAC (simpLib)

ASM_SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.ASM_SIMP_TAC is identical to simpLib.ASM_SIMP_TAC.

assert 81

See also
bossLib.ASM SIMP TAC.

assert (Lib)

assert : (’a -> bool) -> ’a -> ’a

Synopsis
Checks that a value satisfies a predicate.

Description
assert p x returns x if the application p x yields true. Otherwise, assert p x fails.

Failure
assert p x fails with exception HOL_ERR if the predicate p yields false when applied to
the value x. If the application p x raises an exception e, then assert p x raises e.

Example

- null [];

> val it = true : bool

- assert null ([]:int list);

> val it = [] : int list

- null [1];

> false : bool

- assert null [1];

! Uncaught exception:

! HOL_ERR <poly>

See also
Lib.can, Lib.assert exn.

assert_exn (Lib)

assert_exn : (’a -> bool) -> ’a -> exn -> ’a

82 CHAPTER 1. ENTRIES

Synopsis
Checks that a value satisfies a predicate.

Description
assert_exn p x e returns x if the application p x evaluates to true. Otherwise,
assert_exn p x e raises e

Failure
assert_exn p x e fails with exception e if the predicate p yields false when applied to
the value x. If the application p x raises an exception ex, then assert_exn p x e raises
ex.

Example

- null [];

> val it = true : bool

- assert_exn null ([]:int list) (Fail "non-empty list");

> val it = [] : int list

- null [1];

> false : bool

- assert_exn null [1] (Fail "non-empty list");;

! Uncaught exception:

! Fail "non-empty list"

See also
Lib.can, Lib.assert.

assoc (hol88Lib)

assoc : ’’a -> (’’a * ’b) list -> ’’a * ’b

Synopsis
Searches a list of pairs for a pair whose first component equals a specified value.

assoc 83

Description
assoc x [(x1,y1),...,(xn,yn)] returns the first (xi,yi) in the list such that xi equals
x. The lookup is done on an eqtype, i.e., the SML implementation must be able to decide
equality for the type of x.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

- assoc 2 [(1,4),(3,2),(2,5),(2,6)];

(2, 5) : (int * int)

Comments
Superseded by Lib.assoc and Lib.assoc1.

See also
hol88Lib.rev assoc, Lib.assoc, Lib.assoc1.

assoc (Lib)

assoc : ’’a -> (’’a * ’b) list -> ’b

Synopsis
Searches a list of pairs for a pair whose first component equals a specified value, then
returns the second component of the pair.

Description
assoc x [(x1,y1),...,(xn,yn)] locates the first (xi,yi) in a left-to-right scan of the list
such that xi equals x. Then yi is returned. The lookup is done on an eqtype, i.e., the
SML implementation must be able to decide equality for the type of x.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

- assoc 2 [(1,4),(3,2),(2,5),(2,6)];

> val it = 5 : int

84 CHAPTER 1. ENTRIES

See also
Lib.assoc1, Lib.assoc2, Lib.rev assoc, Lib.mem, Lib.tryfind, Lib.exists,

Lib.all.

assoc1 (Lib)

assoc1 : ’’a -> (’’a * ’b) list -> (’’a * ’b)option

Synopsis
Searches a list of pairs for a pair whose first component equals a specified value.

Description
assoc1 x [(x1,y1),...,(xn,yn)] returns SOME (xi,yi) for the first pair (xi,yi) in the
list such that xi equals x. Otherwise, NONE is returned. The lookup is done on an eqtype,
i.e., the SML implementation must be able to decide equality for the type of x.

Failure
Never fails.

Example

- assoc1 2 [(1,4),(3,2),(2,5),(2,6)];

> val it = SOME (2, 5) : (int * int)option

See also
Lib.assoc, Lib.assoc2, Lib.rev assoc, Lib.mem, Lib.tryfind, Lib.exists,

Lib.all.

assoc2 (Lib)

assoc2 : ’’a -> (’b * ’’a) list -> (’b * ’’a)option

Synopsis
Searches a list of pairs for a pair whose second component equals a specified value.

associate restriction 85

Description
An invocation assoc2 y [(x1,y1),...,(xn,yn)] returns SOME (xi,yi) for the first
(xi,yi) in the list such that yi equals y. Otherwise, NONE is returned. The lookup
is done on an eqtype, i.e., the SML implementation must be able to decide equality for
the type of y.

Failure
Never fails.

Example

- assoc2 2 [(1,4),(3,2),(2,5),(2,6)];

> val it = SOME (3, 2) : (int * int) option

See also
Lib.assoc, Lib.assoc1, Lib.rev assoc, Lib.mem, Lib.tryfind, Lib.exists,

Lib.all.

associate_restriction (Parse)

associate_restriction : (string * string) -> unit

Synopsis
Associates a restriction semantics with a binder.

Description
If B is a binder and RES_B a constant then

associate_restriction("B", "RES_B")

will cause the parser and pretty-printer to support:

---- parse ---->

Bv::P. B RES_B P (\v. B)

<---- print ----

Anything can be written between the binder and "::" that could be written between
the binder and "." in the old notation. See the examples below.

The following associations are predefined:

86 CHAPTER 1. ENTRIES

\v::P. B <----> RES_ABSTRACT P (\v. B)

!v::P. B <----> RES_FORALL P (\v. B)

?v::P. B <----> RES_EXISTS P (\v. B)

@v::P. B <----> RES_SELECT P (\v. B)

Where the constants RES_FORALL, RES_EXISTS and RES_SELECT are defined in the theory
bool, such that :

|- RES_FORALL P B = !x:’a. P x ==> B x

|- RES_EXISTS P B = ?x:’a. P x /\ B x

|- RES_SELECT P B = @x:’a. P x /\ B x

The constant RES_ABSTRACT has the following characterisation

|- (!p m x. x IN p ==> (RES_ABSTRACT p m x = m x)) /\

!p m1 m2.

(!x. x IN p ==> (m1 x = m2 x)) ==>

(RES_ABSTRACT p m1 = RES_ABSTRACT p m2)

Failure
Never fails.

Example

- new_binder_definition("DURING", ‘‘DURING(p:num#num->bool) = $!p‘‘);

> val it = |- !p. $DURING p = $! p : thm

- ‘‘DURING x::(m,n). p x‘‘;

<<HOL warning: parse_term.parse_term: on line 2, characters 4-23:

parse_term: No restricted quantifier associated with DURING>>

[...]

- new_definition("RES_DURING",

‘‘RES_DURING(m,n)p = !x. m<=x /\ x<=n ==> p x‘‘);

> val it = |- !m n p. RES_DURING (m,n) p = !x. m <= x /\ x <= n ==> p x : thm

- associate_restriction("DURING","RES_DURING");

> val it = () : unit

ASSUM LIST 87

- ‘‘DURING x::(m,n). p x‘‘;

> val it = ‘‘DURING x::(m,n). p x‘‘ : term

- dest_comb it;

> val it = (‘‘RES_DURING (m,n)‘‘, ‘‘\x. p x‘‘) : term * term

ASSUM_LIST (Tactical)

ASSUM_LIST : (thm list -> tactic) -> tactic

Synopsis
Applies a tactic generated from the goal’s assumption list.

Description
When applied to a function of type thm list -> tactic and a goal, ASSUM_LIST con-
structs a tactic by applying f to a list of ASSUMEd assumptions of the goal, then applies
that tactic to the goal.

ASSUM_LIST f ({A1,...,An} ?- t)

= f [A1 |- A1, ... , An |- An] ({A1,...,An} ?- t)

Failure
Fails if the function fails when applied to the list of ASSUMEd assumptions, or if the
resulting tactic fails when applied to the goal.

Comments
There is nothing magical about ASSUM_LIST: the same effect can usually be achieved just
as conveniently by using ASSUME a wherever the assumption a is needed. If ASSUM_LIST is
used, it is extremely unwise to use a function which selects elements from its argument
list by number, since the ordering of assumptions should not be relied on.

Example
The tactic:

ASSUM_LIST SUBST_TAC

88 CHAPTER 1. ENTRIES

makes a single parallel substitution using all the assumptions, which can be useful if the
rewriting tactics are too blunt for the required task.

Uses
Making more careful use of the assumption list than simply rewriting or using resolu-
tion.

See also
Rewrite.ASM REWRITE TAC, Tactical.EVERY ASSUM, Tactic.IMP RES TAC,

Tactical.POP ASSUM, Tactical.POP ASSUM LIST, Rewrite.REWRITE TAC.

ASSUME (Thm)

ASSUME : term -> thm

Synopsis
Introduces an assumption.

Description
When applied to a term t, which must have type bool, the inference rule ASSUME returns
the theorem t |- t.

-------- ASSUME t

t |- t

Failure
Fails unless the term t has type bool.

See also
Drule.ADD ASSUM, Thm.REFL.

ASSUME_TAC (Tactic)

ASSUME_TAC : thm_tactic

Synopsis
Adds an assumption to a goal.

ASSUME TAC 89

Description
Given a theorem th of the form A’ |- u, and a goal, ASSUME_TAC th adds u to the as-
sumptions of the goal.

A ?- t

============== ASSUME_TAC (A’ |- u)

A u {u} ?- t

Note that unless A’ is a subset of A, this tactic is invalid.

Failure
Never fails.

Example
Given a goal g of the form {x = y, y = z} ?- P, where x, y and z have type :’a, the
theorem x = y, y = z |- x = z can, first, be inferred by forward proof

let val eq1 = Term ‘(x:’a) = y‘

val eq2 = Term ‘(y:’a) = z‘

in

TRANS (ASSUME eq1) (ASSUME eq2)

end;

and then added to the assumptions. This process requires the explicit text of the as-
sumptions, as well as invocation of the rule ASSUME:

let val eq1 = Term ‘(x:’a) = y‘

val eq2 = Term ‘(y:’a) = z‘

val goal = ([eq1,eq2],Parse.Term ‘P:bool‘)

in

ASSUME_TAC (TRANS (ASSUME eq1) (ASSUME eq2)) goal

end;

val it = ([([‘x = z‘, ‘x = y‘, ‘y = z‘], ‘P‘)], fn) : tactic_result

This is the naive way of manipulating assumptions; there are more advanced proof
styles (more elegant and less transparent) that achieve the same effect, but this is a
perfectly correct technique in itself.

Alternatively, the axiom EQ_TRANS could be added to the assumptions of g:

let val eq1 = Term ‘(x:’a) = y‘

val eq2 = Term ‘(y:’a) = z‘

val goal = ([eq1,eq2], Term ‘P:bool‘)

90 CHAPTER 1. ENTRIES

in

ASSUME_TAC EQ_TRANS goal

end;

val it =

([([‘!x y z. (x = y) /\ (y = z) ==> (x = z)‘,

‘x = y‘,‘y = z‘],‘P‘)],fn) : tactic_result

A subsequent resolution (see RES_TAC) would then be able to add the assumption x = z

to the subgoal shown above. (Aside from purposes of example, it would be more usual
to use IMP_RES_TAC than ASSUME_TAC followed by RES_TAC in this context.)

Uses
ASSUME_TAC is the naive way of manipulating assumptions (i.e. without recourse to ad-
vanced tacticals); and it is useful for enriching the assumption list with lemmas as a pre-
lude to resolution (RES_TAC, IMP_RES_TAC), rewriting with assumptions (ASM_REWRITE_TAC
and so on), and other operations involving assumptions.

See also
Tactic.ACCEPT TAC, Tactic.IMP RES TAC, Tactic.RES TAC, Tactic.STRIP ASSUME TAC.

augment_srw_ss (BasicProvers)

augment_srw_ss : ssfrag list -> unit

Synopsis
Augments the ”stateful” simpset used by SRW_TAC with a list of simpset fragments.

Description
bossLib.augment_srw_ss is identical to BasicProvers.augment_srw_ss

See also
bossLib.augment srw ss, BasicProvers.diminish srw ss.

augment_srw_ss (bossLib)

bossLib.augment_srw_ss : simpLib.ssfrag list -> unit

axioms 91

Synopsis
Augments the “stateful rewriter” with a list of simpset fragments.

Description
A call to augment_srw_ss sslist causes each element of sslist to be merged into the
simpset value that the system maintains “behind” srw_ss().

Failure
Never fails.

Comments
The change to the srw_ss() simpset brought about with augment_srw_ss is not exported
with a theory, so it is not “permanent”. But see export_rewrites for a simple way to
achieve a sort of permanence.

See also
BasicProvers.export rewrites, bossLib.srw ss, bossLib.SRW TAC.

axioms (DB)

axioms : string -> (string * thm) list

Synopsis
All the axioms stored in the named theory.

Description
An invocation axioms thy, where thy is the name of a currently loaded theory segment,
will return a list of the axioms stored in that theory. Each theorem is paired with its
name in the result. The string "-" may be used to denote the current theory segment.

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- axioms "bool";

> val it =

[("INFINITY_AX", |- ?f. ONE_ONE f /\ ~ONTO f),

("SELECT_AX", |- !P x. P x ==> P ($@ P)),

("ETA_AX", |- !t. (\x. t x) = t),

("BOOL_CASES_AX", |- !t. (t = T) \/ (t = F))] : (string * thm) list

92 CHAPTER 1. ENTRIES

See also
DB.thy, DB.fetch, DB.thms, DB.theorems, DB.definitions, DB.listDB.

axioms (Theory)

axioms : unit -> (string * thm) list

Synopsis
Returns the axioms of the current theory.

Description
A call axioms () returns the axioms of the current theory segment together with their
names. The names are those given to the axioms by the user when they were originally
added to the theory segment (by a call to new_axiom).

Failure
Never fails.

See also
Theory.axiom, Theory.definitions, Theory.theorems, Theory.new axiom.

B (Lib)

B : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

Synopsis
Performs curried function-composition: B f g x = f (g x).

Failure
Never fails.

See also
Lib, Lib.##, Lib.A, Lib.C, Lib.I, Lib.K, Lib.S, Lib.W.

b 93

b (proofManagerLib)

b : unit -> proof

Synopsis
Restores the proof state undoing the effects of a previous expansion.

Description
The function b is part of the subgoal package. It is an abbreviation for the function
backup. For a description of the subgoal package, see set_goal.

Failure
As for backup.

Uses
Back tracking in a goal-directed proof to undo errors or try different tactics.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

backup (proofManagerLib)

backup : unit -> proof

Synopsis
Restores the proof state, undoing the effects of a previous expansion.

Description
The function backup is part of the subgoal package. It may be abbreviated by the func-
tion b. It allows backing up from the last state change (caused by calls to expand, rotate
and similar functions). The package maintains a backup list of previous proof states. A
call to backup restores the state to the previous state (which was on top of the backup
list). The current state and the state on top of the backup list are discarded. The max-
imum number of proof states saved on the backup list can be set using set_backup. It

94 CHAPTER 1. ENTRIES

defaults to 15. Adding new proof states after the maximum is reached causes the ear-
liest proof state on the list to be discarded. The user may backup repeatedly until the
list is exhausted. The state restored includes all unproven subgoals or, if a goal had
been proved in the previous state, the corresponding theorem. For a description of the
subgoal package, see set_goal.

Failure
The function backup will fail if the backup list is empty.

Example

- g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proofs

- e CONJ_TAC;

OK..

2 subgoals:

> val it =

TL [1; 2; 3] = [2; 3]

HD [1; 2; 3] = 1

: proof

- backup();

> val it =

Initial goal:

(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proof

- e (REWRITE_TAC[listTheory.HD, listTheory.TL]);

OK..

BBLAST CONV 95

> val it =

Initial goal proved.

|- (HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3]) : proof

Uses
Back tracking in a goal-directed proof to undo errors or try different tactics.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

BBLAST_CONV (blastLib)

BBLAST_CONV : conv

Synopsis
Bit-blasting conversion for words.

Description
This conversion expands bit-vector terms into Boolean propositions. It goes beyond
the functionality of wordsLib.WORD_BIT_EQ_CONV by handling addition, subtraction and
orderings. Consequently, this conversion can automatically handle small, but tricky, bit-
vector goals that wordsLib.WORD_DECIDE cannot handle. Obviously bit-blasting is a brute
force approach, so this conversion should be used with care. It will only work well for
smallish word sizes and when there is only and handful of additions around. It is also
”eager” – additions are expanded out even when not strictly necessary. For example, in

(a + b) <+ c /\ c <+ d ==> (a + b) <+ d:word32

the sum a + b is expanded. Users may be able to achieve speed-ups by first introducing
abbreviations and then proving general forms, e.g.

x <+ c /\ c <+ d ==> x <+ d:word32

The conversion handles most operators, however, the following are not covered / inter-
preted:

– Type variables for word lengths, i.e. terms of type :’a word.

96 CHAPTER 1. ENTRIES

– General multiplication, i.e. w1 * w2. Multiplication by a literal is okay, although this
may introduce many additions.

– Bit-field selections with non-literal bounds, e.g. (expr1 -- expr2) w.
– Shifting by non-literal amounts, e.g. w << expr.
– n2w expr and w2n w. Also w2s, s2w, w2l and l2w.
– word_div, word_sdiv, word_mod and word_log2.

Example
Word orderings are handled:

- blastLib.BBLAST_CONV ‘‘!a b. ~word_msb a /\ ~word_msb b ==> (a <+ b = a < b:word32)‘‘;

val it =

|- (!a b. ~word_msb a /\ ~word_msb b ==> (a <+ b <=> a < b)) <=> T

: thm

In some cases the result will be a proposition over bit values:

- blastLib.BBLAST_CONV ‘‘!a. (a + 1w:word8) ’ 1‘‘;

val it =

|- (!a. (a + 1w) ’ 1) <=> !a. a ’ 1 <=> ~a ’ 0

: thm

This conversion is especially useful where ”logical” and ”arithmetic” bit-vector opera-
tions are combined:

- blastLib.BBLAST_CONV ‘‘!a. ((((((a:word8) * 16w) + 0x10w)) && 0xF0w) >>> 4) = (3 -- 0) (a + 1w)‘‘;

val it =

|- (!a. (a * 16w + 16w && 240w) >>> 4 = (3 -- 0) (a + 1w)) <=> T

: thm

See also
wordsLib.WORD ss, wordsLib.WORD ARITH CONV, wordsLib.WORD LOGIC CONV,

wordsLib.WORD MUL LSL CONV, wordsLib.WORD BIT EQ CONV, wordsLib.WORD EVAL CONV,

wordsLib.WORD CONV.

BEQ_CONV (reduceLib)

BEQ_CONV : conv

Synopsis
Simplifies certain expressions involving boolean equality.

Beta 97

Description
If tm corresponds to one of the forms given below, where t is an arbitrary term of type
bool, then BEQ_CONV tm returns the corresponding theorem. Note that in the last case
the left-hand and right-hand sides need only be alpha-equivalent rather than strictly
identical.

BEQ_CONV "T = t" = |- T = t = t

BEQ_CONV "t = T" = |- t = T = t

BEQ_CONV "F = t" = |- F = t = ~t

BEQ_CONV "t = F" = |- t = F = ~t

BEQ_CONV "t = t" = |- t = t = T

Failure
BEQ_CONV tm fails unless tm has one of the forms indicated above.

Example

#BEQ_CONV "T = T";;

|- (T = T) = T

#BEQ_CONV "F = T";;

|- (F = T) = F

#BEQ_CONV "(!x:*#**. x = (FST x,SND x)) = (!y:*#**. y = (FST y,SND y))";;

|- ((!x. x = FST x,SND x) = (!y. y = FST y,SND y)) = T

Beta (Thm)

Beta : thm -> thm

Synopsis
Perform one step of beta-reduction on the right hand side of an equational theorem.

Description
Beta performs a single beta-reduction step on the right-hand side of an equational the-
orem.

98 CHAPTER 1. ENTRIES

A |- t = ((\x.M) N)

--------------------- Beta

A |- t = M [N/x]

Failure
If the theorem is not an equation, or if the right hand side of the equation is not a
beta-redex.

Example

val th = REFL (Term ‘(K:’a ->’b->’a) x‘);

> val th = |- K x = K x : thm

- SUBS_OCCS [([2],combinTheory.K_DEF)] th;

> val it = |- K x = (\x y. x) x : thm

- Beta it;

> val it = |- K x = (\y. x) : thm

Comments
Beta is equivalent to RIGHT_BETA but faster.

See also
Drule.RIGHT BETA, Drule.ETA CONV.

beta (Type)

beta : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.beta is bound to the type variable ’b.

See also
Type.alpha, Type.gamma, Type.delta, Type.bool.

beta conv 99

beta_conv (Term)

beta_conv : term -> term

Synopsis
Performs one step of beta-reduction.

Description
Beta-reduction is one of the primitive operations in the lambda calculus. A step of beta-
reduction may be performed by beta_conv M, where M is the application of a lambda
abstraction to an argument, i.e., has the form ((\v.N) P). The beta-reduction occurs by
systematically replacing every free occurrence of v in N by P.

Care is taken so that no free variable of P becomes captured in this process.

Failure
If M is not the application of an abstraction to an argument.

Example

- beta_conv (mk_comb (Term ‘\(x:’a) (y:’b). x‘, Term ‘(P:bool -> ’a) Q‘));

> val it = ‘\y. P Q‘ : term

- beta_conv (mk_comb (Term ‘\(x:’a) (y:’b) (y’:’b). x‘, Term ‘y:’a‘));

> val it = ‘\y’. y‘ : term

Comments
More complex strategies for coding up full beta-reduction can be coded up in ML. The
conversions of Larry Paulson support this activity as inference steps.

Uses
For programming derived rules of inference.

See also
Thm.BETA CONV, Drule.RIGHT BETA, Drule.LIST BETA CONV, Drule.RIGHT LIST BETA,

Conv.DEPTH CONV, Conv.TOP DEPTH CONV, Conv.REDEPTH CONV.

BETA_CONV (Thm)

BETA_CONV : conv

100 CHAPTER 1. ENTRIES

Synopsis
Performs a single step of beta-conversion.

Description
The conversion BETA_CONV maps a beta-redex "(\x.u)v" to the theorem

|- (\x.u)v = u[v/x]

where u[v/x] denotes the result of substituting v for all free occurrences of x in u, after
renaming sufficient bound variables to avoid variable capture. This conversion is one of
the primitive inference rules of the HOL system.

Failure
BETA_CONV tm fails if tm is not a beta-redex.

Example

- BETA_CONV (Term ‘(\x.x+1)y‘);

> val it = |- (\x. x + 1)y = y + 1 :thm

- BETA_CONV (Term ‘(\x y. x+y)y‘);

> val it = |- (\x y. x + y)y = (\y’. y + y’) : thm

See also
Conv.BETA RULE, Tactic.BETA TAC, Drule.LIST BETA CONV,

PairedLambda.PAIRED BETA CONV, Drule.RIGHT BETA, Drule.RIGHT LIST BETA.

BETA_RULE (Conv)

BETA_RULE : (thm -> thm)

Synopsis
Beta-reduces all the beta-redexes in the conclusion of a theorem.

Description
When applied to a theorem A |- t, the inference rule BETA_RULE beta-reduces all beta-
redexes, at any depth, in the conclusion t. Variables are renamed where necessary to
avoid free variable capture.

BETA TAC 101

A |-((\x. s1) s2)....

---------------------------- BETA_RULE

A |-(s1[s2/x])....

Failure
Never fails, but will have no effect if there are no beta-redexes.

Example
The following example is a simple reduction which illustrates variable renaming:

- Globals.show_assums := true;

val it = () : unit

- local val tm = Parse.Term ‘f = ((\x y. x + y) y)‘

in

val x = ASSUME tm

end;

val x = [f = (\x y. x + y)y] |- f = (\x y. x + y)y : thm

- BETA_RULE x;

val it = [f = (\x y. x + y)y] |- f = (\y’. y + y’) : thm

See also
Thm.BETA CONV, Tactic.BETA TAC, PairedLambda.PAIRED BETA CONV, Drule.RIGHT BETA.

BETA_TAC (Tactic)

BETA_TAC : tactic

Synopsis
Beta-reduces all the beta-redexes in the conclusion of a goal.

Description
When applied to a goal A ?- t, the tactic BETA_TAC produces a new goal which results
from beta-reducing all beta-redexes, at any depth, in t. Variables are renamed where
necessary to avoid free variable capture.

102 CHAPTER 1. ENTRIES

A ?- ...((\x. s1) s2)...

========================== BETA_TAC

A ?- ...(s1[s2/x])...

Failure
Never fails, but will have no effect if there are no beta-redexes.

See also
Thm.BETA CONV, Tactic.BETA TAC, PairedLambda.PAIRED BETA CONV.

BINDER_CONV (Conv)

BINDER_CONV : conv -> conv

Synopsis
Applies a conversion underneath a binder.

Description
If conv N returns A |- N = P, then BINDER_CONV conv (M (\v.N)) returns A |- M (\v.N) = M (\v.P)

and BINDER_CONV conv (\v.N) returns A |- (\v.N) = (\v.P)

Failure
If conv N fails, or if v is free in A.

Example

- BINDER_CONV SYM_CONV (Term ‘\x. x + 0 = x‘);

> val it = |- (\x. x + 0 = x) = \x. x = x + 0 : thm

Comments
For deeply nested quantifiers, STRIP_BINDER_CONV and STRIP_QUANT_CONV are more effi-
cient than iterated application of BINDER_CONV, BINDER_CONV, or ABS_CONV.

See also
Conv.QUANT CONV, Conv.STRIP QUANT CONV, Conv.STRIP BINDER CONV, Conv.ABS CONV.

BINOP_CONV (Conv)

BINOP_CONV : conv -> conv

BIT ss 103

Synopsis
Applies a conversion to both arguments of a binary operator.

Description
If c is a conversion that when applied to t1 returns the theorem |- t1 = t1’ and when
applied to t2 returns the theorem |- t2 = t2’, then BINOP_CONV c (Term‘f t1 t2‘) will
return the theorem

|- f t1 t2 = f t1’ t2’

Failure
BINOP_CONV c t will fail if t is not of the general form f t1 t2, or if c fails when ap-
plied to either t1 or t2, or if c fails to return theorems of the form |- t1 = t1’ and
|- t2 = t2’ when applied to those arguments. (The latter case would imply that c

wasn’t a conversion at all.)

Example

- BINOP_CONV REDUCE_CONV (Term‘3 * 4 + 6 * 7‘);

> val it = |- 3 * 4 + 6 * 7 = 12 + 42 : thm

See also
Conv.FORK CONV, Conv.LAND CONV, Conv.RAND CONV, Conv.RATOR CONV,

numLib.REDUCE CONV.

BIT_ss (wordsLib)

BIT_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment BIT_ss rewrites the term ‘‘BIT i n‘‘ for ground n.

Example

104 CHAPTER 1. ENTRIES

- SIMP_CONV (std_ss++BIT_ss) [] ‘‘BIT i 33‘‘;

> val it = |- BIT i 33 = i IN {0; 5} : thm

- SIMP_CONV (std_ss++BIT_ss) [] ‘‘BIT 5 33‘‘;

> val it = |- BIT 5 33 = T : thm

See also
wordsLib.WORD CONV, fcpLib.FCP ss, wordsLib.SIZES ss, wordsLib.WORD ARITH ss,

wordsLib.WORD LOGIC ss, wordsLib.WORD SHIFT ss, wordsLib.WORD ARITH EQ ss,

wordsLib.WORD BIT EQ ss, wordsLib.WORD EXTRACT ss, wordsLib.WORD MUL LSL ss,

wordsLib.WORD ss.

body (Term)

body : term -> term

Synopsis
Returns the body of an abstraction.

Description
If M is a lambda abstraction, i.e, has the form \v. t, then body M returns t.

Failure
Fails unless M is an abstraction.

See also
Term.bvar, Term.dest abs.

BODY_CONJUNCTS (Drule)

BODY_CONJUNCTS : (thm -> thm list)

Synopsis
Splits up conjuncts recursively, stripping away universal quantifiers.

Description
When applied to a theorem, BODY_CONJUNCTS recursively strips off universal quantifiers
by specialization, and breaks conjunctions into a list of conjuncts.

bool 105

A |- !x1...xn. t1 /\ (!y1...ym. t2 /\ t3) /\ ...

-- BODY_CONJUNCTS

[A |- t1, A |- t2, A |- t3, ...]

Failure
Never fails, but has no effect if there are no top-level universal quantifiers or conjuncts.

Example
The following illustrates how a typical term will be split:

- local val tm = Parser.term_parser

‘!x:bool. A /\ (B \/ (C /\ D)) /\ ((!y:bool. E) /\ F)‘

in

val x = ASSUME tm

end;

val x = . |- !x. A /\ (B \/ C /\ D) /\ (!y. E) /\ F : thm

- BODY_CONJUNCTS x;

val it = [. |- A, . |- B \/ C /\ D, . |- E, . |- F] : thm list

See also
Thm.CONJ, Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Tactic.CONJ TAC.

bool (Type)

bool : hol_type

Synopsis
Basic type constant.

Description
The ML variable Type.bool is bound to the type constant bool.

See also
alpha, Type.beta, Type.gamma, Type.delta.

106 CHAPTER 1. ENTRIES

bool_case (boolSyntax)

bool_case : term

Synopsis
Constant denoting case expressions for bool.

Description
The ML variable boolSyntax.bool_case is bound to the term bool$bool_case.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.let tm,

boolSyntax.arb.

BOOL_CASES_TAC (Tactic)

BOOL_CASES_TAC : (term -> tactic)

Synopsis
Performs boolean case analysis on a (free) term in the goal.

Description
When applied to a term x (which must be of type bool but need not be simply a variable),
and a goal A ?- t, the tactic BOOL_CASES_TAC generates the two subgoals corresponding
to A ?- t but with any free instances of x replaced by F and T respectively.

A ?- t

============================ BOOL_CASES_TAC "x"

A ?- t[F/x] A ?- t[T/x]

The term given does not have to be free in the goal, but if it isn’t, BOOL_CASES_TAC will
merely duplicate the original goal twice.

Failure
Fails unless the term x has type bool.

Example
The goal:

bool compset 107

?- (b ==> ~b) ==> (b ==> a)

can be completely solved by using BOOL_CASES_TAC on the variable b, then simply rewrit-
ing the two subgoals using only the inbuilt tautologies, i.e. by applying the following
tactic:

BOOL_CASES_TAC (Parse.Term ‘b:bool‘) THEN REWRITE_TAC[]

Uses
Avoiding fiddly logical proofs by brute-force case analysis, possibly only over a key term
as in the above example, possibly over all free boolean variables.

See also
Tactic.ASM CASES TAC, Tactic.COND CASES TAC, Tactic.DISJ CASES TAC,

Tactic.STRUCT CASES TAC.

bool_compset (computeLib)

bool_compset : unit -> compset

Synopsis
Creates a new simplification set to use with CBV_CONV for basic computations.

Description
This function creates a new simplification set to use with the compute library performing
computations about operations on primitive booleans and other basic constants, such
as LET, conditional, implication, conjunction, disjunction, and negation.

Example

- CBV_CONV (bool_compset()) (Term ‘F ==> (T \/ F)‘);

> val it = |- F ==> (T \/ F) = T : thm

See also
computeLib.CBV CONV.

bool_EQ_CONV (Conv)

bool_EQ_CONV : conv

108 CHAPTER 1. ENTRIES

Synopsis
Simplifies expressions involving boolean equality.

Description
The conversion bool_EQ_CONV simplifies equations of the form t1 = t2, where t1 and t2

are of type bool. When applied to a term of the form t = t, the conversion bool_EQ_CONV

returns the theorem

|- (t = t) = T

When applied to a term of the form t = T, the conversion returns

|- (t = T) = t

And when applied to a term of the form T = t, it returns

|- (T = t) = t

Failure
Fails unless applied to a term of the form t1 = t2, where t1 and t2 are boolean, and
either t1 and t2 are syntactically identical terms or one of t1 and t2 is the constant T.

Example

- bool_EQ_CONV (Parse.Term ‘T = F‘);

val it = |- (T = F) = F : thm

- bool_EQ_CONV (Parse.Term ‘(0 < n) = T‘);

val it = |- (0 < n = T) = 0 < n : thm

bool_rewrites (Rewrite)

bool_rewrites: rewrites

Synopsis
Contains a number of basic equalities useful in rewriting.

Description
The variable bool_rewrites is a basic collection of rewrite rules useful in expression
simplification. The current collection is

bool ss 109

- bool_rewrites;

> val it =

|- (x = x) = T; |- (T = t) = t; |- (t = T) = t; |- (F = t) = ~t;

|- (t = F) = ~t; |- ~~t = t; |- ~T = F; |- ~F = T; |- T /\ t = t;

|- t /\ T = t; |- F /\ t = F; |- t /\ F = F; |- t /\ t = t;

|- T \/ t = T; |- t \/ T = T; |- F \/ t = t; |- t \/ F = t;

|- t \/ t = t; |- T ==> t = t; |- t ==> T = T; |- F ==> t = T;

|- t ==> t = T; |- t ==> F = ~t; |- (if T then t1 else t2) = t1;

|- (if F then t1 else t2) = t2; |- (!x. t) = t; |- (?x. t) = t;

|- (\x. t1) t2 = t1

Number of rewrite rules = 28

: rewrites

Uses
The contents of bool_rewrites provide a standard basis upon which to build bespoke
rewrite rule sets for use by the functions in Rewrite.

See also
Rewrite.GEN REWRITE CONV, Rewrite.GEN REWRITE RULE, Rewrite.GEN REWRITE TAC,

Rewrite.REWRITE RULE, Rewrite.REWRITE TAC, Rewrite.add rewrites,

Rewrite.add implicit rewrites, Rewrite.empty rewrites,

Rewrite.implicit rewrites, Rewrite.set implicit rewrites.

bool_ss (BasicProvers)

bool_ss : simpset

Synopsis
Basic simpset containing standard propositional and first order logic simplifications,
plus beta and eta conversion.

Description
BasicProvers.bool_ss is identical to boolSimps.bool_ss.

See also
boolSimps.bool ss.

110 CHAPTER 1. ENTRIES

bool_ss (boolSimps)

bool_ss : simpset

Synopsis
Basic simpset containing standard propositional and first order logic simplifications,
plus beta-conversion.

Description
bossLib.bool_ss is identical to boolSimps.bool_ss.

See also
bossLib.bool ss.

bool_ss (bossLib)

bool_ss : simpset

Synopsis
Basic simpset containing standard propositional and first order logic simplifications,
plus beta conversion.

Description
The bool_ss simpset is almost at the base of the system-provided simpset hierarchy.
Though not very powerful, it does include the following ad hoc collection of rewrite
rules for propositions and first order terms:

|- !A B. ~(A ==> B) = A /\ ~B

|- !A B. (~(A /\ B) = ~A \/ ~B) /\

(~(A \/ B) = ~A /\ ~B)

|- !P. ~(!x. P x) = ?x. ~P x

|- !P. ~(?x. P x) = !x. ~P x

|- (~p = ~q) = (p = q)

|- !x. (x = x) = T

|- !t. ((T = t) = t) /\

((t = T) = t) /\

bool ss 111

((F = t) = ~t) /\

((t = F) = ~t)

|- (!t. ~~t = t) /\ (~T = F) /\ (~F = T)

|- !t. (T /\ t = t) /\

(t /\ T = t) /\

(F /\ t = F) /\

(t /\ F = F) /\

(t /\ t = t)

|- !t. (T \/ t = T) /\

(t \/ T = T) /\

(F \/ t = t) /\

(t \/ F = t) /\

(t \/ t = t)

|- !t. (T ==> t = t) /\

(t ==> T = T) /\

(F ==> t = T) /\

(t ==> t = T) /\

(t ==> F = ~t)

|- !t1 t2. ((if T then t1 else t2) = t1) /\

((if F then t1 else t2) = t2)

|- !t. (!x. t) = t

|- !t. (?x. t) = t

|- !b t. (if b then t else t) = t

|- !a. ?x. x = a

|- !a. ?x. a = x

|- !a. ?!x. x = a,

|- !a. ?!x. a = x,

|- (!b e. (if b then T else e) = b \/ e) /\

(!b t. (if b then t else T) = b ==> t) /\

(!b e. (if b then F else e) = ~b /\ e) /\

(!b t. (if b then t else F) = b /\ t)

|- !t. t \/ ~t

|- !t. ~t \/ t

|- !t. ~(t /\ ~t)

|- !x. (@y. y = x) = x

|- !x. (@y. x = y) = x

|- !f v. (!x. (x = v) ==> f x) = f v

|- !f v. (!x. (v = x) ==> f x) = f v

|- !P a. (?x. (x = a) /\ P x) = P a

|- !P a. (?x. (a = x) /\ P x) = P a

112 CHAPTER 1. ENTRIES

Also included in bool_ss is a conversion to perform beta reduction, as well as the fol-
lowing congruence rules, which allow the simplifier to glean additional contextual in-
formation as it descends through implications and conditionals.

|- !x x’ y y’.

(x = x’) ==>

(x’ ==> (y = y’)) ==> (x ==> y = x’ ==> y’)

|- !P Q x x’ y y’.

(P = Q) ==>

(Q ==> (x = x’)) ==>

(~Q ==> (y = y’)) ==> ((if P then x else y) = (if Q then x’ else y’))

Failure
Can’t fail, as it is not a functional value.

Uses
The bool_ss simpset is an appropriate simpset from which to build new user-defined
simpsets. It is also useful in its own right, for example when a delicate simplification is
desired, where other more powerful simpsets might cause undue disruption to a goal.
If even less system rewriting is desired, the pure_ss value can be used.

See also
pureSimps.pure ss, bossLib.std ss, bossLib.arith ss, bossLib.list ss,

bossLib.SIMP CONV, bossLib.SIMP TAC, bossLib.RW TAC.

BUTFIRSTN_CONV (listLib)

BUTFIRSTN_CONV : conv

Synopsis
Computes by inference the result of dropping the initial n elements of a list.

Description
For any object language list of the form --‘[x0;...x(n-k);...;x(n-1)]‘-- , the result
of evaluating

BUTFIRSTN_CONV (--‘BUTFIRSTN k [x0;...x(n-k);...;x(n-1)]‘--)

is the theorem

butlast 113

|- BUTFIRSTN k [x0;...;x(n-k);...;x(n-1)] = [x(n-k);...;x(n-1)]

Failure
BUTFIRSTN_CONV tm fails if tm is not of the form described above, or k is greater than the
length of the list.

butlast (Lib)

butlast : ’a list -> ’a list

Synopsis
Computes the sub-list of a list consisting of all but the last element.

Description
butlast [x1,...,xn] returns [x1,...,x(n-1)].

Failure
Fails if the list is empty.

See also
Lib.last, Lib.el, Lib.front last.

BUTLAST_CONV (listLib)

BUTLAST_CONV : conv

Synopsis
Computes by inference the result of stripping the last element of a list.

Description
For any object language list of the form --‘[x0;...x(n-1)]‘-- , the result of evaluating

BUTLAST_CONV (--‘BUTLAST [x0;...;x(n-1)]‘--)

is the theorem

|- BUTLAST [x0;...;x(n-1)] = [x0;...; x(n-2)]

114 CHAPTER 1. ENTRIES

Failure
BUTLAST_CONV tm fails if tm is an empty list.

BUTLASTN_CONV (listLib)

BUTLASTN_CONV : conv

Synopsis
Computes by inference the result of dropping the last n elements of a list.

Description
For any object language list of the form --‘[x0;...x(n-k);...;x(n-1)]‘-- , the result
of evaluating

BUTLASTN_CONV (--‘BUTLASTN k [x0;...x(n-k);...;x(n-1)]‘--)

is the theorem

|- BUTLASTN k [x0;...;x(n-k);...;x(n-1)] = [x0;...;x(n-k-1)]

Failure
BUTLASTN_CONV tm fails if tm is not of the form described above, or k is greater than the
length of the list.

bvar (Term)

bvar : term -> term

Synopsis
Returns the bound variable of an abstraction.

Description
If M is a lambda abstraction, i.e, has the form \v. t, then bvar M returns v.

Failure
Fails unless M is an abstraction.

bvk find term 115

See also
Term.body, Term.dest abs.

bvk_find_term (HolKernel)

bvk_find_term : (term list * term -> bool) -> (term -> ’a) -> term -> ’a option

Synopsis
Finds a sub-term satisfying predicate argument; applies a continuation.

Description
A call to bvk_find_term P k tm searches tm for a sub-term satisfying P and calls the
continuation k on the first that it finds. If k succeeds on this sub-term, the result is
wrapped in SOME and returned to the caller. If k raises a HOL_ERR exception on the sub-
term, control returns to bvk_find_term, which continues to look for a sub-term satisfying
P. Other exceptions are returned to the caller. If there is no sub-term that both satisfies
P and on which k operates successfully, the result is NONE.

The search order is top-down, left-to-right (i.e., rators of combs are examined before
rands).

As with find_term, P should be total. In addition, P is given not just the sub-term of
interest, but also the stack of bound variables that have scope over the sub-term, with
the innermost bound variables appearing earlier in the list.

Failure
Fails if the predicate argument fails (i.e., raises an exception; returning false is accept-
able) on a sub-term, or if the contination argument raises a non-HOL_ERR exception on a
sub-term on which the predicate has returned true.

Example
The RED_CONV function from reduceLib reduces a ground arithmetic term over the natu-
ral numbers, failing if the term is not of the right shape.

- val find = bvk_find_term (equal ‘‘:num‘‘ o type_of o #2)

reduceLib.RED_CONV;

> val find = fn : term -> thm option

- find ‘‘SUC n‘‘;

> val it = NONE : thm option

116 CHAPTER 1. ENTRIES

- find ‘‘2 * 3 + SUC n‘‘;

> val it = SOME |- 2 * 3 = 6 : thm option

- find ‘‘SUC n + 2 * 3‘‘;

> val it = SOME |- 2 * 3 = 6 : thm option

- find ‘‘2 + 1 + SUC n + 2 * 3‘‘;

> val it = SOME |- 2 + 1 = 3 : thm option

See also
HolKernel.find term, HolKernel.find terms.

by (bossLib)

op by : term quotation * tactic -> tactic

Synopsis
Prove and place a theorem on the assumptions of the goal.

Description
An invocation tm by tac, when applied to goal A ?- g, applies tac to goal A ?- tm. If tm
is thereby proved, it is added to A, yielding the new goal A,tm ?- g. If tm is not proved
by tac, then any remaining subgoals generated are added to A,tm ?- g.

When tm is added to the existing assumptions A, it is ”stripped”, i.e., broken apart by
eliminating existentials, conjunctions, and disjunctions. This can lead to case splitting.

Failure
Fails if tac fails when applied to A ?- tm.

Example
Given the goal {x <= y, w < x} ?- P, suppose that the fact ?n. y = n + w would help
in eventually proving P. Invoking

‘?n. y = n + w‘ by (EXISTS_TAC ‘‘y-w‘‘ THEN DECIDE_TAC)

yields the goal {y = n + w, x <= y, w < x} ?- P in which the proved fact has been
added to the assumptions after its existential quantifier is eliminated. Note the paren-
theses around the tactic: this is needed for the example because by binds more tightly
than THEN.

C 117

Since the tactic supplied need not solve the generated subgoal, by gives a useful
way of generating proof obligations while pursuing a particular line of reasoning. For
example, the above goal could also be attacked by

‘?n. y = n + w‘ by ALL_TAC

with the result being the goal {x <= y, w < x} ?- ?n. y = n + w and the augmented
original {y = n + w, x <= y, w < x} ?- P. Now either may be attempted.

Comments
Use of by can be more convenient than IMP_RES_TAC and RES_TAC when they would
generate many useless assumptions.

See also
Tactical.SUBGOAL THEN, Tactic.IMP RES TAC, Tactic.RES TAC,

Tactic.STRIP ASSUME TAC.

C (Lib)

C : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c

Synopsis
Permutes first two arguments to curried function: C f x y equals f y x.

Failure
C f never fails and C f x never fails, but C f x y fails if f y x fails.

Example

- map (C cons []) [1,2,3];

> val it = [[1], [2], [3]] : int list list

See also
Lib.##, Lib.A, Lib.B, Lib.I, Lib.K, Lib.S, Lib.W.

can (Lib)

can : (’a -> ’b) -> ’a -> bool

118 CHAPTER 1. ENTRIES

Synopsis
Tests for failure.

Description
can f x evaluates to true if the application of f to x succeeds. It evaluates to false if
the application fails.

Failure
Only fails if f x raises the Interrupt exception.

Example

- hd [];

! Uncaught exception:

! Empty

- can hd [];

> val it = false : bool

- can (fn _ => raise Interrupt) 3;

> Interrupted.

See also
Lib.assert, Lib.trye, Lib.partial, Lib.total, Lib.assert exn.

CASE_TAC (BasicProvers)

CASE_TAC : tactic

Synopsis
Case splits on a term t that features in the goal as case t of ..., and then performs
some simplification.

Description
BasicProvers.CASE_TAC first calls BasicProvers.PURE_CASE_TAC, which searches the goal
for an instance of case t of ... and performs a BasicProvers.Cases_on ‘t‘. If this
succeeds, it then simplifies the goal using definitions of case constants, plus distinctness
and injectivity theorems for datatypes.

Cases 119

Comments
When there are multiple case constants in the goal, it can be very convenient to execute
the tactic REPEAT CASE_TAC. bossLib.CASE_TAC is the same as BasicProvers.CASE_TAC.

Failure
BasicProvers.CASE_TAC fails precisely when BasicProvers.PURE_CASE_TAC fails.

See also
BasicProvers.PURE CASE TAC.

Cases (BasicProvers)

Cases : tactic

Synopsis
Case split on leading universally quantified variable in a goal.

Description
bossLib.Cases is identical to BasicProof.Cases.

See also
bossLib.Cases.

Cases (bossLib)

Cases : tactic

Synopsis
Performs case analysis on the variable of the leading universally quantified variable of
the goal.

Description
When applied to a universally quantified goal ?- !u. G, Cases performs a case-split,
based on the cases theorem for the type of u stored in the global TypeBase database.

The cases theorem for a type ty will be of the form:

120 CHAPTER 1. ENTRIES

|- !v:ty. (?x11...x1n1. v = C1 x11 ... x1n1) \/ \/

(?xm1...xmnm. v = Cm xm1 ... xmnm)

where there is no requirement for there to be more than one disjunct, nor for there to be
any particular number of existentially quantified variables in any disjunct. For example,
the cases theorem for natural numbers initially in the TypeBase is:

|- !n. (n = 0) \/ (?m. n = SUC m)

Case-splitting consists of specialising the cases theorem with the variable from the goal
and then generating as many sub-goals as there are disjuncts in the cases theorem,
where in each sub-goal (including the assumptions) the variable has been replaced by
an expression involving the given ‘constructor’ (the Ci’s above) applied to as many fresh
variables as appropriate.

Failure
Fails if the goal is not universally quantified, or if the type of the universally quantified
variable does not have a case theorem in the TypeBase, as will happen, for example,
with variable types.

Example
If we have defined the following type:

- Hol_datatype ‘foo = Bar of num | Baz of bool‘;

> val it = () : unit

and the following function:

- val foofn_def = Define ‘(foofn (Bar n) = n + 10) /\

(foofn (Baz x) = 10)‘;

> val foofn_def =

|- (!n. foofn (Bar n) = n + 10) /\

!x. foofn (Baz x) = 10 : thm

then it is possible to make progress with the goal !x. foofn x >= 10 by applying the
tactic Cases, thus:

?- !x. foofn x >= 10

== Cases

?- foofn (Bar n) >= 10 ?- foofn (Baz b) >= 10

producing two new goals, one for each constructor of the type.

See also
bossLib.Cases on, bossLib.Induct, Tactic.STRUCT CASES TAC.

Cases on 121

Cases_on (BasicProvers)

Cases_on : term -> tactic

Synopsis
Case split on type of supplied term.

Description
bossLib.Cases_on is identical to BasicProvers.Cases_on.

See also
bossLib.Cases on, bossLib.Cases.

Cases_on (bossLib)

Cases_on : term -> tactic

Synopsis
Performs case analysis on the type of a given term.

Description
An application Cases_on M performs a case-split based on the type ty of M, using the
cases theorem for ty from the global TypeBase database.
Cases_on can be used to specify variables that are buried in the quantifier prefix.

Cases_on can also be used to perform case splits on non-variable terms. If M is a non-
variable term that does not occur bound in the goal, then the cases theorem is instanti-
ated with M and used to generate as many sub-goals as there are disjuncts in the cases
theorem.

Failure
Fails if ty does not have a case theorem in the TypeBase.

Example
None yet.

See also
bossLib.Cases, bossLib.Induct, bossLib.Induct on, Tactic.STRUCT CASES TAC.

122 CHAPTER 1. ENTRIES

CASES_THENL (Thm_cont)

CASES_THENL : (thm_tactic list -> thm_tactic)

Synopsis
Applies the theorem-tactics in a list to corresponding disjuncts in a theorem.

Description
When given a list of theorem-tactics [ttac1;...;ttacn] and a theorem whose conclu-
sion is a top-level disjunction of n terms, CASES_THENL splits a goal into n subgoals result-
ing from applying to the original goal the result of applying the i’th theorem-tactic to
the i’th disjunct. This can be represented as follows, where the number of existentially
quantified variables in a disjunct may be zero. If the theorem th has the form:

A’ |- ?x11..x1m. t1 \/ ... \/ ?xn1..xnp. tn

where the number of existential quantifiers may be zero, and for all i from 1 to n:

A ?- s

========== ttaci (|- ti[xi1’/xi1]..[xim’/xim])

Ai ?- si

where the primed variables have the same type as their unprimed counterparts, then:

A ?- s

========================= CASES_THENL [ttac1;...;ttacn] th

A1 ?- s1 ... An ?- sn

Unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails if the given theorem does not, at the top level, have the same number of (possi-
bly multiply existentially quantified) disjuncts as the length of the theorem-tactic list
(this includes the case where the theorem-tactic list is empty), or if any of the tactics
generated as specified above fail when applied to the goal.

Uses
Performing very general disjunctive case splits.

See also
Thm cont.DISJ CASES THENL, Thm cont.X CASES THENL.

CBV CONV 123

CBV_CONV (computeLib)

CBV_CONV : compset -> conv

Synopsis
Call by value rewriting.

Description
The conversion CBV_CONV expects an simplification set and a term. Its term argument
is rewritten using the equations added in the simplification set. The strategy used is
somewhat similar to ML’s, that is call-by-value (arguments of constants are completely
reduced before the rewrites associated to the constant are applied) with weak reduction
(no reduction of the function body before the function is applied). The main differences
are that beta-redexes are reduced with a call-by-name strategy (the argument is not
reduced), and reduction under binders is done when it occurs in a position where it
cannot be substituted.

The simplification sets are mutable objects, this means they are extended by
side-effect. The function new_compset will create a new set containing reflexivity
(REFL_CLAUSE), plus the supplied rewrites. Theorems can be added to an existing
compset with the function add_thms.

It is also possible to add conversions to a simplification set with add_conv. The only
restriction is that a constant (c) and an arity (n) must be provided. The conversion will
be called only on terms in which c is applied to n arguments.

Two theorem “preprocessors” are provided to control the strictness of the arguments
of a constant. lazyfy_thm has pattern variables on the left hand side turned into ab-
stractions on the right hand side. This transformation is applied on every conjunct, and
removes prenex universal quantifications. A typical example is COND_CLAUSES:

(COND T a b = a) /\ (COND F a b = b)

Using these equations is very inefficient because both a and b are evaluated, regardless
of the value of the boolean expression. It is better to use COND_CLAUSES with the form
above

(COND T = \a b. a) /\ (COND F = \a b. b)

The call-by-name evaluation of beta redexes avoids computing the unused branch of
the conditional.

Conversely, strictify_thm does the reverse transformation. This is particularly rele-
vant for LET_DEF:

124 CHAPTER 1. ENTRIES

LET = \f x. f x --> LET f x = f x

This forces the evaluation of the argument before reducing the beta-redex. Hence the
usual behaviour of LET.

It is necessary to provide rules for all the constants appearing in the expression to
reduce (all also for those that appear in the right hand side of a rule), unless the given
constant is considered as a constructor of the representation chosen. As an example,
reduceLib.num_compset creates a new simplification set with all the rules needed for
basic boolean and arithmetical calculations built in.

Example

- val rws = new_compset [lazyfy_thm COND_CLAUSES];

> val rws = <compset> : compset

- CBV_CONV rws (--‘(\x.x) ((\x.x) if T then 0+0 else 10)‘--);

> val it = |- (\x. x) ((\x. x) (if T then 0 + 0 else 10)) = 0 + 0 : thm

- CBV_CONV (reduceLib.num_compset())

(--‘if 100 - 5 * 5 < 80 then 2 EXP 16 else 3‘--);

> val it = |- (if 100 - 5 * 5 < 80 then 2 ** 16 else 3) = 65536 : thm

Failing to give enough rules may make CBV_CONV build a huge result, or even loop. The
same may occur if the initial term to reduce contains free variables.

val eqn = bossLib.Define ‘exp n p = if p=0 then 1 else n * (exp n (p-1))‘;

val _ = add_thms [eqn] computeLib.the_compset;

- CBV_CONV rws (--‘exp 2 n‘--);

> Interrupted.

- set_skip rws "COND" (SOME 1);

> val it = () : unit

- CBV_CONV rws (--‘exp 2 n‘--);

> val it = |- exp 2 n = (if n = 0 then 1 else 2 * exp 2 (n - 1)) : thm

The first invocation of CBV_CONV loops since the exponent never reduces to 0. Below the
first steps are computed:

exp 2 n

if n = 0 then 1 else 2 * exp 2 (n-1)

CCONTR 125

if n = 0 then 1 else 2 * if (n-1) = 0 then 1 else 2 * exp 2 (n-1-1)

...

The call to set_skip means that if the constants COND appears applied to one argument
and does not create a redex (in the example, if the condition does not reduce to T or F),
then the forthcoming arguments (the two branches of the conditional) are not reduced
at all.

Failure
Should never fail. Nonetheless, using rewrites with assumptions may cause problems
when rewriting under abstractions. The following example illustrates that issue.

- val th = ASSUME (--‘0 = x‘--);

- val tm = Term‘\(x:num). x = 0‘;

- val rws = from_list [th];

- CBV_CONV rws tm;

This fails because the 0 is replaced by x, making the assumption 0 = x. Then, the
abstraction cannot be rebuilt since x appears free in the assumptions.

See also
numLib.REDUCE CONV, computeLib.bool compset, bossLib.EVAL.

CCONTR (Thm)

CCONTR : term -> thm -> thm

Synopsis
Implements the classical contradiction rule.

Description
When applied to a term t and a theorem A |- F, the inference rule CCONTR returns the
theorem A - {~t} |- t.

A |- F

--------------- CCONTR t

A - {~t} |- t

126 CHAPTER 1. ENTRIES

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.

Comments
The usual use will be when ~t exists in the assumption list; in this case, CCONTR corre-
sponds to the classical contradiction rule: if ~t leads to a contradiction, then t must be
true.

See also
Drule.CONTR, Drule.CONTRAPOS, Tactic.CONTR TAC, Thm.NOT ELIM.

CCONTR_TAC (Tactic)

CCONTR_TAC : tactic

Synopsis
Prepares for a proof by Classical contradiction.

Description
CCONTR_TAC takes a theorem A’ |- F and completely solves the goal. This is an invalid
tactic unless A’ is a subset of A.

A ?- t

======== CCONTR_TAC (A’ |- F)

Failure
Fails unless the theorem is contradictory, i.e. has F as its conclusion.

See also
Tactic.CHECK ASSUME TAC, Thm.CCONTR, Drule.CONTRAPOS, Thm.NOT ELIM.

CHANGED_CONSEQ_CONV (ConseqConv)

CHANGED_CONSEQ_CONV : (conseq_conv -> conseq_conv)

CHANGED CONV 127

Synopsis
Makes a consequence conversion fail if applying it leaves a term unchanged.

Description
If c is a consequence conversion that maps a term ‘‘t‘‘ to a theorem |- t = t’,
|- t’ ==> t or |- t ==> t’, where t’ is alpha-equivalent to t, or if c raises the
UNCHANGED exception when applied to ‘‘t‘‘, then CHANGED_CONSEQ_CONV c fails when
applied to the term ‘‘t‘‘. Otherwise, CHANGED_CONSEQ_CONV c behaves like c.

See also
Conv.CHANGED CONV, ConseqConv.QCHANGED CONSEQ CONV.

CHANGED_CONV (Conv)

CHANGED_CONV : (conv -> conv)

Synopsis
Makes a conversion fail if applying it leaves a term unchanged.

Description
If c is a conversion that maps a term ‘‘t‘‘ to a theorem |- t = t’, where t’ is alpha-
equivalent to t, or if c raises the UNCHANGED exception when applied to ‘‘t‘‘, then
CHANGED_CONV c is a conversion that fails when applied to the term ‘‘t‘‘. If c maps ‘‘t‘‘
to |- t = t’, where t’ is not alpha-equivalent to t, then CHANGED_CONV c also maps
‘‘t‘‘ to |- t = t’. That is, CHANGED_CONV c is the conversion that behaves exactly like
c, except that it fails whenever the conversion c would leave its input term unchanged
(up to alpha-equivalence).

Failure
CHANGED_CONV c ‘‘t‘‘ fails if c maps ‘‘t‘‘ to |- t = t’, where t’ is alpha-equivalent to
t, or if c raises the UNCHANGED exception when applied to ‘‘t‘‘, or if c fails when applied
to ‘‘t‘‘. The function returned by CHANGED_CONV c may also fail if the ML function
c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t to a theorem
|- t = t’).

Uses
CHANGED_CONV is used to transform a conversion that may leave terms unchanged, and
therefore may cause a nonterminating computation if repeated, into one that can safely
be repeated until application of it fails to substantially modify its input term.

128 CHAPTER 1. ENTRIES

CHANGED_TAC (Tactical)

CHANGED_TAC : (tactic -> tactic)

Synopsis
Makes a tactic fail if it has no effect.

Description
When applied to a tactic T, the tactical CHANGED_TAC gives a new tactic which is the same
as T if that has any effect, and otherwise fails.

Failure
The application of CHANGED_TAC to a tactic never fails. The resulting tactic fails if the
basic tactic either fails or has no effect.

See also
Tactical.TRY, Tactical.VALID.

CHECK_ASSUME_TAC (Tactic)

CHECK_ASSUME_TAC : thm_tactic

Synopsis
Adds a theorem to the assumption list of goal, unless it solves the goal.

Description
When applied to a theorem A’ |- s and a goal A ?- t, the tactic CHECK_ASSUME_TAC

checks whether the theorem will solve the goal (this includes the possibility that the
theorem is just A’ |- F). If so, the goal is duly solved. If not, the theorem is added to
the assumptions of the goal, unless it is already there.

A ?- t

============== CHECK_ASSUME_TAC (A’ |- F) [special case 1]

A ?- t

============== CHECK_ASSUME_TAC (A’ |- t) [special case 2]

CHOOSE 129

A ?- t

============== CHECK_ASSUME_TAC (A’ |- s) [general case]

A u {s} ?- t

Unless A’ is a subset of A, the tactic will be invalid, although it will not fail.

Failure
Never fails.

See also
Tactic.ACCEPT TAC, Tactic.ASSUME TAC, Tactic.CONTR TAC, Tactic.DISCARD TAC,

Tactic.MATCH ACCEPT TAC.

CHOOSE (Thm)

CHOOSE : term * thm -> thm -> thm

Synopsis
Eliminates existential quantification using deduction from a particular witness.

Description
When applied to a term-theorem pair (v,A1 |- ?x. s) and a second theorem of the
form A2 u {s[v/x]} |- t, the inference rule CHOOSE produces the theorem A1 u A2 |- t.

A1 |- ?x. s A2 u {s[v/x]} |- t

--------------------------------------- CHOOSE (v,(A1 |- ?x. s))

A1 u A2 |- t

Where v is not free in A1, A2 or t.

Failure
Fails unless the terms and theorems correspond as indicated above; in particular v must
have the same type as the variable existentially quantified over, and must not be free in
A1, A2 or t.

See also
Tactic.CHOOSE TAC, Thm.EXISTS, Tactic.EXISTS TAC, Drule.SELECT ELIM.

130 CHAPTER 1. ENTRIES

CHOOSE_TAC (Tactic)

CHOOSE_TAC : thm_tactic

Synopsis
Adds the body of an existentially quantified theorem to the assumptions of a goal.

Description
When applied to a theorem A’ |- ?x. t and a goal, CHOOSE_TAC adds t[x’/x] to the
assumptions of the goal, where x’ is a variant of x which is not free in the assumption
list; normally x’ is just x.

A ?- u

==================== CHOOSE_TAC (A’ |- ?x. t)

A u {t[x’/x]} ?- u

Unless A’ is a subset of A, this is not a valid tactic.

Failure
Fails unless the given theorem is existentially quantified.

Example
Suppose we have a goal asserting that the output of an electrical circuit (represented as
a boolean-valued function) will become high at some time:

?- ?t. output(t)

and we have the following theorems available:

t1 = |- ?t. input(t)

t2 = !t. input(t) ==> output(t+1)

Then the goal can be solved by the application of:

CHOOSE_TAC th1

THEN EXISTS_TAC (Term ‘t+1‘)

THEN UNDISCH_TAC (Term ‘input (t:num) :bool‘)

THEN MATCH_ACCEPT_TAC th2

See also
Thm cont.CHOOSE THEN, Tactic.X CHOOSE TAC.

CHOOSE THEN 131

CHOOSE_THEN (Thm_cont)

CHOOSE_THEN : thm_tactical

Synopsis
Applies a tactic generated from the body of existentially quantified theorem.

Description
When applied to a theorem-tactic ttac, an existentially quantified theorem A’ |- ?x. t,
and a goal, CHOOSE_THEN applies the tactic ttac (t[x’/x] |- t[x’/x]) to the goal, where
x’ is a variant of x chosen not to be free in the assumption list of the goal. Thus if:

A ?- s1

========= ttac (t[x’/x] |- t[x’/x])

B ?- s2

then

A ?- s1

========== CHOOSE_THEN ttac (A’ |- ?x. t)

B ?- s2

This is invalid unless A’ is a subset of A.

Failure
Fails unless the given theorem is existentially quantified, or if the resulting tactic fails
when applied to the goal.

Example
This theorem-tactical and its relatives are very useful for using existentially quantified
theorems. For example one might use the inbuilt theorem

LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1))

to help solve the goal

?- x < y ==> 0 < y * y

by starting with the following tactic

DISCH_THEN (CHOOSE_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1)

which reduces the goal to

132 CHAPTER 1. ENTRIES

?- 0 < ((x + (p + 1)) * (x + (p + 1)))

which can then be finished off quite easily, by, for example:

REWRITE_TAC[ADD_ASSOC, SYM (SPEC_ALL ADD1),

MULT_CLAUSES, ADD_CLAUSES, LESS_0]

See also
Tactic.CHOOSE TAC, Thm cont.X CHOOSE THEN.

class (DB)

datatype class

Synopsis
Datatype for classifying theory elements.

Description
Many of the functions in the DB structure return answers that involve the class type,
which is declared as

datatype class = Thm | Axm | Def

When occurring with th, an ML value of type thm, Axm means that th has been asserted
as an axiom; Def means that th is a constant definition; and Thm means that th is a plain
old theorem, i.e,. not an axiom or a definition.

See also
DB.data.

clear_overloads_on (Parse)

Parse.clear_overloads_on : string -> unit

Synopsis
Clears all overloading on the specified operator.

CNF CONV 133

Description
This function removes all overloading associated with the given string, except those
”overloads” that map the string to constants of the same name. These additional over-
loads (there may be more than one constant of the same name, as long as each such is
part of a different theory) may be removed with remove_ovl_mapping, or by using hide.

Failure
Never fails. If a string is not overloaded, this function simply has no effect.

Example

- load "realTheory";

> val it = () : unit

- realTheory.REAL_INV_LT1;

> val it = |- !x. 0 < x /\ x < 1 ==> 1 < inv x : thm

- clear_overloads_on "<";

> val it = () : unit

- realTheory.REAL_INV_LT1;

> val it = |- !x. 0 real_lt x /\ x real_lt 1 ==> 1 real_lt inv x : thm

- clear_overloads_on "&";

> val it = () : unit

- realTheory.REAL_INV_LT1;

> val it = |- !x. 0r real_lt x /\ x real_lt 1r ==> 1r real_lt inv x : thm

Uses
If overloading gets too confusing, this function should help to clear away one layer of
supposedly helpful obfuscation.

Comments
As with other parsing functions, there is a sister function, temp_clear_overloads_on that
does the same thing, but whose effect is not saved to a theory file.

See also
Parse.overload on, Parse.remove ovl mapping.

CNF_CONV (normalForms)

CNF_CONV : conv

134 CHAPTER 1. ENTRIES

Synopsis
Converts a formula into Conjunctive Normal Form (CNF).

Description
Given a formula consisting of truths, falsities, conjunctions, disjunctions, negations,
equivalences, conditionals, and universal and existential quantifiers, CNF_CONV will con-
vert it to the canonical form:

?a_1 ... a_k.

(!v_1 ... v_m1. P_1 \/ ... \/ P_n1) /\

... /\

(!v_1 ... v_mp. P_1 \/ ... \/ P_np)

The P_ij are literals: possibly-negated atoms. In first-order logic an atom is a formula
consisting of a top-level relation symbol applied to first-order terms: function symbols
and variables. In higher-order logic there is no distinction between formulas and terms,
so the concept of atom is not well-formed. Note also that the a_i existentially bound
variables may be functions, as a result of Skolemization.

Failure
CNF_CONV should never fail.

Example

- CNF_CONV ‘‘!x. P x ==> ?y z. Q y \/ ~?z. P z /\ Q z‘‘;

> val it =

|- (!x. P x ==> ?y z. Q y \/ ~?z. P z /\ Q z) =

?y. !x x’. Q (y x) \/ ~P x’ \/ ~Q x’ \/ ~P x : thm

Example

- CNF_CONV ‘‘~(~(x = y) = z) = ~(x = ~(y = z))‘‘;

> val it = |- (~(~(x = y) = z) = ~(x = ~(y = z))) = T : thm

COMB_CONV (Conv)

COMB_CONV : conv -> conv

Synopsis
Applies a conversion to both immediate sub-terms of an application.

combine 135

Description
If t is an application term of the form f x, and c is a conversion, such that c maps f to
|- f = f’ and x to |- x = x’, then COMB_CONV c maps t to |- f x = f’ x’.

Failure
COMB_CONV c t fails if t is not an application term, or if c fails when applied to the rator
and rand of t, or if c is not in fact a conversion (i.e., a function which maps terms t to
a theorem |- t = t’.

See also
Conv.ABS CONV, Conv.SUB CONV.

combine (Lib)

combine : ’a list * ’b list -> (’a * ’b) list

Synopsis
Transforms a pair of lists into a list of pairs.

Description
combine ([x1,...,xn],[y1,...,yn]) returns [(x1,y1),...,(xn,yn)].

Failure
Fails if the two lists are of different lengths.

Comments
Has much the same effect as the SML Basis function ListPair.zip except that it fails if
the arguments are not of equal length. Also note that zip is a curried version of combine

See also
Lib.zip, Lib.unzip, Lib.split.

commafy (Lib)

commafy : string list -> string list

136 CHAPTER 1. ENTRIES

Synopsis
Add commas into a list of strings.

Description
An application commafy [s1,...,sn] yields [s1, ",", ..., ",", sn].

Failure
Never fails.

Example

- commafy ["donkey", "mule", "horse", "camel", "llama"];

> val it =

["donkey", ", ", "mule", ", ", "horse", ", ", "camel", ", ", "llama"] :

string list

- print (String.concat it ^ "\n");

donkey, mule, horse, camel, llama

> val it = () : unit

- commafy ["foo"];

> val it = ["foo"] : string list

compare (Term)

Term.compare : term * term -> order

Synopsis
Ordering on terms.

Description
An invocation compare (M,N) will return one of {LESS, EQUAL, GREATER}, according to
an ordering on terms. The ordering is transitive and total, and equates alpha-convertible
terms.

Failure
Never fails.

Example

compare 137

- compare (T,F);

> val it = GREATER : order

- compare (Term ‘\x y. x /\ y‘, Term ‘\y z. y /\ z‘);

> val it = EQUAL : order

Comments
Used to build high performance datastructures for dealing with sets having many terms.

See also
Term.empty tmset, Term.var compare.

compare (Type)

Type.compare : hol_type * hol_type -> order

Synopsis
An ordering on HOL types.

Description
An invocation compare (ty1,ty2) returns one of {LESS, EQUAL, GREATER}. This is a total
and transitive order.

Failure
Never fails.

Example

- Type.compare (bool, alpha --> alpha);

> val it = LESS : order

Comments
One use of compare is to build efficient set or dictionary datastructures involving HOL
types in the keys.

There is also a Term.compare.

See also
Term.compare.

138 CHAPTER 1. ENTRIES

completeInduct_on (bossLib)

completeInduct_on : term quotation -> tactic

Synopsis
Perform complete induction

Description
If q parses into a well-typed term M, an invocation completeInduct_on q begins a proof
by complete (also known as ‘course-of-values’) induction on M. The term M should occur
free in the current goal.

Failure
If M does not parse into a term or does not occur free in the current goal.

Example
Suppose we wish to prove that every number not equal to one has a prime factor:

!n. ~(n = 1) ==> ?p. prime p /\ p divides n

A natural way to prove this is by complete induction. Invoking completeInduct_on ‘n‘

yields the goal

{ !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m }

?-

~(n = 1) ==> ?p. prime p /\ p divides n

See also
bossLib.measureInduct on, bossLib.Induct, bossLib.Induct on.

concl (Thm)

concl : thm -> term

Synopsis
Returns the conclusion of a theorem.

COND CASES TAC 139

Description
When applied to a theorem A |- t, the function concl returns t.

Failure
Never fails.

See also
Thm.dest thm, Thm.hyp.

COND_CASES_TAC (Tactic)

COND_CASES_TAC : tactic

Synopsis
Induces a case split on a conditional expression in the goal.

Description
COND_CASES_TAC searches for a conditional sub-term in the term of a goal, i.e. a sub-term
of the form p=>u|v, choosing one by its own criteria if there is more than one. It then
induces a case split over p as follows:

A ?- t

=== COND_CASES_TAC

A u {p} ?- t[u/(p=>u|v)] A u {~p} ?- t[v/(p=>u|v)]]

where p is not a constant, and the term p=>u|v is free in t. Note that it both enriches
the assumptions and inserts the assumed value into the conditional.

Failure
COND_CASES_TAC fails if there is no conditional sub-term as described above.

Example
For "x", "y", "z1" and "z2" of type ":*", and "P:*->bool",

COND_CASES_TAC ([], "x = (P y => z1 | z2)");;

([(["P y"], "x = z1"); (["~P y"], "x = z2")], -) : subgoals

but it fails, for example, if "y" is not free in the term part of the goal:

COND_CASES_TAC ([], "!y. x = (P y => z1 | z2)");;

evaluation failed COND_CASES_TAC

140 CHAPTER 1. ENTRIES

In contrast, ASM_CASES_TAC does not perform the replacement:

ASM_CASES_TAC "P y" ([], "x = (P y => z1 | z2)");;

([(["P y"], "x = (P y => z1 | z2)"); (["~P y"], "x = (P y => z1 | z2)")],

-)

: subgoals

Uses
Useful for case analysis and replacement in one step, when there is a conditional sub-
term in the term part of the goal. When there is more than one such sub-term and one
in particular is to be analyzed, COND_CASES_TAC cannot be depended on to choose the
‘desired’ one. It can, however, be used repeatedly to analyze all conditional sub-terms
of a goal.

See also
Tactic.ASM CASES TAC, Tactic.DISJ CASES TAC, Tactic.STRUCT CASES TAC.

COND_CONV (Conv)

COND_CONV : conv

Synopsis
Simplifies conditional terms.

Description
The conversion COND_CONV simplifies a conditional term "c => u | v" if the condition c

is either the constant T or the constant F or if the two terms u and v are equivalent up
to alpha-conversion. The theorems returned in these three cases have the forms:

|- (T => u | v) = u

|- (F => u | v) = u

|- (c => u | u) = u

Failure
COND_CONV tm fails if tm is not a conditional "c => u | v", where c is T or F, or u and v

are alpha-equivalent.

COND CONV 141

COND_CONV (reduceLib)

COND_CONV : conv

Synopsis
Simplifies certain conditional expressions.

Description
If tm corresponds to one of the forms given below, where b has type bool and t1 and t2

have the same type, then COND_CONV tm returns the corresponding theorem. Note that
in the last case the arms need only be alpha-equivalent rather than strictly identical.

COND_CONV "F => t1 | t2" = |- (T => t1 | t2) = t2

COND_CONV "T => t1 | t2" = |- (T => t1 | t2) = t1

COND_CONV "b => t | t = |- (b => t | t) = t

Failure
COND_CONV tm fails unless tm has one of the forms indicated above.

Example

#COND_CONV "F => F | T";;

|- (F => F | T) = T

#COND_CONV "T => F | T";;

|- (T => F | T) = F

#COND_CONV "b => (\x. SUC x) | (\p. SUC p)";;

|- (b => (\x. SUC x) | (\p. SUC p)) = (\x. SUC x)

COND_ELIM_CONV (Arith)

COND_ELIM_CONV : conv

Synopsis
Eliminates conditional statements from a formula.

142 CHAPTER 1. ENTRIES

Description
This function moves conditional statements up through a term and if at any point the
branches of the conditional become Boolean-valued the conditional is eliminated. If the
term is a formula, only an abstraction can prevent a conditional being moved up far
enough to be eliminated.

Failure
Never fails.

Example

#COND_ELIM_CONV "!f n. f ((SUC n = 0) => 0 | (SUC n - 1)) < (f n) + 1";;

|- (!f n. (f((SUC n = 0) => 0 | (SUC n) - 1)) < ((f n) + 1)) =

(!f n.

(~(SUC n = 0) \/ (f 0) < ((f n) + 1)) /\

((SUC n = 0) \/ (f((SUC n) - 1)) < ((f n) + 1)))

#COND_ELIM_CONV "!f n. (\m. f ((m = 0) => 0 | (m - 1))) (SUC n) < (f n) + 1";;

|- (!f n. ((\m. f((m = 0) => 0 | m - 1))(SUC n)) < ((f n) + 1)) =

(!f n. ((\m. ((m = 0) => f 0 | f(m - 1)))(SUC n)) < ((f n) + 1))

Uses
Useful as a preprocessor to decision procedures which do not allow conditional state-
ments in their argument formula.

See also
Arith.SUB AND COND ELIM CONV.

COND_REWR_CANON (Cond_rewrite)

COND_REWR_CANON : thm -> thm

Synopsis
Transform a theorem into a form accepted by COND_REWR_TAC.

Description
COND_REWR_CANON transforms a theorem into a form accepted by COND_REWR_TAC. The in-
put theorem should be an implication of the following form

COND REWR CONV 143

!x1 ... xn. P1[xi] ==> ... ==> !y1 ... ym. Pr[xi,yi] ==>

(!z1 ... zk. u[xi,yi,zi] = v[xi,yi,zi])

where each antecedent Pi itself may be a conjunction or disjunction. The output theo-
rem will have all universal quantifications moved to the outer most level with possible
renaming to prevent variable capture, and have all antecedents which are a conjunction
transformed to implications. The output theorem will be in the following form

!x1 ... xn y1 ... ym z1 ... zk.

P11[xi] ==> ... ==> P1p[xi] ==> ... ==>

Pr1[xi,yi] ==> ... ==> Prq[x1,yi] ==> (u[xi,yi,zi] = v[xi,yi,zi])

Failure
This function fails if the input theorem is not in the correct form.

Example
COND_REWR_CANON transforms the built-in theorem CANCL_SUB into the form for conditional
rewriting:

#COND_REWR_CANON CANCEL_SUB;;

Theorem CANCEL_SUB autoloading from theory ‘arithmetic‘ ...

CANCEL_SUB = |- !p n m. p <= n /\ p <= m ==> ((n - p = m - p) = (n = m))

|- !p n m. p <= n ==> p <= m ==> ((n - p = m - p) = (n = m))

See also
Cond rewrite.COND REWRITE1 TAC, Cond rewrite.COND REWR TAC,

Cond rewrite.COND REWRITE1 CONV, Cond rewrite.COND REWR CONV,

Cond rewrite.search top down.

COND_REWR_CONV (Cond_rewrite)

COND_REWR_CONV : ((term -> term ->

((term # term) list # (type # type) list) list) -> thm -> conv)

Synopsis
A lower level conversion implementing simple conditional rewriting.

144 CHAPTER 1. ENTRIES

Description
COND_REWR_CONV is one of the basic building blocks for the implementation of the simple
conditional rewriting conversions in the HOL system. In particular, the conditional
term replacement or rewriting done by all the conditional rewriting conversions in this
library is ultimately done by applications of COND_REWR_CONV. The description given here
for COND_REWR_CONV may therefore be taken as a specification of the atomic action of
replacing equals by equals in a term under certain conditions that are used in all these
higher level conditional rewriting conversions.

The first argument to COND_REWR_CONV is expected to be a function which returns a list
of matches. Each of these matches is in the form of the value returned by the built-in
function match. It is used to search the input term for instances which may be rewritten.

The second argument to COND_REWR_CONV is expected to be an implicative theorem in
the following form:

A |- !x1 ... xn. P1 ==> ... Pm ==> (Q[x1,...,xn] = R[x1,...,xn])

where x1, ..., xn are all the variables that occur free in the left hand side of the conclusion
of the theorem but do not occur free in the assumptions.

The last argument to COND_REWR_CONV is the term to be rewritten.
If fn is a function and th is an implicative theorem of the kind shown above, then

COND_REWR_CONV fn th will be a conversion. When applying to a term tm, it will return a
theorem

P1’, ..., Pm’ |- tm = tm[R’/Q’]

if evaluating fn Q[x1,...,xn] tm returns a non-empty list of matches. The assumptions
of the resulting theorem are instances of the antecedents of the input theorem th. The
right hand side of the equation is obtained by rewriting the input term tm with instances
of the conclusion of the input theorem.

Failure
COND_REWR_CONV fn th fails if th is not an implication of the form described above. If th
is such an equation, but the function fn returns a null list of matches, or the function fn

returns a non-empty list of matches, but the term or type instantiation fails.

Example
The following example illustrates a straightforward use of COND_REWR_CONV. We use the
built-in theorem LESS_MOD as the input theorem, and the function search_top_down as
the search function.

#LESS_MOD;;

Theorem LESS_MOD autoloading from theory ‘arithmetic‘ ...

LESS_MOD = |- !n k. k < n ==> (k MOD n = k)

COND REWR TAC 145

|- !n k. k < n ==> (k MOD n = k)

#search_top_down;;

- : (term -> term -> ((term # term) list # (type # type) list) list)

#COND_REWR_CONV search_top_down LESS_MOD "2 MOD 3";;

2 < 3 |- 2 MOD 3 = 2

See also
Cond rewrite.COND REWR TAC, Cond rewrite.COND REWRITE1 TAC,

Cond rewrite.COND REWRITE1 CONV, Cond rewrite.COND REWR CANON,

Cond rewrite.search top down.

COND_REWR_TAC (Cond_rewrite)

COND_REWR_TAC :

(term -> term -> ((term * term) list * (type * type) list) list) ->

thm_tactic

Synopsis
A lower level tactic used to implement simple conditional rewriting tactic.

Description
COND_REWR_TAC is one of the basic building blocks for the implementation of conditional
rewriting in the HOL system. In particular, the conditional term replacement or rewrit-
ing done by all the built-in conditional rewriting tactics is ultimately done by applica-
tions of COND_REWR_TAC. The description given here for COND_REWR_TAC may therefore be
taken as a specification of the atomic action of replacing equals by equals in the goal
under certain conditions that aare used in all these higher level conditional rewriting
tactics.

The first argument to COND_REWR_TAC is expected to be a function which returns a list
of matches. Each of these matches is in the form of the value returned by the built-in
function match. It is used to search the goal for instances which may be rewritten.

The second argument to COND_REWR_TAC is expected to be an implicative theorem in
the following form:

A |- !x1 ... xn. P1 ==> ... Pm ==> (Q[x1,...,xn] = R[x1,...,xn])

146 CHAPTER 1. ENTRIES

where x1, ..., xn are all the variables that occur free in the left-hand side of the conclu-
sion of the theorem but do not occur free in the assumptions.

If fn is a function and th is an implicative theorem of the kind shown above, then
COND_REWR_TAC fn th will be a tactic which returns a list of subgoals if evaluating

fn Q[x1,...,xn] gl

returns a non-empty list of matches when applied to a goal (asm,gl).
Let ml be the match list returned by evaluating fn Q[x1,...,xn] gl. Each element in

this list is in the form of

([(e1,x1);...;(ep,xp)], [(ty1,vty1);...;(tyq,vtyq)])

which specifies the term and type instantiations of the input theorem th. Either the
term pair list or the type pair list may be empty. In the case that both lists are empty, an
exact match is found, i.e., no instantiation is required. If ml is an empty list, no match
has been found and the tactic will fail.

For each match in ml, COND_REWR_TAC will perform the following: 1) instantiate the
input theorem th to get

th’ = A |- P1’ ==> ... ==> Pm’ ==> (Q’ = R’)

where the primed subterms are instances of the corresponding unprimed subterms ob-
tained by applying INST_TYPE with [(ty1,vty1);...;(tyq,vtyq)] and then INST with
[(e1,x1);...;(ep,xp)]; 2) search the assumption list asm for occurrences of any an-
tecedents P1’, ..., Pm’; 3) if all antecedents appear in asm, the goal gl is reduced to gl’

by substituting R’ for each free occurrence of Q’, otherwise, in addition to the substi-
tution, all antecedents which do not appear in asm are added to it and new subgoals
corresponding to these antecedents are created. For example, if Pk’, ..., Pm’ do not
appear in asm, the following subgoals are returned:

asm ?- Pk’ ... asm ?- Pm’ {{asm,Pk’,...,Pm’}} ?- gl’

If COND_REWR_TAC is given a theorem th:

A |- !x1 ... xn y1 ... yk. P1 ==> ... ==> Pm ==> (Q = R)

where the variables y1, ..., ym do not occur free in the left-hand side of the conclusion
Q but they do occur free in the antecedents, then, when carrying out Step 2 described
above, COND_REWR_TAC will attempt to find instantiations for these variables from the
assumption asm. For example, if x1 and y1 occur free in P1, and a match is found
in which e1 is an instantiation of x1, then P1’ will become P1[e1/x1, y1]. If a term
P1’’ = P1[e1,e1’/x1,y1] appears in asm, th’ is instantiated with (e1’, y1) to get

th’’ = A |- P1’’ ==> ... ==> Pm’’ ==> (Q’ = R’’)

COND REWR TAC 147

then R’’ is substituted into gl for all free occurrences of Q’. If no consistent instantiation
is found, then P1’ which contains the uninstantiated variable y1 will become one of the
new subgoals. In such a case, the user has no control over the choice of the variable yi.

Failure
COND_REWR_TAC fn th fails if th is not an implication of the form described above. If th
is such an equation, but the function fn returns a null list of matches, or the function fn

returns a non-empty list of matches, but the term or type instantiation fails.

Example
The following example illustrates a straightforward use of COND_REWR_TAC. We use the
built-in theorem LESS_MOD as the input theorem, and the function search_top_down as
the search function.

#LESS_MOD;;

Theorem LESS_MOD autoloading from theory ‘arithmetic‘ ...

LESS_MOD = |- !n k. k < n ==> (k MOD n = k)

|- !n k. k < n ==> (k MOD n = k)

#search_top_down;;

- : (term -> term -> ((term # term) list # (type # type) list) list)

We set up a goal

#g"2 MOD 3 = 2";;

"2 MOD 3 = 2"

() : void

and then apply the tactic

#e(COND_REWR_TAC search_top_down LESS_MOD);;

OK..

2 subgoals

"2 = 2"

["2 < 3"]

"2 < 3"

() : void

148 CHAPTER 1. ENTRIES

See also
Cond rewrite.COND REWRITE1 TAC, Cond rewrite.COND REWRITE1 CONV,

Cond rewrite.COND REWR CONV, Cond rewrite.COND REWR CANON,

Cond rewrite.search top down.

COND_REWRITE1_CONV (Cond_rewrite)

COND_REWRITE1_CONV : thm list -> thm -> conv

Synopsis
A simple conditional rewriting conversion.

Description
COND_REWRITE1_CONV is a front end of the conditional rewriting conversion COND_REWR_CONV.
The input theorem should be in the following form

A |- !x11 P1 ==> ... !xm1 Pm ==> (!x Q = R)

where each antecedent Pi itself may be a conjunction or disjunction. This theorem is
transformed to a standard form expected by COND_REWR_CONV which carries out the actual
rewriting. The transformation is performed by COND_REWR_CANON. The search function
passed to COND_REWR_CONV is search_top_down. The effect of applying the conversion
COND_REWRITE1_CONV ths th to a term tm is to derive a theorem

A’ |- tm = tm[R’/Q’]

where the right hand side of the equation is obtained by rewriting the input term tm with
an instance of the conclusion of the input theorem. The theorems in the list ths are used
to discharge the assumptions generated from the antecedents of the input theorem.

Failure
COND_REWRITE1_CONV ths th fails if th cannot be transformed into the required form by
COND_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot be
instantiated.

Example
The following example illustrates a straightforward use of COND_REWRITE1_CONV. We use
the built-in theorem LESS_MOD as the input theorem.

COND REWRITE1 TAC 149

#LESS_MOD;;

Theorem LESS_MOD autoloading from theory ‘arithmetic‘ ...

LESS_MOD = |- !n k. k < n ==> (k MOD n = k)

|- !n k. k < n ==> (k MOD n = k)

#COND_REWRITE1_CONV [] LESS_MOD "2 MOD 3";;

2 < 3 |- 2 MOD 3 = 2

#let less_2_3 = REWRITE_RULE[LESS_MONO_EQ;LESS_0]

#(REDEPTH_CONV num_CONV "2 < 3");;

less_2_3 = |- 2 < 3

#COND_REWRITE1_CONV [less_2_3] LESS_MOD "2 MOD 3";;

|- 2 MOD 3 = 2

In the first example, an empty theorem list is supplied to COND_REWRITE1_CONV so the
resulting theorem has an assumption 2 < 3. In the second example, a list containing a
theorem |- 2 < 3 is supplied, the resulting theorem has no assumptions.

See also
Cond rewrite.COND REWR TAC, Cond rewrite.COND REWRITE1 TAC,

Cond rewrite.COND REWR CONV, Cond rewrite.COND REWR CANON,

Cond rewrite.search top down.

COND_REWRITE1_TAC (Cond_rewrite)

COND_REWRITE1_TAC : thm_tactic

Synopsis
A simple conditional rewriting tactic.

Description
COND_REWRITE1_TAC is a front end of the conditional rewriting tactic COND_REWR_TAC. The
input theorem should be in the following form

A |- !x11 P1 ==> ... !xm1 Pm ==> (!x Q = R)

150 CHAPTER 1. ENTRIES

where each antecedent Pi itself may be a conjunction or disjunction. This theorem is
transformed to a standard form expected by COND_REWR_TAC which carries out the actual
rewriting. The transformation is performed by COND_REWR_CANON. The search function
passed to COND_REWR_TAC is search_top_down. The effect of applying this tactic is to
substitute into the goal instances of the right hand side of the conclusion of the input
theorem Ri’ for the corresponding instances of the left hand side. The search is top-
down left-to-right. All matches found by the search function are substituted. New
subgoals corresponding to the instances of the antecedents which do not appear in the
assumption of the original goal are created. See manual page of COND_REWR_TAC for
details of how the instantiation and substitution are done.

Failure
COND_REWRITE1_TAC th fails if th cannot be transformed into the required form by the
function COND_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

Example
The following example illustrates a straightforward use of COND_REWRITE1_TAC. We use
the built-in theorem LESS_MOD as the input theorem.

#LESS_MOD;;

Theorem LESS_MOD autoloading from theory ‘arithmetic‘ ...

LESS_MOD = |- !n k. k < n ==> (k MOD n = k)

|- !n k. k < n ==> (k MOD n = k)

We set up a goal

#g"2 MOD 3 = 2";;

"2 MOD 3 = 2"

() : void

and then apply the tactic

#e(COND_REWRITE1_TAC LESS_MOD);;

OK..

2 subgoals

"2 = 2"

["2 < 3"]

"2 < 3"

() : void

conditional 151

See also
Cond rewrite.COND REWR TAC, Cond rewrite.COND REWRITE1 CONV,

Cond rewrite.COND REWR CONV, Cond rewrite.COND REWR CANON,

Cond rewrite.search top down.

conditional (boolSyntax)

conditional : term

Synopsis
Constant denoting conditional expressions.

Description
The ML variable boolSyntax.conditional is bound to the term bool$COND.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.bool case,

boolSyntax.let tm, boolSyntax.arb.

Cong (simpLib)

Cong : thm -> thm

Synopsis
Marks a theorem as a congruence rule for the simplifier.

Description
The Cong function marks (or ”tags”) a theorem so that when passed to the simplifier, it
is not used as a rewrite, but rather as a congruence rule. This is a simpler way of adding
a congruence rule to the simplifier than using the underlying SSFRAG function.

Failure
Never fails. On the other hand, Cong does not check that the theorem passed as an argu-
ment is a valid congruence rule, and invalid congruence rules may have unpredictable
effects on the behaviour of the simplifier.

Example

152 CHAPTER 1. ENTRIES

- SIMP_CONV pure_ss [] ‘‘!x::P. x IN P /\ Q x‘‘;

<<HOL message: inventing new type variable names: ’a>>

! Uncaught exception:

! UNCHANGED

- RES_FORALL_CONG;

> val it =

|- (P = Q) ==>

(!x. x IN Q ==> (f x = g x)) ==>

(RES_FORALL P f = RES_FORALL Q g) : thm

- SIMP_CONV pure_ss [Cong RES_FORALL_CONG] ‘‘!x::P. x IN P ‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = |- (!x::P. x IN P /\ Q x) = !x::P. T /\ Q x : thm

(Note that RES_FORALL_CONG is already included in bool_ss and all simpsets built on it.)

See also
simpLib.SSFRAG.

CONJ (Thm)

CONJ : thm -> thm -> thm

Synopsis
Introduces a conjunction.

Description

A1 |- t1 A2 |- t2

------------------------ CONJ

A1 u A2 |- t1 /\ t2

Failure
Never fails.

Comments
The theorem AND_INTRO_THM can be instantiated to similar effect.

See also
Drule.BODY CONJUNCTS, Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJ PAIR,

Drule.LIST CONJ, Drule.CONJ LIST, Drule.CONJUNCTS.

CONJ DISCH 153

CONJ_DISCH (Drule)

CONJ_DISCH : (term -> thm -> thm)

Synopsis
Discharges an assumption and conjoins it to both sides of an equation.

Description
Given an term t and a theorem A |- t1 = t2, which is an equation between boolean
terms, CONJ_DISCH returns A - {t} |- (t /\ t1) = (t /\ t2), i.e. conjoins t to both
sides of the equation, removing t from the assumptions if it was there.

A |- t1 = t2

------------------------------ CONJ_DISCH "t"

A - {t} |- t /\ t1 = t /\ t2

Failure
Fails unless the theorem is an equation, both sides of which, and the term provided are
of type bool.

See also
Drule.CONJ DISCHL.

CONJ_DISCHL (Drule)

CONJ_DISCHL : (term list -> thm -> thm)

Synopsis
Conjoins multiple assumptions to both sides of an equation.

Description
Given a term list [t1;...;tn] and a theorem whose conclusion is an equation between
boolean terms, CONJ_DISCHL conjoins all the terms in the list to both sides of the equa-
tion, and removes any of the terms which were in the assumption list.

A |- s = t

-- CONJ_DISCHL

A - {t1,...,tn} |- (t1/\.../\tn/\s) = (t1/\.../\tn/\t) [t1,...,tn]

154 CHAPTER 1. ENTRIES

Failure
Fails unless the theorem is an equation, both sides of which, and all the terms provided,
are of type bool.

See also
Drule.CONJ DISCH.

CONJ_FORALL_CONV (unwindLib)

CONJ_FORALL_CONV : conv

Synopsis
Moves universal quantifiers up through a tree of conjunctions.

Description
CONJ_FORALL_CONV "(!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)" returns the follow-
ing theorem:

|- (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn) =

!x1 ... xm. t1 /\ ... /\ tn

where the original term can be an arbitrary tree of conjunctions. The structure of the
tree is retained in both sides of the equation.

Failure
Never fails.

Example

#CONJ_FORALL_CONV "((!(x:*) (y:*) (z:*). a) /\ (!(x:*) (y:*) (z:*). b)) /\

(!(x:*) (y:*) (z:*). c)";;

|- ((!x y z. a) /\ (!x y z. b)) /\ (!x y z. c) = (!x y z. (a /\ b) /\ c)

#CONJ_FORALL_CONV "T";;

|- T = T

#CONJ_FORALL_CONV "((!(x:*) (y:*) (z:*). a) /\ (!(x:*) (w:*) (z:*). b)) /\

(!(x:*) (y:*) (z:*). c)";;

|- ((!x y z. a) /\ (!x w z. b)) /\ (!x y z. c) =

(!x. ((!y z. a) /\ (!w z. b)) /\ (!y z. c))

CONJ FORALL ONCE CONV 155

See also
unwindLib.FORALL CONJ CONV, unwindLib.CONJ FORALL ONCE CONV,

unwindLib.FORALL CONJ ONCE CONV, unwindLib.CONJ FORALL RIGHT RULE,

unwindLib.FORALL CONJ RIGHT RULE.

CONJ_FORALL_ONCE_CONV (unwindLib)

CONJ_FORALL_ONCE_CONV : conv

Synopsis
Moves a single universal quantifier up through a tree of conjunctions.

Description
CONJ_FORALL_ONCE_CONV "(!x. t1) /\ ... /\ (!x. tn)" returns the theorem:

|- (!x. t1) /\ ... /\ (!x. tn) = !x. t1 /\ ... /\ tn

where the original term can be an arbitrary tree of conjunctions. The structure of the
tree is retained in both sides of the equation.

Failure
Fails if the argument term is not of the required form. The term need not be a conjunc-
tion, but if it is every conjunct must be universally quantified with the same variable.

Example

#CONJ_FORALL_ONCE_CONV "((!x. x \/ a) /\ (!x. x \/ b)) /\ (!x. x \/ c)";;

|- ((!x. x \/ a) /\ (!x. x \/ b)) /\ (!x. x \/ c) =

(!x. ((x \/ a) /\ (x \/ b)) /\ (x \/ c))

#CONJ_FORALL_ONCE_CONV "!x. x \/ a";;

|- (!x. x \/ a) = (!x. x \/ a)

#CONJ_FORALL_ONCE_CONV "((!x. x \/ a) /\ (!y. y \/ b)) /\ (!x. x \/ c)";;

evaluation failed CONJ_FORALL_ONCE_CONV

See also
unwindLib.FORALL CONJ ONCE CONV, unwindLib.CONJ FORALL CONV,

unwindLib.FORALL CONJ CONV, unwindLib.CONJ FORALL RIGHT RULE,

unwindLib.FORALL CONJ RIGHT RULE.

156 CHAPTER 1. ENTRIES

CONJ_FORALL_RIGHT_RULE (unwindLib)

CONJ_FORALL_RIGHT_RULE : (thm -> thm)

Synopsis
Moves universal quantifiers up through a tree of conjunctions.

Description

A |- !z1 ... zr.

t = ?y1 ... yp. (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)

A |- !z1 ... zr. t = ?y1 ... yp. !x1 ... xm. t1 /\ ... /\ tn

Failure
Fails if the argument theorem is not of the required form, though either or both of r and
p may be zero.

See also
unwindLib.FORALL CONJ RIGHT RULE, unwindLib.CONJ FORALL CONV,

unwindLib.FORALL CONJ CONV, unwindLib.CONJ FORALL ONCE CONV,

unwindLib.FORALL CONJ ONCE CONV.

CONJ_LIST (Drule)

CONJ_LIST : (int -> thm -> thm list)

Synopsis
Extracts a list of conjuncts from a theorem (non-flattening version).

Description
CONJ_LIST is the proper inverse of LIST_CONJ. Unlike CONJUNCTS which recursively splits
as many conjunctions as possible both to the left and to the right, CONJ_LIST splits
the top-level conjunction and then splits (recursively) only the right conjunct. The
integer argument is required because the term tn may itself be a conjunction. A list of n
theorems is returned.

CONJ PAIR 157

A |- t1 /\ (t2 /\ (... /\ tn)...)

------------------------------------ CONJ_LIST n (A |- t1 /\ ... /\ tn)

A |- t1 A |- t2 ... A |- tn

Failure
Fails if the integer argument (n) is less than one, or if the input theorem has less than n

conjuncts.

Example
Suppose the identifier th is bound to the theorem:

A |- (x /\ y) /\ z /\ w

Here are some applications of CONJ_LIST to th:

- CONJ_LIST 0 th;

! Uncaught exception:

! HOL_ERR

- CONJ_LIST 1 th;

> val it = [[A] |- (x /\ y) /\ z /\ w] : thm list

- CONJ_LIST 2 th;

> val it = [[A] |- x /\ y, [A] |- z /\ w] : thm list

- CONJ_LIST 3 th;

> val it = [[A] |- x /\ y, [A] |- z, [A] |- w] : thm list

- CONJ_LIST 4 th;

! Uncaught exception:

! HOL_ERR

See also
Drule.BODY CONJUNCTS, Drule.LIST CONJ, Drule.CONJUNCTS, Thm.CONJ,

Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJ PAIR.

CONJ_PAIR (Drule)

CONJ_PAIR : thm -> thm * thm

158 CHAPTER 1. ENTRIES

Synopsis
Extracts both conjuncts of a conjunction.

Description

A |- t1 /\ t2

---------------------- CONJ_PAIR

A |- t1 A |- t2

The two resultant theorems are returned as a pair.

Failure
Fails if the input theorem is not a conjunction.

See also
Drule.BODY CONJUNCTS, Thm.CONJUNCT1, Thm.CONJUNCT2, Thm.CONJ, Drule.LIST CONJ,

Drule.CONJ LIST, Drule.CONJUNCTS.

CONJ_TAC (Tactic)

CONJ_TAC : tactic

Synopsis
Reduces a conjunctive goal to two separate subgoals.

Description
When applied to a goal A ?- t1 /\ t2, the tactic CONJ_TAC reduces it to the two subgoals
corresponding to each conjunct separately.

A ?- t1 /\ t2

====================== CONJ_TAC

A ?- t1 A ?- t2

Failure
Fails unless the conclusion of the goal is a conjunction.

See also
Tactic.STRIP TAC.

CONJUNCT1 159

CONJUNCT1 (Thm)

CONJUNCT1 : thm -> thm

Synopsis
Extracts left conjunct of theorem.

Description

A |- t1 /\ t2

--------------- CONJUNCT1

A |- t1

Failure
Fails unless the input theorem is a conjunction.

Comments
The theorem AND1_THM can be instantiated to similar effect.

See also
Drule.BODY CONJUNCTS, Thm.CONJUNCT2, Drule.CONJ PAIR, Thm.CONJ, Drule.LIST CONJ,

Drule.CONJ LIST, Drule.CONJUNCTS.

CONJUNCT2 (Thm)

CONJUNCT2 : thm -> thm

Synopsis
Extracts right conjunct of theorem.

Description

A |- t1 /\ t2

--------------- CONJUNCT2

A |- t2

160 CHAPTER 1. ENTRIES

Failure
Fails unless the input theorem is a conjunction.

Comments
The theorem AND2_THM can be instantiated to similar effect.

See also
Drule.BODY CONJUNCTS, Thm.CONJUNCT1, Drule.CONJ PAIR, Thm.CONJ, Drule.LIST CONJ,

Drule.CONJ LIST, Drule.CONJUNCTS.

conjunction (boolSyntax)

conjunction : term

Synopsis
Constant denoting logical conjunction.

Description
The ML variable boolSyntax.conjunction is bound to the term bool$/\.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.disjunction, boolSyntax.negation, boolSyntax.conditional,

boolSyntax.bool case, boolSyntax.let tm, boolSyntax.arb.

CONJUNCTS (Drule)

CONJUNCTS : (thm -> thm list)

Synopsis
Recursively splits conjunctions into a list of conjuncts.

Description
Flattens out all conjuncts, regardless of grouping. Returns a singleton list if the input
theorem is not a conjunction.

CONJUNCTS AC 161

A |- t1 /\ t2 /\ ... /\ tn

----------------------------------- CONJUNCTS

A |- t1 A |- t2 ... A |- tn

Failure
Never fails.

Example
Suppose the identifier th is bound to the theorem:

A |- (x /\ y) /\ z /\ w

Application of CONJUNCTS to th returns the following list of theorems:

[A |- x; A |- y; A |- z; A |- w] : thm list

See also
Drule.BODY CONJUNCTS, Drule.CONJ LIST, Drule.LIST CONJ, Thm.CONJ, Thm.CONJUNCT1,

Thm.CONJUNCT2, Drule.CONJ PAIR.

CONJUNCTS_AC (Drule)

CONJUNCTS_AC : term * term -> thm

Synopsis
Prove equivalence under idempotence, symmetry and associativity of conjunction.

Description
CONJUNCTS_AC takes a pair of terms (t1, t2) and proves |- t1 = t2 if t1 and t2 are
equivalent up to idempotence, symmetry and associativity of conjunction. That is, if t1
and t2 are two (different) arbitrarily-nested conjunctions of the same set of terms, then
CONJUNCTS_AC (t1,t2) returns |- t1 = t2. Otherwise, it fails.

Failure
Fails if t1 and t2 are not equivalent, as described above.

Example

- CONJUNCTS_AC (Term ‘(P /\ Q) /\ R‘, Term ‘R /\ (Q /\ R) /\ P‘);

> val it = |- (P /\ Q) /\ R = R /\ (Q /\ R) /\ P : thm

162 CHAPTER 1. ENTRIES

Uses
Used to reorder a conjunction. First sort the conjuncts in a term t1 into the desired
order (e.g., lexicographic order, for normalization) to get a new term t2, then call
CONJUNCTS_AC(t1,t2).

See also
Drule.DISJUNCTS AC.

CONJUNCTS_THEN (Thm_cont)

CONJUNCTS_THEN : thm_tactical

Synopsis
Applies a theorem-tactic to each conjunct of a theorem.

Description
CONJUNCTS_THEN takes a theorem-tactic f, and a theorem t whose conclusion must be
a conjunction. CONJUNCTS_THEN breaks t into two new theorems, t1 and t2 which are
CONJUNCT1 and CONJUNCT2 of t respectively, and then returns a new tactic: f t1 THEN f t2.
That is,

CONJUNCTS_THEN f (A |- l /\ r) = f (A |- l) THEN f (A |- r)

so if

A1 ?- t1 A2 ?- t2

========== f (A |- l) ========== f (A |- r)

A2 ?- t2 A3 ?- t3

then

A1 ?- t1

========== CONJUNCTS_THEN f (A |- l /\ r)

A3 ?- t3

Failure
CONJUNCTS_THEN f will fail if applied to a theorem whose conclusion is not a conjunction.

Comments
CONJUNCTS_THEN f (A |- u1 /\ ... /\ un) results in the tactic:

CONJUNCTS THEN2 163

f (A |- u1) THEN f (A |- u2 /\ ... /\ un)

Unfortunately, it is more likely that the user had wanted the tactic:

f (A |- u1) THEN ... THEN f(A |- un)

Such a tactic could be defined as follows:

let CONJUNCTS_THENL (f:thm_tactic) thm =

itlist $THEN (map f (CONJUNCTS thm)) ALL_TAC;;

or by using REPEAT_TCL.

See also
Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Tactic.CONJ TAC,

Thm cont.CONJUNCTS THEN2, Thm cont.STRIP THM THEN.

CONJUNCTS_THEN2 (Thm_cont)

CONJUNCTS_THEN2 : (thm_tactic -> thm_tactic -> thm_tactic)

Synopsis
Applies two theorem-tactics to the corresponding conjuncts of a theorem.

Description
CONJUNCTS_THEN2 takes two theorem-tactics, f1 and f2, and a theorem t whose con-
clusion must be a conjunction. CONJUNCTS_THEN2 breaks t into two new theorems, t1

and t2 which are CONJUNCT1 and CONJUNCT2 of t respectively, and then returns the tactic
f1 t1 THEN f2 t2. Thus

CONJUNCTS_THEN2 f1 f2 (A |- l /\ r) = f1 (A |- l) THEN f2 (A |- r)

so if

A1 ?- t1 A2 ?- t2

========== f1 (A |- l) ========== f2 (A |- r)

A2 ?- t2 A3 ?- t3

then

A1 ?- t1

========== CONJUNCTS_THEN2 f1 f2 (A |- l /\ r)

A3 ?- t3

164 CHAPTER 1. ENTRIES

Failure
CONJUNCTS_THEN f will fail if applied to a theorem whose conclusion is not a conjunction.

Comments
The system shows the type as (thm_tactic -> thm_tactical).

Uses
The construction of complex tacticals like CONJUNCTS_THEN.

See also
Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Tactic.CONJ TAC,

Thm cont.CONJUNCTS THEN2, Thm cont.STRIP THM THEN.

cons (Lib)

cons : ’a -> ’a list -> ’a list

Synopsis
Curried form of list cons operation

Description
In some programming situations it is handy to use the ”cons” operation in a curried
form. Although it is easy to code up on demand, the cons function is provided for
convenience.

Failure
Never fails.

Example

- map (cons 1) [[],[2],[2,3]];

> val it = [[1], [1, 2], [1, 2, 3]] : int list list

conseq_conv (ConseqConv)

type conseq_conv

CONSEQ CONV direction 165

Synopsis
A type for functions that given a term produce a theorem with an implication at the top
level.

Description
Classical conversions (see Conv) convert a given term t to a term eqt that is equal
to t. For a boolean term t, it is however sometimes useful not to preserve equiva-
lence, but to either strengthen t to st or to weaken it to wt. The type conseq_conv is
used for ML functions that perform these operations. These ML Functions are called
consequence conversions in the following.

Given a consequence conversion CONSEQ_CONV and a term t, then CONSEQ_CONV can ei-
ther fail with an HOL_ERR-exception, raise an UNCHANGED-exception or produce a theorem
of one of the following forms:

1. st ==> t

2. t ==> wt

3. t = eqt

Example
Examples of simple consequence conversion are TRUE_CONSEQ_CONV and FALSE_CONSEQ_CONV.

See also
ConseqConv.directed conseq conv, ConseqConv.TRUE FALSE REFL CONSEQ CONV.

CONSEQ_CONV_direction (ConseqConv)

type CONSEQ_CONV_direction

Synopsis
A type used to tell directed consequence conversions what the desired result should
look like.

Description
This type is used to instruct a directed consequence conversion how to behave. Given
a direction dir and a boolean term t the result of a directed consequence conversion
DCONSEQ_CONV should be of the form

- st ==> t for dir = CONSEQ_CONV_STRENGTHEN_direction

- t ==> wt for dir = CONSEQ_CONV_WEAKEN_direction

- st ==> t, t ==> wt or t = eqt for dir = CONSEQ_CONV_UNKNOWN_direction

166 CHAPTER 1. ENTRIES

See also
ConseqConv.directed conseq conv, ConseqConv.TRUE FALSE REFL CONSEQ CONV.

CONSEQ_CONV_TAC (ConseqConv)

CONSEQ_CONV_TAC : directed_conseq_conv -> tactic

Synopsis
Reduces the goal using a consequence conversion.

Description
CONSEQ_CONV_TAC c tries to strengthen a goal P using c to a new goal P’. It then remains
to show that P’ holds.

See also
Tactic.MATCH MP TAC.

CONSEQ_REWRITE_CONV (ConseqConv)

CONSEQ_REWRITE_CONV : (thm list * thm list * thm list) -> directed_conseq_conv

Synopsis
Applies CONSEQ_TOP_REWRITE_CONV repeatedly at subterms.

Description
This directed consequence conversion is a combination of CONSEQ_TOP_REWRITE_CONV and
DEPTH_CONSEQ_CONV. Given lists of theorems, these theorems are preprocessed to extract
implications. Then these implications are used to either weaken or strengthen an input
term.

Example
Reconsider the example for DEPTH_CONSEQ_CONV. Let rewrite_every_thm be the following
theorem:

val rewrite_every_thm =

|- FEVERY P FEMPTY /\

(FEVERY P f /\ P (x,y) ==> FEVERY P (f |+ (x,y)));

CONSEQ TOP REWRITE CONV 167

Then the following call of CONSEQ_REWRITE_CONV

CONSEQ_REWRITE_CONV ([], [rewrite_every_thm], []) CONSEQ_CONV_STRENGTHEN_direction

‘‘!y2. FEVERY P (f |+ (x1, y1) |+ (x2,y2)) /\ Q z‘‘

results in

|- (!y2. ((FEVERY P f /\ P (x1, y1)) /\ P (x2,y2)) /\ Q z) ==>

(!y2. FEVERY P (f |+ (x1, y1) |+ (x2,y2)) /\ Q z)

More examples can be found at the end of ConseqConv.sml.

See also
Drule.MATCH MP, ConseqConv.CONSEQ TOP REWRITE CONV,

ConseqConv.DEPTH CONSEQ CONV, ConseqConv.EXT CONSEQ REWRITE CONV.

CONSEQ_TOP_REWRITE_CONV (ConseqConv)

CONSEQ_TOP_REWRITE_CONV : (thm list * thm list * thm list) -> directed_conseq_conv

Synopsis
An extended version of MATCH_MP.

Description
This consequence conversion gets 3 lists of theorems as parameters: both_thmL,
strengthen_thmL and weaken_thmL. The theorems in these lists are used to strengthen or
weaken a given boolean term at toplevel. If using them for strengthening this conse-
quence conversion behaves similar to MATCH MP. As the names suggest, the theorems
in strengthen_thmL are used for strengthening, the ones in weaken_thmL for weakening
and the ones in both_thmL for both.

Before trying to apply the conversion, the theorem lists are preprocessed. The theo-
rems are split along conjunctions and allquantification is removed. Then theorems with
toplevel negation |- ~P are rewritten to |- P = F. Afterwards every theorem |- P that
is not an implication or an boolean equation is replaced by |- P = T. Finally, boolean
equations |- P = Q are splitted into two theorems |- P ==> Q and |- Q ==> P. One ends
up with a list of implications.

Given a term t the conversion tries to find a theorem |- P ==> Q and - depending on
to the direction - strengthen t by matching it with Q or weaken it by matching it with P.

168 CHAPTER 1. ENTRIES

Example
This directed consequence conversion is intended to be used together with DEPTH_CONSEQ_CONV.
The combination of both is called CONSEQ_REWRITE_CONV. Please have a look there for an
example.

See also
Drule.MATCH MP, ConseqConv.CONSEQ REWRITE CONV, ConseqConv.DEPTH CONSEQ CONV.

constants (Theory)

constants : string -> term list

Synopsis
Returns a list of the constants defined in a named theory.

Description
The call

constants thy

where thy is an ancestor theory (the special string "-" means the current theory), re-
turns a list of all the constants in that theory.

Failure
Fails if the named theory does not exist, or is not an ancestor of the current theory.

Example

- load "combinTheory";

> val it = () : unit

- constants "combin";

> val it = [‘$o‘, ‘W‘, ‘S‘, ‘K‘, ‘I‘, ‘combin$C‘] : term list

See also
Theory.types, Theory.current axioms, Theory.current definitions,

Theory.current theorems.

CONTR 169

CONTR (Drule)

CONTR : term -> thm -> thm

Synopsis
Implements the intuitionistic contradiction rule.

Description
When applied to a term t and a theorem A |- F, the inference rule CONTR returns the
theorem A |- t.

A |- F

-------- CONTR t

A |- t

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.

See also
Thm.CCONTR, Drule.CONTRAPOS, Tactic.CONTR TAC, Thm.NOT ELIM.

CONTR_TAC (Tactic)

CONTR_TAC : thm_tactic

Synopsis
Solves any goal from contradictory theorem.

Description
When applied to a contradictory theorem A’ |- F, and a goal A ?- t, the tactic
CONTR_TAC completely solves the goal. This is an invalid tactic unless A’ is a subset
of A.

A ?- t

======== CONTR_TAC (A’ |- F)

170 CHAPTER 1. ENTRIES

Failure
Fails unless the theorem is contradictory, i.e. has F as its conclusion.

See also
Tactic.CHECK ASSUME TAC, Drule.CONTR, Thm.CCONTR, Drule.CONTRAPOS, Thm.NOT ELIM.

CONTRAPOS (Drule)

CONTRAPOS : (thm -> thm)

Synopsis
Deduces the contrapositive of an implication.

Description
When applied to a theorem A |- s ==> t, the inference rule CONTRAPOS returns its con-
trapositive, A |- ~t ==> ~s.

A |- s ==> t

---------------- CONTRAPOS

A |- ~t ==> ~s

Failure
Fails unless the theorem is an implication.

See also
Thm.CCONTR, Drule.CONTR, Conv.CONTRAPOS CONV, Thm.NOT ELIM.

CONTRAPOS_CONV (Conv)

CONTRAPOS_CONV : conv

Synopsis
Proves the equivalence of an implication and its contrapositive.

Description
When applied to an implication P ==> Q, the conversion CONTRAPOS_CONV returns the
theorem:

CONV RULE 171

|- (P ==> Q) = (~Q ==> ~P)

Failure
Fails if applied to a term that is not an implication.

See also
Drule.CONTRAPOS.

CONV_RULE (Conv)

CONV_RULE : (conv -> thm -> thm)

Synopsis
Makes an inference rule from a conversion.

Description
If c is a conversion, then CONV_RULE c is an inference rule that applies c to the conclu-
sion of a theorem. That is, if c maps a term "t" to the theorem |- t = t’, then the
rule CONV_RULE c infers |- t’ from the theorem |- t. More precisely, if c "t" returns
A’ |- t = t’, then:

A |- t

-------------- CONV_RULE c

A u A’ |- t’

Note that if the conversion c returns a theorem with assumptions, then the resulting
inference rule adds these to the assumptions of the theorem it returns.

Failure
CONV_RULE c th fails if c fails when applied to the conclusion of th. The function re-
turned by CONV_RULE c will also fail if the ML function c:term->thm is not, in fact, a
conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
Tactic.CONV TAC, Conv.RIGHT CONV RULE.

CONV_TAC (Tactic)

CONV_TAC : (conv -> tactic)

172 CHAPTER 1. ENTRIES

Synopsis
Makes a tactic from a conversion.

Description
If c is a conversion, then CONV_TAC c is a tactic that applies c to the goal. That is, if c
maps a term "g" to the theorem |- g = g’, then the tactic CONV_TAC c reduces a goal g
to the subgoal g’. More precisely, if c "g" returns A’ |- g = g’, then:

A ?- g

=============== CONV_TAC c

A ?- g’

Note that the conversion c should return a theorem whose assumptions are also among
the assumptions of the goal (normally, the conversion will returns a theorem with no
assumptions). CONV_TAC does not fail if this is not the case, but the resulting tactic will be
invalid, so the theorem ultimately proved using this tactic will have more assumptions
than those of the original goal.

Failure
CONV_TAC c applied to a goal A ?- g fails if c fails when applied to the term g. The
function returned by CONV_TAC c will also fail if the ML function c:term->thm is not, in
fact, a conversion (i.e. a function that maps a term t to a theorem |- t = t’).

Uses
CONV_TAC is used to apply simplifications that can’t be expressed as equations (rewrite
rules). For example, a goal can be simplified by beta-reduction, which is not expressible
as a single equation, using the tactic

CONV_TAC(DEPTH_CONV BETA_CONV)

The conversion BETA_CONV maps a beta-redex "(\x.u)v" to the theorem

|- (\x.u)v = u[v/x]

and the ML expression (DEPTH_CONV BETA_CONV) evaluates to a conversion that maps
a term "t" to the theorem |- t=t’ where t’ is obtained from t by beta-reducing all
beta-redexes in t. Thus CONV_TAC(DEPTH_CONV BETA_CONV) is a tactic which reduces beta-
redexes anywhere in a goal.

See also
Conv.CONV RULE.

current axioms 173

current_axioms (Theory)

current_axioms : unit -> (string * thm) list

Synopsis
Return the axioms in the current theory segment.

Description
An invocation current_axioms() returns a list of the axioms asserted in the current
theory segment.

Failure
Never fails. If no axioms have been asserted, the empty list is returned.

See also
Theory.current theory, Theory.new theory, Theory.current definitions,

Theory.current theorems, Theory.constants, Theory.types, Theory.parents.

current_definitions (Theory)

current_definitions : unit -> (string * thm) list

Synopsis
Return the definitions in the current theory segment.

Description
An invocation current_definitions() returns the list of definitions stored in the current
theory segment. Every definition is automatically stored in the current segment by the
primitive definition principles.

Advanced definition principles are built in terms of the primitives, so they also store
their results in the cuurent segment. However, the definitions may be quite far removed
from the user input, and they may also store some consequences of the definition as
theorems.

Failure
Never fails. If no definitions have been made, the empty list is returned.

174 CHAPTER 1. ENTRIES

See also
Theory.current theory, Theory.new theory, Theory.current axioms,

Theory.current theorems, Theory.constants, Theory.types, Theory.parents,

Definition.new definition, Definition.new specification,

Definition.new type definition, TotalDefn.Define, IndDefLib.Hol reln.

current_defs (Theory)

current_defs : unit -> (string * thm) list

Synopsis
Return the definitions in the current theory segment.

Description
An invocation current_defs () returns a list of the definitions made in the current the-
ory segment.

Failure
Never fails. If no definitions have been made, the empty list is returned.

See also
Theory.current theory, Theory.new theory, Theory.current axioms,

Theory.current thms, Theory.constants, Theory.types, Theory.parents.

current_theorems (Theory)

current_theorems : unit -> (string * thm) list

Synopsis
Return the theorems stored in the current theory segment.

Description
An invocation current_theorems () returns the list of theorems stored in the current
theory segment.

Failure
Never fails. If no theorems have been stored, the empty list is returned.

current theory 175

See also
Theory.current theory, Theory.new theory, Theory.current definitions,

Theory.current theorems, Theory.constants, Theory.types, Theory.parents.

current_theory (Theory)

current_theory : unit -> string

Synopsis
Returns the name of the current theory segment.

Description
A HOL session has a notion of ‘current theory’. There are two senses to this phrase. First,
the current theory denotes the totality of all loaded theories plus whatever definitions,
axioms, and theorems have been stored in the current session. In this sense, the current
theory is the full logical context being used at the moment. This logical context can
be extended in two ways: (a) by loading in prebuilt theories residing on disk; and
(b) by making a definition, asserting an axiom, or storing a theorem. Therefore, the
current theory consists of a body of prebuilt theories that have been loaded from disk (a
collection of static components) plus whatever has been stored in the current session.

This latter component — what has been stored in the current session — embodies
the second sense of ‘current theory’. It is more properly known as the ‘current theory
segment’. The current segment is dynamic in nature, for its contents can be augmented
and overwritten. It functions as a kind of scratchpad used to help build a static theory
segment.

In a HOL session, there is always a single current theory segment. Its name is given by
calling current_theory(). On startup, the current theory segment is called "scratch",
which is just a default name. If one is just experimenting, or hacking about, then this
segment can be used.

On the other hand, if one intends to build a static theory segment, one usually creates
a new theory segment named thy by calling new_theory thy. This changes the value
of current_theory to thy. Once such a theory segment has been built (which may take
many sessions), one calls export_theory, which exports the stored elements to disk.

Example

- current_theory();

> val it = "scratch" : string

176 CHAPTER 1. ENTRIES

- new_theory "foo";

<<HOL message: Created theory "foo">>

> val it = () : unit

- current_theory();

> val it = "foo" : string

Failure
Never fails.

See also
Theory.new theory, Theory.export theory.

current_thms (Theory)

current_thms : unit -> (string * thm) list

Synopsis
Return the theorems stored in the current theory segment.

Description
An invocation current_thms () returns a list of the theorems that have been stored in
the current theory segment.

Failure
Never fails. If no theorems have been stored, the empty list is returned.

See also
Theory.current theory, Theory.new theory, Theory.current defs,

Theory.current thms, Theory.constants, Theory.types, Theory.parents.

current_trace (Feedback)

current_trace : string -> int

curry 177

Synopsis
Returns the current value of the tracing variable specified.

Failure
Fails if the name given is not associated with a registered tracing variable.

See also
Feedback.register trace, Feedback.reset trace, Feedback.reset traces,

Feedback.trace, Feedback.traces.

curry (Lib)

curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

Synopsis
Converts a function on a pair to a corresponding curried function.

Description
The application curry f returns fn x => fn y => f(x,y), so that

curry f x y = f(x,y)

Failure
A call curry f never fails; however, curry f x y fails if f (x,y) fails.

Example

- val increment = curry op+ 1;

> val it = increment = fn : int -> int

- increment 6;

> val it = 7 : int

See also
Lib, Lib.uncurry.

CURRY_CONV (PairRules)

CURRY_CONV : conv

178 CHAPTER 1. ENTRIES

Synopsis
Currys an application of a paired abstraction.

Example

- CURRY_CONV (Term ‘(\(x,y). x + y) (1,2)‘);

> val it = |- (\(x,y). x + y) (1,2) = (\x y. x + y) 1 2 : thm

- CURRY_CONV (Term ‘(\(x,y). x + y) z‘);

> val it = |- (\(x,y). x + y) z = (\x y. x + y) (FST z) (SND z) : thm

Failure
CURRY_CONV tm fails if tm is not an application of a paired abstraction.

See also
PairRules.UNCURRY CONV.

CURRY_EXISTS_CONV (PairRules)

CURRY_EXISTS_CONV : conv

Synopsis
Currys paired existential quantifications into consecutive existential quantifications.

Example

- CURRY_EXISTS_CONV (Term ‘?(x,y). x + y = y + x‘);

> val it = |- (?(x,y). x + y = y + x) = ?x y. x + y = y + x : thm

- CURRY_EXISTS_CONV (Term ‘?((w,x),(y,z)). w+x+y+z = z+y+x+w‘);

> val it =

|- (?((w,x),y,z). w + x + y + z = z + y + x + w) =

?(w,x) (y,z). w + x + y + z = z + y + x + w : thm

Failure
CURRY_EXISTS_CONV tm fails if tm is not a paired existential quantification.

See also
PairRules.CURRY CONV, PairRules.UNCURRY CONV, PairRules.UNCURRY EXISTS CONV,

PairRules.CURRY FORALL CONV, PairRules.UNCURRY FORALL CONV.

CURRY FORALL CONV 179

CURRY_FORALL_CONV (PairRules)

CURRY_FORALL_CONV : conv

Synopsis
Currys paired universal quantifications into consecutive universal quantifications.

Example

- CURRY_FORALL_CONV (Term ‘!(x,y). x + y = y + x‘);

> val it = |- (!(x,y). x + y = y + x) = !x y. x + y = y + x : thm

- CURRY_FORALL_CONV (Term ‘!((w,x),(y,z)). w+x+y+z = z+y+x+w‘);

> val it =

|- (!((w,x),y,z). w + x + y + z = z + y + x + w) =

!(w,x) (y,z). w + x + y + z = z + y + x + w : thm

Failure
CURRY_FORALL_CONV tm fails if tm is not a paired universal quantification.

See also
PairRules.CURRY CONV, PairRules.UNCURRY CONV, PairRules.UNCURRY FORALL CONV,

PairRules.CURRY EXISTS CONV, PairRules.UNCURRY EXISTS CONV.

data (DB)

type data

Synopsis
Type abbreviation used in DB structure.

Description
When functions from the DB structure are used to query the current theory, answer are
often phrased in terms of the data type, which is a type abbreviation declared as

type data = (string * string) * (thm * class)

180 CHAPTER 1. ENTRIES

An element ((thy,name), (th,cl)) means that th is a theorem with classification
class, stored in theory segment thy under name.

Example

- DB.find "BOOL_CASES_AX";

> val it = [(("bool", "BOOL_CASES_AX"),

(|- !t. (t = T) \/ (t = F), Axm))]

: ((string * string) * (thm * class)) list

See also
DB.class, DB.thy, DB.find, DB.match, DB.apropos, DB.listDB.

datatype_theorems (EmitTeX)

dataype_theorems : string -> (string * thm) list

Synopsis
All the datatype theorems stored in the named theory.

Description
An invocation datatype_theorems thy, where thy is the name of a currently loaded the-
ory segment, will return a list of the datatype theorems stored in that theory. Each
theorem is paired with the name of the datatype in the result. The string ”-” may be
used to denote the current theory segment.

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- new_theory "example";

<<HOL message: Created theory "example">>

> val it = () : unit

- val _ = Hol_datatype ‘example = First | Second‘;

<<HOL message: Defined type: "example">>

- EmitTeX.datatype_theorems "example";

> val it = [("example", |- DATATYPE (example First Second))] :

(string * thm) list

datatype thm to string 181

See also
DB.theorems, bossLib.Hol datatype.

datatype_thm_to_string (EmitTeX)

datatype_thm_to_string : thm -> string

Synopsis
Converts a datatype theorem to a string.

Description
An invocation of datatype_thm_to_string thm, where thm is a datatype theorem pro-
duced by Hol_datatype, will return a string that corresponds with the orginal datatype
declaration.

Failure
Will fail if the supplied theorem is not a datatype theorem, as created by Hol_datatype.

Example

- new_theory "example";

<<HOL message: Created theory "example">>

> val it = () : unit

- val _ = Hol_datatype ‘example = First | Second‘;

<<HOL message: Defined type: "example">>

- EmitTeX.datatype_thm_to_string (theorem "datatype_example");

> val it = "example = First | Second" : string

See also
bossLib.Hol datatype.

DECIDE (bossLib)

DECIDE : term -> thm

182 CHAPTER 1. ENTRIES

Synopsis
Invoke decision procedure(s).

Description
An application DECIDE M, where M is a boolean term, attempts to prove M using a propo-
sitional tautology checker and a linear arithmetic decision procedure.

Failure
The invocation fails if M is not of boolean type. It also fails if M is not a tautology or an
instance of a theorem of linear arithmetic.

Example

- DECIDE (Term ‘p /\ p /\ r ==> r‘);

> val it = |- p /\ p /\ r ==> r : thm

- DECIDE (Term ‘x < 17 /\ y < 26 ==> x + y < 17 + 26‘);

> val it = |- x < 17 /\ y < 26 ==> x + y < 17 + 26 : thm

Comments
DECIDE is currently somewhat underpowered. Formerly it was implemented by a coop-
erating decision procedure mechanism. However, most proofs seemed to go somewhat
smoother with simplification using the arith_ss simpset, so we have adopted a simpler
implementation. That should not be taken as final, since cooperating decision proce-
dures are an important component in highly automated proof systems.

See also
bossLib.RW TAC, bossLib.arith ss.

DECIDE_TAC (bossLib)

DECIDE_TAC : tactic

Synopsis
Invoke decision procedure(s).

Description
DECIDE_TAC is the tactical version of DECIDE.

declare ring 183

Failure
As for DECIDE

See also
bossLib.DECIDE.

declare_ring (ringLib)

declare_ring :

{ Name : string, Theory : thm, Const : term->bool, Rewrites : thm list } ->

{ NormConv : conv, EqConv : conv,

Reify : term list -> {Metamap : term, Poly : term list} }

Synopsis
Simplification and conversion in an arbitrary ring or semi-ring theory.

Description
Given a record gathering information about a ring structure, declare_ring returns two
conversions NormConv and EqConv. The former does simplifications on any ring expres-
sion. Ring expressions are HOL terms built on the ring operations and the constants (or
values) of that ring. Other subterms are abstracted and considered as variables.

The simplification of the expression (that can be seen as a polynomial) consists in
developing, reordering monomials and grouping terms of same degree. EqConv solves
an equality by simplifying both sides, and then using reflexivity. This cannot exactly be
achieved by applying NormConv on both hand sides, since the variable ordering is not
necessarily the same for both sides, and then applying reflexivity may not be enough.

The input structure contains various information about the ring: field Name is a prefix
that will be used when declaring new constants for internal use of the conversions.
Theory is a proof that a given structure is a ring or a semi-ring. Const is a predicate on
HOL terms that defines the constants of the ring. Rewrites is a bunch of rewrites that
should allow to compute the ring operations and also decide equality upon constants. If
(Const c1) and (Const c2) then (c1 + c2) and (c1 * c2) should simplify to terms c and
c’ such that (Const c) and (Const c’), and also (c1 = c2) should simplify to either T or F.

Example
Assuming we have proved that the integers form a ring, and gathered all required infor-
mation in int_ring_infos, we can build the conversions and simplify or solve symbolic
equations on integers:

184 CHAPTER 1. ENTRIES

- val {EqConv=INT_RING_CONV, NormConv=INT_NORM_CONV,...} =

ringLib.declare_ring int_ring_infos

> val INT_RING_CONV = fn : Term.term -> Thm.thm

val INT_NORM_CONV = fn : Term.term -> Thm.thm

- INT_NORM_CONV (--‘(a+b)*(a+b):int‘--);

> val it = |- (a + b) * (a + b) = a * a + (2 * (a * b) + b * b) : Thm.thm

- INT_RING_CONV (--‘(a+b)*(a+b) = (b+a)*(b+a):int‘--);

> val it = |- ((a + b) * (a + b) = (b + a) * (b + a)) = T : Thm.thm

These conversions can also be used like reduceLib, but will evaluate only sums, prod-
ucts and unary negation:

- INT_NORM_CONV (--‘ ~(3 * (9 + ~7)) ‘--);

> val it = |- ~(3 * (9 + ~7)) = ~6 : Thm.thm

- INT_NORM_CONV (--‘ ~(3 * (10 - 1 + ~7)) ‘--);

> val it = |- ~(3 * (10 - 1 + ~7)) = 21 + ~3 * (10 - 1) : Thm.thm

Failure
If the Theory theorem is not of the form —- is ring r or —- is semi ring r or if Name is
not allowed to start a constant identifier.

The returned conversions fail on terms that do not belong to the type of the ring, but
does not fail if no rewrite has been done.

decls (Term)

decls : string -> term list

Synopsis
Returns a list of constants having the same name.

Description
An invocation Term.decls s returns a list of constants found in the current theory having
the name s. If there are no constants with name s, then the empty list is returned.

Failure
Never fails.

Example

decls 185

- decls "+";

> val it = [‘$+‘] : term list

- map dest_thy_const it;

> val it = [{Name = "+", Thy = "arithmetic", Ty = ‘:num -> num -> num‘}] : ...

Comments
Useful for untangling confusion arising from overloading and also the possibility to
declare two different constants with the same name in different theories.

See also
Type.decls, Term.dest thy const.

decls (Type)

decls : string -> {Thy : string, Tyop : string} list

Synopsis
Lists all theories a named type operator is declared in.

Description
An invocation Type.decls s finds all theories in the ancestry of the current theory with
a type constant having the given name.

Failure
Never fails.

Example

- Type.decls "prod";

> val it = [{Thy = "pair", Tyop = "prod"}] : {Thy:string, Tyop:string} list

Comments
There is also a function Term.decls that performs a similar operation on term constants.

See also
Theory.ancestry, Term.decls, Theory.constants.

186 CHAPTER 1. ENTRIES

Define (bossLib)

Define : term quotation -> thm

Synopsis
General-purpose function definition facility.

Description
Define takes a high-level specification of an HOL function, and attempts to define the
function in the logic. If this attempt is successful, the specification is derived from
the definition. The derived specification is returned to the user, and also stored in
the current theory. Define may be used to define abbreviations, recursive functions,
and mutually recursive functions. An induction theorem may be stored in the current
theory as a by-product of Define’s activity. This induction theorem follows the recursion
structure of the function, and may be useful when proving properties of the function.
Define takes as input a quotation representing a conjunction of equations. The speci-

fied function(s) may be phrased using ML-style pattern-matching. A call Define ‘<spec>‘

should conform with the following grammar:

spec ::= <eqn>

| (<eqn>) /\ <spec>

eqn ::= <alphanumeric> <pat> ... <pat> = <term>

pat ::= <variable>

| <wildcard>

| <cname> (* 0-ary constructor *)

| (<cname>_n <pat>_1 ... <pat>_n) (* constructor appl. *)

cname ::= <alphanumeric> | <symbolic>

wildcard ::= _

| _<wildcard>

When processing the specification of a recursive function, Define must perform a termi-
nation proof. It automatically constructs termination conditions for the function, and
invokes a termination prover in an attempt to prove the termination conditions.

Define 187

If the function is primitive recursive, in the sense that it exactly follows the recursion
pattern of a previously declared HOL datatype, then this proof always succeeds, and
Define stores the derived equations in the current theory segment. Otherwise, the func-
tion is not an instance of primitive recursion, and the termination prover may succeed
or fail.

If it succeeds, then Define stores the specified equations in the current theory seg-
ment. An induction theorem customized for the defined function is also stored in the
current segment. Note, however, that an induction theorem is not stored for primitive
recursive functions, since that theorem would be identical to the induction theorem
resulting from the declaration of the datatype.

If the termination proof fails, then Define fails.
In general, Define attempts to derive exactly the specified conjunction of equations.

However, the rich syntax of patterns allows some ambiguity. For example, the input

Define ‘(f 0 _ = 1)

/\ (f _ 0 = 2)‘

is ambiguous at f 0 0: should the result be 1 or 2? The system attempts to resolve
this ambiguity in the same way as compilers and interpreters for functional languages.
Namely, a conjunction of equations is treated as being processed left-conjunct first, fol-
lowed by processing the right conjunct. Therefore, in the example above, the right-hand
side of the first clause is taken as the value of f 0 0. In the implementation, ambi-
guities arising from such overlapping patterns are systematically translated away in a
pre-processing step.

Another case of vagueness in patterns is shown above: the specification is ‘incomplete‘
since it does not tell us how f should behave when applied to two non-zero arguments:
e.g., f (SUC m) (SUC n). In the implementation, such missing clauses are filled in, and
have the value ARB. This ‘pattern-completion‘ step is a way of turning descriptions of
partial functions into total functions suitable for HOL. However, since the user has not
completely specified the function, the system takes that as a hint that the user is not
interested in using the function at the missing-but-filled-in clauses, and so such clauses
are dropped from the final theorem.

In summary, Define will derive the unambiguous and complete equations

|- (f 0 (SUC v4) = 1) /\

(f 0 0 = 1) /\

(f (SUC v2) 0 = 2)

(f (SUC v2) (SUC v4) = ARB)

from the above ambiguous and incomplete equations. The odd-looking variable names
are due to the pre-processing steps described above. The above result is only an inter-
mediate value: in the final result returned by Define, the last equation is droppped:

188 CHAPTER 1. ENTRIES

|- (f 0 (SUC v4) = 1) /\

(f 0 0 = 1) /\

(f (SUC v2) 0 = 2)

Define automatically generates names with which to store the definition and, (if it
exists) the associated induction theorem, in the current theory. The name for storing
the definition is built by concatenating the name of the function with the value of the
reference variable Defn.def_suffix. The name for storing the induction theorem is
built by concatenating the name of the function with the value of the reference variable
Defn.ind_suffix. For mutually recursive functions, where there is a choice of names,
the name of the function in the first clause is taken.

Since the names used to store elements in the current theory segment are transformed
into ML bindings after the theory is exported, it is required that every invocation of
Define generates names that will be valid ML identifiers. For this reason, Define requires
alphanumeric function names. If one wishes to define symbolic identifiers, the ML
function xDefine should be used.

Failure
Define fails if its input fails to parse and typecheck.
Define fails if the name of the function being defined is not alphanumeric.
Define fails if there are more free variables on the right hand sides of the recursion

equations than the left.
Define fails if it cannot prove the termination of the specified recursive function. In

that case, one has to embark on the following multi-step process in order to get the
same effect as if Define had succeeded: (1) construct the function and synthesize its
termination conditions with Hol_defn; (2) set up a goal to prove the termination con-
ditions with tgoal; (3) interactively prove the termination conditions, starting with an
invocation of WF_REL_TAC; and (4) package everything up with an invocation of tDefine.

Example
We will give a number of examples that display the range of functions that may be
defined with Define. First, we have a recursive function that uses ”destructors” in the
recursive call. Since fact is not primitive recursive, an induction theorem for fact is
generated and stored in the current theory.

Define ‘fact x = if x = 0 then 1 else x * fact(x-1)‘;

Equations stored under "fact_def".

Induction stored under "fact_ind".

> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

Define 189

- DB.fetch "-" "fact_ind";

> val it =

|- !P. (!x. (~(x = 0) ==> P (x - 1)) ==> P x) ==> !v. P v : thm

Next we have a recursive function with relatively complex pattern-matching. We omit
to examine the generated induction theorem.

Define ‘(flatten [] = [])

/\ (flatten ([]::rst) = flatten rst)

/\ (flatten ((h::t)::rst) = h::flatten(t::rst))‘

<<HOL message: inventing new type variable names: ’a>>

Equations stored under "flatten_def".

Induction stored under "flatten_ind".

> val it =

|- (flatten [] = []) /\

(flatten ([]::rst) = flatten rst) /\

(flatten ((h::t)::rst) = h::flatten (t::rst)) : thm

Next we define a curried recursive function, which uses wildcard expansion and pattern-
matching pre-processing.

Define ‘(min (SUC x) (SUC y) = min x y + 1)

/\ (min ____ ____ = 0)‘;

Equations stored under "min_def".

Induction stored under "min_ind".

> val it =

|- (min (SUC x) (SUC y) = min x y + 1) /\

(min (SUC v2) 0 = 0) /\

(min 0 v1 = 0) : thm

Next we make a primitive recursive definition. Note that no induction theorem is gen-
erated in this case.

Define ‘(filter P [] = [])

/\ (filter P (h::t) = if P h then h::filter P t else filter P t)‘;

<<HOL message: inventing new type variable names: ’a>>

190 CHAPTER 1. ENTRIES

Definition has been stored under "filter_def".

> val it =

|- (!P. filter P [] = []) /\

!P h t. filter P (h::t) =

(if P h then h::filter P t else filter P t) : thm

Define may also be used to define mutually recursive functions. For example, we can
define a datatype of propositions and a function for putting a proposition into negation
normal form as follows. First we define a datatype for boolean formulae (prop):

- Hol_datatype

‘prop = VAR of ’a

| NOT of prop

| AND of prop => prop

| OR of prop => prop‘;

> val it = () : unit

Then two mutually recursive functions nnfpos and nnfneg are defined:

- Define

‘(nnfpos (VAR x) = VAR x)

/\ (nnfpos (NOT p) = nnfneg p)

/\ (nnfpos (AND p q) = AND (nnfpos p) (nnfpos q))

/\ (nnfpos (OR p q) = OR (nnfpos p) (nnfpos q))

/\ (nnfneg (VAR x) = NOT (VAR x))

/\ (nnfneg (NOT p) = nnfpos p)

/\ (nnfneg (AND p q) = OR (nnfneg p) (nnfneg q))

/\ (nnfneg (OR p q) = AND (nnfneg p) (nnfneg q))‘;

The system returns:

<<HOL message: inventing new type variable names: ’a>>

Equations stored under "nnfpos_def".

Induction stored under "nnfpos_ind".

> val it =

|- (nnfpos (VAR x) = VAR x) /\

(nnfpos (NOT p) = nnfneg p) /\

(nnfpos (AND p q) = AND (nnfpos p) (nnfpos q)) /\

Define 191

(nnfpos (OR p q) = OR (nnfpos p) (nnfpos q)) /\

(nnfneg (VAR x) = NOT (VAR x)) /\

(nnfneg (NOT p) = nnfpos p) /\

(nnfneg (AND p q) = OR (nnfneg p) (nnfneg q)) /\

(nnfneg (OR p q) = AND (nnfneg p) (nnfneg q)) : thm

Define may also be used to define non-recursive functions.

Define ‘f x (y,z) = (x + 1 = y DIV z)‘;

Definition has been stored under "f_def".

> val it = |- !x y z. f x (y,z) = (x + 1 = y DIV z) : thm

Define may also be used to define non-recursive functions with complex pattern-
matching. The pattern-matching pre-processing of Define can be convenient for this
purpose, but can also generate a large number of equations. For example:

Define ‘(g (0,_,_,_,_) = 1) /\

(g (_,0,_,_,_) = 2) /\

(g (_,_,0,_,_) = 3) /\

(g (_,_,_,0,_) = 4) /\

(g (_,_,_,_,0) = 5)‘

yields a definition with thirty-one clauses.

Comments
In an eqn, no variable can occur more than once on the left hand side of the equation.

In HOL, constructors are curried functions, unlike in ML. When used in a pattern, a
constructor must be fully applied to its arguments.

Also unlike ML, a pattern variable in a clause of a definition is not distinct from
occurrences of that variable in other clauses.
Define translates a wildcard into a new variable, which is named to be different from

any other variable in the function definition. As in ML, wildcards are not allowed to
occur on the right hand side of any clause in the definition.

An induction theorem generated in the course of processing an invocation of Define
can be applied by recInduct.

Invoking Define on a conjunction of non-recursive clauses having complex pattern-
matching will result in an induction theorem being stored. This theorem may be useful
for case analysis, and can be applied by recInduct.
Define takes a ‘quotation‘ as an argument. Some might think that the input to Define

should instead be a term. However, some important pre-processing happens in Define

that would not be possible if the input was a term.

192 CHAPTER 1. ENTRIES

Define is a mechanization of a well-founded recursion theorem (relationTheory.WFREC_COROLLARY).
Define currently has a rather weak termination prover. For example, it always fails to

prove the termination of nested recursive functions.
bossLib.Define is most commonly used. TotalDefn.Define is identical to bossLib.Define,

except that the TotalDefn structure comes with less baggage—it depends only on numLib

and pairLib.
Define automatically adds the definition it makes into the hidden ‘compset‘ accessed

by EVAL and EVAL_TAC.

See also
bossLib.tDefine, bossLib.xDefine, TotalDefn.DefineSchema, bossLib.Hol defn,

Defn.tgoal, Defn.tprove, bossLib.WF REL TAC, bossLib.recInduct, bossLib.EVAL,

bossLib.EVAL TAC.

Define (TotalDefn)

Define : term quotation -> thm

Synopsis
General purpose function definition facility.

Description
bossLib.Define is identical to TotalDefn.Define.

See also
bossLib.Define.

Define_mk_ptree (patriciaLib)

Define_mk_ptree : string -> term_ptree -> thm

Synopsis
Define a new Patricia tree constant.

Description
A call to Define_mk_ptree c t builds a HOL Patricia tree from the ML tree t and uses
this to define a new constant c. This provides and efficient mechanism to define

Define mk ptree 193

large patricia trees in HOL: the trees can be quickly built in ML and then imported
into HOL via patriciaLib.mk_ptree. Provided the tree is not too large, a side-effect
of Define_mk_ptree is to prove the theorem |- IS_PTREE c. This is controlled by the
reference is_ptree_term_size_limit.

To avoid producing large terms, a call to EVAL will not expand out the definition of
the new constant c. However, it will efficiently evaluate operations performed on c, e.g.
PEEK c n for ground n.

Failure
Define_mk_ptree will fail when patriciaLib.mk_ptree fails.

Example
The following session shows the construction of Patricia trees in ML, which are then
imported into HOL.

open patriciaLib;

...

> val ptree = Define_mk_ptree "ptree" (int_ptree_of_list [(1,‘‘1‘‘), (2, ‘‘2‘‘)]);

<<HOL message: Saved IS_PTREE theorem for new constant "ptree">>

val ptree = |- ptree = Branch 0 0 (Leaf 1 1) (Leaf 2 2): thm

> DB.theorem "ptree_is_ptree_thm";

val it = |- IS_PTREE ptree: thm

> val _ = Globals.max_print_depth := 7;

> let

fun pp _ _ (_: term_ptree) = PolyML.PrettyString "<ptree>"

in

PolyML.addPrettyPrinter pp

end;

val it = (): unit

> val random_ptree =

real_time patriciaLib.ptree_of_ints

(Random.rangelist (0,100000) (10000,Random.newgenseed 1.0));

realtime: 0.091s

val random_ptree = <ptree>: term_ptree

> val random = real_time (patriciaLib.Define_mk_ptree "random") random_ptree;

<<HOL warning: patriciaLib.Define_ptree: Failed to prove IS_PTREE (is_ptree_term_size_limit might be too small).>>

realtime: 0.196s

val random =

194 CHAPTER 1. ENTRIES

|- random =

Branch 0 0

(... ... 1 (... ... (... ...))

(... ... (... ...) (... ... (... ...))))

(Branch 0 1 (... ... (... ...) (... ... (... ...)))

(... ... 2 (... ... (... ...))

(... ... (... ...) (... ... (... ...))))):

thm

> patriciaLib.size random_ptree;

val it = 9517: int

> real_time EVAL ‘‘SIZE random‘‘;

realtime: 3.531s

val it = |- SIZE random = 9517: thm

> int_peek random_ptree 3;

val it = SOME ‘‘()‘‘: term option

> real_time EVAL ‘‘random ’ 3‘‘;

realtime: 0.004s

val it = |- random ’ 3 = SOME (): thm

> int_peek random_ptree 100;

val it = NONE: term option

> real_time EVAL ‘‘random ’ 100‘‘;

realtime: 0.004s

val it = |- random ’ 100 = NONE: thm

See also
patriciaLib.mk ptree, patriciaLib.PTREE CONV, patriciaLib.PTREE DEFN CONV.

define_new_type_bijections (Drule)

define_new_type_bijections :

{name:string, ABS:string, REP:string, tyax:thm} -> thm

Synopsis
Introduces abstraction and representation functions for a defined type.

DefineSchema 195

Description
The result of making a type definition using new_type_definition is a theorem of the
following form:

|- ?rep:nty->ty. TYPE_DEFINITION P rep

which asserts only the existence of a bijection from the type it defines (in this case, nty)
to the corresponding subset of an existing type (here, ty) whose characteristic function
is specified by P. To automatically introduce constants that in fact denote this bijection
and its inverse, the ML function define_new_type_bijections is provided.
name is the name under which the constant definition (a constant specification, in fact)

made by define_new_type_bijections will be stored in the current theory segment. tyax
must be a definitional axiom of the form returned by new_type_definition. ABS and
REP are the user-specified names for the two constants that are to be defined. These
constants are defined so as to denote mutually inverse bijections between the defined
type, whose definition is given by tyax, and the representing type of this defined type.

If th is a theorem of the form returned by new_type_definition:

|- ?rep:newty->ty. TYPE_DEFINITION P rep

then evaluating:

define_new_type_bijections{name="name",ABS="abs",REP="rep",tyax=th} th

automatically defines two new constants abs:ty->newty and rep:newty->ty such that:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

This theorem, which is the defining property for the constants abs and rep, is stored
under the name name in the current theory segment. It is also the value returned by
define_new_type_bijections. The theorem states that abs is the left inverse of rep and,
for values satisfying P, that rep is the left inverse of abs.

Failure
A call define_new_type_bijections{name,ABS,REP,tyax} fails if tyax is not a theorem of
the form returned by new_type_definition.

See also
Definition.new type definition, Prim rec.prove abs fn one one,

Prim rec.prove abs fn onto, Drule.prove rep fn one one, Drule.prove rep fn onto.

DefineSchema (TotalDefn)

DefineSchema : term quotation -> thm

196 CHAPTER 1. ENTRIES

Synopsis
Defines a recursion schema

Description
DefineSchema may be used to declare so-called ‘schematic‘ definitions, or ‘recursion
schemas‘. These are just recursive functions with extra free variables (also called ‘pa-
rameters‘) on the right-hand side of some clauses. Such schemas have been used as a
basis for program transformation systems.
DefineSchema takes its input in exactly the same format as Define.
The termination constraints of a schmatic definition are collected on the hypotheses

of the definition, and also on the hypotheses of the automatically proved induction
theorem, but a termination proof is only attempted when the termination conditions
have no occurrences of parameters. This is because, in general, termination can only be
proved after some of the parameters of the scheme have been instantiated.

Failure
DefineSchema fails in many of the same ways as Define. However, it will not fail if it
cannot prove termination.

Example
The following defines a schema for binary recursion.

- DefineSchema

‘binRec (x:’a) =

if atomic x then (A x:’b)

else join (binRec (left x))

(binRec (right x))‘;

<<HOL message: Definition is schematic in the following variables:

"A", "atomic", "join", "left", "right">>

Equations stored under "binRec_def".

Induction stored under "binRec_ind".

> val it =

[!x. ~atomic x ==> R (left x) x,

!x. ~atomic x ==> R (right x) x, WF R]

|- binRec A atomic join left right x =

if atomic x then A x

else

join (binRec A atomic join left right (left x))

(binRec A atomic join left right (right x)) : thm

definitions 197

The following defines a schema in which a termination proof is attempted successfully.

- DefineSchema ‘(map [] = []) /\ (map (h::t) = f h :: map t)‘;

<<HOL message: inventing new type variable names: ’a, ’b>>

<<HOL message: Definition is schematic in the following variables:

"f">>

Equations stored under "map_def".

Induction stored under "map_ind".

> val it = [] |- (map f [] = []) /\ (map f (h::t) = f h::map f t) : thm

The easy termination proof is attempted because the schematic variable f doesn’t occur
in the termination conditions.

Comments
The original recursion equations, in which parameters only occur on right hand sides,
is transformed into one in which the parameters become arguments to the function
being defined. This is the expected behaviour. If an argument intended as a parameter
occurs on the left hand side in the original recursion equations, it becomes universally
quantified in the termination conditions, which is not desirable for a schema.

See also
TotalDefn.Define, Defn.Hol defn.

definitions (DB)

definitions : string -> (string * thm) list

Synopsis
All the definitions stored in the named theory.

Description
An invocation definitions thy, where thy is the name of a currently loaded theory
segment, will return a list of the definitions stored in that theory. Each definition is
paired with its name in the result. The string "-" may be used to denote the current
theory segment.

198 CHAPTER 1. ENTRIES

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- definitions "combin";

> val it =

[("C_DEF", |- combin$C = (\f x y. f y x)),

("I_DEF", |- I = S K K),

("K_DEF", |- K = (\x y. x)),

("o_DEF", |- !f g. f o g = (\x. f (g x))),

("S_DEF", |- S = (\f g x. f x (g x))),

("W_DEF", |- W = (\f x. f x x))] : (string * thm) list

See also
DB.thy, DB.fetch, DB.thms, DB.theorems, DB.axioms, DB.listDB.

delete_binding (Theory)

delete_binding : string -> unit

Synopsis
Remove a stored value from the current theory segment.

Description
An invocation delete_binding s attempts to locate an axiom, definition, or theorem
that has been stored under name s in the current theory segment. If such a binding can
be found, it is deleted.

Failure
Never fails. If the binding can’t be found, then nothing is removed from the current
theory segment.

Example

- Define ‘fact x = if x=0 then 1 else x * fact (x-1)‘;

Equations stored under "fact_def".

Induction stored under "fact_ind".

delete const 199

> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

- current_theorems();

> val it =

[("fact_def", |- fact x = (if x = 0 then 1 else x * fact (x - 1))),

("fact_ind", |- !P. (!x. (~(x = 0) ==> P (x - 1)) ==> P x) ==> !v. P v)]

: (string * thm) list

- delete_binding "fact_ind";

> val it = () : unit

- current_theorems();

> val it =

[("fact_def", |- fact x = (if x = 0 then 1 else x * fact (x - 1)))]

: (string * thm) list

Comments
Removing a definition binding does not remove the constant(s) it introduced from the
signature. Use delete_const for that.

Removing an axiom has the consequence that all theorems proved from it become
garbage.

See also
Theory.scrub, Theory.delete type, Theory.delete const.

delete_const (Theory)

delete_const : string -> unit

Synopsis
Remove a term constant from the current signature.

Description
An invocation delete_const s removes the constant denoted by s from the current HOL
segment. All types, terms, and theorems that depend on that constant become garbage.

The implementation ensures that a deleted constant is never equal to a subsequently
declared constant, even if it has the same name and type. Furthermore, although
garbage types, terms, and theorems may exist in a session, and may even have been

200 CHAPTER 1. ENTRIES

stored in the current segment for export, no theorem, definition, or axiom that is
garbage is exported when export_theory is invoked.

The prettyprinter highlights deleted constants.

Failure
If a constant named s has not been declared in the current segment, a warning will be
issued, but an exception will not be raised.

Example

- Define ‘foo x = if x=0 then 1 else x * foo (x-1)‘;

Equations stored under "foo_def".

Induction stored under "foo_ind".

> val it = |- foo x = (if x = 0 then 1 else x * foo (x - 1)) : thm

- val th = EVAL (Term ‘foo 4‘);

> val th = |- foo 4 = 24 : thm

- delete_const "foo";

> val it = () : unit

- th;

> val it = |- scratch$old->foo<-old 4 = 24 : thm

Comments
A type, term, or theorem that depends on a deleted constant may be detected by invok-
ing the appropriate ‘uptodate’ entrypoint.

It may happen that a theorem th is proved with the use of another theorem th1

that subsequently becomes garbage because a constant c was deleted. If c does not
occur in th, then th does not become garbage, which may be contrary to expectation.
The conservative extension property of HOL says that th is still provable, even in the
absence of c.

See also
Theory.delete type, Theory.uptodate type, Theory.uptodate term,

Theory.uptodate thm, Theory.scrub.

DELETE_CONV (pred_setLib)

DELETE_CONV : conv -> conv

DELETE CONV 201

Synopsis
Reduce {t1;...;tn} DELETE t by deleting t from {t1;...;tn}.

Description
The function DELETE_CONV is a parameterized conversion for reducing finite sets of the
form {t1;...;tn} DELETE t, where the term t and the elements of {t1;...;tn} are
of some base type ty. The first argument to DELETE_CONV is expected to be a con-
version that decides equality between values of the base type ty. Given an equation
e1 = e2, where e1 and e2 are terms of type ty, this conversion should return the theo-
rem |- (e1 = e2) = T or the theorem |- (e1 = e2) = F, as appropriate.

Given such a conversion conv, the function DELETE_CONV returns a conversion that
maps a term of the form {t1;...;tn} DELETE t to the theorem

|- {t1;...;tn} DELETE t = {ti;...;tj}

where {ti;...;tj} is the subset of {t1;...;tn} for which the supplied equality conver-
sion conv proves

|- (ti = t) = F, ..., |- (tj = t) = F

and for all the elements tk in {t1;...;tn} but not in {ti;...;tj}, either conv proves
|- (tk = t) = T or tk is alpha-equivalent to t. That is, the reduced set {ti;...;tj}

comprises all those elements of the original set that are provably not equal to the deleted
element t.

Example
In the following example, the conversion REDUCE_CONV is supplied as a parameter and
used to test equality of the deleted value 2 with the elements of the set.

- DELETE_CONV REDUCE_CONV ‘‘{2; 1; SUC 1; 3} DELETE 2‘‘;

> val it = |- {2; 1; SUC 1; 3} DELETE 2 = {1; 3} : thm

‘

Failure
DELETE_CONV conv fails if applied to a term not of the form {t1;...;tn} DELETE t. A
call DELETE_CONV conv ‘‘{t1;...;tn} DELETE t‘‘ fails unless for each element ti of the
set {t1;...;tn}, the term t is either alpha-equivalent to ti or conv ‘‘ti = t‘‘ returns
|- (ti = t) = T or |- (ti = t) = F.

See also
pred setLib.INSERT CONV, numLib.REDUCE CONV.

202 CHAPTER 1. ENTRIES

delete_type (Theory)

delete_type : string -> unit

Synopsis
Remove a type operator from the signature.

Description
An invocation delete_type s removes the type constant denoted by s from the current
HOL segment. All types, terms, and theorems that depend on that type should therefore
disappear, as though they hadn’t been constructed in the first place. Conceptually, they
have become ”garbage” and need to be collected. However, because of the way that HOL
is implemented in ML, it is not possible to have them automatically collected. Instead,
HOL tracks the currency of type and term constants and provides some consistency
maintenance support.

In particular, the implementation ensures that a deleted type operator is never equal
to a subsequently declared type operator with the same name (and arity). Further-
more, although garbage types, terms, and theorems may exist in a session, no theorem,
definition, or axiom that is garbage is exported when export_theory is invoked.

The notion of garbage is hereditary. Any type, term, definition, or theorem is garbage
if any of its constituents are. Furthermore, if a type operator or term constant had been
defined, and its witness theorem later later becomes garbage, then that type or term is
garbage, as is anything built from it.

Failure
If a type constant named s has not been declared in the current segment, a warning will
be issued, but an exception will not be raised.

Example

new_type ("foo", 2);

> val it = () : unit

- val thm = REFL (Term ‘f:(’a,’b)foo‘);

> val thm = |- f = f : thm

- delete_type "foo";

> val it = () : unit

delta 203

- thm;

> val it = |- f = f : thm

- show_types := true;

> val it = () : unit

- thm;

> val it = |- (x :((’a, ’b) scratch$old->f<-old)) = x : thm

Comments
It’s rather dodgy to withdraw constants from the HOL signature.

It is not possible to delete constants from ancestor theories.

See also
Theory.delete const, Theory.uptodate type, Theory.uptodate term,

Theory.uptodate thm, Theory.scrub.

delta (Lib)

type ’a delta

Synopsis
A type used for telling when a function has changed its argument.

Description
The delta type is declared as follows:

datatype ’a delta = SAME | DIFF of ’a

The delta type may be used in applications where it is important to tell if a function
has changed its argument or not. As an example of this, consider mapping a function
over a large collection of elements. If only a few elements are changed, it makes sense
to re-use all those that were not changed. This can of course be handled on an ad hoc
basis; the delta type provides a mechanism for doing this systematically.

Comments
The delta type is an example of polytypism.

See also
Lib.delta apply, Lib.delta map, Lib.delta pair.

204 CHAPTER 1. ENTRIES

delta (Type)

delta : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.delta is bound to the type variable ’d.

See also
Type.alpha, Type.beta, Type.gamma, Type.bool.

delta_apply (Lib)

delta_apply : (’a -> ’a delta) -> ’a -> ’a

Synopsis
Apply a function to an argument, re-using the argument if possible.

Description
An application delta_apply f x applies f to x and, if the result is SAME, returns x. If the
result is DIFF y, then y is returned.

Failure
If f x raises exception e, then delta_apply f x raises e.

Example
Suppose we want to write a function that replaces every even integer in a list of pairs
of integers with an odd one. The most basic replacement function is therefore

- fun ireplace i = if i mod 2 = 0 then DIFF (i+1) else SAME

Applying ireplace to an arbitrary integer would yield an element of the int delta

type. It’s not seemingly useful, but it becomes useful when used with similar func-
tions for type operators. Then a delta function for pairs of integers is built by
delta_pair ireplace ireplace, and a delta function for a list of pairs of integers is
built by applying delta_map.

delta map 205

- delta_map (delta_pair ireplace ireplace)

[(1,2), (3,5), (5,7), (4,8)];

> val it = DIFF [(1,3), (3,5), (5,7), (5,9)] : (int * int) list delta

- delta_map (delta_pair ireplace ireplace)

[(1,3), (3,5), (5,7), (7,9)];

> val it = SAME : (int * int) list delta

Finally, we can move the result from the delta type to the actual type we are interested
in.

- delta_apply (delta_map (delta_pair ireplace ireplace))

[(1,2), (3,5), (5,7), (4,8)];

> val it = [(1,3), (3,5), (5,7), (5,9)] : (int * int) list

Comments
Used to change a function from one that returns an ’a delta element to one that returns
an ’a element.

See also
Lib.delta, Lib.delta map, Lib.delta pair.

delta_map (Lib)

delta_map : (’a -> ’a delta) -> ’a list -> ’a list delta

Synopsis
Apply a function to a list, sharing as much structure as possible.

Description
An application delta_map f list applies f to each member [x1,...,xn] of list. If
all applications of f return SAME, then delta_map f list returns SAME. Otherwise,
DIFF [y1,...,yn] is returned. If f xi yielded SAME, then yi is xi. Otherwise, f xi

equals DIFF yi.

Failure
If some application of f xi raises e, then delta_map f list raises e.

Example
See the example in the documentation for delta_apply.

206 CHAPTER 1. ENTRIES

See also
Lib.delta, Lib.delta apply, Lib.delta pair.

delta_pair (Lib)

delta_pair : (’a -> ’a delta) ->

(’b -> ’b delta) ->

’a * ’b -> (’a * ’b) delta

Synopsis
Apply two functions to the projections of a pair, sharing as much structure as possible.

Description
An application delta_pair f g (x,y) applies f to x and g to y. If f x equals g y equals
SAME, then SAME is returned. Otherwise DIFF (p1,p2) is returned, where p1 is x if f x

equals SAME; otherwise p1 is f x. Similarly, p2 is y if g y equals SAME; otherwise p2 is g y.

Failure
If f x raises e, then delta_pair f g (x,y) raises e.

If g y raises e, then delta_pair f g (x,y) raises e.

Example
See the example in the documentation for delta_apply.

See also
Lib.delta, Lib.delta apply, Lib.delta pair.

deprecate_int (intLib)

intLib.deprecate_int : unit -> unit

Synopsis
Makes the parser never consider integers as a numeric possibility.

deprecate int 207

Description
Calling deprecate_int() causes the parser to remove all of the standard numeric con-
stants over the integers from consideration. In addition to the standard operators (+, -,
* and others), this also affects numerals; after the call to deprecate_int these will never
be parsed as integers.

This function, by affecting the global grammar, also affects the behaviour of the
pretty-printer. A term that includes affected constants will print with those constants in
“fully qualified form”, typically as integer$op, and numerals will print with a trailing i.
(Incidentally, the parser will always read integer terms if they are presented to it in this
form.)

Failure
Never fails.

Example
First we load the integer library, ensuring that integers and natural numbers both are
possible when we type numeric expressions:

- load "intLib";

> val it = () : unit

Then, when we type such an expression, we’re warned that this is strictly ambiguous,
and a type is silently chosen for us:

- val t = ‘‘2 + x‘‘;

<<HOL message: more than one resolution of overloading was possible>>

> val t = ‘‘2 + x‘‘ : term

- type_of t;

> val it = ‘‘:int‘‘ : hol_type

Now we can use deprecate_int to stop this happening, and make sure that we just get
natural numbers:

- intLib.deprecate_int();

> val it = () : unit

- ‘‘2 + x‘‘;

> val it = ‘‘2 + x‘‘ : term

- type_of it;

> val it = ‘‘:num‘‘ : hol_type

208 CHAPTER 1. ENTRIES

The term we started out with is now printed in rather ugly fashion:

- t;

> val it = ‘‘integer$int_add 2i x‘‘ : term

Comments
If one wishes to simply prefer the natural numbers, say, to the integers, and yet still
retain integers as a possibility, use numLib.prefer_num rather than this function. This
function only brings about a “temporary” effect; it does not cause the change to be
exported with the current theory.

See also
intLib.prefer int.

DEPTH_CONSEQ_CONV (ConseqConv)

DEPTH_CONSEQ_CONV : directed_conseq_conv -> directed_conseq_conv

Synopsis
Applies a consequence conversion repeatedly to all the sub-terms of a term, in top-down
order.

Description
DEPTH_CONSEQ_CONV c tm tries to apply the given conversion at toplevel. If this fails, it
breaks the term tm down into boolean subterms. It can break up the following operators:
/\, \/, ~, ==> and quantification. Then it applies the directed consequence conversion c

to terms and iterates. Finally, it puts everything together again.
Notice that some operators switch the direction that is passed to c, e.g. to strengthen

a term ~t, DEPTH_CONSEQ_CONV tries to weaken t.

Example
Consider the expression FEVERY P (f |+ (x1, y1) |+ (x2,y2)). It states that all ele-
ments of the finite map f |+ (x1, y1) |+ (x2, y2) satisfy the predicate P. However,
the definition of x1 and x2 possible hide definitions of these keys inside f or in case
x1 = x2 the middle update is void. You easily get into a lot of aliasing problems while
proving thus a statement. However, the following theorem holds:

|- !f x y. FEVERY P (f |+ (x,y)) /\ P (x,y) ==> FEVERY P (f |+ (x,y))

DEPTH CONV 209

Given a directed consequence conversion c that instantiates this theorem, DEPTH CONSEQ CONV
can be used to apply it repeatedly and at substructures as well:

DEPTH_CONSEQ_CONV c CONSEQ_CONV_STRENGTHEN_direction

‘‘!y2. FEVERY P (f |+ (x1, y1) |+ (x2,y2)) /\ Q z‘‘ =

|- (!y2. FEVERY P f /\ P (x1, y1) /\ P (x2,y2) /\ Q z) ==>

(!y2. FEVERY P (f |+ (x1, y1) |+ (x2,y2)) /\ Q z)

See also
Conv.DEPTH CONV, ConseqConv.ONCE DEPTH CONSEQ CONV,

ConseqConv.NUM DEPTH CONSEQ CONV, ConseqConv.DEPTH STRENGTHEN CONSEQ CONV,

ConseqConv.REDEPTH CONSEQ CONV.

DEPTH_CONV (Conv)

DEPTH_CONV : conv -> conv

Synopsis
Applies a conversion repeatedly to all the sub-terms of a term, in bottom-up order.

Description
DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term tm,
including the term tm itself. The supplied conversion is applied repeatedly (zero or more
times, as is done by REPEATC) to each subterm until it fails. The conversion is applied to
subterms in bottom-up order.

Failure
DEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeatedly
to some subterm of tm without failing.

Example
The following example shows how DEPTH_CONV applies a conversion to all subterms to
which it applies:

- DEPTH_CONV BETA_CONV (Term ‘(\x. (\y. y + x) 1) 2‘);

> val it = |- (\x. (\y. y + x)1)2 = 1 + 2 : thm

210 CHAPTER 1. ENTRIES

Here, there are two beta-redexes in the input term, one of which occurs within the other.
DEPTH_CONV BETA_CONV applies beta-conversion to innermost beta-redex (\y. y + x) 1

first. The outermost beta-redex is then (\x. 1 + x) 2, and beta-conversion of this redex
gives 1 + 2.

Because DEPTH_CONV applies a conversion bottom-up, the final result may still contain
subterms to which the supplied conversion applies. For example, in:

- DEPTH_CONV BETA_CONV (Term ‘(\f x. (f x) + 1) (\y.y) 2‘);

> val it = |- (\f x. (f x) + 1)(\y. y)2 = ((\y. y)2) + 1 : thm

the right-hand side of the result still contains a beta-redex, because the redex (\y.y)2

is introduced by virtue of an application of BETA_CONV higher-up in the structure of the
input term. By contrast, in the example:

- DEPTH_CONV BETA_CONV (Term ‘(\f x. (f x)) (\y.y) 2‘);

> val it = |- (\f x. f x)(\y. y)2 = 2 : thm

all beta-redexes are eliminated, because DEPTH_CONV repeats the supplied conversion (in
this case, BETA_CONV) at each subterm (in this case, at the top-level term).

Uses
If the conversion c implements the evaluation of a function in logic, then DEPTH_CONV c

will do bottom-up evaluation of nested applications of it. For example, the conversion
ADD_CONV implements addition of natural number constants within the logic. Thus, the
effect of:

- DEPTH_CONV reduceLib.ADD_CONV (Term ‘(1 + 2) + (3 + 4 + 5)‘);

> val it = |- (1 + 2) + (3 + (4 + 5)) = 15 : thm

is to compute the sum represented by the input term.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the exception QConv.UNCHANGED may be generated
and later trapped. The behaviour of the function is dependent on this use of failure. So,
if the conversion given as an argument happens to generate the same exception, the
operation of DEPTH_CONV will be unpredictable.

See also
Conv.ONCE DEPTH CONV, Conv.REDEPTH CONV, Conv.TOP DEPTH CONV.

DEPTH_EXISTS_CONV (unwindLib)

DEPTH_EXISTS_CONV : (conv -> conv)

DEPTH FORALL CONV 211

Synopsis
Applies a conversion to the body of nested existential quantifications.

Description
DEPTH_EXISTS_CONV conv "?x1 ... xn. body" applies conv to "body" and returns a the-
orem of the form:

|- (?x1 ... xn. body) = (?x1 ... xn. body’)

Failure
Fails if the application of conv fails.

Example

#DEPTH_EXISTS_CONV BETA_CONV "?x y z. (\w. x /\ y /\ z /\ w) T";;

|- (?x y z. (\w. x /\ y /\ z /\ w)T) = (?x y z. x /\ y /\ z /\ T)

See also
unwindLib.DEPTH FORALL CONV.

DEPTH_FORALL_CONV (unwindLib)

DEPTH_FORALL_CONV : (conv -> conv)

Synopsis
Applies a conversion to the body of nested universal quantifications.

Description
DEPTH_FORALL_CONV conv "!x1 ... xn. body" applies conv to "body" and returns a the-
orem of the form:

|- (!x1 ... xn. body) = (!x1 ... xn. body’)

Failure
Fails if the application of conv fails.

Example

#DEPTH_FORALL_CONV BETA_CONV "!x y z. (\w. x /\ y /\ z /\ w) T";;

|- (!x y z. (\w. x /\ y /\ z /\ w)T) = (!x y z. x /\ y /\ z /\ T)

212 CHAPTER 1. ENTRIES

See also
unwindLib.DEPTH EXISTS CONV.

DEPTH_STRENGTHEN_CONSEQ_CONV (ConseqConv)

DEPTH_STRENGTHEN_CONSEQ_CONV : conseq_conv -> conseq_conv

Synopsis
Applies a consequence conversion repeatedly to all the sub-terms of a term, in bottom-
up order.

Description
DEPTH_STRENGTHEN_CONSEQ_CONV c is defined as DEPTH_CONSEQ_CONV (K c) CONSEQ_CONV_STRENGTHEN_direction.
So, its just a slightly simplified interface to DEPTH_CONSEQ_CONV, that tries to strengthen
all the time and that does not require the conversion to know about directions.

See also
Conv.DEPTH CONV, ConseqConv.ONCE DEPTH CONSEQ CONV,

ConseqConv.NUM DEPTH CONSEQ CONV, ConseqConv.DEPTH CONSEQ CONV.

dest_abs (Term)

dest_abs : term -> term * term

Synopsis
Breaks apart an abstraction into abstracted variable and body.

Description
dest_abs is a term destructor for abstractions: if M is a term of the form \v.t, then
dest_abs M returns (v,t).

Failure
Fails if it is not given a lambda abstraction.

See also
Term.mk abs, Term.is abs, Term.dest var, Term.dest const, Term.dest comb,

boolSyntax.strip abs.

dest anylet 213

dest_anylet (pairSyntax)

dest_anylet : term -> (term * term) list * term

Synopsis
Destructs arbitrary let terms.

Description
The invocation dest_anylet M where M has the form of a let-abstraction, i.e., LET P Q,
returns a pair ([(a1,b1),...,(an,bn)],body), where the first argument is a list of bind-
ings, and the second is the body of the let. The list of bindings is required since let terms
can, in general, be of the form (using surface syntax) let a1 = b1 and ... and an = bn in body.

Each ai can be a varstruct (a single variable or a tuple of variables), or a function
variable applied to a sequence of varstructs.

Failure
Fails if M is not a let abstraction.

Example

- dest_anylet ‘‘let f (x,y) = M and g z = N in g (f (a,b))‘‘;

> val it = ([(‘f (x,y)‘, ‘M‘), (‘g z‘, ‘N‘)], ‘g (f (a,b))‘) :

- dest_anylet ‘‘let f (x,y) = M in

let g z = N

in g (f (a,b))‘‘;

> val it = ([(‘f (x,y)‘, ‘M‘)], ‘let g z = N in g (f (a,b))‘)

Uses
Programming that involves manipulation of term syntax.

See also
boolSyntax.dest let, pairSyntax.mk anylet, pairSyntax.list mk anylet,

pairSyntax.strip anylet.

dest_arb (boolSyntax)

dest_arb : term -> hol_type

214 CHAPTER 1. ENTRIES

Synopsis
Extract the type of an instance of the ARB constant.

Description
If M is an instance of the constant ARB with type ty, then dest_arb M equals ty.

Failure
Fails if M is not an instance of ARB.

Comments
When it succeeds, an invocation of dest_arb is equivalent to type_of.

See also
boolSyntax.mk arb, boolSyntax.is arb.

dest_bool_case (boolSyntax)

dest_bool_case : term -> term * term * term

Synopsis
Destructs a case expression over bool.

Description
If M has the form bool_case M1 M2 b, then dest_bool_case M returns M1,M2,b.

Failure
Fails if M is not a full application of the bool_case constant.

See also
boolSyntax.mk bool case, boolSyntax.is bool case.

dest_comb (Term)

dest_comb : term -> term * term

Synopsis
Breaks apart a combination (function application) into rator and rand.

dest cond 215

Description
dest_comb is a term destructor for combinations. If term M has the form f x, then
dest_comb M equals (f,x).

Failure
Fails if the argument is not a function application.

See also
Term.mk comb, Term.is comb, Term.dest var, Term.dest const, Term.dest abs,

boolSyntax.strip comb.

dest_cond (boolSyntax)

dest_cond : term -> term * term * term

Synopsis
Breaks apart a conditional into the three terms involved.

Description
If M has the form if t then t1 else t2 then dest_cond M returns (t,t1,t2).

Failure
Fails if M is not a conditional.

See also
boolSyntax.mk cond, boolSyntax.is cond.

dest_conj (boolSyntax)

dest_conj : term -> term * term

Synopsis
Term destructor for conjunctions.

Description
If M is a term t1 /\ t2, then dest_conj M returns (t1,t2).

216 CHAPTER 1. ENTRIES

Failure
Fails if M is not a conjunction.

See also
boolSyntax.mk conj, boolSyntax.is conj, boolSyntax.list mk conj,

boolSyntax.strip conj.

dest_cons (listSyntax)

dest_cons : term -> term * term

Synopsis
Breaks apart a ‘CONS pair’ into head and tail.

Description
dest_cons is a term destructor for ‘CONS pairs’. When applied to a term representing
a nonempty list [t;t1;...;tn] (which is equivalent to CONS t [t1;...;tn]), it returns
the pair of terms (t, [t1;...;tn]).

Failure
Fails if the term is an empty list.

See also
listSyntax.mk cons, listSyntax.is cons, listSyntax.mk list,

listSyntax.dest list, listSyntax.is list.

dest_const (Term)

dest_const : term -> string * hol_type

Synopsis
Breaks apart a constant into name and type.

Description
dest_const is a term destructor for constants. If M is a constant with name c and type
ty, then dest_const M returns (c,ty).

dest disj 217

Failure
Fails if M is not a constant.

Comments
In Hol98, constants also carry the theory they are declared in. A more precise and
robust way to analyze a constant is with dest_thy_const.

See also
Term.mk const, Term.mk thy const, Term.dest thy const, Term.is const,

Term.dest abs, Term.dest comb, Term.dest var.

dest_disj (boolSyntax)

dest_disj : term -> term * term

Synopsis
Term destructor for disjunctions.

Description
If M is a term having the form t1 \/ t2, then dest_disj M returns (t1,t2).

Failure
Fails if M is not a disjunction.

See also
boolSyntax.mk disj, boolSyntax.is disj, boolSyntax.strip disj,

boolSyntax.list mk disj.

dest_eq (boolSyntax)

dest_eq : term -> term * term

Synopsis
Term destructor for equality.

Description
If M is the term t1 = t2, then dest_eq M returns (t1, t2).

218 CHAPTER 1. ENTRIES

Failure
Fails if M is not an equality.

See also
boolSyntax.mk eq, boolSyntax.is eq, boolSyntax.lhs, boolSyntax.rhs.

dest_eq_ty (boolSyntax)

dest_eq_ty : term -> term * term * hol_type

Synopsis
Term destructor for equality.

Description
If M is the term t1 = t2, then dest_eq_ty M returns (t1, t2, ty), where ty is the type
of t1 (and thus also of t2).

Failure
Fails if M is not an equality.

Uses
Gives an efficient way to break apart an equality and get the type of the equality. Useful
for obtaining that last fraction of speed when optimizing the bejeesus out of an inference
rule.

See also
boolSyntax.mk eq, boolSyntax.is eq, boolSyntax.lhs, boolSyntax.rhs.

dest_exists (boolSyntax)

dest_exists : term -> term * term

Synopsis
Breaks apart a existentially quantified term into quantified variable and body.

Description
If M has the form ?x. t, then dest_exists M returns (x,t).

dest exists1 219

Failure
Fails if M is not a existential quantification.

See also
boolSyntax.mk exists, boolSyntax.is exists, boolSyntax.strip exists.

dest_exists1 (boolSyntax)

dest_exists1 : term -> term * term

Synopsis
Breaks apart a unique existence term into quantified variable and body.

Description
If M has the form ?!x. t, then dest_exists1 M returns (x,t).

Failure
Fails if M is not a unique existence term.

See also
boolSyntax.mk exists1, boolSyntax.is exists1.

dest_forall (boolSyntax)

dest_forall : term -> term * term

Synopsis
Breaks apart a universally quantified term into quantified variable and body.

Description
If M has the form !x. t, then dest_forall M returns (x,t).

Failure
Fails if M is not a universal quantification.

See also
boolSyntax.mk forall, boolSyntax.is forall, boolSyntax.strip forall,

boolSyntax.list mk forall.

220 CHAPTER 1. ENTRIES

dest_imp (boolSyntax)

dest_imp : term -> term * term

Synopsis
Breaks an implication or negation into antecedent and consequent.

Description
dest_imp is a term destructor for implications. It treats negations as implications with
consequent F. Thus, if M is a term with the form t1 ==> t2, then dest_imp M returns
(t1,t2), and if M has the form ~t, then dest_imp M returns (t,F).

Failure
Fails if M is neither an implication nor a negation.

Comments
Destructs negations for increased functionality of HOL-style resolution. If the ability to
destruct negations is not desired, as is only right, then use dest_imp_only.

See also
boolSyntax.mk imp, boolSyntax.dest imp only, boolSyntax.is imp,

boolSyntax.is imp only, boolSyntax.strip imp, boolSyntax.list mk imp.

dest_imp_only (boolSyntax)

dest_imp_only : term -> term * term

Synopsis
Breaks an implication into antecedent and consequent.

Description
If M is a term with the form t1 ==> t2, then dest_imp_only M returns (t1,t2).

Failure
Fails if M is not an implication.

dest let 221

See also
boolSyntax.mk imp, boolSyntax.dest imp, boolSyntax.is imp,

boolSyntax.is imp only, boolSyntax.strip imp, boolSyntax.list mk imp.

dest_let (boolSyntax)

dest_let : term -> term * term

Synopsis
Breaks apart a let-expression.

Description
If M is a term of the form LET M N, then dest_let M returns (M,N).

Example

- dest_let (Term ‘let x = P /\ Q in x \/ x‘);

> val it = (‘\x. x \/ x‘, ‘P /\ Q‘) : term * term

Failure
Fails if M is not of the form LET M N.

See also
boolSyntax.mk let, boolSyntax.is let.

dest_list (listSyntax)

dest_list : term -> term list * hol_type

Synopsis
Iteratively breaks apart a list term.

Description
dest_list is a term destructor for lists: dest_list ‘‘[t1;...;tn]:ty list‘‘ returns
([t1,...,tn], ty).

222 CHAPTER 1. ENTRIES

Failure
Fails if the term is not a list.

See also
listSyntax.mk list, listSyntax.is list, listSyntax.mk cons,

listSyntax.dest cons, listSyntax.is cons.

dest_neg (boolSyntax)

dest_neg : term -> term

Synopsis
Breaks apart a negation, returning its body.

Description
dest_neg is a term destructor for negations: if M has the form ~t, then dest_neg M returns
t.

Failure
Fails with dest_neg if term is not a negation.

See also
boolSyntax.mk neg, boolSyntax.is neg.

dest_numeral (numSyntax)

dest_numeral : term -> Arbnum.num

Synopsis
Convert HOL numeral to ML bignum value.

Description
An invocation dest_numeral tm, where tm is a HOL numeral (a literal of type num), re-
turns the corrresponding ML value of type Arbnum.num. A numeral is a dyadic positional
notation described by the following BNF:

dest pabs 223

<numeral> ::= 0 | NUMERAL <bits>

<bits> ::= ZERO | BIT1 (<bits>) | BIT2 (<bits>)

The NUMERAL constant is used as a tag signalling that its argument is indeed a numeric
literal. The ZERO constant is equal to 0, and BIT1(n) = 2*n + 1 while BIT2(n) = 2*n + 2.
This representation allows asymptotically efficient operations on numeric values.

The system prettyprinter will print a numeral as a string of digits.

Example

- dest_numeral ‘‘1234‘‘;

> val it = 1234 : num

Failure
Fails if tm is not in the specified format.

See also
numSyntax.mk numeral, numSyntax.is numeral.

dest_pabs (pairSyntax)

dest_pabs : term -> term * term

Synopsis
Breaks apart a paired abstraction into abstracted pair and body.

Description
dest_pabs is a term destructor for paired abstractions: dest_abs "\pair. t" returns
("pair","t").

Failure
Fails with dest_pabs if term is not a paired abstraction.

See also
Term.dest abs, pairSyntax.mk pabs, pairSyntax.is pabs, pairSyntax.strip pabs.

dest_pair (pairSyntax)

dest_pair : term -> term * term

224 CHAPTER 1. ENTRIES

Synopsis
Breaks apart a pair into two separate terms.

Description
dest_pair is a term destructor for pairs: if M is a term of the form (t1,t2), then
dest_pair M returns (t1,t2).

Failure
Fails if M is not a pair.

See also
pairSyntax.mk pair, pairSyntax.is pair, pairSyntax.strip pair.

dest_pexists (pairSyntax)

dest_pexists : term -> term * term

Synopsis
Breaks apart paired existential quantifiers into the bound pair and the body.

Description
dest_pexists is a term destructor for paired existential quantification. The application
of dest_pexists to ?pair. t returns (pair,t).

Failure
Fails with dest_pexists if term is not a paired existential quantification.

See also
boolSyntax.dest exists, pairSyntax.is pexists, pairSyntax.strip pexists.

dest_pforall (pairSyntax)

dest_pforall : term -> term * term

Synopsis
Breaks apart paired universal quantifiers into the bound pair and the body.

dest prod 225

Description
dest_pforall is a term destructor for paired universal quantification. The application of
dest_pforall to "!pair. t" returns ("pair","t").

Failure
Fails with dest_pforall if term is not a paired universal quantification.

See also
boolSyntax.dest forall, pairSyntax.is pforall, pairSyntax.strip pforall.

dest_prod (pairSyntax)

dest_prod : hol_type -> hol_type * hol_type

Synopsis
Breaks a product type into its two component types.

Description
dest_prod is a type destructor for products: dest_pair ":t1#t2" returns (":t1",":t2").

Failure
Fails with dest_prod if the argument is not a product type.

See also
pairSyntax.is prod, pairSyntax.mk prod.

dest_pselect (pairSyntax)

dest_pselect : term -> term * term

Synopsis
Breaks apart a paired choice-term into the selected pair and the body.

Description
dest_pselect is a term destructor for paired choice terms. The application of dest_select
to @pair. t returns (pair,t).

226 CHAPTER 1. ENTRIES

Failure
Fails with dest_pselect if term is not a paired choice-term.

See also
boolSyntax.dest select, pairSyntax.is pselect.

dest_ptree (patriciaLib)

dest_ptree : term -> term_ptree

Synopsis
Term destructor for Patricia trees.

Description
The destructor dest_ptree will return a Patricia tree in ML that corresponds with the
supplied HOL term. The ML abstract data type term_ptree is defined in patriciaLib.

Failure
The conversion will fail if the supplied term is not well constructed Patricia tree.

Example

- dest_ptree ‘‘(Branch 1 2 (Leaf 2 2) (Leaf 3 3))‘‘;

Exception-

HOL_ERR

{message = "not a valid Patricia tree", origin_function = "dest_ptree",

origin_structure = "patricia"} raised

- dest_ptree ‘‘(Branch 0 0 (Leaf 3 3) (Leaf 2 2))‘‘;

val it = <ptree>: term_ptree

Comments
By default PolyML prints abstract data types in full. This can be turned off with:

let

fun pp _ _ (_: term_ptree) = PolyML.PrettyString "<ptree>"

in

PolyML.addPrettyPrinter pp

end;

dest res abstract 227

See also
patriciaLib.mk ptree, patriciaLib.is ptree.

dest_res_abstract (res_quanLib)

dest_res_abstract : term -> (term # term # term)

Synopsis
Breaks apart a restricted abstract term into the quantified variable, predicate and body.

Description
dest_res_abstract is a term destructor for restricted abstraction:

dest_res_abstract "\var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_abstract if the term is not a restricted abstraction.

See also
res quanLib.mk res abstract, res quanLib.is res abstract.

dest_res_abstract (res_quanTools)

dest_res_abstract : (term -> (term # term # term))

Synopsis
Breaks apart a restricted abstract term into the quantified variable, predicate and body.

Description
dest_res_abstract is a term destructor for restricted abstraction:

dest_res_abstract "\var::P. t"

228 CHAPTER 1. ENTRIES

returns ("var","P","t").

Failure
Fails with dest_res_abstract if the term is not a restricted abstraction.

See also
res quanTools.mk res abstract, res quanTools.is res abstract.

dest_res_exists (res_quanLib)

dest_res_exists : term -> (term # term # term)

Synopsis
Breaks apart a restricted existentially quantified term into the quantified variable, pred-
icate and body.

Description
dest_res_exists is a term destructor for restricted existential quantification:

dest_res_exists "?var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_exists if the term is not a restricted existential quantification.

See also
res quanLib.mk res exists, res quanLib.is res exists,

res quanLib.strip res exists.

dest_res_exists (res_quanTools)

dest_res_exists : (term -> (term # term # term))

Synopsis
Breaks apart a restricted existentially quantified term into the quantified variable, pred-
icate and body.

Description
dest_res_exists is a term destructor for restricted existential quantification:

dest res exists unique 229

dest_res_exists "?var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_exists if the term is not a restricted existential quantification.

See also
res quanTools.mk res exists, res quanTools.is res exists,

res quanTools.strip res exists.

dest_res_exists_unique (res_quanLib)

dest_res_exists_unique : term -> (term # term # term)

Synopsis
Breaks apart a restricted unique existential quantified term into the quantified variable,
predicate and body.

Description
dest_res_exists_unique is a term destructor for restricted existential quantification:

dest_res_exists_unique "?var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_exists_unique if the term is not a restricted existential quantifica-
tion.

See also
res quanLib.mk res exists unique, res quanLib.is res exists unique.

dest_res_forall (res_quanLib)

dest_res_forall : term -> (term # term # term)

230 CHAPTER 1. ENTRIES

Synopsis
Breaks apart a restricted universally quantified term into the quantified variable, predi-
cate and body.

Description
dest_res_forall is a term destructor for restricted universal quantification:

dest_res_forall "!var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_forall if the term is not a restricted universal quantification.

See also
res quanLib.mk res forall, res quanLib.is res forall,

res quanLib.strip res forall.

dest_res_forall (res_quanTools)

dest_res_forall : (term -> (term # term # term))

Synopsis
Breaks apart a restricted universally quantified term into the quantified variable, predi-
cate and body.

Description
dest_res_forall is a term destructor for restricted universal quantification:

dest_res_forall "!var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_forall if the term is not a restricted universal quantification.

See also
res quanTools.mk res forall, res quanTools.is res forall,

res quanTools.strip res forall.

dest res select 231

dest_res_select (res_quanLib)

dest_res_select : term -> (term # term # term)

Synopsis
Breaks apart a restricted choice quantified term into the quantified variable, predicate
and body.

Description
dest_res_select is a term destructor for restricted choice quantification:

dest_res_select "@var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_select if the term is not a restricted choice quantification.

See also
res quanLib.mk res select, res quanLib.is res select.

dest_res_select (res_quanTools)

dest_res_select : (term -> (term # term # term))

Synopsis
Breaks apart a restricted choice quantified term into the quantified variable, predicate
and body.

Description
dest_res_select is a term destructor for restricted choice quantification:

dest_res_select "@var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_select if the term is not a restricted choice quantification.

232 CHAPTER 1. ENTRIES

See also
res quanTools.mk res select, res quanTools.is res select.

dest_select (boolSyntax)

dest_select : term -> term * term

Synopsis
Breaks apart a choice term into selected variable and body.

Description
If M has the form @v. t then dest_select M returns (v,t).

Failure
Fails if M is not an epsilon-term.

See also
boolSyntax.mk select, boolSyntax.is select.

dest_theory (DB)

dest_theory : string -> theory

Synopsis
Return the contents of a theory.

Description
An invocation dest_theory s returns a structure

THEORY(s,{types, consts, parents, axioms, definitions, theorems})

where types is a list of (string,int) pairs that contains all the type operators declared in
s, consts is a list of (string,hol_type) pairs enumerating all the term constants declared
in s, parents is a list of strings denoting the parents of s, axioms is a list of (string,thm)
pairs denoting the axioms asserted in s, definitions is a list of (string,thm) pairs
denoting the definitions of s, and theorems is a list of (string,thm) pairs denoting the
theorems proved and stored in s.

dest theory 233

The call dest_theory "-" may be used to access the contents of the current theory.

Failure
If s is not the name of a loaded theory.

Example

- dest_theory "option";

> val it =

Theory: option

Parents:

sum

one

Type constants:

option 1

Term constants:

option_case :’b -> (’a -> ’b) -> ’a option -> ’b

NONE :’a option

SOME :’a -> ’a option

IS_NONE :’a option -> bool

option_ABS :’a + one -> ’a option

IS_SOME :’a option -> bool

option_REP :’a option -> ’a + one

THE :’a option -> ’a

OPTION_JOIN :’a option option -> ’a option

OPTION_MAP :(’a -> ’b) -> ’a option -> ’b option

Definitions:

option_TY_DEF |- ?rep. TYPE_DEFINITION (\x. T) rep

option_REP_ABS_DEF

|- (!a. option_ABS (option_REP a) = a) /\

!r. (\x. T) r = (option_REP (option_ABS r) = r)

SOME_DEF |- !x. SOME x = option_ABS (INL x)

NONE_DEF |- NONE = option_ABS (INR ())

option_case_def

|- (!u f. case u f NONE = u) /\ !u f x. case u f (SOME x) = f x

OPTION_MAP_DEF

|- (!f x. OPTION_MAP f (SOME x) = SOME (f x)) /\

234 CHAPTER 1. ENTRIES

!f. OPTION_MAP f NONE = NONE

IS_SOME_DEF |- (!x. IS_SOME (SOME x) = T) /\ (IS_SOME NONE = F)

IS_NONE_DEF |- (!x. IS_NONE (SOME x) = F) /\ (IS_NONE NONE = T)

THE_DEF |- !x. THE (SOME x) = x

OPTION_JOIN_DEF

|- (OPTION_JOIN NONE = NONE) /\ !x. OPTION_JOIN (SOME x) = x

Theorems:

option_Axiom |- !e f. ?fn. (!x. fn (SOME x) = f x) /\ (fn NONE = e)

option_induction |- !P. P NONE /\ (!a. P (SOME a)) ==> !x. P x

SOME_11 |- !x y. (SOME x = SOME y) = (x = y)

NOT_NONE_SOME |- !x. ~(NONE = SOME x)

NOT_SOME_NONE |- !x. ~(SOME x = NONE)

option_nchotomy |- !opt. (opt = NONE) \/ ?x. opt = SOME x

option_CLAUSES

|- (!x y. (SOME x = SOME y) = (x = y)) /\ (!x. THE (SOME x) = x) /\

(!x. ~(NONE = SOME x)) /\ (!x. ~(SOME x = NONE)) /\

(!x. IS_SOME (SOME x) = T) /\ (IS_SOME NONE = F) /\

(!x. IS_NONE x = (x = NONE)) /\ (!x. ~IS_SOME x = (x = NONE)) /\

(!x. IS_SOME x ==> (SOME (THE x) = x)) /\

(!x. case NONE SOME x = x) /\ (!x. case x SOME x = x) /\

(!x. IS_NONE x ==> (case e f x = e)) /\

(!x. IS_SOME x ==> (case e f x = f (THE x))) /\

(!x. IS_SOME x ==> (case e SOME x = x)) /\

(!u f. case u f NONE = u) /\ (!u f x. case u f (SOME x) = f x) /\

(!f x. OPTION_MAP f (SOME x) = SOME (f x)) /\

(!f. OPTION_MAP f NONE = NONE) /\ (OPTION_JOIN NONE = NONE) /\

!x. OPTION_JOIN (SOME x) = x

option_case_compute

|- case e f x = (if IS_SOME x then f (THE x) else e)

OPTION_MAP_EQ_SOME

|- !f x y. (OPTION_MAP f x = SOME y) = ?z. (x = SOME z) /\ (y = f z)

OPTION_MAP_EQ_NONE |- !f x. (OPTION_MAP f x = NONE) = (x = NONE)

OPTION_JOIN_EQ_SOME

|- !x y. (OPTION_JOIN x = SOME y) = (x = SOME (SOME y))

option_case_cong

|- !M M’ u f.

(M = M’) /\ ((M’ = NONE) ==> (u = u’)) /\

(!x. (M’ = SOME x) ==> (f x = f’ x)) ==>

(case u f M = case u’ f’ M’)

dest thm 235

: theory

Comments
A prettyprinter is installed for the type theory, but the contents may still be accessed
via pattern matching.

See also
DB.print theory.

dest_thm (Thm)

dest_thm : thm -> term list * term

Synopsis
Breaks a theorem into assumption list and conclusion.

Description
dest_thm ([t1,...,tn] |- t) returns ([t1,...,tn],t).

Failure
Never fails.

Example

- dest_thm (ASSUME (Term ‘p=T‘));

> val it = ([‘p = T‘], ‘p = T‘) : term list * term

See also
Thm.concl, Thm.hyp.

dest_thy_const (Term)

dest_thy_const : term -> {Thy:string, Name:string, Ty:hol_type}

Synopsis
Breaks apart a constant into name, theory, and type.

236 CHAPTER 1. ENTRIES

Description
dest_thy_const is a term destructor for constants. If M is a constant, declared in theory
Thy with name Name, having type ty, then dest_thy_const M returns {Thy, Name, Ty},
where Ty is equal to ty.

Failure
Fails if M is not a constant.

Comments
A more precise alternative to dest_const.

See also
Term.mk const, Term.dest thy const, Term.is const, Term.dest abs,

Term.dest comb, Term.dest var.

dest_thy_type (Type)

dest_thy_type

: hol_type -> {Thy:string, Tyop:string,

Args:hol_type list}

Synopsis
Breaks apart a type (other than a variable type).

Description
If ty is an application of a type operator Tyop, which was declared in theory Thy, to a
list of types Args, then dest_thy_type ty returns {Tyop,Thy,Args}.

Failure
Fails if ty is a type variable.

Example

- dest_thy_type (alpha --> bool);

> val it = {Args = [‘:’a‘, ‘:bool‘], Thy = "min", Tyop = "fun"} :

- try dest_thy_type alpha;

Exception raised at Type.dest_thy_type:

dest type 237

See also
Type.mk thy type, Type.dest type, Type.mk type, Term.mk thy const.

dest_type (Type)

dest_type : hol_type -> string * hol_type list

Synopsis
Breaks apart a non-variable type.

Description
If ty is a type constant, then dest_type ty returns (ty,[]). If ty is a compound type
(ty1,...,tyn)tyop, then dest_type ty returns (tyop,[ty1,...,tyn]).

Failure
Fails if ty is a type variable.

Example

- dest_type bool;

> val it = ("bool", []) : string * hol_type list

- dest_type (alpha --> bool);

> val it = ("fun", [‘:’a‘, ‘:bool‘]) : string * hol_type list

Comments
A more precise alternative is dest_thy_type, which tells which theory the type operator
was declared in.

See also
Type.mk type, Type.dest thy type, Type.dest vartype.

dest_var (Term)

dest_var : term -> string * hol_type

238 CHAPTER 1. ENTRIES

Synopsis
Breaks apart a variable into name and type.

Description
If M is a HOL variable, then dest_var M returns (v,ty), where v is the name of the
variable, an ty is its type.

Failure
Fails if M is not a variable.

See also
Term.mk var, Term.is var, Term.dest const, Term.dest comb, Term.dest abs.

dest_vartype (Type)

dest_vartype : hol_type -> string

Synopsis
Breaks a type variable down to its name.

Failure
Fails with dest_vartype if the type is not a type variable.

Example

- dest_vartype alpha;

> val it = "’a" : string

- try dest_vartype bool;

Exception raised at Type.dest_vartype:

not a type variable

See also
Type.mk vartype, Type.is vartype, Type.dest type.

diminish_srw_ss (BasicProvers)

diminish_srw_ss : string list -> ssfrag list

diminish srw ss 239

Synopsis
Removes named simpset fragments from the stateful simpset.

Description
A call to diminish_srw_ss fragnames removes the simpset fragments with names given
in fragnames from the stateful simpset which is returned by srw_ss(), and which is used
by SRW_TAC. This removal is done as a side effect.

The function also returns the simpset fragments that have been removed. This allows
them to be put back into the simpset with a call to augment_srw_ss.

The effect of this call is not exported to descendent theories.

Failure
Never fails. A name can be provided for a fragment that does not appear in the stateful
simpset. In this case, the name is just ignored, and there will be no corresponding
fragment in the list that the function returns.

Example

- SIMP_CONV (srw_ss()) [] ‘‘MAP ($+ 1) [3;4;5]‘‘;

> val it = |- MAP ($+ 1) [3; 4; 5] = [4; 5; 6] : thm

- val frags = diminish_srw_ss ["REDUCE"]

> val frags =

[Simplification set: REDUCE

Conversions:

REDUCE_CONV (arithmetic reduction), keyed on pattern ‘‘EVEN x‘‘

REDUCE_CONV (arithmetic reduction), keyed on pattern ‘‘ODD x‘‘

REDUCE_CONV (arithmetic reduction), keyed on pattern ‘‘PRE x‘‘

REDUCE_CONV (arithmetic reduction), keyed on pattern ‘‘SUC x‘‘

...] : ssfrag list

- SIMP_CONV (srw_ss()) [] ‘‘MAP ($+ 1) [3;4;5]‘‘;

> val it = |- MAP ($+ 1) [3; 4; 5] = [1 + 3; 1 + 4; 1 + 5] : thm

- augment_srw_ss frags;

> val it = () : unit

- SIMP_CONV (srw_ss()) [] ‘‘MAP ($+ 1) [3;4;5]‘‘;

> val it = |- MAP ($+ 1) [3; 4; 5] = [4; 5; 6] : thm

See also
BasicProvers.augment srw ss, simpLib.remove ssfrags.

240 CHAPTER 1. ENTRIES

directed_conseq_conv (ConseqConv)

type directed_conseq_conv

Synopsis
A type for consequence conversions that can be instructed on whether to strengthen or
weaken a given term.

Description
Given a CONSEQ_CONV_direction, a directed consequence conversion tries to strengthen,
weaken or whatever it can depending on the given direction.

See also
ConseqConv.conseq conv, ConseqConv.CONSEQ CONV direction.

disable_tyabbrev_printing (Parse)

disable_tyabbrev_printing : string -> unit

Synopsis
Disables the printing of a type abbreviation.

Description
A call to disable_tyabbrev_printing s causes the type abbreviation mapping the string
s to some type expansion not to be printed when an instance of the type expansion is
seen.

Failure
Never fails. If there is no abbreviation of the given name, a call to disable_tyabbrev_printing

will silently do nothing.

Example

- type_abbrev("LIST", ‘‘:’a list‘‘)

> val it = () : unit

- ‘‘:num list‘‘;

DISCARD TAC 241

> val it = ‘‘:num LIST‘‘ : hol_type

- disable_tyabbrev_printing "LIST";

> val it = () : unit

- ‘‘:num LIST‘‘;

> val it = ‘‘:num list‘‘ : hol_type

Comments
When a type-abbreviation is established with the function type_abbrev, this alters both
parsing and printing: when the new abbreviation appears in input the type parser will
translate away the abbreviation. Similarly, when an instance of the abbreviation appears
in a type that the printer is to output, it will replace the instance with the abbreviation.

This is generally the appropriate behaviour. However, there is are a number of useful
abbreviations where reversing parsing when printing is not so useful. For example, the
abbreviation mapping ’a set to ’a -> bool is convenient, but it would be a mistake
having it print because types such as that of conjunction would print as

(/\) : bool -> bool set

which is rather confusing.
As with other printing and parsing functions, there is a version of this function,

temp_disable_tyabbrev_printing that does not cause its effect to persist with an ex-
ported theory.

See also
Parse.type abbrev.

DISCARD_TAC (Tactic)

DISCARD_TAC : thm_tactic

Synopsis
Discards a theorem already present in a goal’s assumptions.

Description
When applied to a theorem A’ |- s and a goal, DISCARD_TAC checks that s is simply T

(true), or already exists (up to alpha-conversion) in the assumption list of the goal. In
either case, the tactic has no effect. Otherwise, it fails.

242 CHAPTER 1. ENTRIES

A ?- t

======== DISCARD_TAC (A’ |- s)

A ?- t

Failure
Fails if the above conditions are not met, i.e. the theorem’s conclusion is not T or already
in the assumption list (up to alpha-conversion).

See also
Tactical.POP ASSUM, Tactical.POP ASSUM LIST.

disch (HolKernel)

disch : ((term * term list) -> term list)

Synopsis
Removes those elements of a list of terms that are alpha equivalent to a given term.

Description
Given a pair (t,tl) of term t and term list tl, disch removes those elements of tl that
are alpha equivalent to t.

Example

disch (‘‘\x:bool.T‘‘, [‘‘A = T‘‘, ‘‘B = 3‘‘, ‘‘\y:bool.T‘‘]);

[‘A = T‘,‘B = 3‘] : term list

See also
Lib.filter.

DISCH (Thm)

DISCH : (term -> thm -> thm)

Synopsis
Discharges an assumption.

Description

DISCH ALL 243

A |- t

-------------------- DISCH u

A - {u} |- u ==> t

Failure
DISCH will fail if u is not boolean.

Comments
The term u need not be a hypothesis. Discharging u will remove all identical and alpha-
equivalent hypotheses.

See also
Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN, Tactic.FILTER DISCH TAC,

Thm cont.FILTER DISCH THEN, Drule.NEG DISCH, Tactic.STRIP TAC, Drule.UNDISCH,

Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

DISCH_ALL (Drule)

DISCH_ALL : thm -> thm

Synopsis
Discharges all hypotheses of a theorem.

Description

A1, ..., An |- t

---------------------------- DISCH_ALL

|- A1 ==> ... ==> An ==> t

Failure
DISCH_ALL never fails. If there are no hypotheses to discharge, it will simply return the
theorem unchanged.

Comments
Users should not rely on the hypotheses being discharged in any particular order. Two
or more alpha-convertible hypotheses will be discharged by a single implication; users
should not rely on which hypothesis appears in the implication.

244 CHAPTER 1. ENTRIES

See also
Thm.DISCH, Tactic.DISCH TAC, Thm cont.DISCH THEN, Drule.NEG DISCH,

Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN, Tactic.STRIP TAC,

Drule.UNDISCH, Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

DISCH_TAC (Tactic)

DISCH_TAC : tactic

Synopsis
Moves the antecedent of an implicative goal into the assumptions.

Description

A ?- u ==> v

============== DISCH_TAC

A u {u} ?- v

Note that DISCH_TAC treats ~u as u ==> F, so will also work when applied to a goal with
a negated conclusion.

Failure
DISCH_TAC will fail for goals which are not implications or negations.

Uses
Solving goals of the form u ==> v by rewriting v with u, although the use of DISCH_THEN
is usually more elegant in such cases.

Comments
If the antecedent already appears in the assumptions, it will be duplicated.

See also
Thm.DISCH, Drule.DISCH ALL, Thm cont.DISCH THEN, Tactic.FILTER DISCH TAC,

Thm cont.FILTER DISCH THEN, Drule.NEG DISCH, Tactic.STRIP TAC, Drule.UNDISCH,

Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

DISCH_THEN (Thm_cont)

DISCH_THEN : (thm_tactic -> tactic)

DISCH THEN 245

Synopsis
Undischarges an antecedent of an implication and passes it to a theorem-tactic.

Description
DISCH_THEN removes the antecedent and then creates a theorem by ASSUMEing it. This
new theorem is passed to the theorem-tactic given as DISCH_THEN’s argument. The con-
sequent tactic is then applied. Thus:

DISCH_THEN f (asl, t1 ==> t2) = f(ASSUME t1) (asl,t2)

For example, if

A ?- t

======== f (ASSUME u)

B ?- v

then

A ?- u ==> t

============== DISCH_THEN f

B ?- v

Note that DISCH_THEN treats ~u as u ==> F.

Failure
DISCH_THEN will fail for goals which are not implications or negations.

Example
The following shows how DISCH_THEN can be used to preprocess an antecedent before
adding it to the assumptions.

A ?- (x = y) ==> t

==================== DISCH_THEN (ASSUME_TAC o SYM)

A u {y = x} ?- t

In many cases, it is possible to use an antecedent and then throw it away:

A ?- (x = y) ==> t x

====================== DISCH_THEN (\th. PURE_REWRITE_TAC [th])

A ?- t y

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Drule.NEG DISCH,

Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN, Tactic.STRIP TAC,

Drule.UNDISCH, Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

246 CHAPTER 1. ENTRIES

DISJ1 (Thm)

DISJ1 : thm -> term -> thm

Synopsis
Introduces a right disjunct into the conclusion of a theorem.

Description

A |- t1

--------------- DISJ1 (A |- t1) t2

A |- t1 \/ t2

Failure
Fails unless the term argument is boolean.

Example

- DISJ1 TRUTH F;

> val it = |- T \/ F : thm

See also
Tactic.DISJ1 TAC, Thm.DISJ2, Tactic.DISJ2 TAC, Thm.DISJ CASES.

DISJ1_TAC (Tactic)

DISJ1_TAC : tactic

Synopsis
Selects the left disjunct of a disjunctive goal.

Description

A ?- t1 \/ t2

=============== DISJ1_TAC

A ?- t1

DISJ2 247

Failure
Fails if the goal is not a disjunction.

See also
Thm.DISJ1, Thm.DISJ2, Tactic.DISJ2 TAC.

DISJ2 (Thm)

DISJ2 : term -> thm -> thm

Synopsis
Introduces a left disjunct into the conclusion of a theorem.

Description

A |- t2

--------------- DISJ2 "t1"

A |- t1 \/ t2

Failure
Fails if the term argument is not boolean.

Example

- DISJ2 F TRUTH;

> val it = |- F \/ T : thm

See also
Thm.DISJ1, Tactic.DISJ1 TAC, Tactic.DISJ2 TAC, Thm.DISJ CASES.

DISJ2_TAC (Tactic)

DISJ2_TAC : tactic

Synopsis
Selects the right disjunct of a disjunctive goal.

Description

248 CHAPTER 1. ENTRIES

A ?- t1 \/ t2

=============== DISJ2_TAC

A ?- t2

Failure
Fails if the goal is not a disjunction.

See also
Thm.DISJ1, Tactic.DISJ1 TAC, Thm.DISJ2.

DISJ_CASES (Thm)

DISJ_CASES : (thm -> thm -> thm -> thm)

Synopsis
Eliminates disjunction by cases.

Description
The rule DISJ_CASES takes a disjunctive theorem, and two ‘case’ theorems, each with
one of the disjuncts as a hypothesis while sharing alpha-equivalent conclusions. A new
theorem is returned with the same conclusion as the ‘case’ theorems, and the union of
all assumptions excepting the disjuncts.

A |- t1 \/ t2 A1 u {t1} |- t A2 u {t2} |- t

-- DISJ_CASES

A u A1 u A2 |- t

Failure
Fails if the first argument is not a disjunctive theorem, or if the conclusions of the other
two theorems are not alpha-convertible.

Example
Specializing the built-in theorem num_CASES gives the theorem:

th = |- (m = 0) \/ (?n. m = SUC n)

Using two additional theorems, each having one disjunct as a hypothesis:

th1 = (m = 0 |- (PRE m = m) = (m = 0))

th2 = (?n. m = SUC n" |- (PRE m = m) = (m = 0))

DISJ CASES TAC 249

a new theorem can be derived:

- DISJ_CASES th th1 th2;

> val it = |- (PRE m = m) = (m = 0) : thm

Comments
Neither of the ‘case’ theorems is required to have either disjunct as a hypothesis, but
otherwise DISJ_CASES is pointless.

See also
Tactic.DISJ CASES TAC, Thm cont.DISJ CASES THEN, Thm cont.DISJ CASES THEN2,

Drule.DISJ CASES UNION, Thm.DISJ1, Thm.DISJ2.

DISJ_CASES_TAC (Tactic)

DISJ_CASES_TAC : thm_tactic

Synopsis
Produces a case split based on a disjunctive theorem.

Description
Given a theorem th of the form A |- u \/ v, DISJ_CASES_TAC th applied to a goal pro-
duces two subgoals, one with u as an assumption and one with v:

A ?- t

============================ DISJ_CASES_TAC (A |- u \/ v)

A u {u} ?- t A u {v}?- t

Failure
Fails if the given theorem does not have a disjunctive conclusion.

Example
Given the simple fact about arithmetic th, |- (m = 0) \/ (?n. m = SUC n), the tactic
DISJ_CASES_TAC th can be used to produce a case split:

- DISJ_CASES_TAC th ([],Term‘(P:num -> bool) m‘);

([([‘m = 0‘], ‘P m‘),

([‘?n. m = SUC n‘], ‘P m‘)], fn) : tactic_result

250 CHAPTER 1. ENTRIES

Uses
Performing a case analysis according to a disjunctive theorem.

See also
Tactic.ASSUME TAC, Tactic.ASM CASES TAC, Tactic.COND CASES TAC,

Thm cont.DISJ CASES THEN, Tactic.STRUCT CASES TAC.

DISJ_CASES_THEN (Thm_cont)

DISJ_CASES_THEN : thm_tactical

Synopsis
Applies a theorem-tactic to each disjunct of a disjunctive theorem.

Description
If the theorem-tactic f:thm->tactic applied to either ASSUMEd disjunct produces results
as follows when applied to a goal (A ?- t):

A ?- t A ?- t

========= f (u |- u) and ========= f (v |- v)

A ?- t1 A ?- t2

then applying DISJ_CASES_THEN f (|- u \/ v) to the goal (A ?- t) produces two sub-
goals.

A ?- t

====================== DISJ_CASES_THEN f (|- u \/ v)

A ?- t1 A ?- t2

Failure
Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has
any hypothesis which is not alpha-convertible to an assumption of the goal.

Example
Given the theorem

th = |- (m = 0) \/ (?n. m = SUC n)

and a goal of the form ?- (PRE m = m) = (m = 0), applying the tactic

DISJ_CASES_THEN ASSUME_TAC th

DISJ CASES THEN2 251

produces two subgoals, each with one disjunct as an added assumption:

?n. m = SUC n ?- (PRE m = m) = (m = 0)

m = 0 ?- (PRE m = m) = (m = 0)

Uses
Building cases tactics. For example, DISJ_CASES_TAC could be defined by:

let DISJ_CASES_TAC = DISJ_CASES_THEN ASSUME_TAC

Comments
Use DISJ_CASES_THEN2 to apply different tactic generating functions to each case.

See also
Thm cont.STRIP THM THEN, Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN,

Thm cont.CONJUNCTS THEN2, Tactic.DISJ CASES TAC, Thm cont.DISJ CASES THEN2,

Thm cont.DISJ CASES THENL.

DISJ_CASES_THEN2 (Thm_cont)

DISJ_CASES_THEN2 : (thm_tactic -> thm_tactical)

Synopsis
Applies separate theorem-tactics to the two disjuncts of a theorem.

Description
If the theorem-tactics f1 and f2, applied to the ASSUMEd left and right disjunct of a theo-
rem |- u \/ v respectively, produce results as follows when applied to a goal (A ?- t):

A ?- t A ?- t

========= f1 (u |- u) and ========= f2 (v |- v)

A ?- t1 A ?- t2

then applying DISJ_CASES_THEN2 f1 f2 (|- u \/ v) to the goal (A ?- t) produces two
subgoals.

A ?- t

====================== DISJ_CASES_THEN2 f1 f2 (|- u \/ v)

A ?- t1 A ?- t2

252 CHAPTER 1. ENTRIES

Failure
Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has
any hypothesis which is not alpha-convertible to an assumption of the goal.

Example
Given the theorem

th = |- (m = 0) \/ (?n. m = SUC n)

and a goal of the form ?- (PRE m = m) = (m = 0), applying the tactic

DISJ_CASES_THEN2 SUBST1_TAC ASSUME_TAC th

to the goal will produce two subgoals

?n. m = SUC n ?- (PRE m = m) = (m = 0)

?- (PRE 0 = 0) = (0 = 0)

The first subgoal has had the disjunct m = 0 used for a substitution, and the second has
added the disjunct to the assumption list. Alternatively, applying the tactic

DISJ_CASES_THEN2 SUBST1_TAC (CHOOSE_THEN SUBST1_TAC) th

to the goal produces the subgoals:

?- (PRE(SUC n) = SUC n) = (SUC n = 0)

?- (PRE 0 = 0) = (0 = 0)

Uses
Building cases tacticals. For example, DISJ_CASES_THEN could be defined by:

let DISJ_CASES_THEN f = DISJ_CASES_THEN2 f f

See also
Thm cont.STRIP THM THEN, Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN,

Thm cont.CONJUNCTS THEN2, Thm cont.DISJ CASES THEN, Thm cont.DISJ CASES THENL.

DISJ_CASES_THENL (Thm_cont)

DISJ_CASES_THENL : (thm_tactic list -> thm_tactic)

DISJ CASES UNION 253

Synopsis
Applies theorem-tactics in a list to the corresponding disjuncts in a theorem.

Description
If the theorem-tactics f1...fn applied to the ASSUMEd disjuncts of a theorem

|- d1 \/ d2 \/...\/ dn

produce results as follows when applied to a goal (A ?- t):

A ?- t A ?- t

========= f1 (d1 |- d1) and ... and ========= fn (dn |- dn)

A ?- t1 A ?- tn

then applying DISJ_CASES_THENL [f1;...;fn] (|- d1 \/...\/ dn) to the goal (A ?- t)

produces n subgoals.

A ?- t

======================= DISJ_CASES_THENL [f1;...;fn] (|- d1 \/...\/ dn)

A ?- t1 ... A ?- tn

DISJ_CASES_THENL is defined using iteration, hence for theorems with more than n dis-
juncts, dn would itself be disjunctive.

Failure
Fails if the number of tactic generating functions in the list exceeds the number of
disjuncts in the theorem. An invalid tactic is produced if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

Uses
Used when the goal is to be split into several cases, where a different tactic-generating
function is to be applied to each case.

See also
Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN, Thm cont.CONJUNCTS THEN2,

Thm cont.DISJ CASES THEN, Thm cont.DISJ CASES THEN2, Thm cont.STRIP THM THEN.

DISJ_CASES_UNION (Drule)

DISJ_CASES_UNION : thm -> thm -> thm -> thm

254 CHAPTER 1. ENTRIES

Synopsis
Makes an inference for each arm of a disjunct.

Description
Given a disjunctive theorem, and two additional theorems each having one disjunct as
a hypothesis, a new theorem with a conclusion that is the disjunction of the conclusions
of the last two theorems is produced. The hypotheses include the union of hypotheses
of all three theorems less the two disjuncts.

A |- t1 \/ t2 A1 u {t1} |- t3 A2 u {t2} |- t4

-- DISJ_CASES_UNION

A u A1 u A2 |- t3 \/ t4

Failure
Fails if the first theorem is not a disjunction.

Example
The built-in theorem LESS_CASES can be specialized to:

th1 = |- m < n \/ n <= m

and used with two additional theorems:

th2 = (m < n |- (m MOD n = m))

th3 = ({0 < n, n <= m} |- (m MOD n) = ((m - n) MOD n))

to derive a new theorem:

- DISJ_CASES_UNION th1 th2 th3;

val it = [0 < n] |- (m MOD n = m) \/ (m MOD n = (m - n) MOD n) : thm

See also
Thm.DISJ CASES, Tactic.DISJ CASES TAC, Thm.DISJ1, Thm.DISJ2.

DISJ_IMP (Drule)

DISJ_IMP : (thm -> thm)

Synopsis
Converts a disjunctive theorem to an equivalent implicative theorem.

Description
The left disjunct of a disjunctive theorem becomes the negated antecedent of the newly
generated theorem.

DISJ INEQS FALSE CONV 255

A |- t1 \/ t2

----------------- DISJ_IMP

A |- ~t1 ==> t2

Failure
Fails if the theorem is not a disjunction.

Example
Specializing the built-in theorem LESS_CASES gives the theorem:

th = |- m < n \/ n <= m

to which DISJ_IMP may be applied:

- DISJ_IMP th;

> val it = |- ~m < n ==> n <= m : thm

See also
Thm.DISJ CASES.

DISJ_INEQS_FALSE_CONV (Arith)

DISJ_INEQS_FALSE_CONV : conv

Synopsis
Proves a disjunction of conjunctions of normalised inequalities is false, provided each
conjunction is unsatisfiable.

Description
DISJ_INEQS_FALSE_CONV converts an unsatisfiable normalised arithmetic formula to false.
The formula must be a disjunction of conjunctions of less-than-or-equal-to inequalities.
The inequalities must have the following form: Each variable must appear on only one
side of the inequality and each side must be a linear sum in which any constant appears
first followed by products of a constant and a variable. On each side the variables must
be ordered lexicographically, and if the coefficient of the variable is 1, the 1 must appear
explicitly.

Failure
Fails if the formula is not of the correct form or is satisfiable. The function will also fail
on certain unsatisfiable formulae due to incompleteness of the procedure used.

Example

256 CHAPTER 1. ENTRIES

#DISJ_INEQS_FALSE_CONV

"(1 * n) <= ((1 * m) + (1 * p)) /\

((1 * m) + (1 * p)) <= (1 * n) /\

(5 + (4 * n)) <= ((3 * m) + (1 * p)) \/

2 <= 0";;

|- (1 * n) <= ((1 * m) + (1 * p)) /\

((1 * m) + (1 * p)) <= (1 * n) /\

(5 + (4 * n)) <= ((3 * m) + (1 * p)) \/

2 <= 0 =

F

See also
Arith.ARITH FORM NORM CONV.

disjunction (boolSyntax)

disjunction : term

Synopsis
Constant denoting logical disjunction.

Description
The ML variable boolSyntax.disjunction is bound to the term bool$\/.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.negation, boolSyntax.conditional,

boolSyntax.bool case, boolSyntax.let tm, boolSyntax.arb.

DISJUNCTS_AC (Drule)

DISJUNCTS_AC : term * term -> thm

Synopsis
Prove equivalence under idempotence, symmetry and associativity of disjunction.

DIV CONV 257

Description
DISJUNCTS_AC takes a pair of terms (t1, t2) and proves |- t1 = t2 if t1 and t2 are
equivalent up to idempotence, symmetry and associativity of disjunction. That is, if t1
and t2 are two (different) arbitrarily-nested disjunctions of the same set of terms, then
DISJUNCTS_AC (t1,t2) returns |- t1 = t2. Otherwise, it fails.

Failure
Fails if t1 and t2 are not equivalent, as described above.

Example

- DISJUNCTS_AC (Term ‘(P \/ Q) \/ R‘, Term ‘R \/ (Q \/ R) \/ P‘);

> val it = |- (P \/ Q) \/ R = R \/ (Q \/ R) \/ P : thm

Uses
Used to reorder a disjunction. First sort the disjuncts in a term t1 into the desired
order (e.g., lexicographic order, for normalization) to get a new term t2, then call
DISJUNCTS_AC(t1,t2).

See also
Drule.CONJUNCTS AC.

DIV_CONV (reduceLib)

DIV_CONV : conv

Synopsis
Calculates by inference the result of dividing, with truncation, one numeral by another.

Description
If m and n are numerals (e.g. 0, 1, 2, 3,...), then DIV_CONV "m DIV n" returns the theorem:

|- m DIV n = s

where s is the numeral that denotes the result of dividing the natural number denoted
by m by the natural number denoted by n, with truncation.

Failure
DIV_CONV tm fails unless tm is of the form "m DIV n", where m and n are numerals, or if n
denotes zero.

Example

258 CHAPTER 1. ENTRIES

#DIV_CONV "0 DIV 0";;

evaluation failed DIV_CONV

#DIV_CONV "0 DIV 12";;

|- 0 DIV 12 = 0

#DIV_CONV "2 DIV 0";;

evaluation failed DIV_CONV

#DIV_CONV "144 DIV 12";;

|- 144 DIV 12 = 12

#DIV_CONV "7 DIV 2";;

|- 7 DIV 2 = 3

dom_rng (Type)

dom_rng : hol_type -> hol_type * hol_type

Synopsis
Breaks a function type into domain and range types.

Description
If ty has the form ty1 -> ty2, then dom_rng ty yields (ty1,ty2).

Failure
Fails if ty is not a function type.

Example

- dom_rng (bool --> alpha);

> val it = (‘:bool‘, ‘:’a‘) : hol_type * hol_type

- try dom_rng bool;

Exception raised at Type.dom_rng:

not a function type

e 259

See also
Type.-->, Type.dest type, Type.dest thy type.

e (proofManagerLib)

e : tactic -> proof

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function e is part of the subgoal package. It is an abbreviation for expand. For a
description of the subgoal package, see set_goal.

Failure
As for expand.

Uses
Doing a step in an interactive goal-directed proof.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

el (Lib)

el : int -> ’a list -> ’a

Synopsis
Extracts a specified element from a list.

Description
el i [x1,...,xn] returns xi. Note that the elements are numbered starting from 1, not
0.

260 CHAPTER 1. ENTRIES

Failure
Fails with el if the integer argument is less than 1 or greater than the length of the list.

Example

- el 3 [1,2,7,1];

> val it = 7 : int

See also
Lib.index.

EL_CONV (listLib)

EL_CONV : conv

Synopsis
Computes by inference the result of indexing an element from a list.

Description
For any object language list of the form --‘[x0;...xk;...;xn]‘-- , the result of evalu-
ating

EL_CONV (--‘EL k [x0;...xk;...;xn]‘--)

is the theorem

|- EL k [x0;...;xk;...;xn] = xk

Failure
EL_CONV tm fails if tm is not of the form described above, or k is not less than the length
of the list.

See also
listLib.ELL CONV.

ELL_CONV (listLib)

ELL_CONV : conv

emit ERR 261

Synopsis
Computes by inference the result of indexing an element of a list from the tail end.

Description
For any object language list of the form --‘[xn-1;...;xk;...x0]‘-- , the result of eval-
uating

ELL_CONV (--‘ELL k [xn-1;...;xk;...;x0]‘--)

is the theorem

|- ELL k [xn-1;...;xk;...;x0] = xk

where k must not be greater then the length of the list. Note that ELL indexes the list
elements from the tail end.

Failure
ELL_CONV tm fails if tm is not of the form described above, or k is not less than the length
of the list.

See also
listLib.EL CONV.

emit_ERR (Feedback)

emit_ERR : bool ref

Synopsis
Flag controlling output of HOL_ERR exceptions.

Description
The boolean flag emit_ERR tells whether an application of HOL_ERR should be printed.
Its value is consulted by Raise when it attempts to print a textual representation of its
argument exception. This flag is not commonly used, and it may disappear or change
in the future.

The default value of emit_ERR is true.

Example

262 CHAPTER 1. ENTRIES

- Raise (mk_HOL_ERR "Module" "function" "message");

Exception raised at Module.function:

message

! Uncaught exception:

! HOL_ERR

- emit_ERR := false;

> val it = () : unit

- Raise (mk_HOL_ERR "Module" "function" "message");

! Uncaught exception:

! HOL_ERR

See also
Feedback, Feedback.Raise, Feedback.emit MESG, Feedback.emit WARNING.

emit_MESG (Feedback)

emit_MESG : bool ref

Synopsis
Flag controlling output of HOL_MESG function.

Description
The boolean flag emit_MESG is consulted by HOL_MESG when it attempts to print its argu-
ment. This flag is not commonly used, and it may disappear or change in the future.

The default value of emit_MESG is true.

Example

- HOL_MESG "Joy to the world.";

<<HOL message: Joy to the world.>>

- emit_MESG := false;

> val it = () : unit

- HOL_MESG "Peace on Earth.";

> val it = () : unit

emit WARNING 263

See also
Feedback, Feedback.HOL MESG, Feedback.emit ERR, Feedback.emit WARNING.

emit_WARNING (Feedback)

emit_WARNING : bool ref

Synopsis
Flag controlling output of HOL_WARNING function.

Description
The boolean flag emit_WARNING is consulted by HOL_WARNING when it attempts to print
its argument. This flag is not commonly used, and it may disappear or change in the
future.

The default value of emit_WARNING is true.

Example

- HOL_WARNING "Clock" "watcher" "Time is running out.";

<<HOL warning: Clock.watcher: Time is running out.>>

> val it = () : unit

- emit_WARNING := false;

> val it = () : unit

- HOL_WARNING "Clock" "watcher" "Time is running out.";

> val it = () : unit

See also
Feedback, Feedback.HOL WARNING, Feedback.emit ERR, Feedback.emit MESG.

empty_model (holCheckLib)

empty_model : model

264 CHAPTER 1. ENTRIES

Synopsis
Represents a HolCheck model with no information.

Description
This is used as a starting point for building a HolCheck model, using the set X functions
in holCheckLib.

See also
holCheckLib.holCheck, holCheckLib.set init, holCheckLib.set trans,

holCheckLib.set flag ric, holCheckLib.set name, holCheckLib.set vord,

holCheckLib.set state, holCheckLib.set props.

empty_rewrites (Rewrite)

empty_rewrites: rewrites

Synopsis
The empty database of rewrite rules.

Uses
Used to build other rewrite sets.

See also
Rewrite.bool rewrites, Rewrite.implicit rewrites, Rewrite.add rewrites,

Rewrite.add implicit rewrites, Rewrite.set implicit rewrites.

empty_tmset (Term)

empty_tmset : term set

Synopsis
Empty set of terms.

Description
The value empty_tmset represents an empty set of terms. The set has a built-in ordering,
which is given by Term.compare.

empty varset 265

Comments
Used as a starting point for building sets of terms.

See also
Term.compare, Term.empty varset.

empty_varset (Term)

empty_varset : term set

Synopsis
Empty set of term variables.

Description
The value empty_varset represents an empty set of term variables. The set has a built-in
ordering, which is given by Term.var_compare.

Comments
Used as a starting point for building sets of variables.

See also
Term.var compare, Term.empty tmset.

end_itlist (Lib)

end_itlist : (’a -> ’a -> ’a) -> ’a list -> ’a)

Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.

Description
end_itlist f [x1,...,xn] returns f x1 (... (f x(n-1) xn)...). Returns x for a one-
element list [x].

Failure
Fails if list is empty, or if an application of f raises an exception.

Example

266 CHAPTER 1. ENTRIES

- end_itlist (curry op+) [1,2,3,4];

> val it = 10 : int

See also
Lib.itlist, Lib.rev itlist, Lib.itlist2, Lib.rev itlist2.

end_time (Lib)

end_time : Timer.cpu_timer -> unit

Synopsis
Check a running timer, and print out how long it has been running.

Description
An application end_time timer looks to see how long timer has been running, and prints
out the elapsed runtime, garbage collection time, and system time.

Failure
Never fails.

Example

- val clock = start_time();

> val clock = <cpu_timer> : cpu_timer

- use "foo.sml";

> ... output omitted ...

- end_time clock;

runtime: 525.996s, gctime: 0.000s, systime: 525.996s.

> val it = () : unit

Comments
A start_time ... end_time pair is for use when calling time would be clumsy, e.g., when
multiple function applications are to be timed.

See also
Lib.start time, Lib.time.

enumerate 267

enumerate (Lib)

enumerate : int -> ’a list -> (int * ’a) list

Synopsis
Number each element of a list, in ascending order.

Description
An invocation of enumerate i [x1, ..., xn] returns the list [(i,x1), (i+1,x2), ..., (i+n-1,xn)].

Failure
Never fails.

Example

- enumerate 0 ["komodo", "iguana", "gecko", "gila"];

> val it = [(0, "komodo"), (1, "iguana"), (2, "gecko"), (3, "gila")]

EQ_IMP_RULE (Thm)

EQ_IMP_RULE : thm -> thm * thm

Synopsis
Derives forward and backward implication from equality of boolean terms.

Description
When applied to a theorem A |- t1 = t2, where t1 and t2 both have type bool, the
inference rule EQ_IMP_RULE returns the theorems A |- t1 ==> t2 and A |- t2 ==> t1.

A |- t1 = t2

----------------------------------- EQ_IMP_RULE

A |- t1 ==> t2 A |- t2 ==> t1

Failure
Fails unless the conclusion of the given theorem is an equation between boolean terms.

268 CHAPTER 1. ENTRIES

See also
Thm.EQ MP, Tactic.EQ TAC, Drule.IMP ANTISYM RULE.

EQ_LENGTH_INDUCT_TAC (listLib)

EQ_LENGTH_INDUCT_TAC : tactic

Synopsis
Performs tactical proof by structural induction on two equal length lists.

Description
EQ_LENGTH_INDUCT_TAC reduces a goal !x y . (LENGTH x = LENGTH y) ==> t[x,y], where
x and y range over lists, to two subgoals corresponding to the base and step cases
in a proof by induction on the length of x and y. The induction hypothesis ap-
pears among the assumptions of the subgoal for the step case. The specification of
EQ_LENGTH_INDUCT_TAC is:

A ?- !x y . (LENGTH x = LENGTH y) ==> t[x,y]

== EQ_LENGTH_INDUCT_TAC

A ?- t[NIL/x][NIL/y]

A u {{LENGTH x = LENGTH y, t[x’/x, y’/y]}} ?-

!h h’. t[(CONS h x)/x, (CONS h’ y)/y]

Failure
EQ_LENGTH_INDUCT_TAC g fails unless the conclusion of the goal g has the form

!x y . (LENGTH x = LENGTH y) ==> t[x,y]

where the variables x and y have types (xty)list and (yty)list for some types xty and
yty. It also fails if either of the variables x or y appear free in the assumptions.

Uses
Use this tactic to perform structural induction over two lists that have identical length.

See also
listLib.LIST INDUCT TAC, listLib.SNOC INDUCT TAC,

listLib.EQ LENGTH SNOC INDUCT TAC.

EQ LENGTH SNOC INDUCT TAC 269

EQ_LENGTH_SNOC_INDUCT_TAC (listLib)

EQ_LENGTH_SNOC_INDUCT_TAC : tactic

Synopsis
Performs tactical proof by structural induction on two equal length lists from the tail
end.

Description
EQ_LENGTH_SNOC_INDUCT_TAC reduces a goal !x y . (LENGTH x = LENGTH y) ==> t[x,y],
where x and y range over lists, to two subgoals corresponding to the base and step
cases in a proof by induction on the length of x and y. The induction hypothesis ap-
pears among the assumptions of the subgoal for the step case. The specification of
EQ_LENGTH_SNOC_INDUCT_TAC is:

A ?- !x y . (LENGTH x = LENGTH y) ==> t[x,y]

== EQ_LENGTH_SNOC_INDUCT_TAC

A ?- t[NIL/x][NIL/y]

A u {{LENGTH x = LENGTH y, t[x’/x, y’/y]}} ?-

!h h’. t[(SNOC h x)/x, (SNOC h’ y)/y]

Failure
EQ_LENGTH_SNOC_INDUCT_TAC g fails unless the conclusion of the goal g has the form

!x y . (LENGTH x = LENGTH y) ==> t[x,y]

where the variables x and y have types (xty)list and (yty)list for some types xty and
yty. It also fails if either of the variables x or y appear free in the assumptions.

Uses
Use this tactic to perform structural induction on two lists that have identical length.

See also
listLib.EQ LENGTH INDUCT TAC, listLib.LIST INDUCT TAC, listLib.SNOC INDUCT TAC.

EQ_MP (Thm)

EQ_MP : thm -> thm -> thm

270 CHAPTER 1. ENTRIES

Synopsis
Equality version of the Modus Ponens rule.

Description
When applied to theorems A1 |- t1 = t2 and A2 |- t1, the inference rule EQ_MP returns
the theorem A1 u A2 |- t2.

A1 |- t1 = t2 A2 |- t1

-------------------------- EQ_MP

A1 u A2 |- t2

Failure
Fails unless the first theorem is equational and its left side is the same as the conclusion
of the second theorem (and is therefore of type bool), up to alpha-conversion.

See also
Thm.EQ IMP RULE, Drule.IMP ANTISYM RULE, Thm.MP.

EQ_TAC (Tactic)

EQ_TAC : tactic

Synopsis
Reduces goal of equality of boolean terms to forward and backward implication.

Description
When applied to a goal A ?- t1 = t2, where t1 and t2 have type bool, the tactic EQ_TAC

returns the subgoals A ?- t1 ==> t2 and A ?- t2 ==> t1.

A ?- t1 = t2

================================= EQ_TAC

A ?- t1 ==> t2 A ?- t2 ==> t1

Failure
Fails unless the conclusion of the goal is an equation between boolean terms.

See also
Thm.EQ IMP RULE, Drule.IMP ANTISYM RULE.

EQF ELIM 271

EQF_ELIM (Drule)

EQF_ELIM : (thm -> thm)

Synopsis
Replaces equality with F by negation.

Description

A |- tm = F

------------- EQF_ELIM

A |- ~tm

Failure
Fails if the argument theorem is not of the form A |- tm = F.

See also
Drule.EQF INTRO, Drule.EQT ELIM, Drule.EQT INTRO.

EQF_INTRO (Drule)

EQF_INTRO : (thm -> thm)

Synopsis
Converts negation to equality with F.

Description

A |- ~tm

------------- EQF_INTRO

A |- tm = F

Failure
Fails if the argument theorem is not a negation.

See also
Drule.EQF ELIM, Drule.EQT ELIM, Drule.EQT INTRO.

272 CHAPTER 1. ENTRIES

EQT_ELIM (Drule)

EQT_ELIM : (thm -> thm)

Synopsis
Eliminates equality with T.

Description

A |- tm = T

------------- EQT_ELIM

A |- tm

Failure
Fails if the argument theorem is not of the form A |- tm = T.

See also
Drule.EQT INTRO, Drule.EQF ELIM, Drule.EQF INTRO.

EQT_INTRO (Drule)

EQT_INTRO : thm -> thm

Synopsis
Introduces equality with T.

Description

A |- tm

------------- EQT_INTRO

A |- tm = T

Failure
Never fails.

See also
Drule.EQT ELIM, Drule.EQF ELIM, Drule.EQF INTRO.

equal 273

equal (Lib)

equal : ’’a -> ’’a -> bool

Synopsis
Curried form of ML equality

Description
In some programming situations it is useful to use equality in a curried form. Although
it is easy to code up on demand, the equal function is provided for convenience.

Failure
Never fails.

Example

- filter (equal 1) [1,2,1,4,5];

> val it = [1, 1] : int list

equality (boolSyntax)

equality : term

Synopsis
Constant denoting logical equality.

Description
The ML variable boolSyntax.equality is bound to the term min$=.

See also
boolSyntax.implication, boolSyntax.select, boolSyntax.T, boolSyntax.F,

boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,

boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,

boolSyntax.arb.

274 CHAPTER 1. ENTRIES

ERR_outstream (Feedback)

ERR_outstream : TextIO.outstream ref

Synopsis
Reference to output stream used when printing HOL_ERR

Description
The value of reference cell ERR_outstream controls where Raise prints its argument.

The default value of ERR_outstream is TextIO.stdErr.

Example

- val ostrm = TextIO.openOut "foo";

> val ostrm = <outstream> : outstream

- ERR_outstream := ostrm;

> val it = () : unit

- Raise (mk_HOL_ERR "Foo" "bar" "incomprehensible input");

! Uncaught exception:

! HOL_ERR

- TextIO.closeOut ostrm;

> val it = () : unit

- val istrm = TextIO.openIn "foo";

> val istrm = <instream> : instream

- print (TextIO.inputAll istrm);

Exception raised at Foo.bar:

incomprehensible input

See also
Feedback, Feedback.HOL ERR, Feedback.Raise, Feedback.MESG outstream,

Feedback.WARNING outstream.

ERR to string 275

ERR_to_string (Feedback)

ERR_to_string : (error_record -> string) ref

Synopsis
Alterable function for formatting HOL_ERR

Description
ERR_to_string is a reference to a function for formatting the argument to an application
of HOL_ERR. It can be used to customize Raise.

The default value of ERR_to_string is format_ERR.

Example

- fun alt_ERR_report {origin_structure,origin_function,message} =

String.concat["This just in from ",origin_function, " at ",

origin_structure, " : ", message, "\n"];

- ERR_to_string := alt_ERR_report;

- Raise (HOL_ERR {origin_structure = "Foo",

origin_function = "bar",

message = "incomprehensible input"});

This just in from bar at Foo : incomprehensible input

! Uncaught exception:

! HOL_ERR

See also
Feedback, Feedback.error record, Feedback.HOL ERR, Feedback.Raise,

Feedback.MESG to string, Feedback.WARNING to string.

276 CHAPTER 1. ENTRIES

error_record (Feedback)

type error_record = {origin_structure : string,

origin_function : string,

message : string}

Synopsis
Type abbreviation for HOL exceptions in Feedback module.

Description
The type abbreviation error_record declares the standard format of HOL exceptions.
The origin_structure field denotes the module that the exception has been raised in,
the origin_function field gives the name of the function the exception has been raised
in, and the message field should give an explanation of why the exception has been
raised.

See also
Feedback, Feedback.HOL ERR, Feedback.format ERR, Feedback.ERR to string.

ETA_CONV (Drule)

ETA_CONV : conv

Synopsis
Performs a toplevel eta-conversion.

Description
ETA_CONV maps an eta-redex \x. (t x), where x does not occur free in t, to the theorem
|- (\x. (t x)) = t.

Failure
Fails if the input term is not an eta-redex.

See also
Drule.RIGHT ETA, Term.eta conv.

eta conv 277

eta_conv (Term)

eta_conv : term -> term

Synopsis
Performs one step of eta-reduction.

Description
Eta-reduction is an important operation in the lambda calculus. A step of eta-reduction
may be performed by eta_conv M, where M is a lambda abstraction of the following
form: \v. (N v), i.e., a lambda abstraction whose body is an application of a term N to
the bound variable v. Moreover, v must not occur free in M. If this proviso is met, an
invocation eta_conv (\v. (N v)) is equal to N.

Failure
If M is not of the specified form, or if v occurs free in N.

Example

- eta_conv (Term ‘\n. PRE n‘);

> val it = ‘PRE‘ : term

Comments
Eta-reduction embodies the principle of extensionality, which is basic to the HOL logic.

See also
Drule.ETA CONV, Drule.RIGHT ETA.

etyvar (Type)

etyvar : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.etyvar is bound to the type variable ’e.

278 CHAPTER 1. ENTRIES

See also
Type.alpha, Type.beta, Type.gamma, Type.delta, Type.ftyvar, Type.bool.

EVAL (bossLib)

EVAL : conv

Synopsis
Evaluate a term by deduction.

Description
An invocation EVAL M symbolically evaluates M by applying the defining equations of
constants occurring in M. These equations are held in a mutable datastructure that is
automatically added to by Hol_datatype, Define, and tprove. The underlying algorithm
is call-by-value with a few differences, see the entry for CBV_CONV for details.

Failure
Never fails, but may diverge.

Example

- EVAL (Term ‘REVERSE (MAP (\x. x + a) [x;y;z])‘);

> val it = |- REVERSE (MAP (\x. x + a) [x; y; z]) = [z + a; y + a; x + a]

: thm

Comments
In order for recursive functions over numbers to be applied by EVAL, pattern matching
over SUC and 0 needs to be replaced by destructors. For example, the equations for FACT
would have to be rephrased as FACT n = if n = 0 then 1 else n * FACT (n-1).

See also
computeLib.CBV CONV, computeLib.RESTR EVAL CONV, bossLib.EVAL TAC,

computeLib.monitoring, bossLib.Define.

EVAL_RULE (bossLib)

EVAL_RULE : thm -> thm

EVAL TAC 279

Synopsis
Evaluate conclusion of a theorem.

Description
An invocation EVAL_RULE th symbolically evaluates the conclusion of th by applying the
defining equations of constants which occur in the conclusion of th. These equations are
held in a mutable datastructure that is automatically added to by Hol_datatype, Define,
and tprove. The underlying algorithm is call-by-value with a few differences, see the
entry for CBV_CONV for details.

Failure
Never fails, but may diverge.

Example

- val th = ASSUME(Term ‘x = MAP FACT (REVERSE [1;2;3;4;5;6;7;8;9;10])‘);

> val th = [.] |- x = MAP FACT (REVERSE [1; 2; 3; 4; 5; 6; 7; 8; 9; 10])

- EVAL_RULE th;

> val it = [.] |- x = [3628800; 362880; 40320; 5040; 720; 120; 24; 6; 2; 1]

- hyp it;

> val it = [‘x = MAP FACT (REVERSE [1; 2; 3; 4; 5; 6; 7; 8; 9; 10])‘]

Comments
In order for recursive functions over numbers to be applied by EVAL_RULE, pattern match-
ing over SUC and 0 needs to be replaced by destructors. For example, the equations for
FACT would have to be rephrased as FACT n = if n = 0 then 1 else n * FACT (n-1).

See also
bossLib.EVAL, bossLib.EVAL TAC, computeLib.CBV CONV.

EVAL_TAC (bossLib)

EVAL_TAC : tactic

Synopsis
Evaluate a goal deductively.

280 CHAPTER 1. ENTRIES

Description
Applying EVAL_TAC to a goal A ?- g results in EVAL being applied to g to obtain |- g = g’.
This theorem is used to transform the goal to A ?- g’.

The notion of evaluation is based around rules for replacing constants by their (equa-
tional) definitions. Thus EVAL_TAC is currently suited to evaluation of expressions that
look like functional programs. Evaluation of inductive relations is not currently sup-
ported.

Failure
Shouldn’t fail, but may diverge.

Example
EVAL_TAC reduces the goal ?- P (REVERSE (FLAT [[x; y]; [a; b; c; d]])) to the goal

?- P [d; c; b; a; y; x]

Comments
The main problem with EVAL_TAC is knowing when it will terminate. One typical cause
of non-termination is that a constant in the goal has not been added to the_compset.
Another is that a test in a conditional in the expression may involve a variable.

Uses
Symbolic evaluation.

See also
bossLib.EVAL.

EVERY (Tactical)

EVERY : (tactic list -> tactic)

Synopsis
Sequentially applies all the tactics in a given list of tactics.

Description
When applied to a list of tactics [T1; ... ;Tn], and a goal g, the tactical EVERY applies
each tactic in sequence to every subgoal generated by the previous one. This can be
represented as:

EVERY [T1;...;Tn] = T1 THEN ... THEN Tn

EVERY ASSUM 281

If the tactic list is empty, the resulting tactic has no effect.

Failure
The application of EVERY to a tactic list never fails. The resulting tactic fails iff any of
the component tactics do.

Comments
It is possible to use EVERY instead of THEN, but probably stylistically inferior. EVERY is
more useful when applied to a list of tactics generated by a function.

See also
Tactical.FIRST, Tactical.MAP EVERY, Tactical.THEN.

EVERY_ASSUM (Tactical)

EVERY_ASSUM : (thm_tactic -> tactic)

Synopsis
Sequentially applies all tactics given by mapping a function over the assumptions of a
goal.

Description
When applied to a theorem-tactic f and a goal ({A1,...,An} ?- C), the EVERY_ASSUM

tactical maps f over a list of ASSUMEd assumptions then applies the resulting tactics, in
sequence, to the goal:

EVERY_ASSUM f ({A1,...,An} ?- C)

= (f(A1 |- A1) THEN ... THEN f(An |- An)) ({A1,...,An} ?- C)

If the goal has no assumptions, then EVERY_ASSUM has no effect.

Failure
The application of EVERY_ASSUM to a theorem-tactic and a goal fails if the theorem-tactic
fails when applied to any of the ASSUMEd assumptions of the goal, or if any of the result-
ing tactics fail when applied sequentially.

See also
Tactical.ASSUM LIST, Tactical.MAP EVERY, Tactical.MAP FIRST, Tactical.THEN.

282 CHAPTER 1. ENTRIES

EVERY_CONJ_CONV (Conv)

EVERY_CONJ_CONV : conv -> conv

Synopsis
Applies a conversion to every top-level conjunct in a term.

Description
The term EVERY_CONJ_CONV c t takes the conversion c and applies this to every top-level
conjunct within term t. A top-level conjunct is a sub-term that can be reached from the
root of the term by breaking apart only conjunctions. The terms affected by c are those
that would be returned by a call to strip_conj c. In particular, if the term as a whole is
not a conjunction, then the conversion will be applied to the whole term.

If the result of the application of the conversion to one of the conjuncts is one of the
constants true or false, then one of two standard rewrites is applied, simplifying the
resulting term. If one of the conjuncts is converted to false, then the conversion will not
be applied to the remaining conjuncts (the conjuncts are worked on from left to right),
and the result of the whole application will simply be false. Alternatively, conjuncts that
are converted to true will not appear in the final result at all.

Failure
Fails if the conversion argument fails when applied to one of the top-level conjuncts in
a term.

Example

- EVERY_CONJ_CONV BETA_CONV (Term‘(\x. x /\ y) p‘);

> val it = |- (\x. x /\ y) p = p /\ y : thm

- EVERY_CONJ_CONV BETA_CONV (Term‘(\y. y /\ p) q /\ (\z. z) r‘);

> val it = |- (\y. y /\ p) q /\ (\z. z) r = (q /\ p) /\ r : thm

Uses
Useful for applying a conversion to all of the “significant” sub-terms within a term with-
out having to worry about the exact structure of its conjunctive skeleton.

See also
Conv.EVERY DISJ CONV, Conv.RATOR CONV, Conv.RAND CONV, Conv.LAND CONV.

EVERY CONSEQ CONV 283

EVERY_CONSEQ_CONV (ConseqConv)

EVERY_CONSEQ_CONV : (conseq_conv list -> conseq_conv)

Synopsis
Applies in sequence all the consequence conversions in a given list of conversions.

See also
ConseqConv.THEN CONSEQ CONV, Conv.EVERY CONV.

EVERY_CONV (Conv)

EVERY_CONV : (conv list -> conv)

Synopsis
Applies in sequence all the conversions in a given list of conversions.

Description
EVERY_CONV [c1;...;cn] "t" returns the result of applying the conversions c1, ..., cn in
sequence to the term "t". The conversions are applied in the order in which they are
given in the list. In particular, if ci "ti" returns |- ti=ti+1 for i from 1 to n, then
EVERY_CONV [c1;...;cn] "t1" returns |- t1=t(n+1). If the supplied list of conversions
is empty, then EVERY_CONV returns the identity conversion. That is, EVERY_CONV [] "t"

returns |- t=t.

Failure
EVERY_CONV [c1;...;cn] "t" fails if any one of the conversions c1, ..., cn fails when
applied in sequence as specified above.

See also
Conv.THENC.

EVERY_DISJ_CONV (Conv)

EVERY_DISJ_CONV : conv -> conv

284 CHAPTER 1. ENTRIES

Synopsis
Applies a conversion to every top-level disjunct in a term.

Description
The term EVERY_DISJ_CONV c t takes the conversion c and applies this to every top-level
disjunct within term t. A top-level disjunct is a sub-term that can be reached from the
root of the term by breaking apart only disjunctions. The terms affected by c are those
that would be returned by a call to strip_disj c. In particular, if the term as a whole is
not a disjunction, then the conversion will be applied to the whole term.

If the result of the application of the conversion to one of the disjuncts is one of the
constants true or false, then one of two standard rewrites is applied, simplifying the
resulting term. If one of the disjuncts is converted to true, then the conversion will not
be applied to the remaining disjuncts (the disjuncts are worked on from left to right),
and the result of the whole application will simply be true. Alternatively, disjuncts that
are converted to false will not appear in the final result at all.

Failure
Fails if the conversion argument fails when applied to one of the top-level disjuncts in
the term.

Example
- EVERY_DISJ_CONV BETA_CONV

(Term‘(\x. x /\ p) q \/ (\x. x) r \/ (\y. s /\ y) u‘);

> val it =

|- (\x. x /\ p) q \/ (\x. x) r \/ (\y. s /\ y) u = q /\ p \/ r \/ s /\ u

: thm

- EVERY_DISJ_CONV REDUCE_CONV ‘‘3 < x \/ 2 < 3 \/ 2 EXP 1000 < 10‘‘;

> val it = |- 3 < x \/ 2 < 3 \/ 2 EXP 1000 < 10 = T : thm

Uses
Useful for applying a conversion to all of the “significant” sub-terms within a term with-
out having to worry about the exact structure of its disjunctive skeleton.

See also
Conv.EVERY CONJ CONV, Conv.RATOR CONV, Conv.RAND CONV, Conv.LAND CONV,

numLib.REDUCE CONV.

EVERY_TCL (Thm_cont)

EVERY_TCL : (thm_tactical list -> thm_tactical)

EXISTENCE 285

Synopsis
Composes a list of theorem-tacticals.

Description
When given a list of theorem-tacticals and a theorem, EVERY_TCL simply composes their
effects on the theorem. The effect is:

EVERY_TCL [ttl1;...;ttln] = ttl1 THEN_TCL ... THEN_TCL ttln

In other words, if:

ttl1 ttac th1 = ttac th2 ... ttln ttac thn = ttac thn’

then:

EVERY_TCL [ttl1;...;ttln] ttac th1 = ttac thn’

If the theorem-tactical list is empty, the resulting theorem-tactical behaves in the same
way as ALL_THEN, the identity theorem-tactical.

Failure
The application to a list of theorem-tacticals never fails.

See also
Thm cont.FIRST TCL, Thm cont.ORELSE TCL, Thm cont.REPEAT TCL, Thm cont.THEN TCL.

EXISTENCE (Conv)

EXISTENCE : (thm -> thm)

Synopsis
Deduces existence from unique existence.

Description
When applied to a theorem with a unique-existentially quantified conclusion, EXISTENCE
returns the same theorem with normal existential quantification over the same variable.

A |- ?!x. p

------------- EXISTENCE

A |- ?x. p

286 CHAPTER 1. ENTRIES

Failure
Fails unless the conclusion of the theorem is unique-existentially quantified.

See also
Conv.EXISTS UNIQUE CONV.

existential (boolSyntax)

existential : term

Synopsis
Constant denoting existential quantification.

Description
The ML variable boolSyntax.existential is bound to the term bool$?.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.exists1, boolSyntax.conjunction,

boolSyntax.disjunction, boolSyntax.negation, boolSyntax.conditional,

boolSyntax.bool case, boolSyntax.let tm, boolSyntax.arb.

exists (Lib)

exists : (’a -> bool) -> ’a list -> bool

Synopsis
Check if a predicate holds somewhere in a list

Description
An invocation exists P l returns true if P holds of some element of l. Since there are
no elements of [], exists P [] always returns false.

Failure
When searching for an element of l that P holds of, it may happen that an application
of P to an element of l raises an exception. In that case, exists P l raises an exception.

Example

EXISTS 287

- exists (fn i => i mod 2 = 0) [1,3,4];

> val it = true : bool

- exists (fn _ => raise Fail "") [];

> val it = false : bool

- exists (fn _ => raise Fail "") [1];

! Uncaught exception:

! Fail ""

See also
Lib.all, Lib.first, Lib.tryfind.

EXISTS (Thm)

EXISTS : term * term -> thm -> thm

Synopsis
Introduces existential quantification given a particular witness.

Description
When applied to a pair of terms and a theorem, the first term an existentially quantified
pattern indicating the desired form of the result, and the second a witness whose sub-
stitution for the quantified variable gives a term which is the same as the conclusion of
the theorem, EXISTS gives the desired theorem.

A |- p[u/x]

------------- EXISTS (?x. p, u)

A |- ?x. p

Failure
Fails unless the substituted pattern is the same as the conclusion of the theorem.

Example
The following examples illustrate how it is possible to deduce different things from the
same theorem:

288 CHAPTER 1. ENTRIES

- EXISTS (Term ‘?x. x=T‘,T) (REFL T);

> val it = |- ?x. x = T : thm

- EXISTS (Term ‘?x:bool. x=x‘,T) (REFL T);

> val it = |- ?x. x = x : thm

See also
Thm.CHOOSE, Tactic.EXISTS TAC.

exists1 (boolSyntax)

exists1 : term

Synopsis
Constant denoting the unique existence quantifier.

Description
The ML variable boolSyntax.exists1 is bound to the term bool$?!.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,

boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,

boolSyntax.arb.

EXISTS_AND_CONV (Conv)

EXISTS_AND_CONV : conv

Synopsis
Moves an existential quantification inwards through a conjunction.

Description
When applied to a term of the form ?x. P /\ Q, where x is not free in both P and Q,
EXISTS_AND_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

EXISTS AND REORDER CONV 289

|- (?x. P /\ Q) = (?x.P) /\ Q

is returned. If x is free in Q but not in P, then the result is:

|- (?x. P /\ Q) = P /\ (?x.Q)

And if x is free in neither P nor Q, then the result is:

|- (?x. P /\ Q) = (?x.P) /\ (?x.Q)

Failure
EXISTS_AND_CONV fails if it is applied to a term not of the form ?x. P /\ Q, or if it is
applied to a term ?x. P /\ Q in which the variable x is free in both P and Q.

See also
Conv.AND EXISTS CONV, Conv.EXISTS AND REORDER CONV, Conv.LEFT AND EXISTS CONV,

Conv.RIGHT AND EXISTS CONV.

EXISTS_AND_REORDER_CONV (Conv)

EXISTS_AND_REORDER_CONV : conv

Synopsis
Moves an existential quantification inwards through a conjunction, sorting the body.

Description
When applied to a term of the form ?x. c1 /\ c2 /\ .. /\ cn, where x is not free in
at least one of the conjuncts ci, then EXISTS_AND_REORDER_CONV returns a theorem of the
form

|- (?x. ...) = (ci /\ cj /\ ck /\ ...) /\ (?x. cm /\ cn /\ cp /\ ...)

where the conjuncts ci, cj and ck do not have the bound variable x free, and where the
conjuncts cm, cn and cp do.

Failure
EXISTS_AND_REORDER_CONV fails if it is applied to a term that is not an existential. It raises
UNCHANGED if the existential’s body is not a conjunction, or if the body does not have any
conjuncts where the bound variable does not occur, or if none of the body’s conjuncts
have free occurrences of the bound variable.

290 CHAPTER 1. ENTRIES

Comments
The conjuncts in the resulting term are kept in the same relative order as in the input
term, but will all be right-associated in the two groups (because they are re-assembled
with list_mk_conj), possibly destroying structure that existed in the original.

See also
Conv.EXISTS AND CONV.

EXISTS_ARITH_CONV (Arith)

EXISTS_ARITH_CONV : conv

Synopsis
Partial decision procedure for non-universal Presburger natural arithmetic.

Description
EXISTS_ARITH_CONV is a partial decision procedure for formulae of Presburger natural
arithmetic which are in prenex normal form and have all variables existentially quanti-
fied. Presburger natural arithmetic is the subset of arithmetic formulae made up from
natural number constants, numeric variables, addition, multiplication by a constant,
the relations <, <=, =, >=, > and the logical connectives ~, /\, \/, ==>, = (if-and-only-if), !
(‘forall’) and ? (‘there exists’). Products of two expressions which both contain variables
are not included in the subset, but the function SUC which is not normally included in a
specification of Presburger arithmetic is allowed in this HOL implementation.

Given a formula in the specified subset, the function attempts to prove that it is equal
to T (true). The procedure is incomplete; it is not able to prove all formulae in the
subset.

Failure
The function can fail in two ways. It fails if the argument term is not a formula in the
specified subset, and it also fails if it is unable to prove the formula. The failure strings
are different in each case.

Example

#EXISTS_ARITH_CONV "?m n. m < n";;

|- (?m n. m < n) = T

#EXISTS_ARITH_CONV "?m n. (2 * m) + (3 * n) = 10";;

|- (?m n. (2 * m) + (3 * n) = 10) = T

EXISTS CONSEQ CONV 291

See also
Arith.NEGATE CONV, Arith.FORALL ARITH CONV, numLib.ARITH CONV.

EXISTS_CONSEQ_CONV (ConseqConv)

EXISTS_CONSEQ_CONV : (conseq_conv -> conseq_conv)

Synopsis
Applies a consequence conversion to the body of a existentially quantified term.

Description
If c is a consequence conversion that maps a term ‘‘t x‘‘ to a theorem |- t x = t’ x,
|- t’ x ==> t x or |- t x ==> t’ x, then EXISTS_CONSEQ_CONV c maps ‘‘?x. t x‘‘ to
|- ?x. t x = ?x. t’ x, |- ?x. t’ x ==> ?x. t x or |- ?x. t x ==> ?x. t’ x, respec-
tively.

Failure
EXISTS_CONSEQ_CONV c t fails, if t is not a existentially quantified term or if c fails on
the body of t.

See also
Conv.QUANT CONV, ConseqConv.FORALL CONSEQ CONV, ConseqConv.QUANT CONSEQ CONV.

EXISTS_DEL1_CONV (unwindLib)

EXISTS_DEL1_CONV : conv

Synopsis
Deletes one existential quantifier.

Description
EXISTS_DEL1_CONV "?x. t" returns the theorem:

|- (?x. t) = t

292 CHAPTER 1. ENTRIES

provided x is not free in t.

Failure
Fails if the argument term is not an existential quantification or if x is free in t.

See also
unwindLib.EXISTS DEL CONV, unwindLib.PRUNE ONCE CONV.

EXISTS_DEL_CONV (unwindLib)

EXISTS_DEL_CONV : conv

Synopsis
Deletes existential quantifiers.

Description
EXISTS_DEL_CONV "?x1 ... xn. t" returns the theorem:

|- (?x1 ... xn. t) = t

provided x1,...,xn are not free in t.

Failure
Fails if any of the x’s appear free in t. The function does not perform a partial deletion;
for example, if x1 and x2 do not appear free in t but x3 does, the function will fail; it
will not return:

|- ?x1 ... xn. t = ?x3 ... xn. t

See also
unwindLib.EXISTS DEL1 CONV, unwindLib.PRUNE CONV.

EXISTS_EQ (Drule)

EXISTS_EQ : (term -> thm -> thm)

EXISTS EQ CONSEQ CONV 293

Synopsis
Existentially quantifies both sides of an equational theorem.

Description
When applied to a variable x and a theorem whose conclusion is equational, A |- t1 = t2,
the inference rule EXISTS_EQ returns the theorem A |- (?x. t1) = (?x. t2), provided
the variable x is not free in any of the assumptions.

A |- t1 = t2

------------------------ EXISTS_EQ "x" [where x is not free in A]

A |- (?x.t1) = (?x.t2)

Failure
Fails unless the theorem is equational with both sides having type bool, or if the term is
not a variable, or if the variable to be quantified over is free in any of the assumptions.

See also
Thm.AP TERM, Drule.EXISTS IMP, Drule.FORALL EQ, Drule.MK EXISTS,

Drule.SELECT EQ.

EXISTS_EQ___CONSEQ_CONV (ConseqConv)

EXISTS_EQ___CONSEQ_CONV : conseq_conv

Synopsis
Given a term of the form (?x. P x) = (?x. Q x) this consequence conversion returns
the theorem |- (!x. (P x = Q x)) ==> ((?x. P x) = (?x. Q x)).

See also
ConseqConv.conseq conv.

EXISTS_EQN_CONV (unwindLib)

EXISTS_EQN_CONV : conv

294 CHAPTER 1. ENTRIES

Synopsis
Proves the existence of a line that has a non-recursive equation.

Description
EXISTS_EQN_CONV "?l. !y1 ... ym. l x1 ... xn = t" returns the theorem:

|- (?l. !y1 ... ym. l x1 ... xn = t) = T

provided l is not free in t. Both m and n may be zero.

Failure
Fails if the argument term is not of the specified form or if l appears free in t.

See also
unwindLib.PRUNE ONCE CONV.

EXISTS_IMP (Drule)

EXISTS_IMP : (term -> thm -> thm)

Synopsis
Existentially quantifies both the antecedent and consequent of an implication.

Description
When applied to a variable x and a theorem A |- t1 ==> t2, the inference rule
EXISTS_IMP returns the theorem A |- (?x. t1) ==> (?x. t2), provided x is not free
in the assumptions.

A |- t1 ==> t2

-------------------------- EXISTS_IMP "x" [where x is not free in A]

A |- (?x.t1) ==> (?x.t2)

Failure
Fails if the theorem is not implicative, or if the term is not a variable, or if the term is a
variable but is free in the assumption list.

See also
Drule.EXISTS EQ.

EXISTS IMP CONV 295

EXISTS_IMP_CONV (Conv)

EXISTS_IMP_CONV : conv

Synopsis
Moves an existential quantification inwards through an implication.

Description
When applied to a term of the form ?x. P ==> Q, where x is not free in both P and Q,
EXISTS_IMP_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (?x. P ==> Q) = (!x.P) ==> Q

is returned. If x is free in Q but not in P, then the result is:

|- (?x. P ==> Q) = P ==> (?x.Q)

And if x is free in neither P nor Q, then the result is:

|- (?x. P ==> Q) = (!x.P) ==> (?x.Q)

Failure
EXISTS_IMP_CONV fails if it is applied to a term not of the form ?x. P ==> Q, or if it is
applied to a term ?x. P ==> Q in which the variable x is free in both P and Q.

See also
Conv.LEFT IMP FORALL CONV, Conv.RIGHT IMP EXISTS CONV.

EXISTS_NOT_CONV (Conv)

EXISTS_NOT_CONV : conv

Synopsis
Moves an existential quantification inwards through a negation.

Description
When applied to a term of the form ?x.~P, the conversion EXISTS_NOT_CONV returns the
theorem:

296 CHAPTER 1. ENTRIES

|- (?x.~P) = ~(!x. P)

Failure
Fails if applied to a term not of the form ?x.~P.

See also
Conv.FORALL NOT CONV, Conv.NOT EXISTS CONV, Conv.NOT FORALL CONV.

EXISTS_OR_CONV (Conv)

EXISTS_OR_CONV : conv

Synopsis
Moves an existential quantification inwards through a disjunction.

Description
When applied to a term of the form ?x. P \/ Q, the conversion EXISTS_OR_CONV returns
the theorem:

|- (?x. P \/ Q) = (?x.P) \/ (?x.Q)

Failure
Fails if applied to a term not of the form ?x. P \/ Q.

See also
Conv.OR EXISTS CONV, Conv.LEFT OR EXISTS CONV, Conv.RIGHT OR EXISTS CONV.

EXISTS_TAC (Tactic)

EXISTS_TAC : (term -> tactic)

Synopsis
Reduces existentially quantified goal to one involving a specific witness.

Description
When applied to a term u and a goal ?x. t, the tactic EXISTS_TAC reduces the goal to
t[u/x] (substituting u for all free instances of x in t, with variable renaming if necessary
to avoid free variable capture).

exists tyvar 297

A ?- ?x. t

============= EXISTS_TAC "u"

A ?- t[u/x]

Failure
Fails unless the goal’s conclusion is existentially quantified and the term supplied has
the same type as the quantified variable in the goal.

Example
The goal:

?- ?x. x=T

can be solved by:

EXISTS_TAC ‘‘T‘‘ THEN REFL_TAC

See also
Thm.EXISTS.

exists_tyvar (Type)

exists_tyvar : (hol_type -> bool) -> hol_type -> bool

Synopsis
Checks if a type variable satisfying a given condition exists in a type.

Description
An invocation exists_tyvar P ty searches ty for a type variable satisfying the predicate
P. The value true is returned if the search is successful; otherwise false is the result.

Failure
If P fails when applied to a type variable encountered in the course of searching ty.

Example

- exists_tyvar (equal beta) (alpha --> beta --> bool);

> val it = true : bool

298 CHAPTER 1. ENTRIES

Comments
This function is more efficient, in some cases, than exists P o type_vars.

EXISTS_UNIQUE_CONV (Conv)

EXISTS_UNIQUE_CONV : conv

Synopsis
Expands with the definition of unique existence.

Description
Given a term of the form "?!x.P[x]", the conversion EXISTS_UNIQUE_CONV proves that
this assertion is equivalent to the conjunction of two statements, namely that there
exists at least one value x such that P[x], and that there is at most one value x for which
P[x] holds. The theorem returned is:

|- (?! x. P[x]) = (?x. P[x]) /\ (!x x’. P[x] /\ P[x’] ==> (x = x’))

where x’ is a primed variant of x that does not appear free in the input term. Note that
the quantified variable x need not in fact appear free in the body of the input term. For
example, EXISTS_UNIQUE_CONV "?!x.T" returns the theorem:

|- (?! x. T) = (?x. T) /\ (!x x’. T /\ T ==> (x = x’))

Failure
EXISTS_UNIQUE_CONV tm fails if tm does not have the form "?!x.P".

See also
Conv.EXISTENCE.

exn_to_string (Feedback)

exn_to_string : exn -> string

Synopsis
Map an exception into a string

EXP CONV 299

Description
The function exn_to_string maps an exception to a string. However, in the case of the
Interrupt exception, it is not mapped to a string, but is instead raised. This avoids the
possibility of suppressing the propagation of Interrupt to the top level.

Failure
Never fails.

Example

- exn_to_string Interrupt;

> Interrupted.

- exn_to_string Div;

> val it = "Div" : string

- print

(exn_to_string (mk_HOL_ERR "Foo" "bar" "incomprehensible input"));

Exception raised at Foo.bar:

incomprehensible input

> val it = () : unit

See also
Feedback, Feedback.HOL ERR, Feedback.ERR to string.

EXP_CONV (reduceLib)

EXP_CONV : conv

Synopsis
Calculates by inference the result of raising one numeral to the power of another.

Description
If m and n are numerals (e.g. 0, 1, 2, 3,...), then EXP_CONV "m EXP n" returns the theorem:

|- m EXP n = s

300 CHAPTER 1. ENTRIES

where s is the numeral that denotes the result of raising the natural number denoted
by m to the power of the natural number denoted by n.

Failure
EXP_CONV tm fails unless tm is of the form "m EXP n", where m and n are numerals.

Example

#EXP_CONV "0 EXP 0";;

|- 0 EXP 0 = 1

#EXP_CONV "15 EXP 0";;

|- 15 EXP 0 = 1

#EXP_CONV "12 EXP 1";;

|- 12 EXP 1 = 12

#EXP_CONV "2 EXP 6";;

|- 2 EXP 6 = 64

expand (proofManagerLib)

expand : tactic -> proof

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function expand is part of the subgoal package. It may be abbreviated by the func-
tion e. It applies a tactic to the current goal to give a new proof state. The previous
state is stored on the backup list. If the tactic produces subgoals, the new proof state is
formed from the old one by removing the current goal from the goal stack and adding
a new level consisting of its subgoals. The corresponding justification is placed on the
justification stack. The new subgoals are printed. If more than one subgoal is produced,
they are printed from the bottom of the stack so that the new current goal is printed
last.

If a tactic solves the current goal (returns an empty subgoal list), then its justification
is used to prove a corresponding theorem. This theorem is incorporated into the justi-
fication of the parent goal and printed. If the subgoal was the last subgoal of the level,

expand 301

the level is removed and the parent goal is proved using its (new) justification. This
process is repeated until a level with unproven subgoals is reached. The next goal on
the goal stack then becomes the current goal. This goal is printed. If all the subgoals
are proved, the resulting proof state consists of the theorem proved by the justifications.

The tactic applied is a validating version of the tactic given. It ensures that the justifi-
cation of the tactic does provide a proof of the goal from the subgoals generated by the
tactic. It will cause failure if this is not so. The tactical VALID performs this validation.

For a description of the subgoal package, see set_goal.

Failure
expand tac fails if the tactic tac fails for the top goal. It will diverge if the tactic diverges
for the goal. It will fail if there are no unproven goals. This could be because no goal
has been set using set_goal or because the last goal set has been completely proved. It
will also fail in cases when the tactic is invalid.

Example

- expand CONJ_TAC;

- expand CONJ_TAC;

OK..

NO_PROOFS! Uncaught exception:

! NO_PROOFS

- g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proofs

- expand CONJ_TAC;

OK..

2 subgoals:

> val it =

TL [1; 2; 3] = [2; 3]

HD [1; 2; 3] = 1

302 CHAPTER 1. ENTRIES

: proof

- expand (REWRITE_TAC[listTheory.HD]);

OK..

Goal proved.

|- HD [1; 2; 3] = 1

Remaining subgoals:

> val it =

TL [1; 2; 3] = [2; 3]

: proof

- expand (REWRITE_TAC[listTheory.TL]);

OK..

Goal proved.

|- TL [1; 2; 3] = [2; 3]

> val it =

Initial goal proved.

|- (HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3]) : proof

In the following example an invalid tactic is used. It is invalid because it assumes
something that is not on the assumption list of the goal. The justification adds this
assumption to the assumption list so the justification would not prove the goal that was
set.

- g ‘1=2‘;

> val it =

Proof manager status: 2 proofs.

2. Completed: |- (HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

1. Incomplete:

Initial goal:

1 = 2

: proofs

- expand (REWRITE_TAC[ASSUME (Term ‘1=2‘)]);

OK..

Exception raised at Tactical.VALID:

EXPAND ALL BUT CONV 303

Invalid tactic

! Uncaught exception:

! HOL_ERR

Uses
Doing a step in an interactive goal-directed proof.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

EXPAND_ALL_BUT_CONV (unwindLib)

EXPAND_ALL_BUT_CONV : (string list -> thm list -> conv)

Synopsis
Unfolds, then unwinds all lines (except those specified) as much as possible, then prunes
the unwound lines.

Description
EXPAND_ALL_BUT_CONV [‘li(k+1)‘;...;‘lim‘] thl when applied to the following term:

"?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn"

returns a theorem of the form:

B |- (?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn) =

(?li(k+1) ... lim. t1’ /\ ... /\ tn’)

where each ti’ is the result of rewriting ti with the theorems in thl. The set of
assumptions B is the union of the instantiated assumptions of the theorems used for
rewriting. If none of the rewrites are applicable to a conjunct, it is unchanged. Those
conjuncts that after rewriting are equations for the lines li1,...,lik (they are denoted
by ui1,...,uik) are used to unwind and the lines li1,...,lik are then pruned.

The li’s are related by the equation:

{{li1,...,lik}} u {{li(k+1),...,lim}} = {{l1,...,lm}}

304 CHAPTER 1. ENTRIES

Failure
The function may fail if the argument term is not of the specified form. It will also
fail if the unwound lines cannot be pruned. It is possible for the function to attempt
unwinding indefinitely (to loop).

Example

#EXPAND_ALL_BUT_CONV [‘l1‘]

[ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]

"?l1 l2.

INV (l1,l2) /\ INV (l2,out) /\ (!(t:num). l1 t = l2 (t-1) \/ out (t-1))";;

. |- (?l1 l2.

INV(l1,l2) /\ INV(l2,out) /\ (!t. l1 t = l2(t - 1) \/ out(t - 1))) =

(?l1.

(!t. out t = ~~l1 t) /\ (!t. l1 t = ~l1(t - 1) \/ ~~l1(t - 1)))

See also
unwindLib.EXPAND AUTO CONV, unwindLib.EXPAND ALL BUT RIGHT RULE,

unwindLib.EXPAND AUTO RIGHT RULE, unwindLib.UNFOLD CONV,

unwindLib.UNWIND ALL BUT CONV, unwindLib.PRUNE SOME CONV.

EXPAND_ALL_BUT_RIGHT_RULE (unwindLib)

EXPAND_ALL_BUT_RIGHT_RULE : (string list -> thm list -> thm -> thm)

Synopsis
Unfolds, then unwinds all lines (except those specified) as much as possible, then prunes
the unwound lines.

Description
EXPAND_ALL_BUT_RIGHT_RULE [‘li(k+1)‘;...;‘lim‘] thl behaves as follows:

A |- !z1 ... zr.

t = ?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn

B u A |- !z1 ... zr. t = ?li(k+1) ... lim. t1’ /\ ... /\ tn’

EXPAND AUTO CONV 305

where each ti’ is the result of rewriting ti with the theorems in thl. The set of
assumptions B is the union of the instantiated assumptions of the theorems used for
rewriting. If none of the rewrites are applicable to a conjunct, it is unchanged. Those
conjuncts that after rewriting are equations for the lines li1,...,lik (they are denoted
by ui1,...,uik) are used to unwind and the lines li1,...,lik are then pruned.

The li’s are related by the equation:

{{li1,...,lik}} u {{li(k+1),...,lim}} = {{l1,...,lm}}

Failure
The function may fail if the argument theorem is not of the specified form. It will also
fail if the unwound lines cannot be pruned. It is possible for the function to attempt
unwinding indefinitely (to loop).

Example

#EXPAND_ALL_BUT_RIGHT_RULE [‘l1‘]

[ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]

(ASSUME

"!(in:num->bool) out.

DEV(in,out) =

?l1 l2.

INV (l1,l2) /\ INV (l2,out) /\ (!(t:num). l1 t = in t \/ out (t-1))");;

.. |- !in out.

DEV(in,out) =

(?l1. (!t. out t = ~~l1 t) /\ (!t. l1 t = in t \/ ~~l1(t - 1)))

See also
unwindLib.EXPAND AUTO RIGHT RULE, unwindLib.EXPAND ALL BUT CONV,

unwindLib.EXPAND AUTO CONV, unwindLib.UNFOLD RIGHT RULE,

unwindLib.UNWIND ALL BUT RIGHT RULE, unwindLib.PRUNE SOME RIGHT RULE.

EXPAND_AUTO_CONV (unwindLib)

EXPAND_AUTO_CONV : (thm list -> conv)

Synopsis
Unfolds, then unwinds as much as possible, then prunes the unwound lines.

Description
EXPAND_AUTO_CONV thl when applied to the following term:

306 CHAPTER 1. ENTRIES

"?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn"

returns a theorem of the form:

B |- (?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn) =

(?li(k+1) ... lim. t1’ /\ ... /\ tn’)

where each ti’ is the result of rewriting ti with the theorems in thl. The set of assump-
tions B is the union of the instantiated assumptions of the theorems used for rewriting.
If none of the rewrites are applicable to a conjunct, it is unchanged. After rewriting,
the function decides which of the resulting terms to use for unwinding, by performing
a loop analysis on the graph representing the dependencies of the lines.

Suppose the function decides to unwind li1,...,lik using the terms ui1’,...,uik’

respectively. Then, after unwinding, the lines li1,...,lik are pruned (provided they
have been eliminated from the right-hand sides of the conjuncts that are equations, and
from the whole of any other conjuncts) resulting in the elimination of ui1’,...,uik’.

The li’s are related by the equation:

{{li1,...,lik}} u {{li(k+1),...,lim}} = {{l1,...,lm}}

The loop analysis allows the term to be unwound as much as possible without the risk
of looping. The user is left to deal with the recursive equations.

Failure
The function may fail if the argument term is not of the specified form. It also fails if
there is more than one equation for any line variable.

Example

#EXPAND_AUTO_CONV

[ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]

"?l1 l2.

INV (l1,l2) /\ INV (l2,out) /\ (!(t:num). l1 t = l2 (t-1) \/ out (t-1))";;

. |- (?l1 l2.

INV(l1,l2) /\ INV(l2,out) /\ (!t. l1 t = l2(t - 1) \/ out(t - 1))) =

(?l2.

(!t. l2 t = ~(l2(t - 1) \/ ~l2(t - 1))) /\ (!t. out t = ~l2 t))

See also
unwindLib.EXPAND ALL BUT CONV, unwindLib.EXPAND AUTO RIGHT RULE,

unwindLib.EXPAND ALL BUT RIGHT RULE, unwindLib.UNFOLD CONV,

unwindLib.UNWIND AUTO CONV, unwindLib.PRUNE SOME CONV.

EXPAND AUTO RIGHT RULE 307

EXPAND_AUTO_RIGHT_RULE (unwindLib)

EXPAND_AUTO_RIGHT_RULE : (thm list -> thm -> thm)

Synopsis
Unfolds, then unwinds as much as possible, then prunes the unwound lines.

Description
EXPAND_AUTO_RIGHT_RULE thl behaves as follows:

A |- !z1 ... zr.

t = ?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn

B u A |- !z1 ... zr. t = ?li(k+1) ... lim. t1’ /\ ... /\ tn’

where each ti’ is the result of rewriting ti with the theorems in thl. The set of assump-
tions B is the union of the instantiated assumptions of the theorems used for rewriting.
If none of the rewrites are applicable to a conjunct, it is unchanged. After rewriting,
the function decides which of the resulting terms to use for unwinding, by performing
a loop analysis on the graph representing the dependencies of the lines.

Suppose the function decides to unwind li1,...,lik using the terms ui1’,...,uik’

respectively. Then, after unwinding, the lines li1,...,lik are pruned (provided they
have been eliminated from the right-hand sides of the conjuncts that are equations, and
from the whole of any other conjuncts) resulting in the elimination of ui1’,...,uik’.

The li’s are related by the equation:

{{li1,...,lik}} u {{li(k+1),...,lim}} = {{l1,...,lm}}

The loop analysis allows the term to be unwound as much as possible without the risk
of looping. The user is left to deal with the recursive equations.

Failure
The function may fail if the argument theorem is not of the specified form. It also fails
if there is more than one equation for any line variable.

Example

#EXPAND_AUTO_RIGHT_RULE

[ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]

(ASSUME

"!(in:num->bool) out.

308 CHAPTER 1. ENTRIES

DEV(in,out) =

?l1 l2.

INV (l1,l2) /\ INV (l2,out) /\ (!(t:num). l1 t = in t \/ out (t-1))");;

.. |- !in out. DEV(in,out) = (!t. out t = ~~(in t \/ out(t - 1)))

See also
unwindLib.EXPAND ALL BUT RIGHT RULE, unwindLib.EXPAND AUTO CONV,

unwindLib.EXPAND ALL BUT CONV, unwindLib.UNFOLD RIGHT RULE,

unwindLib.UNWIND AUTO RIGHT RULE, unwindLib.PRUNE SOME RIGHT RULE.

expandf (proofManagerLib)

expandf : (tactic -> unit)

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function expandf is a faster version of expand. It does not use a validated version of
the tactic. That is, no check is made that the justification of the tactic does prove the
goal from the subgoals it generates. If an invalid tactic is used, the theorem ultimately
proved may not match the goal originally set. Alternatively, failure may occur when
the justifications are applied in which case the theorem would not be proved. For a
description of the subgoal package, see under set_goal.

Failure
Calling expandf tac fails if the tactic tac fails for the top goal. It will diverge if the tactic
diverges for the goal. It will fail if there are no unproven goals. This could be because
no goal has been set using set_goal or because the last goal set has been completely
proved. If an invalid tactic, whose justification actually fails, has been used earlier in
the proof, expandf tac may succeed in applying tac and apparently prove the current
goal. It may then fail as it applies the justifications of the tactics applied earlier.

Example

- g ‘HD[1;2;3] = 1‘;

‘HD[1;2;3] = 1‘

expandf 309

() : void

- expandf (REWRITE_TAC[HD;TL]);;

OK..

goal proved

|- HD[1;2;3] = 1

Previous subproof:

goal proved

() : void

The following example shows how the use of an invalid tactic can yield a theorem which
does not correspond to the goal set.

- set_goal([], Term ‘1=2‘);

‘1 = 2‘

() : void

- expandf (REWRITE_TAC[ASSUME (Term‘1=2‘)]);

OK..

goal proved

. |- 1 = 2

Previous subproof:

goal proved

() : void

The proof assumed something which was not on the assumption list. This assumption
appears in the assumption list of the theorem proved, even though it was not in the
goal. An attempt to perform the proof using expand fails. The validated version of the
tactic detects that the justification produces a theorem which does not correspond to
the goal set. It therefore fails.

Uses
Saving CPU time when doing goal-directed proofs, since the extra validation is not done.
Redoing proofs quickly that are already known to work.

Comments
The CPU time saved may cause misery later. If an invalid tactic is used, this will only
be discovered when the proof has apparently been finished and the justifications are
applied.

310 CHAPTER 1. ENTRIES

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

export_rewrites (BasicProvers)

export_rewrites : string list -> unit

Synopsis
Exports theorems so that they merge with the “stateful” rewriter’s simpset.

Description
A call to export_rewrites strlist causes the theorems named by the strings in strlist

to be merged into the simpset value maintained behind the function srw_ss(), both in
the current session and also when the theory generated by the script file is loaded.

The theory is also augmented with an element in its signature of the form <thyname>_rwts

of type simpLib.ssfrag. This value is the collection of all the theorems specified in calls
to export_rewrites.

Multiple calls to export_rewrites cumulatively add to the list of theorems being ex-
ported.

Failure
Fails if any of the strings in the list does not correspond to the name of a theorem,
definition or axiom of the current theory segment.

Comments
This function is useful for ensuring that the stateful rewriter is augmented as theories
are loaded. This in turn means that users of these theories don’t need to learn the names
of their “obvious” theorems. Because theorems can not be removed from the stateful
rewriter’s underlying simpset, choice of “obvious” theorems needs to be done with care.

See also
bossLib.augment srw ss, bossLib.srw ss, bossLib.SRW TAC.

export_theory (Theory)

export_theory : unit -> unit

export theory 311

Synopsis
Write a theory segment to disk.

Description
An invocation export_theory() saves the current theory segment to disk. All parents,
definitions, axioms, and stored theorems of the segment are saved in such a way that,
when the theory is loaded from disk in a later session, the full theory in place at the
time export_theory was called is re-instated.

If the current theory segment is named thy, then export_theory() will create ML files
thyTheory.sig and thyTheory.sml, in the current directory at the time export_theory is
invoked. These files need to be compiled before they become usable. In the standard
way of doing things, the Holmake facility will handle this task.

Once a theory segment has been exported and compiled, it is available for use. It can
be brought into an interactive proof session via

load "thyTheory";

When the segment is loaded, its parents, axioms, theorems, and definitions are in-
corporated into the current theory (recall that this notion is different than the current
theory segment).

Failure
A call to export_theory may fail if the disk file cannot be opened. A call to export_theory

will also fail if some bindings are such that the name of the binding is not a valid ML
identifier. In that case, export_theory will report all such bad names. These can be
changed with set_MLname, and then export_theory may be attempted again.

Example

- save_thm("foo", REFL (Term ‘x:bool‘));

> val it = |- x = x : thm

- export_theory();

Exporting theory "scratch" ... done.

> val it = () : unit

Comments
Note that export_theory exports the state of the theory, and not that of the ML environ-
ment. If one wants to restore the state of the ML environment in existence at the time
export_theory() is invoked, special steps have to be taken; see adjoin_to_theory.

See also
Theory.new theory, Theory.adjoin to theory, Theory.set MLname.

312 CHAPTER 1. ENTRIES

EXT (Drule)

EXT : thm -> thm

Synopsis
Derives equality of functions from extensional equivalence.

Description
When applied to a theorem A |- !x. t1 x = t2 x, the inference rule EXT returns the
theorem A |- t1 = t2.

A |- !x. t1 x = t2 x

---------------------- EXT [where x is not free in t1 or t2]

A |- t1 = t2

Failure
Fails if the theorem does not have the form indicated above, or if the variable x is free
in either of the functions t1 or t2.

Comments
This rule is expressed as an equivalence in the theorem boolTheory.FUN_EQ_THM.

See also
Thm.AP THM, Drule.ETA CONV, Conv.FUN EQ CONV.

EXT_CONSEQ_REWRITE_CONV (ConseqConv)

EXT_CONSEQ_REWRITE_CONV : conv list -> thm list -> (thm list * thm list * thm list) -> directed_conseq_conv

Synopsis
Applies CONSEQ_REWRITE_CONV interleaved with conversions and rewrites.

Description
CONSEQ_REWRITE_CONV often results in theorems of the following form

|- (!x. T) /\ (T /\ (T /\ T)) /\ (\x. P) y /\ T ==>

something

EXT DEPTH CONSEQ CONV 313

The problem is that CONSEQ REWRITE CONV applies consequence conversions, but
no normal convs or simplifications. This is changed by EXT_CONSEQ_REWRITE_CONV.
EXT_CONSEQ_REWRITE_CONV gets a list of conversions and a list of rewrite theorems. More-
over there are the parameters of CONSEQ_REWRITE_CONV. It then applies these conversions
(e.g. DEPTH CONV BETA CONV) and a REWRITE CONV with the given theorem list
interleaved with CONSEQ_REWRITE_CONV. As a result the theorem above might look now
like

|- P y ==> something

See also
ConseqConv.CONSEQ REWRITE CONV.

EXT_DEPTH_CONSEQ_CONV (ConseqConv)

EXT_DEPTH_CONSEQ_CONV : conseq_conv_congruence list -> int option -> bool -> directed_conseq_conv list -> directed_conseq_conv

Synopsis
The general depth consequence conversion of which DEPTH_CONSEQ_CONV, REDEPTH_CONSEQ_CONV,
ONCE_DEPTH_CONSEQ_CONV etc are just instantiations.

Description
DEPTH_CONSEQ_CONV and similar conversions are able apply a consequence conversion by
breaking down the structure of a term using lemmata about /\, \/, ~, ==> and quantifi-
cation. Thereby, these conversions collect various amounts of context information.
EXT_DEPTH_CONSEQ_CONV congruence_list cache_opt step_opt redepth convL is the con-

version used by these other depth conversions. Its interface allows one to add to the
given list of boolean combinations and thus allow the conversion of parts of user-defined
predicates. This is done using congruence_list. However, let’s consider the other pa-
rameters first: cache_opt determines which cache to use: NONE means no caching; a
standard cache that stores everything is configured by CONSEQ_CONV_default_cache_opt.

The number of steps taken is determined by step_opt. NONE means arbitrarily many;
SOME n means at most n. ONCE_DEPTH_CONSEQ_CONV for example uses SOME 1. The pa-
rameter redepth determines whether modified terms should be revisited and convL is a
basically a list of directed consequence conversions of the conversions that should be
applied at subpositions. Its entries consist of a flag, whether to apply the conversion be-
fore or after descending into subterms; the weight (i.e. the number of counted steps) for
the conversion, and a function from the context (a list of theorems) to the conversion.

314 CHAPTER 1. ENTRIES

The first parameter congruence_list is a list of congruences that determine how to
break down terms. Each element of this list has to be a function congruence context sys dir t

which returns a pair of the number of performed steps and a resulting theorem. sys is
a callback that allows to apply the depth conversion recursively to subterms. context

gives the context that can be used, but is normally just interesting for the conversions.
If you ignore the number of steps, the congruence is otherwise a directed consequence
conversion. If the congruence can’t be applied, it should either fail or raise an UNCHANGED

exception. The callback sys gets the number of already performed steps, a direction
and a term. It then returns a accumulated number of steps and a thm option. It never
fails. The number of steps is used to abort if the maximum number of globally allowed
steps has been reached. The first call of sys should get 0, then the accumulated number
has to be passed. The congruence should return the finally, accumulated number of
steps. As an example, a congruence for implications is implemented by

fun CONSEQ_CONV_CONGRUENCE___imp_simple_context context sys dir t =

let

val (b1,b2) = dest_imp t;

(* simplify the precondition *)

val (n1, thm1_opt) = sys [] 0 (CONSEQ_CONV_DIRECTION_NEGATE dir) b1;

(* what did it simplify to? *)

val a2 = CONSEQ_CONV___OPT_GET_SIMPLIFIED_TERM

thm1_opt

(CONSEQ_CONV_DIRECTION_NEGATE dir)

b1;

(* if precond is false, one does not need to process the conclusion *)

val abort_cond = same_const a2 F;

(* otherwise process the conclusion and add the precond as

additional context *)

val (n2, thm2_opt) = if abort_cond then (n1, NONE)

else sys [a2] n1 dir b2;

(* abort, if nothing was done *)

val _ = if (isSome thm1_opt) orelse (isSome thm2_opt) orelse

abort_cond

then ()

else raise UNCHANGED;

F 315

(* get theorems, if necessary create them and get the additional

context as an additional implication *)

val thm1 = conseq_conv_congruence_EXPAND_THM_OPT (thm1_opt, b1, NONE);

val thm2 = conseq_conv_congruence_EXPAND_THM_OPT (thm2_opt, b2, SOME a2);

(* apply congruence rule for these theorems *)

val cong_thm =

if (dir = CONSEQ_CONV_STRENGTHEN_direction) then

IMP_CONG_simple_imp_strengthen

else IMP_CONG_simple_imp_weaken

val thm3 = MATCH_MP cong_thm (CONJ thm1 thm2)

(* simplify output: (F ==> X) = X etc.

val thm4 = CONV_RULE (dir_conv dir trivial_imp_simp) thm3

handle HOL_ERR _ => thm3

in

(n2, thm4)

end handle HOL_ERR _ => raise CONSEQ_CONV_congruence_expection;

See also
ConseqConv.DEPTH CONSEQ CONV, ConseqConv.REDEPTH CONSEQ CONV,

ConseqConv.ONCE DEPTH CONSEQ CONV, ConseqConv.NUM DEPTH CONSEQ CONV.

F (boolSyntax)

F : term

Synopsis
Constant denoting falsity.

Description
The ML variable boolSyntax.F is bound to the term bool$F.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,

boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,

boolSyntax.arb.

316 CHAPTER 1. ENTRIES

fail (Feedback)

fail : unit -> ’a

Synopsis
Raise a HOL_ERR.

Description
The function fail raises a HOL_ERR with default values. This is useful when detailed
error tracking is not necessary.

Failure
Always fails.

Example

- fail() handle e => Raise e;

Exception raised at ??.??:

fail

! Uncaught exception:

! HOL_ERR

See also
Feedback, Feedback.failwith, Feedback.Raise, Feedback.HOL ERR.

FAIL_TAC (Tactical)

FAIL_TAC : (string -> tactic)

Synopsis
Tactic which always fails, with the supplied string.

Description
Whatever goal it is applied to, FAIL_TAC s always fails with the string s.

failwith 317

Failure
The application of FAIL_TAC to a string never fails; the resulting tactic always fails.

Example
The following example uses the fact that if a tactic t1 solves a goal, then the tactic
t1 THEN t2 never results in the application of t2 to anything, because t1 produces no
subgoals. In attempting to solve the following goal:

?- x => T | T

the tactic

REWRITE_TAC[] THEN FAIL_TAC ‘Simple rewriting failed to solve goal‘

will fail with the message provided, whereas:

CONV_TAC COND_CONV THEN FAIL_TAC ‘Using COND_CONV failed to solve goal‘

will silently solve the goal because COND_CONV reduces it to just ?- T.

See also
Tactical.ALL TAC, Tactical.NO TAC.

failwith (Feedback)

failwith : string -> ’a

Synopsis
Raise a HOL_ERR.

Description
The function failwith raises a HOL_ERR with default values. This is useful when detailed
error tracking is not necessary.
failwith differs from fail in that it takes an extra string argument, which is typically

used to tell which function failwith is being called from.

Failure
Always fails.

Example

318 CHAPTER 1. ENTRIES

- failwith "foo" handle e => Raise e;

Exception raised at ??.failwith:

foo

! Uncaught exception:

! HOL_ERR

See also
Feedback, Feedback.fail, Feedback.Raise, Feedback.HOL ERR.

FALSE_CONSEQ_CONV (ConseqConv)

FALSE_CONSEQ_CONV : conseq_conv

Synopsis
Given a term t of type bool this consequence conversion returns the theorem |- F ==> t.

See also
ConseqConv.TRUE CONSEQ CONV, ConseqConv.REFL CONSEQ CONV,

ConseqConv.TRUE FALSE REFL CONSEQ CONV.

FCP_ss (fcpLib)

FCP_ss : ssfrag

Synopsis
A simpset fragment for simplifying finite Cartesian product expressions.

Example

simpLib.SSFRAG{ac = [], congs = [], convs = [], dprocs = [], filter = NONE,

rewrs =

[|- !i. i < dimindex (:’b) ==> ($FCP g ’ i = g i),

|- !g. (FCP i. g ’ i) = g,

|- !x y. (x = y) = !i. i < dimindex (:’b) ==> (x ’ i = y ’ i)]}

: ssfrag

Feedback 319

See also
wordsLib.WORD BIT EQ ss.

Feedback

structure Feedback

Synopsis
Module for messages, warnings, errors, and tracing of HOL functions.

Description
The Feedback structure provides facilities for raising and viewing HOL errors, and also
for monitoring tools as they run.

fetch (DB)

fetch : string -> string -> thm

Synopsis
Fetch a theorem by theory and name.

Description
An invocation fetch thy name searches through the currently loaded theory segments
in an attempt to find a theorem, axiom, or definition stored under name in theory thy.

Failure
If the specified theorem, axiom, or definition cannot be located.

Example

- DB.fetch "bool" "NOT_FORALL_THM";

> val it = |- !P. ~(!x. P x) = ?x. ~P x : thm

See also
DB.thms, DB.thy, DB.theorems, DB.axioms, DB.definitions.

320 CHAPTER 1. ENTRIES

filter (Lib)

filter : (’a -> bool) -> ’a list -> ’a list

Synopsis
Filters a list to the sublist of elements satisfying a predicate.

Description
filter P l applies P to every element of l, returning a list of those that satisfy P, in the
order they appeared in the original list.

Failure
If P x fails for some element x of l.

Comments
Identical to List.filter from the Standard ML Basis Library.

See also
Lib.mapfilter, Lib.partition.

FILTER_ASM_REWRITE_RULE (Rewrite)

FILTER_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem including built-in rewrites and some of the theorem’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
theorem. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used (along with the set of basic tautologies and the
given theorem list) to rewrite the theorem. See GEN_REWRITE_RULE for more information
on rewriting.

Failure
FILTER_ASM_REWRITE_RULE does not fail. Using FILTER_ASM_REWRITE_RULE may result in
a diverging sequence of rewrites. In such cases FILTER_ONCE_ASM_REWRITE_RULE may be
used.

FILTER ASM REWRITE TAC 321

Uses
This rule can be applied when rewriting with all assumptions results in divergence.
Typically, the predicate can model checks as to whether a certain variable appears on the
left-hand side of an equational assumption, or whether the assumption is in disjunctive
form.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ONCE ASM REWRITE RULE,

Rewrite.FILTER PURE ASM REWRITE RULE, Rewrite.FILTER PURE ONCE ASM REWRITE RULE,

Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE,

Rewrite.REWRITE RULE.

FILTER_ASM_REWRITE_TAC (Rewrite)

FILTER_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal including built-in rewrites and some of the goal’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
goal. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used (along with the set of basic tautologies and the
given theorem list) to rewrite the goal. See GEN_REWRITE_TAC for more information on
rewriting.

Failure
FILTER_ASM_REWRITE_TAC does not fail, but it can result in an invalid tactic if the rewrite
is invalid. This happens when a theorem used for rewriting has assumptions which are
not alpha-convertible to assumptions of the goal. Using FILTER_ASM_REWRITE_TAC may
result in a diverging sequence of rewrites. In such cases FILTER_ONCE_ASM_REWRITE_TAC

may be used.

Uses
This tactic can be applied when rewriting with all assumptions results in divergence, or
in an unwanted proof state. Typically, the predicate can model checks as to whether a

322 CHAPTER 1. ENTRIES

certain variable appears on the left-hand side of an equational assumption, or whether
the assumption is in disjunctive form. Thus it allows choice of assumptions to rewrite
with in a position-independent fashion.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ONCE ASM REWRITE TAC,

Rewrite.FILTER PURE ASM REWRITE TAC, Rewrite.FILTER PURE ONCE ASM REWRITE TAC,

Rewrite.GEN REWRITE TAC, Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC,

Rewrite.REWRITE TAC.

FILTER_CONV (listLib)

FILTER_CONV : conv -> conv

Synopsis
Computes by inference the result of applying a predicate to the elements of a list.

Description
FILTER_CONV takes a conversion conv and a term tm in the following form:

FILTER P [x0;...xn]

It returns the theorem

|- FILTER P [x0;...xn] = [...xi...]

where for every xi occurring in the right-hand side of the resulting theorem, conv (--‘P xi‘--)

returns a theorem |- P xi = T.

Failure
FILTER_CONV conv tm fails if tm is not of the form described above.

Example
Evaluating

FILTER_CONV bool_EQ_CONV (--‘FILTER ($= T) [T;F;T]‘--);

returns the following theorem:

FILTER DISCH TAC 323

|- FILTER($= T)[T;F;T] = [T;T]

In general, if the predicate P is an explicit lambda abstraction (\x. P x), the conversion
should be in the form

(BETA_CONV THENC conv’)

See also
listLib.FOLDL CONV, listLib.FOLDR CONV, listLib.list FOLD CONV.

FILTER_DISCH_TAC (Tactic)

FILTER_DISCH_TAC : (term -> tactic)

Synopsis
Conditionally moves the antecedent of an implicative goal into the assumptions.

Description
FILTER_DISCH_TAC will move the antecedent of an implication into the assumptions, pro-
vided its parameter does not occur in the antecedent.

A ?- u ==> v

============== FILTER_DISCH_TAC w

A u {u} ?- v

Note that DISCH_TAC treats ~u as u ==> F. Unlike DISCH_TAC, the antecedent will be
STRIPed into its various components before being ASSUMEd. This stripping includes gen-
erating multiple goals for case-analysis of disjunctions. Also, unlike DISCH_TAC, should
any component of the discharged antecedent directly imply or contradict the goal, then
this simplification will also be made. Again, unlike DISCH_TAC, FILTER_DISCH_TAC will
not duplicate identical or alpha-equivalent assumptions.

Failure
FILTER_DISCH_TAC will fail if a term which is identical, or alpha-equivalent to w occurs
free in the antecedent, or if the theorem is not an implication or a negation.

Comments
FILTER_DISCH_TAC w behaves like FILTER_DISCH_THEN STRIP_ASSUME_TAC w.

324 CHAPTER 1. ENTRIES

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,

Thm cont.FILTER DISCH THEN, Drule.NEG DISCH, Tactic.STRIP TAC, Drule.UNDISCH,

Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

FILTER_DISCH_THEN (Thm_cont)

FILTER_DISCH_THEN : (thm_tactic -> term -> tactic)

Synopsis
Conditionally gives to a theorem-tactic the antecedent of an implicative goal.

Description
If FILTER_DISCH_THEN’s second argument, a term, does not occur in the antecedent, then
FILTER_DISCH_THEN removes the antecedent and then creates a theorem by ASSUMEing
it. This new theorem is passed to FILTER_DISCH_THEN’s first argument, which is subse-
quently expanded. For example, if

A ?- t

======== f (ASSUME u)

B ?- v

then

A ?- u ==> t

============== FILTER_DISCH_THEN f

B ?- v

Note that FILTER_DISCH_THEN treats ~u as u ==> F.

Failure
FILTER_DISCH_THEN will fail if a term which is identical, or alpha-equivalent to w occurs
free in the antecedent. FILTER_DISCH_THEN will also fail if the theorem is an implication
or a negation.

Comments
FILTER_DISCH_THEN is most easily understood by first understanding DISCH_THEN.

Uses
For preprocessing an antecedent before moving it to the assumptions, or for using an-
tecedents and then throwing them away.

FILTER GEN TAC 325

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,

Tactic.FILTER DISCH TAC, Drule.NEG DISCH, Tactic.STRIP TAC, Drule.UNDISCH,

Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

FILTER_GEN_TAC (Tactic)

FILTER_GEN_TAC : (term -> tactic)

Synopsis
Strips off a universal quantifier, but fails for a given quantified variable.

Description
When applied to a term s and a goal A ?- !x. t, the tactic FILTER_GEN_TAC fails if the
quantified variable x is the same as s, but otherwise advances the goal in the same way
as GEN_TAC, i.e. returns the goal A ?- t[x’/x] where x’ is a variant of x chosen to avoid
clashing with any variables free in the goal’s assumption list. Normally x’ is just x.

A ?- !x. t

============== FILTER_GEN_TAC "s"

A ?- t[x’/x]

Failure
Fails if the goal’s conclusion is not universally quantified or the quantified variable is
equal to the given term.

See also
Thm.GEN, Tactic.GEN TAC, Thm.GENL, Drule.GEN ALL, Thm.SPEC, Drule.SPECL,

Drule.SPEC ALL, Tactic.SPEC TAC, Tactic.STRIP TAC.

FILTER_ONCE_ASM_REWRITE_RULE (Rewrite)

FILTER_ONCE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem once including built-in rewrites and some of its assumptions.

326 CHAPTER 1. ENTRIES

Description
The first argument is a predicate applied to the assumptions. The theorem is rewritten
with the assumptions for which the predicate returns true, the given list of theorems,
and the tautologies stored in basic_rewrites. It searches the term of the theorem once,
without applying rewrites recursively. Thus it avoids the divergence which can result
from the application of FILTER_ASM_REWRITE_RULE. For more information on rewriting
rules, see GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This function is useful when rewriting with a subset of assumptions of a theorem, al-
lowing control of the number of rewriting passes.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,

Rewrite.FILTER PURE ASM REWRITE RULE, Rewrite.FILTER PURE ONCE ASM REWRITE RULE,

Rewrite.GEN REWRITE RULE, Rewrite.ONCE ASM REWRITE RULE, Conv.ONCE DEPTH CONV,

Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE,

Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

FILTER_ONCE_ASM_REWRITE_TAC (Rewrite)

FILTER_ONCE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal once including built-in rewrites and some of its assumptions.

Description
The first argument is a predicate applied to the assumptions. The goal is rewritten with
the assumptions for which the predicate returns true, the given list of theorems, and
the tautologies stored in basic_rewrites. It searches the term of the goal once, without
applying rewrites recursively. Thus it avoids the divergence which can result from the
application of FILTER_ASM_REWRITE_TAC. For more information on rewriting tactics, see
GEN_REWRITE_TAC.

Failure
Never fails.

FILTER PGEN TAC 327

Uses
This function is useful when rewriting with a subset of assumptions of a goal, allowing
control of the number of rewriting passes.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER PURE ASM REWRITE TAC, Rewrite.FILTER PURE ONCE ASM REWRITE TAC,

Rewrite.GEN REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC, Conv.ONCE DEPTH CONV,

Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,

Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC.

FILTER_PGEN_TAC (PairRules)

FILTER_PGEN_TAC : (term -> tactic)

Synopsis
Strips off a paired universal quantifier, but fails for a given quantified pair.

Description
When applied to a term q and a goal A ?- !p. t, the tactic FILTER_PGEN_TAC fails if the
quantified pair p is the same as p, but otherwise advances the goal in the same way as
PGEN_TAC, i.e. returns the goal A ?- t[p’/p] where p’ is a variant of p chosen to avoid
clashing with any variables free in the goal’s assumption list. Normally p’ is just p.

A ?- !p. t

============== FILTER_PGEN_TAC "q"

A ?- t[p’/p]

Failure
Fails if the goal’s conclusion is not a paired universal quantifier or the quantified pair is
equal to the given term.

See also
Tactic.FILTER GEN TAC, PairRules.PGEN, PairRules.PGEN TAC, PairRules.PGENL,

PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSPEC TAC,

PairRules.PSTRIP TAC.

FILTER_PSTRIP_TAC (PairRules)

FILTER_PSTRIP_TAC : (term -> tactic)

328 CHAPTER 1. ENTRIES

Synopsis
Conditionally strips apart a goal by eliminating the outermost connective.

Description
Stripping apart a goal in a more careful way than is done by PSTRIP_TAC may be neces-
sary when dealing with quantified terms and implications. FILTER_PSTRIP_TAC behaves
like PSTRIP_TAC, but it does not strip apart a goal if it contains a given term.

If u is a term, then FILTER_PSTRIP_TAC u is a tactic that removes one outermost occur-
rence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t, provided
the term being stripped does not contain u. FILTER_PSTRIP_TAC will strip paired universal
quantifications. A negation ~t is treated as the implication t ==> F. FILTER_PSTRIP_TAC
also breaks apart conjunctions without applying any filtering.

If t is a universally quantified term, FILTER_PSTRIP_TAC u strips off the quantifier:

A ?- !p. v

================ FILTER_PSTRIP_TAC "u" [where p is not u]

A ?- v[p’/p]

where p’ is a primed variant of the pair p that does not contain any variables that
appear free in the assumptions A. If t is a conjunction, no filtering is done and
FILTER_PSTRIP_TAC simply splits the conjunction:

A ?- v /\ w

================= FILTER_PSTRIP_TAC "u"

A ?- v A ?- w

If t is an implication and the antecedent does not contain a free instance of u, then
FILTER_PSTRIP_TAC u moves the antecedent into the assumptions and recursively splits
the antecedent according to the following rules (see PSTRIP_ASSUME_TAC):

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v

============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- (?p. w) ==> v

====================

A u {w[p’/p]} ?- v

where p’ is a variant of the pair p.

Failure
FILTER_PSTRIP_TAC u (A,t) fails if t is not a universally quantified term, an implica-
tion, a negation or a conjunction; or if the term being stripped contains u in the sense
described above (conjunction excluded).

FILTER PSTRIP THEN 329

Uses
FILTER_PSTRIP_TAC is used when stripping outer connectives from a goal in a more del-
icate way than PSTRIP_TAC. A typical application is to keep stripping by using the tactic
REPEAT (FILTER_PSTRIP_TAC u) until one hits the term u at which stripping is to stop.

See also
PairRules.PGEN TAC, PairRules.PSTRIP GOAL THEN, PairRules.FILTER PSTRIP THEN,

PairRules.PSTRIP TAC, Tactic.FILTER STRIP TAC.

FILTER_PSTRIP_THEN (PairRules)

FILTER_PSTRIP_THEN : (thm_tactic -> term -> tactic)

Synopsis
Conditionally strips a goal, handing an antecedent to the theorem-tactic.

Description
Given a theorem-tactic ttac, a term u and a goal (A,t), FILTER_STRIP_THEN ttac u re-
moves one outer connective (!, ==>, or ~) from t, if the term being stripped does not
contain a free instance of u. Note that FILTER_PSTRIP_THEN will strip paired universal
quantifiers. A negation ~t is treated as the implication t ==> F. The theorem-tactic ttac

is applied only when stripping an implication, by using the antecedent stripped off.
FILTER_PSTRIP_THEN also breaks conjunctions.
FILTER_PSTRIP_THEN behaves like PSTRIP_GOAL_THEN, if the term being stripped does

not contain a free instance of u. In particular, FILTER_PSTRIP_THEN PSTRIP_ASSUME_TAC

behaves like FILTER_PSTRIP_TAC.

Failure
FILTER_PSTRIP_THEN ttac u (A,t) fails if t is not a paired universally quantified term,
an implication, a negation or a conjunction; or if the term being stripped contains the
term u (conjunction excluded); or if the application of ttac fails, after stripping the
goal.

Uses
FILTER_PSTRIP_THEN is used to manipulate intermediate results using theorem-tactics, af-
ter stripping outer connectives from a goal in a more delicate way than PSTRIP_GOAL_THEN.

See also
PairRules.PGEN TAC, PairRules.PSTRIP GOAL THEN, Thm cont.FILTER STRIP THEN,

PairRules.PSTRIP TAC, PairRules.FILTER PSTRIP TAC.

330 CHAPTER 1. ENTRIES

FILTER_PURE_ASM_REWRITE_RULE (Rewrite)

FILTER_PURE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm ->thm)

Synopsis
Rewrites a theorem with some of the theorem’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
theorem. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used to rewrite the goal. See GEN_REWRITE_RULE for more
information on rewriting.

Failure
FILTER_PURE_ASM_REWRITE_RULE does not fail. Using FILTER_PURE_ASM_REWRITE_RULE may
result in a diverging sequence of rewrites. In such cases FILTER_PURE_ONCE_ASM_REWRITE_RULE
may be used.

Uses
This rule can be applied when rewriting with all assumptions results in divergence.
Typically, the predicate can model checks as to whether a certain variable appears on the
left-hand side of an equational assumption, or whether the assumption is in disjunctive
form.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,

Rewrite.FILTER ONCE ASM REWRITE RULE, Rewrite.FILTER PURE ONCE ASM REWRITE RULE,

Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE,

Rewrite.REWRITE RULE.

FILTER_PURE_ASM_REWRITE_TAC (Rewrite)

FILTER_PURE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

FILTER PURE ONCE ASM REWRITE RULE 331

Synopsis
Rewrites a goal with some of the goal’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
goal. The first argument (a predicate on terms) is applied to all assumptions, and the
ones which return true are used to rewrite the goal. See GEN_REWRITE_TAC for more
information on rewriting.

Failure
FILTER_PURE_ASM_REWRITE_TAC does not fail, but it can result in an invalid tactic
if the rewrite is invalid. This happens when a theorem used for rewriting has
assumptions which are not alpha-convertible to assumptions of the goal. Using
FILTER_PURE_ASM_REWRITE_TAC may result in a diverging sequence of rewrites. In such
cases FILTER_PURE_ONCE_ASM_REWRITE_TAC may be used.

Uses
This tactic can be applied when rewriting with all assumptions results in divergence, or
in an unwanted proof state. Typically, the predicate can model checks as to whether a
certain variable appears on the left-hand side of an equational assumption, or whether
the assumption is in disjunctive form. Thus it allows choice of assumptions to rewrite
with in a position-independent fashion.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.FILTER PURE ONCE ASM REWRITE TAC,

Rewrite.GEN REWRITE TAC, Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC,

Rewrite.REWRITE TAC.

FILTER_PURE_ONCE_ASM_REWRITE_RULE
(Rewrite)

FILTER_PURE_ONCE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem once using some of its assumptions.

332 CHAPTER 1. ENTRIES

Description
The first argument is a predicate applied to the assumptions. The theorem is rewrit-
ten with the assumptions for which the predicate returns true and the given list of
theorems. It searches the term of the theorem once, without applying rewrites re-
cursively. Thus it avoids the divergence which can result from the application of
FILTER_PURE_ASM_REWRITE_RULE. For more information on rewriting rules, see GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This function is useful when rewriting with a subset of assumptions of a theorem, al-
lowing control of the number of rewriting passes.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,

Rewrite.FILTER ONCE ASM REWRITE RULE, Rewrite.FILTER PURE ASM REWRITE RULE,

Rewrite.GEN REWRITE RULE, Rewrite.ONCE ASM REWRITE RULE, Conv.ONCE DEPTH CONV,

Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE,

Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

FILTER_PURE_ONCE_ASM_REWRITE_TAC(Rewrite)

FILTER_PURE_ONCE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal once using some of its assumptions.

Description
The first argument is a predicate applied to the assumptions. The goal is rewritten with
the assumptions for which the predicate returns true and the given list of theorems. It
searches the term of the goal once, without applying rewrites recursively. Thus it avoids
the divergence which can result from the application of FILTER_PURE_ASM_REWRITE_TAC.
For more information on rewriting tactics, see GEN_REWRITE_TAC.

Failure
Never fails.

FILTER STRIP TAC 333

Uses
This function is useful when rewriting with a subset of assumptions of a goal, allowing
control of the number of rewriting passes.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.FILTER PURE ASM REWRITE TAC,

Rewrite.GEN REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC, Conv.ONCE DEPTH CONV,

Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,

Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC.

FILTER_STRIP_TAC (Tactic)

FILTER_STRIP_TAC : (term -> tactic)

Synopsis
Conditionally strips apart a goal by eliminating the outermost connective.

Description
Stripping apart a goal in a more careful way than is done by STRIP_TAC may be necessary
when dealing with quantified terms and implications. FILTER_STRIP_TAC behaves like
STRIP_TAC, but it does not strip apart a goal if it contains a given term.

If u is a term, then FILTER_STRIP_TAC u is a tactic that removes one outermost oc-
currence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t,
provided the term being stripped does not contain u. A negation ~t is treated as the im-
plication t ==> F. FILTER_STRIP_TAC u also breaks apart conjunctions without applying
any filtering.

If t is a universally quantified term, FILTER_STRIP_TAC u strips off the quantifier:

A ?- !x.v

================ FILTER_STRIP_TAC "u" [where x is not u]

A ?- v[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a
conjunction, no filtering is done and FILTER_STRIP_TAC u simply splits the conjunction:

A ?- v /\ w

================= FILTER_STRIP_TAC "u"

A ?- v A ?- w

334 CHAPTER 1. ENTRIES

If t is an implication and the antecedent does not contain a free instance of u, then
FILTER_STRIP_TAC u moves the antecedent into the assumptions and recursively splits
the antecedent according to the following rules (see STRIP_ASSUME_TAC):

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v

============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- ?x.w ==> v

====================

A u {w[x’/x]} ?- v

where x’ is a variant of x.

Failure
FILTER_STRIP_TAC u (A,t) fails if t is not a universally quantified term, an implication, a
negation or a conjunction; or if the term being stripped contains u in the sense described
above (conjunction excluded).

Example
When trying to solve the goal

?- !n. m <= n /\ n <= m ==> (m = n)

the universally quantified variable n can be stripped off by using

FILTER_STRIP_TAC "m:num"

and then the implication can be stripped apart by using

FILTER_STRIP_TAC "m:num = n"

Uses
FILTER_STRIP_TAC is used when stripping outer connectives from a goal in a more del-
icate way than STRIP_TAC. A typical application is to keep stripping by using the tactic
REPEAT (FILTER_STRIP_TAC u) until one hits the term u at which stripping is to stop.

See also
Tactic.CONJ TAC, Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN,

Tactic.FILTER GEN TAC, Tactic.STRIP ASSUME TAC, Tactic.STRIP TAC.

FILTER_STRIP_THEN (Thm_cont)

FILTER_STRIP_THEN : (thm_tactic -> term -> tactic)

find 335

Synopsis
Conditionally strips a goal, handing an antecedent to the theorem-tactic.

Description
Given a theorem-tactic ttac, a term u and a goal (A,t), FILTER_STRIP_THEN ttac u re-
moves one outer connective (!, ==>, or ~) from t, if the term being stripped does not
contain a free instance of u. A negation ~t is treated as the implication t ==> F. The
theorem-tactic ttac is applied only when stripping an implication, by using the an-
tecedent stripped off. FILTER_STRIP_THEN also breaks conjunctions.
FILTER_STRIP_THEN behaves like STRIP_GOAL_THEN, if the term being stripped does not

contain a free instance of u. In particular, FILTER_STRIP_THEN STRIP_ASSUME_TAC behaves
like FILTER_STRIP_TAC.

Failure
FILTER_STRIP_THEN ttac u (A,t) fails if t is not a universally quantified term, an impli-
cation, a negation or a conjunction; or if the term being stripped contains the term u

(conjunction excluded); or if the application of ttac fails, after stripping the goal.

Example
When solving the goal

?- (n = 1) ==> (n * n = n)

the application of FILTER_STRIP_THEN SUBST1_TAC "m:num" results in the goal

?- 1 * 1 = 1

Uses
FILTER_STRIP_THEN is used when manipulating intermediate results using theorem-
tactics, after stripping outer connectives from a goal in a more delicate way than
STRIP_GOAL_THEN.

See also
Tactic.CONJ TAC, Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN,

Tactic.FILTER GEN TAC, Tactic.FILTER STRIP TAC, Tactic.STRIP ASSUME TAC,

Tactic.STRIP GOAL THEN.

find (DB)

find : string -> data list

336 CHAPTER 1. ENTRIES

Synopsis
Search for theory element by name fragment.

Description
An invocation DB.find s returns a list of theory elements which have been stored with
a name in which s occurs as a proper substring, ignoring case distinctions. All currently
loaded theory segments are searched.

Failure
Never fails. If nothing suitable can be found, the empty list is returned.

Example

- DB.find "inc";

> val it =

[(("arithmetic", "MULT_INCREASES"),

(|- !m n. 1 < m /\ 0 < n ==> SUC n <= m * n, Thm)),

(("bool", "BOOL_EQ_DISTINCT"), (|- ~(T = F) /\ ~(F = T), Thm)),

(("list", "list_distinct"), (|- !a1 a0. ~([] = a0::a1), Thm)),

(("sum", "sum_distinct"), (|- !x y. ~(INL x = INR y), Thm)),

(("sum", "sum_distinct1"), (|- !x y. ~(INR y = INL x), Thm))]

: ((string * string) * (thm * class)) list

Uses
Finding theorems in interactive proof sessions.

See also
DB.match, DB.apropos, DB.thy, DB.theorems.

find_term (HolKernel)

find_term : (term -> bool) -> term -> term

Synopsis
Finds a sub-term satisfying a predicate.

Description
A call to find_term P t returns a sub-term of t that satisfies the predicate P if there
is one. Otherwise it raises a HOL_ERR exception. The search is done in a top-down,
left-to-right order (i.e., rators of combs are examined before rands).

find terms 337

Failure
Fails if the predicate fails when applied to any of the sub-terms of the term argument.
Also fails if there is no sub-term satisfying the predicate.

Example

- find_term Literal.is_numeral ‘‘2 + x + 3‘‘;

> val it = ‘‘2‘‘ : term

- find_term Literal.is_numeral ‘‘x + y‘‘;

Exception HOL_ERR {...}

See also
HolKernel.bvk find term, HolKernel.find terms.

find_terms (HolKernel)

find_terms : (term -> bool) -> term -> term list

Synopsis
Traverses a term, returning a list of sub-terms satisfying a predicate.

Description
A call to find_terms P t returns a list of sub-terms of t that satisfy P. The resulting list is
ordered as if the traversal had been bottom-up and right-to-left (i.e., the rands of combs
visited before their rators). The term t is itself considered a possible sub-term of t.

Failure
Only fails if the predicate fails on one of the term’s sub-terms.

Example

- find_terms (fn _ => true) ‘‘x + y‘‘;

> val it = [‘‘y‘‘, ‘‘x‘‘, ‘‘$+‘‘, ‘‘$+ x‘‘, ‘‘x + y‘‘]

- find_terms Literal.is_numeral ‘‘x + y‘‘;

> val it = [] : term list

- find_terms Literal.is_numeral ‘‘1 + x + 2 + y‘‘;

> val it = [‘‘2‘‘, ‘‘1‘‘] : term list

338 CHAPTER 1. ENTRIES

See also
HolKernel.bvk find term, HolKernel.find term.

FINITE_CONV (pred_setLib)

FINITE_CONV : conv

Synopsis
Proves finiteness of sets of the form {t1;...;tn}.

Description
The conversion FINITE_CONV expects its term argument to be an assertion of the form
FINITE {t1;...;tn}. Given such a term, the conversion returns the theorem

|- FINITE {t1;...;tn} = T

Example

- FINITE_CONV ‘‘FINITE {1;2;3}‘‘;

> val it = |- FINITE{1;2;3} = T : thm

- FINITE_CONV ‘‘FINITE ({}:num->bool)‘‘;

> val it = |- FINITE {} = T : thm

Failure
Fails if applied to a term not of the form FINITE {t1;...;tn}.

first (Lib)

first : (’a -> bool) -> ’a list -> ’a

Synopsis
Return first element in list that predicate holds of.

FIRST 339

Description
An invocation first P [x1,...,xk,...xn] returns xk if P xk returns true and P xi (1 <= i < k)

equals false.

Failure
If P xi is false for every element in list, then first P list raises an exception. When
searching for an element of list that P holds of, it may happen that an application of P
to an element of list raises an exception e. In that case, first P list also raises e.

Example

- first (fn i => i mod 2 = 0) [1,3,4,5];

> val it = 4 : int

- first (fn i => i mod 2 = 0) [1,3,5,7];

! Uncaught exception:

! HOL_ERR

- first (fn _ => raise Fail "") [1];

! Uncaught exception:

! Fail ""

See also
Lib.exists, Lib.tryfind, Lib.all.

FIRST (Tactical)

FIRST : (tactic list -> tactic)

Synopsis
Applies the first tactic in a tactic list which succeeds.

Description
When applied to a list of tactics [T1;...;Tn], and a goal g, the tactical FIRST tries
applying the tactics to the goal until one succeeds. If the first tactic which succeeds
is Tm, then the effect is the same as just Tm. Thus FIRST effectively behaves as follows:

FIRST [T1;...;Tn] = T1 ORELSE ... ORELSE Tn

340 CHAPTER 1. ENTRIES

Failure
The application of FIRST to a tactic list never fails. The resulting tactic fails iff all the
component tactics do when applied to the goal, or if the tactic list is empty.

See also
Tactical.EVERY, Tactical.ORELSE.

FIRST_ASSUM (Tactical)

FIRST_ASSUM : (thm_tactic -> tactic)

Synopsis
Maps a theorem-tactic over the assumptions, applying first successful tactic.

Description
The tactic

FIRST_ASSUM ttac ([A1; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the ASSUMEd
assumptions (A1 |- A1), ..., (An |- An) and which succeeds when applied to the goal.
Failures of ttac to produce a tactic are ignored.

Failure
Fails if ttac (Ai |- Ai) fails for every assumption Ai, or if the assumption list is empty,
or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_ASSUM (\asm. CONTR_TAC asm ORELSE ACCEPT_TAC asm)

searches the assumptions for either a contradiction or the desired conclusion. The tactic

FIRST_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal,
reducing the goal to the antecedent of the corresponding instance of this implication.

See also
Tactical.ASSUM LIST, Tactical.EVERY, Tactical.EVERY ASSUM, Tactical.FIRST,

Tactical.MAP EVERY, Tactical.MAP FIRST.

FIRST CONSEQ CONV 341

FIRST_CONSEQ_CONV (ConseqConv)

FIRST_CONSEQ_CONV : (conseq_conv list -> conseq_conv)

Synopsis
Apply the first of the conversions in a given list that succeeds.

See also
ConseqConv.ORELSE CONSEQ CONV, Conv.FIRST CONV.

FIRST_CONV (Conv)

FIRST_CONV : (conv list -> conv)

Synopsis
Apply the first of the conversions in a given list that succeeds.

Description
FIRST_CONV [c1;...;cn] "t" returns the result of applying to the term "t" the first con-
version ci that succeeds when applied to "t". The conversions are tried in the order in
which they are given in the list.

Failure
FIRST_CONV [c1;...;cn] "t" fails if all the conversions c1, ..., cn fail when applied to
the term "t". FIRST_CONV cs "t" also fails if cs is the empty list.

See also
Conv.ORELSEC.

FIRST_PROVE (Tactical)

FIRST_PROVE : (tactic list -> tactic)

342 CHAPTER 1. ENTRIES

Synopsis
Applies the first tactic in a tactic list which completely proves the goal.

Description
When applied to a list of tactics [T1;...;Tn], and a goal g, the tactical FIRST_PROVE

tries applying the tactics to the goal until one proves the goal. If the first tactic which
proves the goal is Tm, then the effect is the same as just Tm. Thus FIRST_PROVE effectively
behaves as follows:

FIRST_PROVE [T1;...;Tn] = (T1 THEN NO_TAC) ORELSE ... ORELSE (Tn THEN NO_TAC)

Failure
The application of FIRST_PROVE to a tactic list never fails. The resulting tactic fails iff
none of the supplied tactics completely proves the goal by itself, or if the tactic list is
empty.

See also
Tactical.EVERY, Tactical.ORELSE, Tactical.FIRST.

FIRST_TCL (Thm_cont)

FIRST_TCL : (thm_tactical list -> thm_tactical)

Synopsis
Applies the first theorem-tactical in a list which succeeds.

Description
When applied to a list of theorem-tacticals, a theorem-tactic and a theorem, FIRST_TCL
returns the tactic resulting from the application of the first theorem-tactical to the
theorem-tactic and theorem which succeeds. The effect is the same as:

FIRST_TCL [ttl1;...;ttln] = ttl1 ORELSE_TCL ... ORELSE_TCL ttln

Failure
FIRST_TCL fails iff each tactic in the list fails when applied to the theorem-tactic and
theorem. This is trivially the case if the list is empty.

See also
Thm cont.EVERY TCL, Thm cont.ORELSE TCL, Thm cont.REPEAT TCL, Thm cont.THEN TCL.

FIRST X ASSUM 343

FIRST_X_ASSUM (Tactical)

Tactical.FIRST_X_ASSUM : thm_tactic -> tactic

Synopsis
Maps a theorem-tactic over the assumptions, applying first successful tactic and remov-
ing the assumption that gave rise to the successful tactic.

Description
The tactic

FIRST_X_ASSUM ttac ([A1; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the ASSUMEd
assumptions (A1 |- A1), ..., (An |- An) and which succeeds when applied to the goal.
The assumption which produced the successful theorem-tactic is removed from the as-
sumption list (before ttac is applied). Failures of ttac to produce a tactic are ignored.

Failure
Fails if ttac (Ai |- Ai) fails for every assumption Ai, or if the assumption list is empty,
or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_X_ASSUM SUBST_ALL_TAC

searches the assumptions for an equality and causes its right hand side to be substituted
for its left hand side throughout the goal and assumptions. It also removes the equality
from the assumption list. Using FIRST_ASSUM above would leave an equality on the
assumption list of the form x = x. The tactic

FIRST_X_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal,
reducing the goal to the antecedent of the corresponding instance of this implication
and removing the implication from the assumption list.

Comments
The “X” in the name of this tactic is a mnemonic for the “crossing out” or removal of the
assumption found.

344 CHAPTER 1. ENTRIES

See also
Tactical.ASSUM LIST, Tactical.EVERY, Tactical.PAT ASSUM, Tactical.EVERY ASSUM,

Tactical.FIRST, Tactical.MAP EVERY, Tactical.MAP FIRST, Thm cont.UNDISCH THEN.

FIRSTN_CONV (listLib)

FIRSTN_CONV : conv

Synopsis
Computes by inference the result of taking the initial n elements of a list.

Description
For any object language list of the form --‘[x0;...x(n-k);...;x(n-1)]‘-- , the result
of evaluating

FIRSTN_CONV (--‘FIRSTN k [x0;...x(n-k);...;x(n-1)]‘--)

is the theorem

|- FIRSTN k [x0;...;x(n-k);...;x(n-1)] = [x0;...;x(n-k)]

Failure
FIRSTN_CONV tm fails if tm is not of the form described above, or k is greater than the
length of the list.

FLAT_CONV (listLib)

FLAT_CONV : conv

Synopsis
Computes by inference the result of flattening a list of lists.

Description
FLAT_CONV takes a term tm in the following form:

FLAT [[x00;...x0n]; ...; [xm0;...xmn]]

flatten 345

It returns the theorem

|- FLAT [[x00;...x0n];...;[xm0;...xmn]] = [x00;...x0n;...;xm0;...xmn]

Failure
FLAT_CONV tm fails if tm is not of the form described above.

Example
Evaluating

FLAT_CONV (--‘FLAT [[0;2;4];[0;1;2;3;4]]‘--);

returns the following theorem:

|- FLAT[[0;2;4];[0;1;2;3;4]] = [0;2;4;0;1;2;3;4]

See also
listLib.FOLDL CONV, listLib.FOLDR CONV, listLib.list FOLD CONV.

flatten (Lib)

flatten : ’a list list -> ’a list

Synopsis
Removes one level of bracketing from a list.

Description
An invocation flatten [[x11,...,x1k1],...,[xn1,...,xnkn]] yields the list [x1,...,x1k1,...,xn1,...,xnkn].

Failure
Never fails.

Example

- flatten [[1,2,3],[],[4,5]];

> val it = [1, 2, 3, 4, 5] : int list

- flatten ([[[]]] : int list list list);

> val it = [[]] : int list list

346 CHAPTER 1. ENTRIES

FLATTEN_CONJ_CONV (unwindLib)

FLATTEN_CONJ_CONV : conv

Synopsis
Flattens a ‘tree’ of conjunctions.

Description
FLATTEN_CONJ_CONV "t1 /\ ... /\ tn" returns a theorem of the form:

|- t1 /\ ... /\ tn = u1 /\ ... /\ un

where the right-hand side of the equation is a flattened version of the left-hand side.

Failure
Never fails.

Example

#FLATTEN_CONJ_CONV "(a /\ (b /\ c)) /\ ((d /\ e) /\ f)";;

|- (a /\ b /\ c) /\ (d /\ e) /\ f = a /\ b /\ c /\ d /\ e /\ f

FOLDL_CONV (listLib)

FOLDL_CONV : conv -> conv

Synopsis
Computes by inference the result of applying a function to the elements of a list.

Description
FOLDL_CONV takes a conversion conv and a term tm in the following form:

FOLDL f e [x0;...xn]

It returns the theorem

|- FOLDL f e [x0;...xn] = tm’

FOLDR CONV 347

where tm’ is the result of applying the function f iteratively to the successive elements
of the list and the result of the previous application starting from the tail end of the list.
During each iteration, an expression f ei xi is evaluated. The user supplied conversion
conv is used to derive a theorem

|- f ei xi = e(i+1)

which is used in the next iteration.

Failure
FOLDL_CONV conv tm fails if tm is not of the form described above.

Example
To sum the elements of a list, one can use FOLDL_CONV with ADD_CONV from the library
num_lib.

- load_library_in_place num_lib;

- FOLDL_CONV Num_lib.ADD_CONV (--‘FOLDL $+ 0 [0;1;2;3]‘--);

|- FOLDL $+ 0[0;1;2;3] = 6

In general, if the function f is an explicit lambda abstraction (\x x’. t[x,x’]), the
conversion should be in the form

((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv’))

where conv’ applied to t[x,x’] returns the theorem

|-t[x,x’] = e’’.

See also
listLib.FOLDR CONV, listLib.list FOLD CONV.

FOLDR_CONV (listLib)

FOLDR_CONV : conv -> conv

Synopsis
Computes by inference the result of applying a function to the elements of a list.

Description
FOLDR_CONV takes a conversion conv and a term tm in the following form:

348 CHAPTER 1. ENTRIES

FOLDR f e [x0;...xn]

It returns the theorem

|- FOLDR f e [x0;...xn] = tm’

where tm’ is the result of applying the function f iteratively to the successive elements
of the list and the result of the previous application starting from the tail end of the list.
During each iteration, an expression f xi ei is evaluated. The user supplied conversion
conv is used to derive a theorem

|- f xi ei = e(i+1)

which is used in the next iteration.

Failure
FOLDR_CONV conv tm fails if tm is not of the form described above.

Example
To sum the elements of a list, one can use FOLDR_CONV with ADD_CONV from the library
num_lib.

- load_library_in_place num_lib;

- FOLDR_CONV Num_lib.ADD_CONV (--‘FOLDR $+ 0 [0;1;2;3]‘--);

|- FOLDR $+ 0[0;1;2;3] = 6

In general, if the function f is an explicit lambda abstraction (\x x’. t[x,x’]), the
conversion should be in the form

((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv’))

where conv’ applied to t[x,x’] returns the theorem

|-t[x,x’] = e’’.

See also
listLib.FOLDL CONV, listLib.list FOLD CONV.

for (Lib)

for : int -> int -> (int -> ’a) -> ’a list

for se 349

Synopsis
Functional ‘for’ loops.

Description
An application for b t f is equal to [f b, f (b+1), ..., f t]. If b is greater than t,
the empty list is returned.

Failure
If f i fails for b <= i <= t.

Example

- for 97 122 Char.chr;

> val it =

[#"a", #"b", #"c", #"d", #"e", #"f", #"g", #"h", #"i", #"j", #"k", #"l",

#"m", #"n", #"o", #"p", #"q", #"r", #"s", #"t", #"u", #"v", #"w", #"x",

#"y", #"z"] : char list

See also
Lib.for se.

for_se (Lib)

for_se : int -> int -> (int -> unit) -> unit

Synopsis
Side-effecting ‘for’ loops.

Description
An application for_se b t f is equal to (f b; f (b+1); ...; f t). If b is greater than
t, then for_se b t f does no evaluation, in particular f b is not evaluated.

Failure
If f i fails for b <= i <= t.

Example

350 CHAPTER 1. ENTRIES

- let val A = Array.array(26,#" ")

in

for_se 0 25 (fn i => Array.update(A,i, Char.chr (i+97)))

; for_se 0 25 (print o Char.toString o curry Array.sub A)

; print "\n"

end;

abcdefghijklmnopqrstuvwxyz

> val it = () : unit

See also
Lib.for.

FORALL_AND_CONV (Conv)

FORALL_AND_CONV : conv

Synopsis
Moves a universal quantification inwards through a conjunction.

Description
When applied to a term of the form !x. P /\ Q, the conversion FORALL_AND_CONV returns
the theorem:

|- (!x. P /\ Q) = (!x.P) /\ (!x.Q)

Failure
Fails if applied to a term not of the form !x. P /\ Q.

See also
Conv.AND FORALL CONV, Conv.LEFT AND FORALL CONV, Conv.RIGHT AND FORALL CONV.

FORALL_ARITH_CONV (Arith)

FORALL_ARITH_CONV : conv

FORALL CONJ CONV 351

Synopsis
Partial decision procedure for non-existential Presburger natural arithmetic.

Description
FORALL_ARITH_CONV is a partial decision procedure for formulae of Presburger natural
arithmetic which are in prenex normal form and have all variables either free or uni-
versally quantified. Presburger natural arithmetic is the subset of arithmetic formulae
made up from natural number constants, numeric variables, addition, multiplication
by a constant, the relations <, <=, =, >=, > and the logical connectives ~, /\, \/, ==>,
= (if-and-only-if), ! (‘forall’) and ? (‘there exists’). Products of two expressions which
both contain variables are not included in the subset, but the function SUC which is not
normally included in a specification of Presburger arithmetic is allowed in this HOL
implementation.

Given a formula in the specified subset, the function attempts to prove that it is equal
to T (true). The procedure only works if the formula would also be true of the non-
negative rationals; it cannot prove formulae whose truth depends on the integral prop-
erties of the natural numbers.

Failure
The function can fail in two ways. It fails if the argument term is not a formula in the
specified subset, and it also fails if it is unable to prove the formula. The failure strings
are different in each case.

Example
#FORALL_ARITH_CONV "m < SUC m";;

|- m < (SUC m) = T

#FORALL_ARITH_CONV "!m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q)";;

|- (!m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q)) = T

#FORALL_ARITH_CONV "!m n. ~(SUC (2 * m) = 2 * n)";;

evaluation failed FORALL_ARITH_CONV -- cannot prove formula

See also
Arith.NEGATE CONV, Arith.EXISTS ARITH CONV, numLib.ARITH CONV,

Arith.ARITH FORM NORM CONV, Arith.DISJ INEQS FALSE CONV.

FORALL_CONJ_CONV (unwindLib)

FORALL_CONJ_CONV : conv

352 CHAPTER 1. ENTRIES

Synopsis
Moves universal quantifiers down through a tree of conjunctions.

Description
FORALL_CONJ_CONV "!x1 ... xm. t1 /\ ... /\ tn" returns the theorem:

|- !x1 ... xm. t1 /\ ... /\ tn =

(!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)

where the original term can be an arbitrary tree of conjunctions. The structure of the
tree is retained in both sides of the equation.

Failure
Never fails.

Example

#FORALL_CONJ_CONV "!(x:*) (y:*) (z:*). (a /\ b) /\ c";;

|- (!x y z. (a /\ b) /\ c) = ((!x y z. a) /\ (!x y z. b)) /\ (!x y z. c)

#FORALL_CONJ_CONV "T";;

|- T = T

#FORALL_CONJ_CONV "!(x:*) (y:*) (z:*). T";;

|- (!x y z. T) = (!x y z. T)

See also
unwindLib.CONJ FORALL CONV, unwindLib.FORALL CONJ ONCE CONV,

unwindLib.CONJ FORALL ONCE CONV, unwindLib.FORALL CONJ RIGHT RULE,

unwindLib.CONJ FORALL RIGHT RULE.

FORALL_CONJ_ONCE_CONV (unwindLib)

FORALL_CONJ_ONCE_CONV : conv

Synopsis
Moves a single universal quantifier down through a tree of conjunctions.

Description
FORALL_CONJ_ONCE_CONV "!x. t1 /\ ... /\ tn" returns the theorem:

FORALL CONJ RIGHT RULE 353

|- !x. t1 /\ ... /\ tn = (!x. t1) /\ ... /\ (!x. tn)

where the original term can be an arbitrary tree of conjunctions. The structure of the
tree is retained in both sides of the equation.

Failure
Fails if the argument term is not of the required form. The body of the term need not
be a conjunction.

Example

#FORALL_CONJ_ONCE_CONV "!x. ((x \/ a) /\ (x \/ b)) /\ (x \/ c)";;

|- (!x. ((x \/ a) /\ (x \/ b)) /\ (x \/ c)) =

((!x. x \/ a) /\ (!x. x \/ b)) /\ (!x. x \/ c)

#FORALL_CONJ_ONCE_CONV "!x. x \/ a";;

|- (!x. x \/ a) = (!x. x \/ a)

#FORALL_CONJ_ONCE_CONV "!x. ((x \/ a) /\ (y \/ b)) /\ (x \/ c)";;

|- (!x. ((x \/ a) /\ (y \/ b)) /\ (x \/ c)) =

((!x. x \/ a) /\ (!x. y \/ b)) /\ (!x. x \/ c)

See also
unwindLib.CONJ FORALL ONCE CONV, unwindLib.FORALL CONJ CONV,

unwindLib.CONJ FORALL CONV, unwindLib.FORALL CONJ RIGHT RULE,

unwindLib.CONJ FORALL RIGHT RULE.

FORALL_CONJ_RIGHT_RULE (unwindLib)

FORALL_CONJ_RIGHT_RULE : (thm -> thm)

Synopsis
Moves universal quantifiers down through a tree of conjunctions.

Description

A |- !z1 ... zr. t = ?y1 ... yp. !x1 ... xm. t1 /\ ... /\ tn

A |- !z1 ... zr.

t = ?y1 ... yp. (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)

354 CHAPTER 1. ENTRIES

Failure
Fails if the argument theorem is not of the required form, though either or both of r and
p may be zero.

See also
unwindLib.CONJ FORALL RIGHT RULE, unwindLib.FORALL CONJ CONV,

unwindLib.CONJ FORALL CONV, unwindLib.FORALL CONJ ONCE CONV,

unwindLib.CONJ FORALL ONCE CONV.

FORALL_CONSEQ_CONV (ConseqConv)

FORALL_CONSEQ_CONV : (conseq_conv -> conseq_conv)

Synopsis
Applies a consequence conversion to the body of a universally-quantified term.

Description
If c is a consequence conversion that maps a term ‘‘t x‘‘ to a theorem |- t x = t’ x,
|- t’ x ==> t x or |- t x ==> t’ x, then FORALL_CONSEQ_CONV c maps ‘‘!x. t x‘‘ to
|- !x. t x = !x. t’ x, |- !x. t’ x ==> !x. t x or |- !x. t x ==> !x. t’ x, respec-
tively.

Failure
FORALL_CONSEQ_CONV c t fails, if t is not a all-quantified term or if c fails on the body of
t.

See also
Conv.QUANT CONV, ConseqConv.EXISTS CONSEQ CONV, ConseqConv.QUANT CONSEQ CONV.

FORALL_EQ (Drule)

FORALL_EQ : (term -> thm -> thm)

Synopsis
Universally quantifies both sides of an equational theorem.

FORALL EQ CONSEQ CONV 355

Description
When applied to a variable x and a theorem A |- t1 = t2, whose conclusion is an equa-
tion between boolean terms, FORALL_EQ returns the theorem A |- (!x. t1) = (!x. t2),
unless the variable x is free in any of the assumptions.

A |- t1 = t2

------------------------ FORALL_EQ "x" [where x is not free in A]

A |- (!x.t1) = (!x.t2)

Failure
Fails if the theorem is not an equation between boolean terms, or if the supplied term is
not simply a variable, or if the variable is free in any of the assumptions.

See also
Thm.AP TERM, Drule.EXISTS EQ, Drule.SELECT EQ.

FORALL_EQ___CONSEQ_CONV (ConseqConv)

FORALL_EQ___CONSEQ_CONV : conseq_conv

Synopsis
Given a term of the form (!x. P x) = (!x. Q x) this consequence conversion returns
the theorem |- (!x. (P x = Q x)) ==> ((!x. P x) = (!x. Q x)).

See also
ConseqConv.conseq conv.

FORALL_IMP_CONV (Conv)

FORALL_IMP_CONV : conv

Synopsis
Moves a universal quantification inwards through an implication.

Description
When applied to a term of the form !x. P ==> Q, where x is not free in both P and Q,
FORALL_IMP_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

356 CHAPTER 1. ENTRIES

|- (!x. P ==> Q) = (?x.P) ==> Q

is returned. If x is free in Q but not in P, then the result is:

|- (!x. P ==> Q) = P ==> (!x.Q)

And if x is free in neither P nor Q, then the result is:

|- (!x. P ==> Q) = (?x.P) ==> (!x.Q)

Failure
FORALL_IMP_CONV fails if it is applied to a term not of the form !x. P ==> Q, or if it is
applied to a term !x. P ==> Q in which the variable x is free in both P and Q.

See also
Conv.LEFT IMP EXISTS CONV, Conv.RIGHT IMP FORALL CONV.

FORALL_NOT_CONV (Conv)

FORALL_NOT_CONV : conv

Synopsis
Moves a universal quantification inwards through a negation.

Description
When applied to a term of the form !x.~P, the conversion FORALL_NOT_CONV returns the
theorem:

|- (!x.~P) = ~(?x. P)

Failure
Fails if applied to a term not of the form !x.~P.

See also
Conv.EXISTS NOT CONV, Conv.NOT EXISTS CONV, Conv.NOT FORALL CONV.

FORALL_OR_CONV (Conv)

FORALL_OR_CONV : conv

forget history 357

Synopsis
Moves a universal quantification inwards through a disjunction.

Description
When applied to a term of the form !x. P \/ Q, where x is not free in both P and Q,
FORALL_OR_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (!x. P \/ Q) = (!x.P) \/ Q

is returned. If x is free in Q but not in P, then the result is:

|- (!x. P \/ Q) = P \/ (!x.Q)

And if x is free in neither P nor Q, then the result is:

|- (!x. P \/ Q) = (!x.P) \/ (!x.Q)

Failure
FORALL_OR_CONV fails if it is applied to a term not of the form !x. P \/ Q, or if it is applied
to a term !x. P \/ Q in which the variable x is free in both P and Q.

See also
Conv.OR FORALL CONV, Conv.LEFT OR FORALL CONV, Conv.RIGHT OR FORALL CONV.

forget_history (proofManagerLib)

forget_history : unit -> unit

Synopsis
Clears the proof history.

Description
The function forget_history is part of the subgoal package. A call to forget_history

clears the history of saved proof states. Subsequent calls to backup or restart will
behave as if the initial goal was the state at the time of the call to forget_history. For
a description of the subgoal package, see set_goal.

Failure
The function forget_history only fails if no goalstack is being managed.

358 CHAPTER 1. ENTRIES

Uses
Hiding an automatic preprocessing phase of a proof before handing it to the user.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

FORK_CONV (Conv)

FORK_CONV : (conv * conv) -> conv

Synopsis
Applies a pair of conversions to the arguments of a binary operator.

Description
If the conversion c1 maps a term t1 to the theorem |- t1 = t1’, and the conversion c2

maps t2 to |- t2 = t2’, then the conversion FORK_CONV (c1,c2) maps terms of the form
f t1 t2 to theorems of the form |- f t1 t2 = f t1’ t2’.

Failure
FORK_CONV (c1,c2) t will fail if t is not of the general form f t1 t2, or if c1 fails when
applied to t1, or if c2 fails when applied to t2, or if c1 or c2 aren’t really conversions,
and thereby fail to return appropriate equational theorems.

Example

- FORK_CONV (BETA_CONV,REDUCE_CONV) (Term‘(\x. x + 1)y * (10 DIV 3)‘);

> val it = |- (\x. x + 1) y * (10 DIV 3) = (y + 1) * 3 : thm

See also
Conv.BINOP CONV, Conv.LAND CONV, Conv.RAND CONV, Conv.RATOR CONV,

numLib.REDUCE CONV.

format_ERR (Feedback)

format_ERR : error_record -> string

format MESG 359

Synopsis
Maps argument record of HOL_ERR to a string

Description
The format_ERR function maps the argument of an application of HOL_ERR to a string. It
is the default function used by ERR_to_string.

Failure
Never fails.

Example

- print

(format_ERR {origin_structure = "Foo",

origin_function = "bar",

message = "incomprehensible input"});

Exception raised at Foo.bar:

incomprehensible input

> val it = () : unit

See also
Feedback, Feedback.ERR to string, Feedback.format MESG, Feedback.format WARNING.

format_MESG (Feedback)

format_MESG : string -> string

Synopsis
Maps argument of HOL_MESG to a string

Description
The format_MESG function maps a string to a string. Usually, the input string is the
argument of an invocation of HOL_MESG. format_MESG is the default function used by
MESG_to_string.

Failure
Never fails.

Example

360 CHAPTER 1. ENTRIES

- print (format_MESG "Hello world.");

<<HOL message: Hello world.>>

See also
Feedback, Feedback.MESG to string, Feedback.format ERR, Feedback.format WARNING.

format_WARNING (Feedback)

format_WARNING : string -> string -> string -> string

Synopsis
Maps arguments of HOL_WARNING to a string

Description
The format_WARNING function maps three strings to a string. Usually, the input strings are
the arguments to an invocation of HOL_WARNING. format_WARNING is the default function
used by WARNING_to_string.

Failure
Never fails.

Example

- print (format_WARNING "Module" "function" "Gadzooks!");

<<HOL warning: Module.function: Gadzooks!>>

See also
Feedback, Feedback.WARNING to string, Feedback.format ERR, Feedback.format MESG.

free_in (Term)

free_in : term -> term -> bool

Synopsis
Tests if one term is free in another.

free vars 361

Description
When applied to two terms t1 and t2, the function free_in returns true if t1 is free in
t2, and false otherwise. It is not necessary that t1 be simply a variable. A term M occurs
free in N when there is some occurrence of M in N such that each free variable of M in that
occurrence is not bound by a binder in N.

Failure
Never fails.

Example
In the following example free_in returns false because the x in SUC x in the second
term is bound:

- free_in ‘‘SUC x‘‘ ‘‘!x. SUC x = x + 1‘‘;

> val it = false : bool

whereas the following call returns true because the first instance of x in the second term
is free, even though there is also a bound instance:

- free_in ‘‘x:bool‘‘ ‘‘!y. x /\ ?x. x = y‘‘;

> val it = true : bool

See also
Term.free vars, Term.FVL.

free_vars (Term)

free_vars : term -> term list

Synopsis
Returns the set of free variables in a term.

Description
An invocation free_vars tm returns a list representing the set of term variables occur-
ring in tm.

Failure
Never fails.

Example

362 CHAPTER 1. ENTRIES

- free_vars (Term ‘x /\ y /\ y ==> x‘);

> val it = [‘y‘, ‘x‘] : term list

Comments
Code should not depend on how elements are arranged in the result of free_vars.
free_vars is not efficient for large terms with many free variables. Demanding appli-

cations should be coded with FVL.

See also
Term.FVL, Term.free vars lr, Term.free varsl, Term.empty varset, Type.type vars.

free_vars_lr (Term)

free_vars_lr : term -> term list

Synopsis
Returns the set of free variables in a term, in order.

Description
An invocation free_vars_lr ty returns a list representing the set of type variables oc-
curring in ty. The list will be in order of variable occurrence when scanning the parse
tree of the term from left to right. This is usually, but need not be, the textual order
when the term is printed.

Failure
Never fails.

Example

- free_vars_lr (Term ‘x /\ y /\ y ==> z‘);

> val it = [‘x‘, ‘y‘, ‘z‘] : term list

Comments
free_vars_lr is not efficient for large terms with many free variables. More strenuous
applications should use high performance set implementations available in the Standard
ML Basis Library.

Uses
free_vars_lr can be used to build pleasing quantifier prefixes.

free varsl 363

See also
Term.FVL, Term.free vars, Term.empty varset, Type.type vars.

free_varsl (Term)

free_varsl : term list -> term list

Synopsis
Returns the set of free variables in a list of terms.

Description
An invocation free_varsl [t1,...,tn] returns a list representing the set of free term
variables occurring in t1,...,tn.

Failure
Never fails.

Example

- free_varsl [Term ‘x /\ y /\ y ==> x‘,

Term ‘!x. x ==> p ==> y‘];

> val it = [‘x‘, ‘y‘, ‘p‘] : term list

Comments
Code should not depend on how elements are arranged in the result of free_varsl.
free_varsl is not efficient for large terms with many free variables. Demanding ap-

plications should be coded with FVL.

See also
Term.FVL, Term.free vars lr, Term.free vars, Term.empty varset, Type.type vars.

frees (hol88Lib)

frees : term -> term list

Synopsis
Returns a list of the variables which are free in a term.

364 CHAPTER 1. ENTRIES

Description
frees is equivalent to rev o Term.free_vars.

Failure
Never fails.

Comments
Superseded by Term.free_vars.

See also
hol88Lib.freesl, Term.free vars.

freesl (hol88Lib)

freesl : term list -> term list

Synopsis
Returns a list of the free variables in a list of terms.

Description
freesl is equivalent to rev o Term.free_varsl.

Failure
Never fails.

Comments
Superseded by Term.free_varsl.

See also
hol88Lib.frees, Term.free varsl.

FREEZE_THEN (Tactic)

FREEZE_THEN : thm_tactical

Synopsis
‘Freezes’ a theorem to prevent instantiation of its free variables.

FREEZE THEN 365

Description
FREEZE_THEN expects a tactic-generating function f:thm->tactic and a theorem (A1 |- w)

as arguments. The tactic-generating function f is applied to the theorem (w |- w). If
this tactic generates the subgoal:

A ?- t

========= f (w |- w)

A ?- t1

then applying FREEZE_THEN f (A1 |- w) to the goal (A ?- t) produces the subgoal:

A ?- t

========= FREEZE_THEN f (A1 |- w)

A ?- t1

Since the term w is a hypothesis of the argument to the function f, none of the free
variables present in w may be instantiated or generalized. The hypothesis is discharged
by PROVE_HYP upon the completion of the proof of the subgoal.

Failure
Failures may arise from the tactic-generating function. An invalid tactic arises if the
hypotheses of the theorem are not alpha-convertible to assumptions of the goal.

Example
Given the goal (["b < c"; "a < b"], "(SUC a) <= c"), and the specialized variant of
the theorem LESS_TRANS:

th = |- !p. a < b /\ b < p ==> a < p

IMP_RES_TAC th will generate several unneeded assumptions:

{b < c, a < b, a < c, !p. c < p ==> b < p, !a’. a’ < a ==> a’ < b}

?- (SUC a) <= c

which can be avoided by first ‘freezing’ the theorem, using the tactic

FREEZE_THEN IMP_RES_TAC th

This prevents the variables a and b from being instantiated.

{b < c, a < b, a < c} ?- (SUC a) <= c

Uses
Used in serious proof hacking to limit the matches achievable by resolution and rewrit-
ing.

366 CHAPTER 1. ENTRIES

See also
Thm.ASSUME, Tactic.IMP RES TAC, Drule.PROVE HYP, Tactic.RES TAC, Conv.REWR CONV.

front_last (Lib)

Lib.front_last : ’a list -> ’a list * ’a

Synopsis
Takes a non-empty list L and returns a pair (front,last) such that front @ [last] = L.

Failure
Fails if the list is empty.

Example

- front_last [1];

> val it = ([],1) : int list * int

- front_last [1,2,3];

> val it = ([1,2],3) : int list * int

See also
Lib.butlast, Lib.last.

fst (Lib)

fst : (’a * ’b) -> ’a

Synopsis
Extracts the first component of a pair.

Description
fst (x,y) returns x.

Failure
Never fails. However, notice that fst (x,y,z) fails to typecheck, since (x,y,z) is not a
pair.

Example

ftyvar 367

- fst (1, "foo");

> val it = 1 : int

- fst (1, "foo", []);

! Toplevel input:

! fst (1, "foo", []);

! ^^^^^^^^^^^^^^

! Type clash: expression of type

! ’g * ’h * ’i

! cannot have type

! ’j * ’k

! because the tuple has the wrong number of components

- fst (1, ("foo", []));

> val it = 1 : int

See also
Lib.snd.

ftyvar (Type)

ftyvar : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.ftyvar is bound to the type variable ’f.

See also
Type.alpha, Type.beta, Type.gamma, Type.delta, Type.etyvar, Type.bool.

FULL_SIMP_TAC (bossLib)

simpLib.FULL_SIMP_TAC : simpset -> thm list -> tactic

368 CHAPTER 1. ENTRIES

Synopsis
Simplifies the goal (assumptions as well as conclusion) with the given simpset.

Description
FULL_SIMP_TAC is a powerful simplification tactic that simplifies all of a goal. It proceeds
by applying simplification to each assumption of the goal in turn, accumulating simpli-
fied assumptions as it goes. These simplified assumptions are used to simplify further
assumptions, and all of the simplified assumptions are used as additional rewrites when
the conclusion of the goal is simplified.

In addition, simplified assumptions are added back onto the goal using the equivalent
of STRIP_ASSUME_TAC and this causes automatic skolemization of existential assumptions,
case splits on disjunctions, and the separate assumption of conjunctions. If an assump-
tion is simplified to TRUTH, then this is left on the assumption list. If an assumption is
simplified to falsity, this proves the goal.

Failure
FULL_SIMP_TAC never fails, but it may diverge.

Example
Here FULL_SIMP_TAC is used to prove a goal:

> FULL_SIMP_TAC arith_ss [] (map Term [‘x = 3‘, ‘x < 2‘],

Term ‘?y. x * y = 51‘)

- val it = ([], fn) : tactic_result

Using LESS_OR_EQ |- !m n. m <= n = m < n \/ (m = n), a useful case split can be in-
duced in the next goal:

> FULL_SIMP_TAC bool_ss [LESS_OR_EQ] (map Term [‘x <= y‘, ‘x < z‘],

Term ‘x + y < z‘);

- val it =

([([‘x < y‘, ‘x < z‘], ‘x + y < z‘),

([‘x = y‘, ‘x < z‘], ‘y + y < z‘)], fn)

: tactic_result

Note that the equality x = y is not used to simplify the subsequent assumptions, but is
used to simplify the conclusion of the goal.

Comments
The application of STRIP_ASSUME_TAC to simplified assumptions means that FULL_SIMP_TAC
can cause unwanted case-splits and other undesirable transformations to occur in one’s
assumption list. If one wants to apply the simplifier to assumptions without this
occurring, the best approach seems to be the use of RULE_ASSUM_TAC and SIMP_RULE.

FULL SIMP TAC 369

See also
bossLib.ASM SIMP TAC, bossLib.SIMP CONV, bossLib.SIMP RULE, bossLib.SIMP TAC.

FULL_SIMP_TAC (simpLib)

FULL_SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.FULL_SIMP_TAC is identical to simpLib.FULL_SIMP_TAC.

See also
bossLib.FULL SIMP TAC.

FULL_STRUCT_CASES_TAC (Tactic)

FULL_STRUCT_CASES_TAC : thm_tactic

Synopsis
A form of STRUCT_CASES_TAC that also applies the case analysis to the assumption list.

Description
See STRUCT_CASES_TAC.

Failure
Fails unless provided with a theorem that is a conjunction of (possibly multiply existen-
tially quantified) terms which assert the equality of a variable with some given terms.

Example
Suppose we have the goal:

~(l:(*)list = []) ?- (LENGTH l) > 0

then we can get rid of the universal quantifier from the inbuilt list theorem list_CASES:

370 CHAPTER 1. ENTRIES

list_CASES = !l. (l = []) \/ (?t h. l = CONS h t)

and then use FULL_STRUCT_CASES_TAC. This amounts to applying the following tactic:

FULL_STRUCT_CASES_TAC (SPEC_ALL list_CASES)

which results in the following two subgoals:

~(CONS h t = []) ?- (LENGTH(CONS h t)) > 0

~([] = []) ?- (LENGTH[]) > 0

Note that this is a rather simple case, since there are no constraints, and therefore the
resulting subgoals have no extra assumptions.

Uses
Generating a case split from the axioms specifying a structure.

See also
Tactic.ASM CASES TAC, Tactic.BOOL CASES TAC, Tactic.COND CASES TAC,

Tactic.DISJ CASES TAC, Tactic.STRUCT CASES TAC.

FUN_EQ_CONV (Conv)

FUN_EQ_CONV : conv

Synopsis
Equates normal and extensional equality for two functions.

Description
The conversion FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. When
supplied with a term argument of the form f = g, where f and g are functions of type
ty1->ty2, FUN_EQ_CONV returns the theorem:

|- (f = g) = (!x. f x = g x)

where x is a variable of type ty1 chosen by the conversion.

Failure
FUN_EQ_CONV tm fails if tm is not an equation f = g, where f and g are functions.

funpow 371

Uses
Used for proving equality of functions.

See also
Drule.EXT, Conv.X FUN EQ CONV.

funpow (Lib)

funpow : int -> (’a -> ’a) -> ’a -> ’a

Synopsis
Iterates a function a fixed number of times.

Description
funpow n f x applies f to x, n times, giving the result f (f ... (f x)...) where the
number of f’s is n. If n is not positive, the result is x.

Failure
funpow n f x fails if any of the n applications of f fail.

Example
Apply tl three times to a list:

- funpow 3 tl [1,2,3,4,5];

> [4, 5] : int list

Apply tl zero times:

- funpow 0 tl [1,2,3,4,5];

> [1; 2; 3; 4; 5] : int list

Apply tl six times to a list of only five elements:

- funpow 6 tl [1,2,3,4,5];

! Uncaught exception:

! List.Empty

See also
Lib.repeat.

372 CHAPTER 1. ENTRIES

FVL (Term)

FVL : term list -> term set -> term set

Synopsis
Efficient computation of the set of free variables in a list of terms.

Description
An invocation FVL [t1,...,tn] V adds the set of free variables found in t1,...,tn to
the accumulator V.

Failure
Never fails.

Example

- FVL [Term ‘v1 /\ v2 ==> v2 \/ v3‘] empty_varset;

> val it = <set> : term set

- HOLset.listItems it;

> val it = [‘v1‘, ‘v2‘, ‘v3‘] : term list

Comments
Preferable to free_varsl when the number of free variables becomes large.

See also
HOLset, Term.empty varset, Term.free varsl, Term.free vars.

g (proofManagerLib)

g : term frag list -> proofs

Synopsis
Initializes the subgoal package with a new goal which has no assumptions.

Description
The call

gamma 373

g ‘tm‘

is equivalent to

set_goal([],Term‘tm‘)

and clearly more convenient if a goal has no assumptions. For a description of the
subgoal package, see set_goal.

Failure
Fails unless the argument term has type bool.

Example

- g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: GoalstackPure.proofs

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

gamma (Type)

gamma : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.gamma is bound to the type variable ’c.

374 CHAPTER 1. ENTRIES

See also
Type.alpha, Type.beta, Type.delta, Type.bool.

GE_CONV (reduceLib)

GE_CONV : conv

Synopsis
Proves result of less-than-or-equal-to ordering on two numerals.

Description
If m and n are both numerals (e.g. 0, 1, 2, 3,...), then GE_CONV "m >= n" returns the
theorem:

|- (m >= n) = T

if the natural number denoted by m is greater than or equal to that denoted by n, or

|- (m >= n) = F

otherwise.

Failure
GE_CONV tm fails unless tm is of the form "m >= n", where m and n are numerals.

Example

#GE_CONV "15 >= 14";;

|- 15 >= 14 = T

#GE_CONV "100 >= 100";;

|- 100 >= 100 = T

#GE_CONV "0 >= 107";;

|- 0 >= 107 = F

GEN (Thm)

GEN : term -> thm -> thm

GEN ALL 375

Synopsis
Generalizes the conclusion of a theorem.

Description
When applied to a term x and a theorem A |- t, the inference rule GEN returns the
theorem A |- !x. t, provided x is a variable not free in any of the assumptions. There
is no compulsion that x should be free in t.

A |- t

------------ GEN x [where x is not free in A]

A |- !x. t

Failure
Fails if x is not a variable, or if it is free in any of the assumptions.

Example
The following example shows how the above side-condition prevents the derivation of
the theorem x=T |- !x. x=T, which is clearly invalid.

- show_types := true;

> val it = () : unit

- val t = ASSUME (Term ‘x=T‘);

> val t = [.] |- (x :bool) = T : thm

- try (GEN (Term ‘x:bool‘)) t;

Exception raised at Thm.GEN:

variable occurs free in hypotheses

! Uncaught exception:

! HOL_ERR

See also
Thm.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL, Drule.SPEC ALL,

Tactic.SPEC TAC.

GEN_ALL (Drule)

GEN_ALL : thm -> thm

376 CHAPTER 1. ENTRIES

Synopsis
Generalizes the conclusion of a theorem over its own free variables.

Description
When applied to a theorem A |- t, the inference rule GEN_ALL returns the theorem
A |- !x1...xn. t, where the xi are all the variables, if any, which are free in t but not
in the assumptions.

A |- t

------------------ GEN_ALL

A |- !x1...xn. t

Failure
Never fails.

Comments
Sometimes people write code that depends on the order of the quantification. They
shouldn’t.

See also
Thm.GEN, Thm.GENL, Thm.SPEC, Drule.SPECL, Drule.SPEC ALL, Tactic.SPEC TAC.

GEN_ALL (hol88Lib)

GEN_ALL : thm -> thm

Synopsis
Generalizes the conclusion of a theorem over its own free variables.

Description
When applied to a theorem A |- t, the inference rule GEN_ALL returns the theorem
A |- !x1...xn. t, where the xi are all the variables, if any, which are free in t but not
in the assumptions.

A |- t

------------------ GEN_ALL

A |- !x1...xn. t

GEN ALPHA CONV 377

Failure
Never fails.

Comments
Superseded by Drule.GEN_ALL, which, however, may return a different result. That is
why GEN_ALL is in hol88Lib. Sometimes people write code that depends on the order of
the quantification. They shouldn’t.

See also
Drule.GEN ALL.

GEN_ALPHA_CONV (Drule)

GEN_ALPHA_CONV : term -> conv

Synopsis
Renames the bound variable of an abstraction, a quantified term, or other binder appli-
cation.

Description
The conversion GEN_ALPHA_CONV provides alpha conversion for lambda abstractions of
the form \y.t, quantified terms of the forms !y.t, ?y.t or ?!y.t, and epsilon terms of
the form @y.t. In general, if B is a binder constant, then GEN_ALPHA_CONV implements
alpha conversion for applications of the form B y.t.

If tm is an abstraction \y.t or an application of a binder to an abstraction B y.t,
where the bound variable y has type ty, and if x is a variable also of type ty, then
GEN_ALPHA_CONV x tm returns one of the theorems:

|- (\y.t) = (\x’. t[x’/y])

|- (B y.t) = (B x’. t[x’/y])

depending on whether the input term is \y.t or B y.t respectively. The variable x’:ty

in the resulting theorem is a primed variant of x chosen so as not to be free in the term
provided as the second argument to GEN_ALPHA_CONV.

Failure
GEN_ALPHA_CONV x tm fails if x is not a variable, or if tm does not have one of the forms
\y.t or B y.t, where B is a binder. GEN_ALPHA_CONV x tm also fails if tm does have one of
these forms, but types of the variables x and y differ.

378 CHAPTER 1. ENTRIES

See also
Thm.ALPHA, Drule.ALPHA CONV, boolSyntax.new binder definition.

GEN_BETA_CONV (PairedLamda)

GEN_BETA_CONV : conv

Synopsis
Beta-reduces single or paired beta-redexes, creating a paired argument if needed.

Description
The conversion GEN_BETA_CONV will perform beta-reduction of simple beta-redexes in
the manner of BETA_CONV, or of tupled beta-redexes in the manner of PAIRED_BETA_CONV.
Unlike the latter, it will force through a beta-reduction by introducing arbitrarily nested
pair destructors if necessary. The following shows the action for one level of pairing;
others are similar.

GEN_BETA_CONV "(\(x,y). t) p" = t[(FST p)/x, (SND p)/y]

Failure
GEN_BETA_CONV tm fails if tm is neither a simple nor a tupled beta-redex.

Example
The following examples show the action of GEN_BETA_CONV on tupled redexes. In the
following, it acts in the same way as PAIRED_BETA_CONV:

- pairLib.GEN_BETA_CONV (Term ‘(\(x,y). x + y) (1,2)‘);

val it = |- (\(x,y). x + y)(1,2) = 1 + 2 : thm

whereas in the following, the operand of the beta-redex is not a pair, so FST and SND are
introduced:

- pairLib.GEN_BETA_CONV (Term ‘(\(x,y). x + y) numpair‘);

> val it = |- (\(x,y). x + y) numpair = FST numpair + SND numpair : thm

The introduction of FST and SND will be done more than once as necessary:

- pairLib.GEN_BETA_CONV (Term ‘(\(w,x,y,z). w + x + y + z) (1,triple)‘);

> val it =

|- (\(w,x,y,z). w + x + y + z) (1,triple) =

1 + FST triple + FST (SND triple) + SND (SND triple) : thm

GEN MESON TAC 379

See also
Thm.BETA CONV, PairedLambda.PAIRED BETA CONV.

GEN_MESON_TAC (mesonLib)

GEN_MESON_TAC : int -> int -> int -> thm list -> tactic

Synopsis
Performs first order proof search to prove the goal, using both the given theorems and
the assumptions in the search.

Description
GEN_MESON_TAC is the function which provides the underlying implementation of the
model elimination solver used by both MESON_TAC and ASM_MESON_TAC. The three integer
parameters correspond to various ways in which the search can be tuned.

The first is the minimum depth at which to search. Setting this to a number greater
than zero can save time if its clear that there will not be a proof of such a small depth.
ASM_MESON_TAC and MESON_TAC always use a value of 0 for this parameter.

The second is the maximum depth to which to search. Setting this low will stop the
search taking too long, but may cause the engine to miss proofs it would otherwise
find. The setting of this variable for ASM_MESON_TAC and MESON_TAC is done through the
reference variable mesonLib.max_depth. This is set to 30 by default, but most proofs do
not need anything like this depth.

The third parameter is the increment used to increase the depth of search done by
the proof search procedure.

The approach used is iterative deepening, so with a call to

GEN_MESON_TAC mn mx inc

the algorithm looks for a proof of depth mn, then for one of depth mn + inc, then at
depth mn + 2 * inc etc. Once the depth gets greater than mx, the proof search stops.

Failure
GEN_MESON_TAC fails if it searches to a depth equal to the second integer parameter with-
out finding a proof. Shouldn’t fail otherwise.

Uses
The construction of tailored versions of MESON_TAC and ASM_MESON_TAC.

380 CHAPTER 1. ENTRIES

See also
mesonLib.ASM MESON TAC, mesonLib.MESON TAC.

GEN_PALPHA_CONV (PairRules)

GEN_PALPHA_CONV : term -> conv

Synopsis
Renames the bound pair of a paired abstraction, quantified term, or other binder.

Description
The conversion GEN_PALPHA_CONV provides alpha conversion for lambda abstractions of
the form \p.t, quantified terms of the forms !p.t, ?p.t or ?!p.t, and epsilon terms of
the form @p.t.

The renaming of pairs is as described for PALPHA_CONV.

Failure
GEN_PALPHA_CONV q tm fails if q is not a variable, or if tm does not have one of the re-
quired forms. GEN_ALPHA_CONV q tm also fails if tm does have one of these forms, but
types of the variables p and q differ.

See also
Drule.GEN ALPHA CONV, PairRules.PALPHA, PairRules.PALPHA CONV.

GEN_REWRITE_CONV (Rewrite)

GEN_REWRITE_CONV : ((conv -> conv) -> thm list -> thm list -> conv)

Synopsis
Rewrites a term, selecting terms according to a user-specified strategy.

Description
Rewriting in HOL is based on the use of equational theorems as left-to-right replace-
ments on the subterms of an object theorem. This replacement is mediated by the use
of REWR_CONV, which finds matches between left-hand sides of given equations in a term
and applies the substitution.

GEN REWRITE CONV 381

Equations used in rewriting are obtained from the theorem lists given as arguments
to the function. These are at first transformed into a form suitable for rewriting. Con-
junctions are separated into individual rewrites. Theorems with conclusions of the form
"~t" are transformed into the corresponding equations "t = F". Theorems "t" which
are not equations are cast as equations of form "t = T".

If a theorem is used to rewrite a term, its assumptions are added to the assumptions
of the returned theorem. The matching involved uses variable instantiation. Thus, all
free variables are generalized, and terms are instantiated before substitution. Theorems
may have universally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facili-
tate implementing other rewriting tools. However, they are considered in an order-
independent fashion. (That is, the ordering is an implementation detail which is not
specified.)

The search strategy for finding matching subterms is the first argument to the rule.
Matching and substitution may occur at any level of the term, according to the specified
search strategy: the whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary depth until no matches
occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_CONV fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used.

Uses
This conversion is used in the system to implement all other rewritings conversions, and
may provide a user with a method to fine-tune rewriting of terms.

Example
Suppose we have a term of the form:

"(1 + 2) + 3 = (3 + 1) + 2"

and we would like to rewrite the left-hand side with the theorem ADD_SYM without chang-
ing the right hand side. This can be done by using:

GEN_REWRITE_CONV (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_CONV, would match and substitute on both sides,
which would not be the desirable result.

As another example, REWRITE_CONV could be implemented as

GEN_REWRITE_CONV TOP_DEPTH_CONV basic_rewrites

382 CHAPTER 1. ENTRIES

which specifies that matches should be searched recursively starting from the whole
term of the theorem, and basic_rewrites must be added to the user defined set of
theorems employed in rewriting.

See also
Rewrite.ONCE REWRITE CONV, Rewrite.PURE REWRITE CONV, Conv.REWR CONV,

Rewrite.REWRITE CONV.

GEN_REWRITE_RULE (Rewrite)

GEN_REWRITE_RULE : ((conv -> conv) -> thm list -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem, selecting terms according to a user-specified strategy.

Description
Rewriting in HOL is based on the use of equational theorems as left-to-right replace-
ments on the subterms of an object theorem. This replacement is mediated by the use
of REWR_CONV, which finds matches between left-hand sides of given equations in a term
and applies the substitution.

Equations used in rewriting are obtained from the theorem lists given as arguments
to the function. These are at first transformed into a form suitable for rewriting. Con-
junctions are separated into individual rewrites. Theorems with conclusions of the form
"~t" are transformed into the corresponding equations "t = F". Theorems "t" which
are not equations are cast as equations of form "t = T".

If a theorem is used to rewrite the object theorem, its assumptions are added to
the assumptions of the returned theorem, unless they are alpha-convertible to existing
assumptions. The matching involved uses variable instantiation. Thus, all free variables
are generalized, and terms are instantiated before substitution. Theorems may have
universally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facili-
tate implementing other rewriting tools. However, they are considered in an order-
independent fashion. (That is, the ordering is an implementation detail which is not
specified.)

The search strategy for finding matching subterms is the first argument to the rule.
Matching and substitution may occur at any level of the term, according to the specified
search strategy: the whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary depth until no matches
occur, once over the selected subterm, or any more complex scheme.

GEN REWRITE TAC 383

Failure
GEN_REWRITE_RULE fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used.

Uses
This rule is used in the system to implement all other rewriting rules, and may provide
a user with a method to fine-tune rewriting of theorems.

Example
Suppose we have a theorem of the form:

thm = |- (1 + 2) + 3 = (3 + 1) + 2

and we would like to rewrite the left-hand side with the theorem ADD_SYM without chang-
ing the right hand side. This can be done by using:

GEN_REWRITE_RULE (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_RULE, would match and substitute on both sides,
which would not be the desirable result.

As another example, REWRITE_RULE could be implemented as

GEN_REWRITE_RULE TOP_DEPTH_CONV basic_rewrites

which specifies that matches should be searched recursively starting from the whole
term of the theorem, and basic_rewrites must be added to the user defined set of
theorems employed in rewriting.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,

Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Conv.REWR CONV,

Rewrite.REWRITE RULE.

GEN_REWRITE_TAC (Rewrite)

GEN_REWRITE_TAC : ((conv -> conv) -> thm list -> thm list -> tactic)

Synopsis
Rewrites a goal, selecting terms according to a user-specified strategy.

384 CHAPTER 1. ENTRIES

Description
Distinct rewriting tactics differ in the search strategies used in finding subterms on
which to apply substitutions, and the built-in theorems used in rewriting. In the case of
REWRITE_TAC, this is a recursive traversal starting from the body of the goal’s conclusion
part, while in the case of ONCE_REWRITE_TAC, for example, the search stops as soon as
a term on which a substitution is possible is found. GEN_REWRITE_TAC allows a user to
specify a more complex strategy for rewriting.

The basis of pattern-matching for rewriting is the notion of conversions, through
the application of REWR_CONV. Conversions are rules for mapping terms with theorems
equating the given terms to other semantically equivalent ones.

When attempting to rewrite subterms recursively, the use of conversions (and there-
fore rewrites) can be automated further by using functions which take a conversion
and search for instances at which they are applicable. Examples of these functions
are ONCE_DEPTH_CONV and RAND_CONV. The first argument to GEN_REWRITE_TAC is such a
function, which specifies a search strategy; i.e. it specifies how subterms (on which
substitutions are allowed) should be searched for.

The second and third arguments are lists of theorems used for rewriting. The or-
der in which these are used is not specified. The theorems need not be in equational
form: negated terms, say "~ t", are transformed into the equivalent equational form
"t = F", while other non-equational theorems with conclusion of form "t" are cast as
the corresponding equations "t = T". Conjunctions are separated into the individual
components, which are used as distinct rewrites.

Failure
GEN_REWRITE_TAC fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used. The resulting tactic is
invalid when a theorem which matches the goal (and which is thus used for rewriting it
with) has a hypothesis which is not alpha-convertible to any of the assumptions of the
goal. Applying such an invalid tactic may result in a proof of a theorem which does not
correspond to the original goal.

Uses
Detailed control of rewriting strategy, allowing a user to specify a search strategy.

Example
Given a goal such as:

?- a - (b + c) = a - (c + b)

we may want to rewrite only one side of it with a theorem, say ADD_SYM. Rewriting tactics
which operate recursively result in divergence; the tactic ONCE_REWRITE_TAC [ADD_SYM]

rewrites on both sides to produce the following goal:

GEN TAC 385

?- a - (c + b) = a - (b + c)

as ADD_SYM matches at two positions. To rewrite on only one side of the equation, the
following tactic can be used:

GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM]

which produces the desired goal:

?- a - (c + b) = a - (c + b)

As another example, one can write a tactic which will behave similarly to REWRITE_TAC

but will also include ADD_CLAUSES in the set of theorems to use always:

let ADD_REWRITE_TAC = GEN_REWRITE_TAC TOP_DEPTH_CONV

(ADD_CLAUSES . basic_rewrites) ;;

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE TAC,

Rewrite.PURE REWRITE TAC, Conv.REWR CONV, Rewrite.REWRITE TAC.

GEN_TAC (Tactic)

GEN_TAC : tactic

Synopsis
Strips the outermost universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !x. t, the tactic GEN_TAC reduces it to A ?- t[x’/x] where
x’ is a variant of x chosen to avoid clashing with any variables free in the goal’s assump-
tion list. Normally x’ is just x.

A ?- !x. t

============== GEN_TAC

A ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified.

386 CHAPTER 1. ENTRIES

Uses
The tactic REPEAT GEN_TAC strips away any universal quantifiers, and is commonly used
before tactics relying on the underlying term structure.

See also
Tactic.FILTER GEN TAC, Thm.GEN, Thm.GENL, Drule.GEN ALL, Thm.SPEC, Drule.SPECL,

Drule.SPEC ALL, Tactic.SPEC TAC, Tactic.STRIP TAC, Tactic.X GEN TAC.

gen_tyvar (Type)

gen_tyvar : unit -> hol_type

Synopsis
Generate a fresh type variable

Description
An invocation gen_tyvar() generates a type variable tyv not seen in the current session.
Furthermore, the concrete syntax of tyv is such that tyv is not obtainable by mk_vartype,
or by parsing.

Failure
Never fails.

Example

- gen_tyvar();

> val it = ‘:%%gen_tyvar%%1‘ : hol_type

- try Type ‘:%%gen_tyvar%%1‘;

Exception raised at Parse.hol_type parser:

Couldn’t make any sense with remaining input of "%%gen_tyvar%%1"

- try mk_vartype "%%gen_tyvar%%1";

Exception raised at Type.mk_vartype:

incorrect syntax

GENL 387

Comments
In general, the actual name returned by gen_tyvar should not be relied on.

Uses
Useful for coding some proof procedures.

See also
Term.genvar, Term.variant.

GENL (Thm)

GENL : term list -> thm -> thm

Synopsis
Generalizes zero or more variables in the conclusion of a theorem.

Description
When applied to a term list [x1,...,xn] and a theorem A |- t, the inference rule GENL

returns the theorem A |- !x1...xn. t, provided none of the variables xi are free in any
of the assumptions. It is not necessary that any or all of the xi should be free in t.

A |- t

------------------ GENL [x1,...,xn] [where no xi is free in A]

A |- !x1...xn. t

Failure
Fails unless all the terms in the list are variables, none of which are free in the assump-
tion list.

See also
Thm.GEN, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL, Drule.SPEC ALL,

Tactic.SPEC TAC.

GENLIST_CONV (listLib)

GENLIST_CONV : conv

388 CHAPTER 1. ENTRIES

Synopsis
Computes by inference the result of generating a list from a function.

Description
For an arbitrary function f, numeral constant n and conversion to evaluate f,conv the
result of evaluating

GENLIST_CONV conv (--‘GENLIST f n‘--)

is the theorem

|- GENLIST f x = [x0;x1...xi...x(n-1)]

where each xi is the result of evaluating conv (--‘f i‘--)

Example
Evaluating GENLIST_CONV BETA_CONV (--‘GENLIST (\n . n) 4‘--) will return the fol-
lowing theorem:

|- GENLIST (\n. n) 4 = [0; 1; 2; 3]

Failure
GENLIST_CONV tm fails if tm is not of the form described above, or if any call conv (--‘f i‘--)

fails.

genvar (Term)

genvar : type -> term

Synopsis
Returns a variable whose name has not been used previously.

Description
When given a type, genvar returns a variable of that type whose name has not been
used for a variable or constant in the HOL session so far.

Failure
Never fails.

Example
The following indicates the typical stylized form of the names (this should not be relied
on, of course):

genvars 389

- genvar bool;

> val it = ‘%%genvar%%1380‘ : term

- genvar (Type‘:num‘);

> val it = ‘%%genvar%%1381‘ : term

Note that one can anticipate genvar:

- mk_var("%%genvar%%1382",bool);

> val it = ‘%%genvar%%1382‘ : term

- genvar bool;

> val it = ‘%%genvar%%1382‘ : term

This shortcoming could be guarded against, but it doesn’t seem worth it currently. It
doesn’t seem to affect the soundness of the implementation of HOL; at worst, a proof
procedure may fail because it doesn’t have a sufficiently fresh variable.

Uses
The unique variables are useful in writing derived rules, for specializing terms without
having to worry about such things as free variable capture. If the names are to be visible
to a typical user, the function variant can provide rather more meaningful names.

See also
Drule.GSPEC, Term.variant.

genvars (Term)

genvars : hol_type -> int -> term list

Synopsis
Generate a specified number of fresh variables.

Description
An invocation genvars ty n will invoke genvar n times and return the resulting list of
variables.

Failure
Never fails. If n is less-than-or-equal to zero, the empty list is returned.

Example

390 CHAPTER 1. ENTRIES

- genvars alpha 3;

> val it = [‘%%genvar%%1558‘, ‘%%genvar%%1559‘, ‘%%genvar%%1560‘] : term list

See also
Term.genvar, Term.mk var.

genvarstruct (pairSyntax)

genvarstruct : hol_type -> term

Synopsis
Returns a pair structure of variables whose names have not been previously used.

Description
When given a product type, genvarstruct returns a paired structure of variables whose
names have not been used for variables or constants in the HOL session so far. The
structure of the term returned will be identical to the structure of the argument.

Failure
Never fails.

Example
The following example illustrates the behaviour of genvarstruct:

- genvarstruct (type_of (Term ‘((1,2),(x:’a,x:’a))‘));

> val it = ‘((%%genvar%%1535,%%genvar%%1536),%%genvar%%1537,%%genvar%%1538)‘

: term

Uses
Unique variables are useful in writing derived rules, for specializing terms without hav-
ing to worry about such things as free variable capture. It is often important in such
rules to keep the same structure. If not, genvar will be adequate. If the names are to
be visible to a typical user, the function pvariant can provide rather more meaningful
names.

See also
Term.genvar, PairRules.GPSPEC, pairSyntax.pvariant.

get flag abs 391

get_flag_abs (holCheckLib)

get_flag_abs : model -> bool

Synopsis
Returns whether or not HolCheck will attempt abstraction when checking this model.

See also
holCheckLib.holCheck, holCheckLib.set flag abs.

get_flag_ric (holCheckLib)

get_flag_ric : model -> bool

Synopsis
Returns whether or not the transition system for this HolCheck model is synchronous
(conjunctive). Throws an exception if this information has not been set.

See also
holCheckLib.holCheck, holCheckLib.set flag ric.

get_init (holCheckLib)

get_init : model -> term

Synopsis
Returns the term describing the initial states of the HolCheck model. Throws an excep-
tion if no initial states have been set.

See also
holCheckLib.holCheck, holCheckLib.set init.

392 CHAPTER 1. ENTRIES

get_name (holCheckLib)

get_name : model -> string option

Synopsis
Returns the name of the HolCheck model, if one has been set.

See also
holCheckLib.holCheck, holCheckLib.set name.

get_props (holCheckLib)

get_props : model -> (string * term) list

Synopsis
Returns the properties that will be checked for this HolCheck model. Throws an excep-
tion if no properties have been set.

See also
holCheckLib.holCheck, holCheckLib.set props.

get_results (holCheckLib)

get_results : model -> (term_bdd * thm option * term list option) list option

Synopsis
Returns the results of model checking the HolCheck model, if the model has been
checked.

Description
The order of results in the list corresponds to the order of properties in the list of
properties to be checked for the model. The latter list can be recovered via holCheck-
Lib.get props.

get state 393

Each result is a triple. the first component contains the BDD representation of the set
of states satisfying the property. If the check succeeded, the second component contains
a theorem certifying that the property holds in the model i.e. it holds in the initial
states. The third component contains a counterexample or witness trace, if one could
be recovered.

Example
For the mod-8 counter example used as a running example in the online reference, we
obtain the following results for the property that the most significant bit eventually goes
high:

- holCheckLib.get_results m;

> val it =

SOME [(<term_bdd>,

SOME|- CTL_MODEL_SAT ctlKS (C_EF (C_BOOL (B_PROP (\(v0,v1,v2). v2)))),

SOME [‘‘(F,F,F)‘‘, ‘‘(T,F,F)‘‘, ‘‘(F,T,F)‘‘, ‘‘(T,T,F)‘‘, ‘‘(F,F,T)‘‘])]

: (term_bdd * thm option * term list option) list option

The first component contains the BDD representation of the set of states satisfying the
property. The second component contains a formal theorem certifying the property. The
third component contains a witness trace that counts up to 4.

See also
holCheckLib.holCheck, holCheckLib.set props, holCheckLib.prove model.

get_state (holCheckLib)

get_state : model -> term option

Synopsis
Returns the state tuple used internally by HolCheck for this model, if one has been set.

See also
holCheckLib.holCheck, holCheckLib.set state.

get_trans (holCheckLib)

get_trans : model -> (string * term) list

394 CHAPTER 1. ENTRIES

Synopsis
Returns a description of the transition system of the HolCheck model. Throws an ex-
ception if no transition system has been set.

See also
holCheckLib.holCheck, holCheckLib.set trans, holCheckLib.get flag ric.

get_vord (holCheckLib)

get_vord : model -> string list option

Synopsis
Returns the BDD variable ordering used by HolCheck for this model, if one has been set.

See also
holCheckLib.holCheck, holCheckLib.set vord.

GPSPEC (PairRules)

GPSPEC : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with unique pairs.

Description
When applied to a theorem A |- !p1...pn. t, where the number of universally quan-
tified variables may be zero, GPSPEC returns A |- t[g1/p1]...[gn/pn], where the gi is
paired structures of the same structure as pi and made up of distinct variables , chosen
by genvar.

A |- !p1...pn. t

------------------------- GPSPEC

A |- t[g1/p1]...[gn/pn]

GSPEC 395

Failure
Never fails.

Uses
GPSPEC is useful in writing derived inference rules which need to specialize theorems
while avoiding using any variables that may be present elsewhere.

See also
Drule.GSPEC, PairRules.PGEN, PairRules.PGENL, Term.genvar, PairRules.PGEN TAC,

PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSPEC TAC,

PairRules.PSPEC PAIR.

GSPEC (Drule)

GSPEC : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with unique variables.

Description
When applied to a theorem A |- !x1...xn. t, where the number of universally quan-
tified variables may be zero, GSPEC returns A |- t[g1/x1]...[gn/xn], where the gi are
distinct variable names of the appropriate type, chosen by genvar.

A |- !x1...xn. t

------------------------- GSPEC

A |- t[g1/x1]...[gn/xn]

Failure
Never fails.

Uses
GSPEC is useful in writing derived inference rules which need to specialize theorems
while avoiding using any variables that may be present elsewhere.

See also
Thm.GEN, Thm.GENL, Term.genvar, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC,

Drule.SPECL, Drule.SPEC ALL, Tactic.SPEC TAC.

396 CHAPTER 1. ENTRIES

GSUBST_TAC (Tactic)

GSUBST_TAC : ((term * term) list -> term -> term) -> thm list -> tactic

Synopsis
Makes term substitutions in a goal using a supplied substitution function.

Description
GSUBST_TAC is the basic substitution tactic by means of which other tactics such as
SUBST_OCCS_TAC and SUBST_TAC are defined. Given a list [(v1,w1),...,(vk,wk)] of pairs
of terms and a term w, a substitution function replaces occurrences of wj in w with vj

according to a specific substitution criterion. Such a criterion may be, for example, to
substitute all the occurrences or only some selected ones of each wj in w.

Given a substitution function sfn, GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un] (A,t)

replaces occurrences of ti in t with ui according to sfn.

A ?- t

============================= GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un]

A ?- t[u1,...,un/t1,...,tn]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, while they are recorded in the proof. If any Ai is not a subset of
A (up to alpha-conversion), then GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un] results in
an invalid tactic.
GSUBST_TAC automatically renames bound variables to prevent free variables in ui

becoming bound after substitution.

Failure
GSUBST_TAC sfn [th1,...,thn] (A,t) fails if the conclusion of each theorem in the list
is not an equation. No change is made to the goal if the occurrences to be substituted
according to the substitution function sfn do not appear in t.

Uses
GSUBST_TAC is used to define substitution tactics such as SUBST_OCCS_TAC and SUBST_TAC.
It may also provide the user with a tool for tailoring substitution tactics.

See also
Tactic.SUBST1 TAC, Tactic.SUBST OCCS TAC, Tactic.SUBST TAC.

GSYM 397

GSYM (Conv)

GSYM : thm -> thm

Synopsis
Reverses the first equation(s) encountered in a top-down search.

Description
The inference rule GSYM reverses the first equation(s) encountered in a top-down search
of the conclusion of the argument theorem. An equation will be reversed iff it is not
a proper subterm of another equation. If a theorem contains no equations, it will be
returned unchanged.

A |- ..(s1 = s2)...(t1 = t2)..

-------------------------------- GSYM

A |- ..(s2 = s1)...(t2 = t1)..

Failure
Never fails, and never loops infinitely.

Example

- arithmeticTheory.ADD;

> val it = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) : thm

- GSYM arithmeticTheory.ADD;

> val it = |- (!n. n = 0 + n) /\ (!m n. SUC(m + n) = (SUC m) + n) : thm

See also
Drule.NOT EQ SYM, Thm.REFL, Thm.SYM.

GT_CONV (reduceLib)

GT_CONV : conv

Synopsis
Proves result of greater-than ordering on two numerals.

398 CHAPTER 1. ENTRIES

Description
If m and n are both numerals (e.g. 0, 1, 2, 3,...), then GT_CONV "m > n" returns the
theorem:

|- (m > n) = T

if the natural number denoted by m is greater than that denoted by n, or

|- (m > n) = F

otherwise.

Failure
GT_CONV tm fails unless tm is of the form "m > n", where m and n are numerals.

Example

#GT_CONV "100 > 10";;

|- 100 > 10 = T

#GT_CONV "15 > 15";;

|- 15 > 15 = F

#GT_CONV "11 > 27";;

|- 11 > 27 = F

guess_lengths (wordsLib)

guess_lengths : unit -> unit

Synopsis
Turns on word length guessing.

Description
A call to guess_lengths adds a post-prcessing stage to the term parser: the function
inst_word_lengths is used to instantiate type variables that are the return type of
word_concat and word_extract.

Example

HALF MK ABS 399

- load "wordsLib";

...

- show_types := true;

> val it = () : unit

- ‘‘(7 >< 5) a @@ (4 >< 0) a‘‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c, ’d>>

> val it =

‘‘(((7 :num) >< (5 :num)) (a :bool[’d]) :bool[’a]) @@

(((4 :num) >< (0 :num)) a :bool[’b])‘‘ : term

- wordsLib.guess_lengths();

> val it = () : unit

- ‘‘(7 >< 5) a @@ (4 >< 0) a‘‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c, ’d>>

<<HOL message: assigning word length(s): ’a <- 3, ’b <- 5 and ’c <- 8>>

> val it =

‘‘(((7 :num) >< (5 :num)) (a :bool[’d]) :bool[3]) @@

(((4 :num) >< (0 :num)) a :bool[5])‘‘ : term

- type_of it;

> val it = ‘‘:bool[8]‘‘ : hol_type

See also
wordsLib.inst word lengths, wordsLib.notify word length guesses.

HALF_MK_ABS (Drule)

HALF_MK_ABS : (thm -> thm)

Synopsis
Converts a function definition to lambda-form.

Description
When applied to a theorem A |- !x. t1 x = t2, whose conclusion is a universally quan-
tified equation, HALF_MK_ABS returns the theorem A |- t1 = \x. t2.

A |- !x. t1 x = t2

-------------------- HALF_MK_ABS [where x is not free in t1]

A |- t1 = (\x. t2)

400 CHAPTER 1. ENTRIES

Failure
Fails unless the theorem is a singly universally quantified equation whose left-hand side
is a function applied to the quantified variable, or if the variable is free in that function.

See also
Drule.ETA CONV, Drule.MK ABS, Thm.MK COMB, Drule.MK EXISTS.

HALF_MK_PABS (PairRules)

HALF_MK_PABS : (thm -> thm)

Synopsis
Converts a function definition to lambda-form.

Description
When applied to a theorem A |- !p. t1 p = t2, whose conclusion is a universally quan-
tified equation, HALF_MK_PABS returns the theorem A |- t1 = (\p. t2).

A |- !p. t1 p = t2

-------------------- HALF_MK_PABS [where p is not free in t1]

A |- t1 = (\p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation whose left-
hand side is a function applied to the quantified pair, or if any of the the variables in the
quantified pair is free in that function.

See also
Drule.HALF MK ABS, PairRules.PETA CONV, PairRules.MK PABS, PairRules.MK PEXISTS.

hash (Lib)

hash : int -> string -> int * int -> int

Synopsis
Hash function for strings.

hidden 401

Description
An invocation hash i s (j,k) takes an integer i and uses that to construct a function
that, given a string s, will produce values approximately equally distributed among the
numbers less than i. The argument j gives an index in the string to start from. The k

argument is an accumulator, which is useful when hashing a collection of strings.

Failure
Never fails.

Example

- hash 13 "ishkabibble" (0,0);

> val it = 5 : int

Comments
For better results, the i parameter should be a prime.

This is probably not an industrial strength hash function.

hidden (Parse)

hidden : string -> bool

Synopsis
Checks to see if a given name has been hidden.

Description
A call hidden c where c is the name of a constant, will check to see if the given name
had been hidden by a previous call to Parse.hide.

Failure
Never fails.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in
a theory.

See also
Parse.hide, Parse.reveal.

402 CHAPTER 1. ENTRIES

hide (Parse)

hide : string -> ({Name : string, Thy : string} list *

{Name : string, Thy : string} list)

Synopsis
Stops the quotation parser from recognizing a constant.

Description
A call hide c where c is a string that maps to one or more constants, will prevent the
quotation parser from parsing it as such; it will just be parsed as a variable. (A string
maps to a set of possible constants because of the possibility of overloading.) The
function returns two lists. Both specify constants by way of pairs of strings. The first
list is of constants that the string might have mapped to in parsing (specifically, in the
absyn_to_term stage of parsing), and the second is the list of constants that would have
tried to be printed as the string. It is important to note that the two lists need not be
the same.

The effect can be reversed by Parse.update_overload_maps. The function reveal is
only the inverse of hide if the only constants mapped to by the string all have that string
as their names. (These constants will all be in different theories.)

Failure
Never fails.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in
a theory. Further, (re-)defining a string hidden with hide will reveal it once more. The
hide function’s effect is temporary; it is not exported with a theory. A more permanent
hiding effect is possible with use of the remove_ovl_mapping function.

See also
Parse.hidden, Parse.known constants, Parse.remove ovl mapping, Parse.reveal,

Parse.set known constants, Parse.update overload maps.

HO_MATCH_ABBREV_TAC (Q)

Q.HO_MATCH_ABBREV_TAC : term quotation -> tactic

Hol datatype 403

Synopsis
Introduces abbreviations by doing a higher-order match against the goal.

Description
This tactic is just like Q.MATCH_ABBREV_TAC, but does a higher-order match against the
goal rather than a first order match. See the documentation for MATCH_ABBREV_TAC for
more details.

Example
The goal

?- !n. (n + 1) * (n - 1) = n * n - 1

is transformed by Q.HO_MATCH_ABBREV_TAC ‘!k. P k‘ to

Abbrev(P = (\n. (n + 1) * (n - 1) = n * n - 1)) ?- !k. P k

Note how the bound variable changes to match that used in the pattern.

See also
Q.ABBREV TAC, Q.MATCH ABBREV TAC.

Hol_datatype (bossLib)

Hol_datatype : type quotation -> unit

Synopsis
Define a concrete datatype.

Description
Many formalizations require the definition of new types. For example, ML-style
datatypes are commonly used to model the abstract syntax of programming languages
and the state-space of elaborate transition systems. In HOL, such datatypes (at least,
those that are inductive, or, alternatively, have a model in an initial algebra) may be
specified using the invocation Hol_datatype ‘<spec>‘, where <spec> should conform to
the following grammar:

spec ::= [<binding> ;]* <binding>

binding ::= <ident> = [<clause> |]* <clause>

| <ident> = <| [<ident> : <type> ;]* <ident> : <type> |>

404 CHAPTER 1. ENTRIES

clause ::= <ident>

| <ident> of [<type> =>]* <type>

When a datatype is successfully defined, a number of standard theorems are automati-
cally proved about the new type: the constructors of the type are proved to be injective
and disjoint, induction and case analysis theorems are proved, and each type also has
a ‘size’ function defined for it. All these theorems are stored in the current theory and
added to a database accessed via the functions in TypeBase.

The notation used to declare datatypes is, unfortunately, not the same as that of ML.
For example, an ML declaration

datatype (’a,’b) btree = Leaf of ’a

| Node of (’a,’b) btree * ’b * (’a,’b) btree

would most likely be declared in HOL as

Hol_datatype ‘btree = Leaf of ’a

| Node of btree => ’b => btree‘

The => notation in a HOL datatype description is intended to replace * in an ML datatype
description, and highlights the fact that, in HOL, constructors are by default curried.
Note also that any type parameters for the new type are not allowed; they are inferred
from the right hand side of the binding. The type variables in the specification become
arguments to the new type operator in alphabetic order.

When a record type is defined, the parser is adjusted to allow new syntax (appropriate
for records), and a number of useful simplification theorems are also proved. The most
useful of the latter are automatically stored in the TypeBase and can be inspected using
the simpls_of function. For further details on record types, see the DESCRIPTION.

Example
In the following, we shall give an overview of the kinds of types that may be defined by
Hol_datatype.

To start, enumerated types can be defined as in the following example:

Hol_datatype ‘enum = A1 | A2 | A3 | A4 | A5

| A6 | A7 | A8 | A9 | A10

| A11 | A12 | A13 | A14 | A15

| A16 | A17 | A18 | A19 | A20

| A21 | A22 | A23 | A24 | A25

| A26 | A27 | A28 | A29 | A30‘

Other non-recursive types may be defined as well:

Hol datatype 405

Hol_datatype ‘foo = N of num

| B of bool

| Fn of ’a -> ’b

| Pr of ’a # ’b‘

Turning to recursive types, we can define a type of binary trees where the leaves are
numbers.

- Hol_datatype ‘tree = Leaf of num

| Node of tree => tree‘

We have already seen a type of binary trees having polymorphic values at internal nodes.
This time, we will declare it in ”paired” format.

Hol_datatype ‘tree = Leaf of ’a

| Node of tree # ’b # tree‘

This specification seems closer to the declaration that one might make in ML, but is
more difficult to deal with in proof than the curried format used above.

The basic syntax of the named lambda calculus is easy to describe:

- load "stringTheory";

> val it = () : unit

- Hol_datatype ‘lambda = Var of string

| Const of ’a

| Comb of lambda => lambda

| Abs of lambda => lambda‘

The syntax for ‘de Bruijn’ terms is roughly similar:

Hol_datatype ‘dB = Var of string

| Const of ’a

| Bound of num

| Comb of dB => dB

| Abs of dB‘

Arbitrarily branching trees may be defined by allowing a node to hold the list of its
subtrees. In such a case, leaf nodes do not need to be explicitly declared.

Hol_datatype ‘ntree = Node of ’a => ntree list‘

A type of ‘first order terms’ can be declared as follows:

Hol_datatype ‘term = Var of string

| Fnapp of string # term list‘

406 CHAPTER 1. ENTRIES

Mutally recursive types may also be defined. The following, extracted by Elsa Gunter
from the Definition of Standard ML, captures a subset of Core ML.

Hol_datatype

‘atexp = var_exp of string

| let_exp of dec => exp ;

exp = aexp of atexp

| app_exp of exp => atexp

| fn_exp of match ;

match = match of rule

| matchl of rule => match ;

rule = rule of pat => exp ;

dec = val_dec of valbind

| local_dec of dec => dec

| seq_dec of dec => dec ;

valbind = bind of pat => exp

| bindl of pat => exp => valbind

| rec_bind of valbind ;

pat = wild_pat

| var_pat of string‘

Simple record types may be introduced using the <| ... |> notation.

Hol_datatype ‘state = <| Reg1 : num; Reg2 : num; Waiting : bool |>‘

The use of record types may be recursive. For example, the following declaration could
be used to formalize a simple file system.

Hol_datatype

‘file = Text of string

| Dir of directory

;

directory = <| owner : string ;

files : (string # file) list |>‘

Failure
Now we address some types that cannot be declared with Hol_datatype. In some cases

Hol datatype 407

they cannot exist in HOL at all; in others, the type can be built in the HOL logic, but
Hol_datatype is not able to make the definition.

First, an empty type is not allowed in HOL, so the following attempt is doomed to
fail.

Hol_datatype ‘foo = A of foo‘

So called ‘nested types’, which are occasionally quite useful, cannot at present be built
with Hol_datatype:

Hol_datatype ‘btree = Leaf of ’a

| Node of (’a # ’a) btree‘

Co-inductive types may not currently be built with Hol_datatype:

Hol_datatype ‘lazylist = Nil

| Cons of ’a # (one -> lazylist)‘

This type can however be built in HOL: see llistTheory.
Finally, for cardinality reasons, HOL does not allow the following attempt to model

the untyped lambda calculus as a set (note the -> in the clause for the Abs constructor):

Hol_datatype ‘lambda = Var of string

| Const of ’a

| Comb of lambda => lambda

| Abs of lambda -> lambda‘

Instead, one would have to build a theory of complete partial orders (or something
similar) with which to model the untyped lambda calculus.

Comments
The consequences of an invocation of Hol_datatype are stored in the current theory
segment and in TypeBase. The principal consequences of a datatype definition are the
primitive recursion and induction theorems. These provide the ability to define simple
functions over the type, and an induction principle for the type. For a type named ty,
the primitive recursion theorem is stored under ty_Axiom and the induction theorem is
put under ty_induction. Other consequences include the distinctness of constructors
(ty_distinct), and the injectivity of constructors (ty_11). A ‘degenerate’ version of
ty_induction is also stored under ty_nchotomy: it provides for reasoning by cases on
the construction of elements of ty. Finally, some special-purpose theorems are stored
: ty_case_cong gives a congruence theorem for ”case” statements on elements of ty.
These case statements are introduced by ty_case_def. Also, a definition of the ”size” of
the type is added to the current theory, under the name ty_size_def.

For example, invoking

408 CHAPTER 1. ENTRIES

Hol_datatype ‘tree = Leaf of num

| Node of tree => tree‘;

results in the definitions

tree_case_def =

|- (!f f1 a. case f f1 (Leaf a) = f a) /\

!f f1 a0 a1. case f f1 (Node a0 a1) = f1 a0 a1

tree_size_def

|- (!a. tree_size (Leaf a) = 1 + a) /\

!a0 a1. tree_size (Node a0 a1) = 1 + (tree_size a0 + tree_size a1)

being added to the current theory. The following theorems about the datatype are also
stored in the current theory.

tree_Axiom

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

!a0 a1. fn (Node a0 a1) = f1 a0 a1 (fn a0) (fn a1)

tree_induction

|- !P. (!n. P (Leaf n)) /\

(!t t0. P t /\ P t0 ==> P (Node t t0))

==>

!t. P t

tree_nchotomy |- !t. (?n. t = Leaf n) \/ ?t’ t0. t = Node t’ t0

tree_11

|- (!a a’. (Leaf a = Leaf a’) = (a = a’)) /\

!a0 a1 a0’ a1’. (Node a0 a1 = Node a0’ a1’) = (a0=a0’) /\ (a1=a1’)

tree_distinct |- !a1 a0 a. ~(Leaf a = Node a0 a1)

tree_case_cong

|- !M M’ f f1.

(M = M’) /\

(!a. (M’ = Leaf a) ==> (f a = f’ a)) /\

(!a0 a1. (M’ = Node a0 a1) ==> (f1 a0 a1 = f1’ a0 a1))

==>

(case f f1 M = case f’ f1’ M’)

Hol defn 409

When a type involving records is defined, many more definitions are made and added
to the current theory.

A definition of mutually recursives types results in the above theorems and definitions
being added for each of the defined types.

See also
Definition.new type definition, TotalDefn.Define, IndDefLib.Hol reln, TypeBase.

Hol_defn (bossLib)

Hol_defn : string -> term quotation -> defn

Synopsis
General-purpose function definition facility.

Description
Hol_defn allows one to define functions, recursive functions in particular, while defer-
ring termination issues. Hol_defn should be used when Define or xDefine fails, or when
the context required by Define or xDefine is too much.
Hol_defn takes the same arguments as xDefine.
Hol_defn s q automatically constructs termination constraints for the function speci-

fied by q, defines the function, derives the specified equations, and proves an induction
theorem. All these results are packaged up in the returned defn value. The defn type
is best thought of as an intermediate step in the process of deriving the unconstrained
equations and induction theorem for the function.

The termination conditions constructed by Hol_defn are for a function that takes a
single tuple as an argument. This is an artifact of the way that recursive functions are
modelled.

A prettyprinter, which prints out a summary of the known information on the results
of Hol_defn, has been installed in the interactive system.
Hol_defn may be found in bossLib and also in Defn.

Failure
Hol_defn s q fails if s is not an alphanumeric identifier.
Hol_defn s q fails if q fails to parse or typecheck.
Hol_defn may extract unsatisfiable termination conditions when asked to define a

higher-order recursion involving a higher-order function that the termination condition
extraction mechanism of Hol_defn is unaware of.

410 CHAPTER 1. ENTRIES

Example
Here we attempt to define a quick-sort function qsort:

- Hol_defn "qsort"

‘(qsort ___ [] = []) /\

(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))

(x :: qsort ord (FILTER (ord x) rst)))‘;

<<HOL message: inventing new type variable names: ’a>>

> val it =

HOL function definition (recursive)

Equation(s) :

[...]

|- (qsort v0 [] = []) /\

(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))

(x::qsort ord (FILTER (ord x) rst)))

Induction :

[...]

|- !P.

(!v0. P v0 []) /\

(!ord x rst.

P ord (FILTER ($~ o ord x) rst) /\

P ord (FILTER (ord x) rst) ==> P ord (x::rst))

==> !v v1. P v v1

Termination conditions :

0. WF R

1. !rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)

2. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

In the following we give an example of how to use Hol_defn to define a nested recursion.
In processing this definition, an auxiliary function N_aux is defined. The termination
conditions of N are phrased in terms of N_aux for technical reasons.

- Hol_defn "ninety1"

‘N x = if x>100 then x-10

else N(N(x+11))‘;

Hol defn 411

> val it =

HOL function definition (nested recursion)

Equation(s) :

[...] |- N x = (if x > 100 then x - 10 else N (N (x + 11)))

Induction :

[...]

|- !P.

(!x. (~(x > 100) ==> P (x + 11)) /\

(~(x > 100) ==> P (N (x + 11))) ==> P x)

==>

!v. P v

Termination conditions :

0. WF R

1. !x. ~(x > 100) ==> R (x + 11) x

2. !x. ~(x > 100) ==> R (N_aux R (x + 11)) x

Comments
An invocation of Hol_defn is usually the first step in a multi-step process that ends with
unconstrained recursion equations for a function, along with an induction theorem.
Hol_defn is used to construct the function and synthesize its termination conditions;
next, one invokes tgoal to set up a goal to prove termination of the function. The
termination proof usually starts with an invocation of WF_REL_TAC. After the proof is
over, the desired recursion equations and induction theorem are available for further
use.

It is occasionally important to understand, at least in part, how Hol_defn constructs
termination constraints. In some cases, it is necessary for users to influence this process
in order to have correct termination constraints extracted. The process is driven by
so-called congruence theorems for particular HOL constants. For example, suppose
we were interested in defining a ‘destructor-style‘ version of the factorial function over
natural numbers:

fact n = if n=0 then 1 else n * fact (n-1).

In the absence of a congruence theorem for the ‘if-then-else‘ construct, Hol_defn

would extract the termination constraints

0. WF R

1. !n. R (n - 1) n

412 CHAPTER 1. ENTRIES

which are unprovable, because the context of the recursive call has not been taken ac-
count of. This example is in fact not a problem for HOL, since the following congruence
theorem is known to Hol_defn:

|- !b b’ x x’ y y’.

(b = b’) /\

(b’ ==> (x = x’)) /\

(~b’ ==> (y = y’)) ==>

((if b then x else y) = (if b’ then x’ else y’))

This theorem is interpreted by Hol_defn as an ordered sequence of instructions to
follow when the termination condition extractor hits an ‘if-then-else‘. The theorem is
read as follows:

When an instance ‘if B then X else Y‘ is encountered while the

extractor traverses the function definition, do the following:

1. Go into B and extract termination conditions TCs(B) from

any recursive calls in it. This returns a theorem

TCs(B) |- B = B’.

2. Assume B’ and extract termination conditions from any

recursive calls in X. This returns a theorem

TCs(X) |- X = X’. Each element of TCs(X) will have

the form "B’ ==> M".

3. Assume ~B’ and extract termination conditions from any

recursive calls in Y. This returns a theorem

TCs(Y) |- Y = Y’. Each element of TCs(Y) will have

the form "~B’ ==> M".

4. By equality reasoning with (1), (2), and (3), derive

TCs(B) u TCs(X) u TCs(Y)

|-

(if B then X else Y) = (if B’ then X’ else Y’)

5. Replace "if B then X else Y" by "if B’ then X’ else Y’".

The accumulated termination conditions are propagated until the extraction process
finishes, and appear as hypotheses in the final result. In our example, context is prop-
erly accounted for in recursive calls under either branch of an ‘if-then-else‘. Thus the
extracted termination conditions for fact are

Hol defn 413

0. WF R

1. !n. ~(n = 0) ==> R (n - 1) n

and are easy to prove.
Now we discuss congruence theorems for higher-order functions. A ‘higher-order‘ re-

cursion is one in which a higher-order function is used to apply the recursive function
to arguments. In order for the correct termination conditions to be proved for such a
recursion, congruence rules for the higher order function must be known to the ter-
mination condition extraction mechanism. Congruence rules for common higher-order
functions, e.g., MAP, EVERY, and EXISTS for lists, are already known to the mechanism.
However, at times, one must manually prove and install a congruence theorem for a
higher-order function.

For example, suppose we define a higher-order function SIGMA for summing the results
of a function in a list. We then use SIGMA in the definition of a function for summing the
results of a function in a arbitrarily (finitely) branching tree.

- Define ‘(SIGMA f [] = 0) /\

(SIGMA f (h::t) = f h + SIGMA f t)‘;

- Hol_datatype ‘ltree = Node of ’a => ltree list‘;

> val it = () : unit

- Defn.Hol_defn

"ltree_sigma" (* higher order recursion *)

‘ltree_sigma f (Node v tl) = f v + SIGMA (ltree_sigma f) tl‘;

> val it =

HOL function definition (recursive)

Equation(s) :

[..] |- ltree_sigma f (Node v tl)

= f v + SIGMA (\a. ltree_sigma f a) tl

Induction :

[..] |- !P. (!f v tl. (!a. P f a) ==> P f (Node v tl))

==> !v v1. P v v1

Termination conditions :

0. WF R

1. !tl v f a. R (f,a) (f,Node v tl) : defn

414 CHAPTER 1. ENTRIES

The termination conditions for ltree_sigma seem to require finding a wellfounded rela-
tion R such that the pair (f,a) is R-less than (f, Node v tl). However, this is a hopeless
task, since there is no relation between a and Node v tl, besides the fact that they are
both ltrees. The termination condition extractor has not performed properly, because
it didn’t know a congruence rule for SIGMA. Such a congruence theorem is the following:

SIGMA_CONG =

|- !l1 l2 f g.

(l1=l2) /\ (!x. MEM x l2 ==> (f x = g x)) ==>

(SIGMA f l1 = SIGMA g l2)

Once Hol_defn has been told about this theorem, via write_congs, the termination
conditions extracted for the definition are provable, since a is a proper subterm of
Node v tl.

- local open DefnBase

in

val _ = write_congs (SIGMA_CONG::read_congs())

end;

- Defn.Hol_defn

"ltree_sigma"

‘ltree_sigma f (Node v tl) = f v + SIGMA (ltree_sigma f) tl‘;

> val it =

HOL function definition (recursive)

Equation(s) : ... (* as before *)

Induction : ... (* as before *)

Termination conditions :

0. WF R

1. !v f tl a. MEM a tl ==> R (f,a) (f,Node v tl)

One final point : for every HOL datatype defined by application of Hol_datatype, a
congruence theorem is automatically proved for the ‘case’ constant for that type, and
stored in the TypeBase. For example, the following congruence theorem for num_case is
stored in the TypeBase:

|- !f’ f b’ b M’ M.

(M = M’) /\

((M’ = 0) ==> (b = b’)) /\

Hol defn 415

(!n. (M’ = SUC n) ==> (f n = f’ n))

==>

(num_case b f M = num_case b’ f’ M’)

This allows the contexts of recursive calls in branches of ‘case’ expressions to be tracked.

See also
Defn.tgoal, Defn.tprove, bossLib.WF REL TAC, bossLib.Define, bossLib.xDefine,

bossLib.Hol datatype.

Hol_defn (Defn)

Hol_defn : string -> term quotation -> thm

Synopsis
Function definition facility.

Description
bossLib.Hol_defn is identical to Defn.Hol_defn.

See also
bossLib.Hol defn.

HOL_ERR (Feedback)

HOL_ERR : {message : string, origin_function : string,

origin_structure : string} -> exn

Synopsis
Standard HOL exception

Description
HOL_ERR is the single exception that HOL functions are expected to raise when they
encounter an anomalous situation.

Example
Building an application of HOL_ERR and binding it to an ML variable

416 CHAPTER 1. ENTRIES

val test_exn =

HOL_ERR {origin_structure = "Foo",

origin_function = "bar",

message = "incomprehensible input"};

yields

val test_exn = HOL_ERR : exn

One can scrutinize the contents of an application of HOL_ERR by pattern matching:

- val HOL_ERR r = test_exn;

> val r = {message = "incomprehensible input",

origin_function = "bar",

origin_structure = "Foo"}

In current ML implementations supporting HOL, exceptions that propagate to the top
level without being handled do not print informatively:

- raise test_exn;

! Uncaught exception:

! HOL_ERR

In such cases, the functions Raise and exn_to_string can be used to obtain useful
information:

- Raise test_exn;

Exception raised at Foo.bar:

incomprehensible input

! Uncaught exception:

! HOL_ERR

- print(exn_to_string test_exn);

Exception raised at Foo.bar:

incomprehensible input

> val it = () : unit

See also
Feedback, Feedback.error record, Feedback.mk HOL ERR, Feedback.Raise,

Feedback.exn to string.

HOL MESG 417

HOL_MESG (Feedback)

HOL_MESG : string -> unit

Synopsis
Prints out a message in a special format.

Description
HOL_MESG prints out its argument after formatting it a bit. The formatting is controlled by
the function held in MESG_to_string, which is format_MESG by default. The output stream
that the message is printed on is controlled by MESG_outstream, and is TextIO.stdOut by
default.

There are three kinds of informative messages that the Feedback structure supports:
errors, warnings, and messages. Errors are signalled by the raising of an exception
built from HOL_ERR; warnings, which are printed by HOL_WARNING, are less severe than er-
rors, and lead to a warning message being printed; finally, messages have no pejorative
weight at all, and may be freely employed, via HOL_MESG, to keep users informed in the
normal course of processing.

Failure
The invocation fails if the formatting or output routines fail.

Example

- HOL_MESG "Ack.";

<<HOL message: Ack.>>

See also
Feedback, Feedback.HOL ERR, Feedback.Raise, Feedback.HOL WARNING,

Feedback.MESG to string, Feedback.format MESG, Feedback.MESG outstream.

Hol_reln (bossLib)

Hol_reln : term quotation -> (thm * thm * thm)

Synopsis
Defines inductive relations.

418 CHAPTER 1. ENTRIES

Description
The Hol_reln function is used to define inductively characterised relations. It takes a
term quotation as input and attempts to define the relations there specified. The input
term quotation must parse to a term that conforms to the following grammar:

<input-format> ::= <clause> /\ <input-format> | <clause>

<clause> ::= (!x1 .. xn. <hypothesis> ==> <conclusion>)

| (!x1 .. xn. <conclusion>)

<conclusion> ::= <con> sv1 sv2

<hypothesis> ::= any term

<con> ::= a new relation constant

The sv1 terms that appear after a constant name are so-called ”schematic variables”. The
same variables must always follow the same constant name throughout the definition.
These variables and the names of the constants-to-be must not be quantified over in each
<clause>. Otherwise, a <clause> must not include any free variables. (The universal
quantifiers at the head of the clause can be used to bind free variables, but it is also
permissible to use existential quantification in the hypotheses. If a clause has no free
variables, it is permissible to have no universal quantification.)

The Hol_reln function may be used to define multiple relations. These may or may
not be mutually recursive. The clauses for each relation need not be contiguous.

The function returns three theorems. Each is also saved in the current theory seg-
ment. The first is a conjunction of implications that will be the same as the input term
quotation. This theorem is saved under the name <stem>_rules, where <stem> is the
name of the first relation defined by the function. The second is the induction principle
for the relations, saved under the name <stem>_ind. The third is the cases theorem for
the relations, saved under the name <stem>_cases. The cases theorem is of the form

(!a0 .. an. R1 a0 .. an = <R1’s first rule possibility> \/

<R1’s second rule possibility> \/ ...)

/\

(!a0 .. am. R2 a0 .. am = <R2’s first rule possibility> \/

<R2’s second rule possibility> \/ ...)

/\

...

Failure
The Hol_reln function will fail if the provided quotation does not parse to a term of
the specified form. It will also fail if a clause’s only free variables do not follow a
relation name, or if a relation name is followed by differing schematic variables. If
the definition principle can not prove that the characterisation is inductive (as would

Hol reln 419

happen if a hypothesis included a negated occurence of one of the relation names),
then the same theorems are returned, but with extra assumptions stating the required
inductive property.

If the name of the new constants are such that they will produce invalid SML identi-
fiers when bound in a theory file, using export_theory will fail, and suggest the use of
set_MLname to fix the problem.

Example
Defining ODD and EVEN:

- Hol_reln‘EVEN 0 /\

(!n. ODD n ==> EVEN (n + 1)) /\

(!n. EVEN n ==> ODD (n + 1))‘;

> val it =

(|- EVEN 0 /\ (!n. ODD n ==> EVEN (n + 1)) /\

!n. EVEN n ==> ODD (n + 1),

|- !EVEN’ ODD’.

EVEN’ 0 /\ (!n. ODD’ n ==> EVEN’ (n + 1)) /\

(!n. EVEN’ n ==> ODD’ (n + 1)) ==>

(!a0. EVEN a0 ==> EVEN’ a0) /\ !a1. ODD a1 ==> ODD’ a1,

|- (!a0. EVEN a0 = (a0 = 0) \/

?n. (a0 = n + 1) /\ ODD n) /\

!a1. ODD a1 = ?n. (a1 = n + 1) /\ EVEN n)

: thm * thm * thm

Defining reflexive and transitive closure, using a schematic variable. This is appropriate
because it is RTC R that has the inductive characterisation, not RTC itself.

- Hol_reln ‘(!x. RTC R x x) /\

(!x z. (?y. R x y /\ RTC R y z) ==> RTC R x z)‘;

<<HOL message: inventing new type variable names: ’a>>

> val it =

(|- !R. (!x. RTC R x x) /\

!x z. (?y. R x y /\ RTC R y z) ==> RTC R x z,

|- !R RTC’.

(!x. RTC’ x x) /\

(!x z. (?y. R x y /\ RTC’ y z) ==> RTC’ x z) ==>

!a0 a1. RTC R a0 a1 ==> RTC’ a0 a1,

420 CHAPTER 1. ENTRIES

|- !R a0 a1. RTC R a0 a1 =

(a1 = a0) \/ ?y. R a0 y /\ RTC R y a1)

: thm * thm * thm

Comments
Being a definition principle, the Hol_reln function takes a quotation rather than a term.
The structure IndDefRules provides functions for applying the results of an invocation
of Hol_reln.

See also
bossLib.Define, bossLib.Hol datatype, IndDefRules.

Hol_reln (IndDefLib)

Hol_reln : term quotation -> thm * thm * thm

Synopsis
Definition facility for inductive predicates.

Description
bossLib.Hol_reln is identical to IndDefLib.Hol_reln.

See also
bossLib.Hol reln.

hol_type (Type)

eqtype hol_type

Synopsis
Type of HOL types.

Description
The ML type hol_type represents the type of HOL types.

HOL WARNING 421

Comments
Since hol_type is an ML eqtype, any two hol_types ty1 and ty2 can be tested for equality
by ty1 = ty2.

See also
Term.term.

HOL_WARNING (Feedback)

HOL_WARNING : string -> string -> string -> unit

Synopsis
Prints out a message in a special format.

Description
There are three kinds of informative messages that the Feedback structure supports:
errors, warnings, and messages. Errors are signalled by the raising of an exception built
from HOL_ERR; warnings, which are printed by HOL_WARNING, are less severe than errors,
and lead only to a formatted message being printed; finally, messages have no pejorative
weight at all, and may be freely employed, via HOL_MESG, to keep users informed in the
normal course of processing.
HOL_WARNING prints out its arguments after formatting them. The formatting is con-

trolled by the function held in WARNING_to_string, which is format_WARNING by default.
The output stream that the message is printed on is controlled by WARNING_outstream,
and is TextIO.stdOut by default.

A call HOL_WARNING s1 s2 s3 is formatted with the assumption that s1 and s2 are the
names of the module and function, respectively, from which the warning is emitted.
The string s3 is the actual warning message.

Failure
The invocation fails if the formatting or output routines fail.

Example

- HOL_WARNING "Module" "function" "stern message.";

<<HOL warning: Module.function: stern message.>>

See also
Feedback, Feedback.HOL ERR, Feedback.Raise, Feedback.HOL MESG,

Feedback.WARNING to string, Feedback.format WARNING, Feedback.WARNING outstream.

422 CHAPTER 1. ENTRIES

holCheck (holCheckLib)

holCheck : model -> model

Synopsis
Basic symbolic model checker.

Description
User specifies a model by specifying (at least) the initial states, a labelled transition
system, and a list of CTL or mu-calculus propertes. This model is then passed to the
model checker which returns the model with the results of the checking filled in. These
can be recovered by calling get results on the returned model and are presented as a list
of : the BDD semantics of each property, a theorem if the property holds in the model,
and a counterexample or witness trace if appropriate.

Failure
holCheck should not fail, except on malformed input e.g. mu-calculus properties that
are not well-formed mu-formulas or a supplied state tuple that does not include all state
variables etc.

Example
We choose a mod-8 counter as our example, which starts at 0 and counts up to 7, and
then loops from 0 again. We wish to show that the most significant bit eventually goes
high.

1. Load the HolCheck library:

- load "holCheckLib"; open holCheckLib; (* we don’t show the output from the "open" here *)

> val it = () : unit

2. Specify the labelled transition system as a list of (string, term) pairs, where each
string is a transition label and each term represents a transition relation (three booleans
required to encode numbers 0-7; next-state variable values indicated by priming; note
we expand the xor, since HolCheck requires purely propositional terms) :

- val xor_def = Define ‘xor x y = (x \/ y) /\ ~(x=y)‘;

val TS = List.map (I ## (rhs o concl o (fn tm => REWRITE_CONV [xor_def] tm handle ex => REFL tm)))

[("v0",‘‘(v0’=~v0)‘‘),("v1",‘‘v1’ = xor v0 v1‘‘),("v2",‘‘v2’ = xor (v0 /\ v1) v2‘‘)]

Definition has been stored under "xor_def".

> val xor_def = |- !x y. xor x y = (x \/ y) /\ ~(x = y) : thm

> val TS =

holCheck 423

[("v0", ‘‘v0’ = ~v0‘‘), ("v1", ‘‘v1’ = (v0 \/ v1) /\ ~(v0 = v1)‘‘),

("v2", ‘‘v2’ = (v0 /\ v1 \/ v2) /\ ~(v0 /\ v1 = v2)‘‘)] :

(string * term) list

3. Specify the initial states (counter starts at 0):

- val S0 = ‘‘~v0 /\ ~v1 /\ ~v2‘‘;

> val S0 = ‘‘~v0 /\ ~v1 /\ ~v2‘‘ : term

4. Specify whether the transitions happen synchronously (it does):

- val ric = true;

> val ric = true : bool

5. Set up the state tuple:

- val state = mk_state S0 TS;

> val state = ‘‘(v0,v1,v2)‘‘ : term

6. Specify a property (there exists a future in which the most significant bit will go
high) :

- val ctlf = ("ef_msb_high",‘‘C_EF (C_BOOL (B_PROP ^(pairSyntax.mk_pabs(state,‘‘v2:bool‘‘))))‘‘);

> val ctlf = ("ef_msb_high",‘‘C_EF (C_BOOL (B_PROP (\(v0,v1,v2). v2))‘‘) : string * term

Note how atomic propositions are represented as functions on the state.
7. Create the model:

- val m = ((set_init S0) o (set_trans TS) o (set_flag_ric ric) o (set_state state) o (set_props [ctlf])) empty_model;

> val m = <model> : model

8. Call the model checker:

- val m2 = holCheck m;

> val m2 = model : <model>

9. Examine the results:

- get_results m2;

> val it =

SOME [(<term_bdd>,

SOME [............................]

|- CTL_MODEL_SAT ctlKS (C_EF (C_BOOL (B_PROP (\(v0,v1,v2). v2)))),

SOME [‘‘(~v0,~v1,~v2)‘‘, ‘‘(v0,~v1,~v2)‘‘, ‘‘(~v0,v1,~v2)‘‘,

‘‘(v0,v1,~v2)‘‘, ‘‘(~v0,~v1,v2)‘‘])] :

(term_bdd * thm option * term list option) list option

424 CHAPTER 1. ENTRIES

The result is a list of triples, one triple per property checked. The first component
contains the BDD representation of the set of states satisfying the property. The second
component contains a theorem certifying that the property holds in the model i.e. it
holds in the initial states. The third contains a witness trace that counts up to 4, at
which point v2 goes high.

Note that since we did not supply a name for the model (via holCheckLib.set name),
the system has chosen the default name ctlKS, which stands for ”CTL Kripke structure”,
since models are internally represented formally as Kripke structures.

10. Verify the proof:

- val m3 = prove_model m2; (* we don’t show the prove_model "chatting" messages here *)

> val m3 = <model> : model

11. Examine the verified results:

- get_results m3;

> val it =

SOME [(<term_bdd>,

SOME|- CTL_MODEL_SAT ctlKS (C_EF (C_BOOL (B_PROP (\(v0,v1,v2). v2)))),

SOME [‘‘(~v0,~v1,~v2)‘‘, ‘‘(v0,~v1,~v2)‘‘, ‘‘(~v0,v1,~v2)‘‘,

‘‘(v0,v1,~v2)‘‘, ‘‘(~v0,~v1,v2)‘‘])] :

(term_bdd * thm option * term list option) list option

Note that the theorem component now has no assumptions. Any assumptions to the
term bdd would also have been discharged.

Comments
For more detail, read the section on the HolCheck library in the HOL System Description.

See also
holCheckLib.empty model, holCheckLib.get init, holCheckLib.get trans,

holCheckLib.get flag ric, holCheckLib.get name, holCheckLib.get vord,

holCheckLib.get state, holCheckLib.get props, holCheckLib.get results,

holCheckLib.get flag abs, holCheckLib.set init, holCheckLib.set trans,

holCheckLib.set flag ric, holCheckLib.set name, holCheckLib.set vord,

holCheckLib.set state, holCheckLib.set props, holCheckLib.set flag abs,

holCheckLib.mk state, holCheckLib.prove model.

hyp (Thm)

hyp : thm -> term list

I 425

Synopsis
Returns the hypotheses of a theorem.

Description
When applied to a theorem A |- t, the function hyp returns A, the list of hypotheses of
the theorem.

Failure
Never fails.

Comments
The order in which hypotheses are returned can not be relied on.

See also
Thm.dest thm, Thm.concl.

I (Lib)

I : ’a -> ’a

Synopsis
Performs identity operation: I x = x.

Failure
Never fails.

See also
Lib, Lib.##, Lib.A, Lib.B, Lib.C, Lib.K, Lib.S, Lib.W.

IMAGE_CONV (pred_setLib)

IMAGE_CONV : conv -> conv -> conv

Synopsis
Compute the image of a function on a finite set.

426 CHAPTER 1. ENTRIES

Description
The function IMAGE_CONV is a parameterized conversion for computing the image of a
function f:ty1->ty2 on a finite set {t1;...;tn} of type ty1->bool. The first argument
to IMAGE_CONV is expected to be a conversion that computes the result of applying the
function f to each element of this set. When applied to a term f ti, this conversion
should return a theorem of the form |- (f ti) = ri, where ri is the result of applying
the function f to the element ti. This conversion is used by IMAGE_CONV to compute a
theorem of the form

|- IMAGE f {t1;...;tn} = {r1;...;rn}

The second argument to IMAGE_CONV is used (optionally) to simplify the resulting image
set {r1;...;rn} by removing redundant occurrences of values. This conversion expected
to decide equality of values of the result type ty2; given an equation e1 = e2, where e1

and e2 are terms of type ty2, the conversion should return either |- (e1 = e2) = T or
|- (e1 = e2) = F, as appropriate.

Given appropriate conversions conv1 and conv2, the function IMAGE_CONV returns a
conversion that maps a term of the form IMAGE f {t1;...;tn} to the theorem

|- IMAGE f {t1;...;tn} = {rj;...;rk}

where conv1 proves a theorem of the form |- (f ti) = ri for each element ti of the set
{t1;...;tn}, and where the set {rj;...;rk} is the smallest subset of {r1;...;rn} such
no two elements are alpha-equivalent and conv2 does not map rl = rm to the theorem
|- (rl = rm) = T for any pair of values rl and rm in {rj;...;rk}. That is, {rj;...;rk}
is the set obtained by removing multiple occurrences of values from the set {r1;...;rn},
where the equality conversion conv2 (or alpha-equivalence) is used to determine which
pairs of terms in {r1;...;rn} are equal.

Example
The following is a very simple example in which REFL is used to construct the result
of applying the function f to each element of the set {1; 2; 1; 4}, and NO_CONV is the
supplied ‘equality conversion’.

- IMAGE_CONV REFL NO_CONV ‘‘IMAGE (f:num->num) {1; 2; 1; 4}‘‘;

> val it = |- IMAGE f {1; 2; 1; 4} = {f 2; f 1; f 4} : thm

The result contains only one occurrence of f 1, even though NO_CONV always fails, since
IMAGE_CONV simplifies the resulting set by removing elements that are redundant up to
alpha-equivalence.

For the next example, we construct a conversion that maps SUC n for any numeral n
to the numeral standing for the successor of n.

IMP ANTISYM RULE 427

- fun SUC_CONV tm =

let open numLib Arbnum

val n = dest_numeral (rand tm)

val sucn = mk_numeral (n + one)

in

SYM (num_CONV sucn)

end;

> val SUC_CONV = fn : term -> thm

The result is a conversion that inverts num_CONV:

- numLib.num_CONV ‘‘4‘‘;

> val it = |- 4 = SUC 3 : thm

- SUC_CONV ‘‘SUC 3‘‘;

> val it = |- SUC 3 = 4 : thm

The conversion SUC_CONV can then be used to compute the image of the successor func-
tion on a finite set:

- IMAGE_CONV SUC_CONV NO_CONV ‘‘IMAGE SUC {1; 2; 1; 4}‘‘;

> val it = |- IMAGE SUC {1; 2; 1; 4} = {3; 2; 5} : thm

Note that 2 (= SUC 1) appears only once in the resulting set.
Finally, here is an example of using IMAGE_CONV to compute the image of a paired

addition function on a set of pairs of numbers:

- IMAGE_CONV (pairLib.PAIRED_BETA_CONV THENC reduceLib.ADD_CONV)

numLib.REDUCE_CONV

‘‘IMAGE (\(n,m).n+m) {{(1,2), (3,4), (0,3), (1,3)}}‘‘;

> val it = |- IMAGE (\(n,m). n + m) {(1,2); (3,4); (0,3); (1,3)} = {7; 3; 4}

Failure
IMAGE_CONV conv1 conv2 fails if applied to a term not of the form IMAGE f {t1;...;tn}.
An application of IMAGE_CONV conv1 conv2 to a term IMAGE f {t1;...;tn} fails unless
for all ti in the set {t1;...;tn}, evaluating conv1 ‘‘f ti‘‘ returns |- (f ti) = ri for
some ri.

IMP_ANTISYM_RULE (Drule)

IMP_ANTISYM_RULE : thm -> thm -> thm

428 CHAPTER 1. ENTRIES

Synopsis
Deduces equality of boolean terms from forward and backward implications.

Description
When applied to the theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t1, the inference rule
IMP_ANTISYM_RULE returns the theorem A1 u A2 |- t1 = t2.

A1 |- t1 ==> t2 A2 |- t2 ==> t1

------------------------------------- IMP_ANTISYM_RULE

A1 u A2 |- t1 = t2

Failure
Fails unless the theorems supplied are a complementary implicative pair as indicated
above.

See also
Thm.EQ IMP RULE, Thm.EQ MP, Tactic.EQ TAC.

IMP_CANON (Drule)

IMP_CANON : (thm -> thm list)

Synopsis
Puts theorem into a ‘canonical’ form.

Description
IMP_CANON puts a theorem in ‘canonical’ form by removing quantifiers and breaking apart
conjunctions, as well as disjunctions which form the antecedent of implications. It
applies the following transformation rules:

A |- t1 /\ t2 A |- !x. t A |- (t1 /\ t2) ==> t

------------------- ------------ ------------------------

A |- t1 A |- t2 A |- t A |- t1 ==> (t2 ==> t)

A |- (t1 \/ t2) ==> t A |- (?x. t1) ==> t2

------------------------------- ----------------------

A |- t1 ==> t A |- t2 ==> t A |- t1[x’/x] ==> t2

IMP CONJ 429

Failure
Never fails, but if there is no scope for one of the above reductions, merely gives a list
whose only member is the original theorem.

Comments
This is a rather ad-hoc inference rule, and its use is not recommended.

See also
Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Thm.DISJ1, Thm.DISJ2,

Thm.EXISTS, Thm.SPEC.

IMP_CONJ (Drule)

IMP_CONJ : (thm -> thm -> thm)

Synopsis
Conjoins antecedents and consequents of two implications.

Description
When applied to theorems A1 |- p ==> r and A2 |- q ==> s, the IMP_CONJ inference
rule returns the theorem A1 u A2 |- p /\ q ==> r /\ s.

A1 |- p ==> r A2 |- q ==> s

-------------------------------- IMP_CONJ

A1 u A2 |- p /\ q ==> r /\ s

Failure
Fails unless the conclusions of both theorems are implicative.

See also
Thm.CONJ.

IMP_CONV (reduceLib)

IMP_CONV : conv

430 CHAPTER 1. ENTRIES

Synopsis
Simplifies certain implicational expressions.

Description
If tm corresponds to one of the forms given below, where t is an arbitrary term of type
bool, then IMP_CONV tm returns the corresponding theorem. Note that in the last case the
antecedent and consequent need only be alpha-equivalent rather than strictly identical.

IMP_CONV "T ==> t" = |- T ==> t = t

IMP_CONV "t ==> T" = |- t ==> T = T

IMP_CONV "F ==> t" = |- F ==> t = T

IMP_CONV "t ==> F" = |- t ==> F = ~t

IMP_CONV "t ==> t" = |- t ==> t = T

Failure
IMP_CONV tm fails unless tm has one of the forms indicated above.

Example

#IMP_CONV "T ==> F";;

|- T ==> F = F

#IMP_CONV "F ==> x";;

|- F ==> x = T

#IMP_CONV "(!z:(num)list. z = z) ==> (!x:(num)list. x = x)";;

|- (!z. z = z) ==> (!x. x = x) = T

IMP_ELIM (Drule)

IMP_ELIM : (thm -> thm)

Synopsis
Transforms |- s ==> t into |- ~s \/ t.

Description
When applied to a theorem A |- s ==> t, the inference rule IMP_ELIM returns the theo-
rem A |- ~s \/ t.

IMP RES FORALL CONV 431

A |- s ==> t

-------------- IMP_ELIM

A |- ~s \/ t

Failure
Fails unless the theorem is implicative.

See also
Thm.NOT INTRO, Thm.NOT ELIM.

IMP_RES_FORALL_CONV (res_quanLib)

IMP_RES_FORALL_CONV : conv

Synopsis
Converts an implication to a restricted universal quantification.

Description
When applied to a term of the form !x. x IN P ==> Q, the conversion IMP_RES_FORALL_CONV

returns the theorem:

|- (!x. x IN P ==> Q) = !x::P. Q

Failure
Fails if applied to a term not of the form !x. x IN P ==> Q.

See also
res quanLib.RES FORALL CONV.

IMP_RES_FORALL_CONV (res_quanTools)

IMP_RES_FORALL_CONV : conv

Synopsis
Converts an implication to a restricted universal quantification.

Description
When applied to a term of the form !x.P x ==> Q, the conversion IMP_RES_FORALL_CONV

returns the theorem:

432 CHAPTER 1. ENTRIES

|- (!x. P x ==> Q) = !x::P. Q

Failure
Fails if applied to a term not of the form !x.P x ==> Q.

See also
res quanTools.RES FORALL CONV.

IMP_RES_TAC (Tactic)

IMP_RES_TAC : thm_tactic

Synopsis
Enriches assumptions by repeatedly resolving an implication with them.

Description
Given a theorem th, the theorem-tactic IMP_RES_TAC uses RES_CANON to derive a canonical
list of implications, each of which has the form:

A |- u1 ==> u2 ==> ... ==> un ==> v

IMP_RES_TAC then tries to repeatedly ‘resolve’ these theorems against the assumptions
of a goal by attempting to match the antecedents u1, u2, ..., un (in that order) to some
assumption of the goal (i.e. to some candidate antecedents among the assumptions). If
all the antecedents can be matched to assumptions of the goal, then an instance of the
theorem

A u {a1,...,an} |- v

called a ‘final resolvent’ is obtained by repeated specialization of the variables in the im-
plicative theorem, type instantiation, and applications of modus ponens. If only the first
i antecedents u1, ..., ui can be matched to assumptions and then no further matching is
possible, then the final resolvent is an instance of the theorem:

A u {a1,...,ai} |- u(i+1) ==> ... ==> v

All the final resolvents obtained in this way (there may be several, since an antecedent
ui may match several assumptions) are added to the assumptions of the goal, in the
stripped form produced by using STRIP_ASSUME_TAC. If the conclusion of any final re-
solvent is a contradiction ‘F’ or is alpha-equivalent to the conclusion of the goal, then
IMP_RES_TAC solves the goal.

IMP RES THEN 433

Failure
Never fails.

See also
Thm cont.IMP RES THEN, Drule.RES CANON, Tactic.RES TAC, Thm cont.RES THEN.

IMP_RES_THEN (Thm_cont)

IMP_RES_THEN : thm_tactical

Synopsis
Resolves an implication with the assumptions of a goal.

Description
The function IMP_RES_THEN is the basic building block for resolution in HOL. This is not
full higher-order, or even first-order, resolution with unification, but simply one way
simultaneous pattern-matching (resulting in term and type instantiation) of the an-
tecedent of an implicative theorem to the conclusion of another theorem (the candidate
antecedent).

Given a theorem-tactic ttac and a theorem th, the theorem-tactical IMP_RES_THEN uses
RES_CANON to derive a canonical list of implications from th, each of which has the form:

Ai |- !x1...xn. ui ==> vi

IMP_RES_THEN then produces a tactic that, when applied to a goal A ?- g attempts to
match each antecedent ui to each assumption aj |- aj in the assumptions A. If the
antecedent ui of any implication matches the conclusion aj of any assumption, then
an instance of the theorem Ai u {aj} |- vi, called a ‘resolvent’, is obtained by special-
ization of the variables x1, ..., xn and type instantiation, followed by an application of
modus ponens. There may be more than one canonical implication and each implica-
tion is tried against every assumption of the goal, so there may be several resolvents
(or, indeed, none).

Tactics are produced using the theorem-tactic ttac from all these resolvents (failures
of ttac at this stage are filtered out) and these tactics are then applied in an unspecified
sequence to the goal. That is,

IMP_RES_THEN ttac th (A ?- g)

has the effect of:

434 CHAPTER 1. ENTRIES

MAP_EVERY (mapfilter ttac [... , (Ai u {aj} |- vi) , ...]) (A ?- g)

where the theorems Ai u {aj} |- vi are all the consequences that can be drawn by
a (single) matching modus-ponens inference from the assumptions of the goal A ?- g

and the implications derived from the supplied theorem th. The sequence in which
the theorems Ai u {aj} |- vi are generated and the corresponding tactics applied is
unspecified.

Failure
Evaluating IMP_RES_THEN ttac th fails if the supplied theorem th is not an implication,
or if no implications can be derived from th by the transformation process described
under the entry for RES_CANON. Evaluating IMP_RES_THEN ttac th (A ?- g) fails if no
assumption of the goal A ?- g can be resolved with the implication or implications
derived from th. Evaluation also fails if there are resolvents, but for every resolvent
Ai u {aj} |- vi evaluating the application ttac (Ai u {aj} |- vi) fails—that is, if for
every resolvent ttac fails to produce a tactic. Finally, failure is propagated if any of the
tactics that are produced from the resolvents by ttac fails when applied in sequence to
the goal.

Example
The following example shows a straightforward use of IMP_RES_THEN to infer an equa-
tional consequence of the assumptions of a goal, use it once as a substitution in the
conclusion of goal, and then ‘throw it away’. Suppose the goal is:

a + n = a ?- !k. k - n = k

By the built-in theorem:

ADD_INV_0 = |- !m n. (m + n = m) ==> (n = 0)

the assumption of this goal implies that n equals 0. A single-step resolution with this
theorem followed by substitution:

IMP_RES_THEN SUBST1_TAC ADD_INV_0

can therefore be used to reduce the goal to:

a + n = a ?- !k. k - 0 = m

Here, a single resolvent a + n = a |- n = 0 is obtained by matching the antecedent of
ADD_INV_0 to the assumption of the goal. This is then used to substitute 0 for n in the
conclusion of the goal.

See also
Tactic.IMP RES TAC, Drule.MATCH MP, Drule.RES CANON, Tactic.RES TAC,

Thm cont.RES THEN.

IMP TRANS 435

IMP_TRANS (Drule)

IMP_TRANS : (thm -> thm -> thm)

Synopsis
Implements the transitivity of implication.

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t3, the inference rule
IMP_TRANS returns the theorem A1 u A2 |- t1 ==> t3.

A1 |- t1 ==> t2 A2 |- t2 ==> t3

----------------------------------- IMP_TRANS

A1 u A2 |- t1 ==> t3

Failure
Fails unless the theorems are both implicative, with the consequent of the first being the
same as the antecedent of the second (up to alpha-conversion).

See also
Drule.IMP ANTISYM RULE, Thm.SYM, Thm.TRANS.

implication (boolSyntax)

implication : term

Synopsis
Constant denoting logical implication.

Description
The ML variable boolSyntax.implication is bound to the term min$==>.

See also
boolSyntax.equality, boolSyntax.select, boolSyntax.T, boolSyntax.F,

boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,

436 CHAPTER 1. ENTRIES

boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,

boolSyntax.arb.

implicit_rewrites (Rewrite)

implicit_rewrites: unit -> rewrites

Synopsis
Contains a number of theorems used, by default, in rewriting.

Description
The variable implicit_rewrites holds a collection of rewrite rules commonly used to
simplify expressions. These rules include the clause for reflexivity:

|- !x. (x = x) = T

as well as rules to reason about equality:

|- !t.

((T = t) = t) /\ ((t = T) = t) /\ ((F = t) = ~t) /\ ((t = F) = ~t)

Negations are manipulated by the following clauses:

|- (!t. ~~t = t) /\ (~T = F) /\ (~F = T)

The set of tautologies includes truth tables for conjunctions, disjunctions, and impli-
cations:

|- !t.

(T /\ t = t) /\

(t /\ T = t) /\

(F /\ t = F) /\

(t /\ F = F) /\

(t /\ t = t)

|- !t.

(T \/ t = T) /\

(t \/ T = T) /\

(F \/ t = t) /\

(t \/ F = t) /\

(t \/ t = t)

|- !t.

IN CONV 437

(T ==> t = t) /\

(t ==> T = T) /\

(F ==> t = T) /\

(t ==> t = T) /\

(t ==> F = ~t)

Simple rules for reasoning about conditionals are given by:

|- !t1 t2. ((T => t1 | t2) = t1) /\ ((F => t1 | t2) = t2)

Rewriting with the following tautologies allows simplification of universally and exis-
tentially quantified variables and abstractions:

|- !t. (!x. t) = t

|- !t. (?x. t) = t

|- !t1 t2. (\x. t1)t2 = t1

The value of implicit_rewrites can be augmented by add_implicit_rewrites and
altered by set_implicit_rewrites.

The initial value of implicit_rewrites is bool_rewrites.

Uses
The rewrite rules held in implicit_rewrites are automatically included in the simplifi-
cations performed by some of the rewriting tools.

See also
Rewrite.GEN REWRITE RULE, Rewrite.GEN REWRITE TAC, Rewrite.REWRITE RULE,

Rewrite.REWRITE TAC, Rewrite.bool rewrites, Rewrite.set implicit rewrites,

Rewrite.add implicit rewrites.

IN_CONV (pred_setLib)

IN_CONV : conv -> conv

Synopsis
Decision procedure for membership in finite sets.

Description
The function IN_CONV is a parameterized conversion for proving or disproving member-
ship assertions of the general form:

438 CHAPTER 1. ENTRIES

t IN {t1,...,tn}

where {t1;...;tn} is a set of type ty->bool and t is a value of the base type ty. The
first argument to IN_CONV is expected to be a conversion that decides equality between
values of the base type ty. Given an equation e1 = e2, where e1 and e2 are terms of
type ty, this conversion should return the theorem |- (e1 = e2) = T or the theorem
|- (e1 = e2) = F, as appropriate.

Given such a conversion, the function IN_CONV returns a conversion that maps a term
of the form t IN {t1;...;tn} to the theorem

|- t IN {t1;...;tn} = T

if t is alpha-equivalent to any ti, or if the supplied conversion proves |- (t = ti) = T

for any ti. If the supplied conversion proves |- (t = ti) = F for every ti, then the
result is the theorem

|- t IN {t1;...;tn} = F

In all other cases, IN_CONV will fail.

Example
In the following example, the conversion REDUCE_CONV is supplied as a parameter and
used to test equality of the candidate element 1 with the actual elements of the given
set.

- IN_CONV REDUCE_CONV ‘‘2 IN {0;SUC 1;3}‘‘;

> val it = |- 2 IN {0; SUC 1; 3} = T : thm

The result is T because REDUCE_CONV is able to prove that 2 is equal to SUC 1. An example
of a negative result is:

- IN_CONV REDUCE_CONV ‘‘1 IN {0;2;3}‘‘;

> val it = |- 1 IN {0; 2; 3} = F : thm

Finally the behaviour of the supplied conversion is irrelevant when the value to be tested
for membership is alpha-equivalent to an actual element:

- IN_CONV NO_CONV ‘‘1 IN {3;2;1}‘‘;

> val it = |- 1 IN {3; 2; 1} = T : thm

The conversion NO_CONV always fails, but IN_CONV is nontheless able in this case to prove
the required result.

Failure
IN_CONV conv fails if applied to a term that is not of the form t IN {t1;...;tn}. A call
IN_CONV conv t IN {t1;...;tn} fails unless the term t is alpha-equivalent to some ti,

ind 439

or conv ‘‘t = ti‘‘ returns |- (t = ti) = T for some ti, or conv ‘‘t = ti‘‘ returns
|- (t = ti) = F for every ti.

See also
numLib.REDUCE CONV.

ind (Type)

ind : hol_type

Synopsis
Basic type constant.

Description
The ML variable Type.ind is bound to the HOL type constant ind. The axiom
INFINITY_AX in boolTheory states that ind represents an infinite set of individuals.

See also
Type.bool, Type.-->.

IndDefRules

structure IndDefRules

Synopsis
Tom Melham’s inference support for inductive definitions

Description
IndDefRules provides support for reasoning about inductively defined relations, includ-
ing a general induction tactic, and an entrypoint for deriving so-called ‘strong’ rule
induction.

index (Lib)

index : (’a -> bool) -> ’a list -> int

440 CHAPTER 1. ENTRIES

Synopsis
Finds index of first list element for which predicate holds.

Description
An application index P l returns the index (0-based) to the first element (in a left-to-
right scan) of l that P holds of.

Failure
If P doesn’t hold of any element of l, then index P l fails. If P x fails for any x encoun-
tered in the scan, then index P l fails.

Example

- index (equal 3) [1,2,3];

> val it = 2 : int

- let fun even i = (i mod 2 = 0)

in try (index even) [1,3,5,7,9]

end;

Exception raised at Lib.index:

no such element

! Uncaught exception:

! HOL_ERR

- index (equal 3 o hd) [[1],[],[2,3]];

! Uncaught exception:

! Empty

See also
Lib.el.

Induct (BasicProvers)

Induct : tactic

Synopsis
Induct on leading universally quantified variable in a goal.

Induct 441

Description
bossLib.Induct is identical to BasicProvers.Induct.

See also
bossLib.Induct.

Induct (bossLib)

Induct : tactic

Synopsis
Performs structural induction over the type of the goal’s outermost universally quanti-
fied variable.

Description
Given a universally quantified goal, Induct attempts to perform an induction based on
the type of the leading universally quantified variable. The induction theorem to be
used is looked up in the TypeBase database, which holds useful facts about the system’s
defined types. Induct may also be used to reason about mutually recursive types.

Failure
Induct fails if the goal is not universally quantified, or if the type of the variable univer-
sally quantified does not have an induction theorem in the TypeBase database.

Example
If attempting to prove

!list. LENGTH (REVERSE list) = LENGTH list

one can apply Induct to begin a proof by induction on list.

- e Induct;

This results in the base and step cases of the induction as new goals.

?- LENGTH (REVERSE []) = LENGTH []

LENGTH (REVERSE list) = LENGTH list

?- !h. LENGTH (REVERSE (h::list)) = LENGTH (h::list)

The same tactic can be used for induction over numbers. For example expanding the
goal

442 CHAPTER 1. ENTRIES

?- !n. n > 2 ==> !x y z. ~(x EXP n + y EXP n = z EXP n)

with Induct yields the two goals

?- 0 > 2 ==> !x y z. ~(x EXP 0 + y EXP 0 = z EXP 0)

n > 2 ==> !x y z. ~(x EXP n + y EXP n = z EXP n)

?- SUC n > 2 ==> !x y z. ~(x EXP SUC n + y EXP SUC n = z EXP SUC n)

Induct can also be used to perform induction on mutually recursive types. For example,
given the datatype

Hol_datatype

‘exp = VAR of string (* variables *)

| IF of bexp => exp => exp (* conditional *)

| APP of string => exp list (* function application *)

;

bexp = EQ of exp => exp (* boolean expressions *)

| LEQ of exp => exp

| AND of bexp => bexp

| OR of bexp => bexp

| NOT of bexp‘

one can use Induct to prove that all objects of type exp and bexp are of a non-zero
size. (Recall that size definitions are automatically defined for datatypes.) Typically,
mutually recursive types lead to mutually recursive induction schemes having multiple
predicates. The scheme for the above definition has 3 predicates: P0, P1, and P2, which
respectively range over expressions, boolean expressions, and lists of expressions.

|- !P0 P1 P2.

(!a. P0 (VAR a)) /\

(!b e e0. P1 b /\ P0 e /\ P0 e0 ==> P0 (IF b e e0)) /\

(!l. P2 l ==> !b. P0 (APP b l)) /\

(!e e0. P0 e /\ P0 e0 ==> P1 (EQ e e0)) /\

(!e e0. P0 e /\ P0 e0 ==> P1 (LEQ e e0)) /\

(!b b0. P1 b /\ P1 b0 ==> P1 (AND b b0)) /\

(!b b0. P1 b /\ P1 b0 ==> P1 (OR b b0)) /\

(!b. P1 b ==> P1 (NOT b)) /\

P2 [] /\

(!e l. P0 e /\ P2 l ==> P2 (e::l))

==>

(!e. P0 e) /\ (!b. P1 b) /\ !l. P2 l

Induct on 443

Invoking Induct on a goal such as

!e. 0 < exp_size e

yields the three subgoals

?- !s. 0 < exp_size (APP s l)

[0 < exp_size e, 0 < exp_size e’] ?- 0 < exp_size (IF b e e’)

?- !s. 0 < exp_size (VAR s)

In this case, P1 and P2 have been vacuously instantiated in the application of Induct,
since it detects that only P0 is needed. However, it is also possible to use Induct to start
the proofs of

(!e. 0 < exp_size e) /\ (!b. 0 < bexp_size b)

and

(!e. 0 < exp_size e) /\

(!b. 0 < bexp_size b) /\

(!list. 0 < exp1_size list)

See also
bossLib.Induct on, bossLib.completeInduct on, bossLib.measureInduct on,

Prim rec.INDUCT THEN, bossLib.Cases, bossLib.Hol datatype, proofManagerLib.g,

proofManagerLib.e.

Induct_on (BasicProvers)

Induct_on : term -> tactic

Synopsis
Induct on given term.

Description
bossLib.Induct_on is identical to BasicProvers.Induct_on.

See also
bossLib.Induct on.

444 CHAPTER 1. ENTRIES

Induct_on (bossLib)

Induct_on : term -> tactic

Synopsis
Performs structural induction, using the type of the given term.

Description
Given a term M, Induct_on attempts to perform an induction based on the type of M.
The induction theorem to be used is extracted from the TypeBase database, which holds
useful facts about the system’s defined types.
Induct_on can be used to specify variables that are buried in the quantifier prefix,

i.e., not the leading quantified variable. Induct_on can also perform induction on non-
variable terms. If M is a non-variable term that does not occur bound in the goal, then
Induct_on equates M to a new variable v (one not occurring in the goal), moves all
hypotheses in which free variables of M occur to the conclusion of the goal, adds the
antecedent v = M, and quantifies all free variables of M before universally quantifying v

and then finally inducting on v.
Induct_on may also be used to apply an induction theorem coming from declaration

of a mutually recursive datattype.

Failure
Induct_on fails if an induction theorem corresponding to the type of M is not found in
the TypeBase database.

Example
If attempting to prove

!x. LENGTH (REVERSE x) = LENGTH x

one can apply Induct_on ‘x‘ to begin a proof by induction on the list structure of x. In
this case, Induct_on serves as an explicit version of Induct.

See also
bossLib.Induct, bossLib.completeInduct on, bossLib.measureInduct on,

Prim rec.INDUCT THEN, bossLib.Cases, bossLib.Hol datatype, proofManagerLib.g,

proofManagerLib.e.

INDUCT TAC 445

INDUCT_TAC (numLib)

INDUCT_TAC : tactic

Synopsis
Performs tactical proof by mathematical induction on the natural numbers.

Description
INDUCT_TAC reduces a goal !n.P[n], where n has type num, to two subgoals corresponding
to the base and step cases in a proof by mathematical induction on n. The induction
hypothesis appears among the assumptions of the subgoal for the step case. The speci-
fication of INDUCT_TAC is:

A ?- !n. P

== INDUCT_TAC

A ?- P[0/n] A u {P} ?- P[SUC n’/n]

where n’ is a primed variant of n that does not appear free in the assumptions A (usually,
n’ just equals n). When INDUCT_TAC is applied to a goal of the form !n.P, where n does
not appear free in P, the subgoals are just A ?- P and A u {P} ?- P.

Failure
INDUCT_TAC g fails unless the conclusion of the goal g has the form !n.t, where the
variable n has type num.

INDUCT_THEN (Prim_rec)

INDUCT_THEN : (thm -> thm_tactic -> tactic)

Synopsis
Structural induction tactic for automatically-defined concrete types.

Description
The function INDUCT_THEN implements structural induction tactics for arbitrary concrete
recursive types of the kind definable by define_type. The first argument to INDUCT_THEN

is a structural induction theorem for the concrete type in question. This theorem must
have the form of an induction theorem of the kind returned by prove_induction_thm.

446 CHAPTER 1. ENTRIES

When applied to such a theorem, the function INDUCT_THEN constructs specialized tactic
for doing structural induction on the concrete type in question.

The second argument to INDUCT_THEN is a function that determines what is be done
with the induction hypotheses in the goal-directed proof by structural induction. Sup-
pose that th is a structural induction theorem for a concrete data type ty, and that
A ?- !x.P is a universally-quantified goal in which the variable x ranges over values of
type ty. If the type ty has n constructors C1, ..., Cn and ‘Ci(vs)’ represents a (curried)
application of the ith constructor to a sequence of variables, then if ttac is a function
that maps the induction hypotheses hypi of the ith subgoal to the tactic:

A ?- P[Ci(vs)/x]

====================== MAP_EVERY ttac hypi

A1 ?- Gi

then INDUCT_THEN th ttac is an induction tactic that decomposes the goal A ?- !x.P

into a set of n subgoals, one for each constructor, as follows:

A ?- !x.P

================================ INDUCT_THEN th ttac

A1 ?- G1 ... An ?- Gn

The resulting subgoals correspond to the cases in a structural induction on the variable
x of type ty, with induction hypotheses treated as determined by ttac.

Failure
INDUCT_THEN th ttac g fails if th is not a structural induction theorem of the form re-
turned by prove_induction_thm, or if the goal does not have the form A ?- !x:ty.P

where ty is the type for which th is the induction theorem, or if ttac fails for any
subgoal in the induction.

Example
The built-in structural induction theorem for lists is:

|- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l)

When INDUCT_THEN is applied to this theorem, it constructs and returns a specialized
induction tactic (parameterized by a theorem-tactic) for doing induction on lists:

- val LIST_INDUCT_THEN = INDUCT_THEN listTheory.list_INDUCT;

The resulting function, when supplied with the thm_tactic ASSUME_TAC, returns a tac-
tic that decomposes a goal ?- !l.P[l] into the base case ?- P[NIL] and a step case
P[l] ?- !h. P[CONS h l], where the induction hypothesis P[l] in the step case has been
put on the assumption list. That is, the tactic:

Induct word 447

LIST_INDUCT_THEN ASSUME_TAC

does structural induction on lists, putting any induction hypotheses that arise onto the
assumption list:

A ?- !l. P

===

A |- P[NIL/l] A u {P[l’/l]} ?- !h. P[(CONS h l’)/l]

Likewise LIST_INDUCT_THEN STRIP_ASSUME_TAC will also do induction on lists, but will
strip induction hypotheses apart before adding them to the assumptions (this may be
useful if P is a conjunction or a disjunction, or is existentially quantified). By contrast,
the tactic:

LIST_INDUCT_THEN MP_TAC

will decompose the goal as follows:

A ?- !l. P

===

A |- P[NIL/l] A ?- P[l’/l] ==> !h. P[CONS h l’/l]

That is, the induction hypothesis becomes the antecedent of an implication expressing
the step case in the induction, rather than an assumption of the step-case subgoal.

See also
Prim rec.new recursive definition, Prim rec.prove cases thm,

Prim rec.prove constructors distinct, Prim rec.prove constructors one one,

Prim rec.prove induction thm, Prim rec.prove rec fn exists.

Induct_word (wordsLib)

Induct_word : tactic

Synopsis
Initiate an induction on the value of a word.

Description
The tactic Induct_word makes use of the tactic bossLib.recInduct wordsTheory.WORD_INDUCT.

Example
Given the goal

448 CHAPTER 1. ENTRIES

?- !w:word8. P w

one can apply Induct_word to begin a proof by induction.

- e Induct_word

This results in the base and step cases of the induction as new goals.

?- P 0w

[SUC n < 256, P (n2w n)] ?- P (n2w (SUC n))

See also
bossLib.recInduct.

insert (Lib)

insert ’’a -> ’’a list -> ’’a list

Synopsis
Add an element to a list if it is not already there.

Description
If x is already in list, then insert x list equals list. Otherwise, x becomes an element
of list.

Failure
Never fails.

Example

- insert 1 [3,2];

> val it = [1, 3, 2] : int list

- insert 1 it;

> val it = [1, 3, 2] : int list

Comments
In some programming situations, it is convenient to implement sets by lists, in which
case insert may be helpful. However, such an implementation is only suitable for small
sets.

INSERT CONV 449

A high-performance implementation of finite sets may be found in structure HOLset.
ML equality types are used in the implementation of insert and its kin. This limits

its applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

One should not write code that depends on where the ‘list-as-set’ algorithms place
elements in the list which is being considered as a set.

See also
Lib.op insert, Lib.mem, Lib.mk set, Lib.union, Lib.U, Lib.set diff,

Lib.subtract, Lib.intersect, Lib.null intersection, Lib.set eq.

INSERT_CONV (pred_setLib)

INSERT_CONV : conv -> conv

Synopsis
Reduce t INSERT {t1;...;t;...;tn} to {t1;...;t;...;tn}.

Description
The function INSERT_CONV is a parameterized conversion for reducing finite sets of the
form t INSERT {t1;...;tn}, where {t1;...;tn} is a set of type ty->bool and t is equal
to some element ti of this set. The first argument to INSERT_CONV is expected to be a
conversion that decides equality between values of the base type ty. Given an equation
e1 = e2, where e1 and e2 are terms of type ty, this conversion should return the theorem
|- (e1 = e2) = T or the theorem |- (e1 = e2) = F, as appropriate.

Given such a conversion, the function INSERT_CONV returns a conversion that maps a
term of the form t INSERT {t1;...;tn} to the theorem

|- t INSERT {t1;...;tn} = {t1;...;tn}

if t is alpha-equivalent to any ti in the set {t1,...,tn}, or if the supplied conversion
proves |- (t = ti) = T for any ti.

Example
In the following example, the conversion REDUCE_CONV is supplied as a parameter and
used to test equality of the inserted value 2 with the remaining elements of the set.

- INSERT_CONV REDUCE_CONV ‘‘2 INSERT {1;SUC 1;3}‘‘;

> val it = |- {2; 1; SUC 1; 3} = {1; SUC 1; 3} : thm

450 CHAPTER 1. ENTRIES

In this example, the supplied conversion REDUCE_CONV is able to prove that 2 is equal
to SUC 1 and the set is therefore reduced. Note that 2 INSERT {1; SUC 1; 3} is just
{2; 1; SUC 1; 3}.

A call to INSERT_CONV fails when the value being inserted is provably not equal to any
of the remaining elements:

- INSERT_CONV REDUCE_CONV ‘‘1 INSERT {2;3}‘‘;

! Uncaught exception:

! HOL_ERR

But this failure can, if desired, be caught using TRY_CONV.
The behaviour of the supplied conversion is irrelevant when the inserted value is

alpha-equivalent to one of the remaining elements:

- INSERT_CONV NO_CONV ‘‘y INSERT {x;y;z}‘‘;

> val it = |- {y; x; y; z} = {x; y; z} : thm

The conversion NO_CONV always fails, but INSERT_CONV is nontheless able in this case to
prove the required result.

Note that DEPTH_CONV(INSERT_CONV conv) can be used to remove duplicate elements
from a finite set, but the following conversion is faster:

- fun SETIFY_CONV conv tm =

(SUB_CONV (SETIFY_CONV conv)

THENC

TRY_CONV (INSERT_CONV conv)) tm;

> val SETIFY_CONV = fn : conv -> conv

- SETIFY_CONV REDUCE_CONV ‘‘{1;2;1;3;2;4;3;5;6}‘‘;

> val it = |- {1; 2; 1; 3; 2; 4; 3; 5; 6} = {1; 2; 4; 3; 5; 6} : thm

Failure
INSERT_CONV conv fails if applied to a term not of the form t INSERT {t1;...;tn}. A call
INSERT_CONV conv ‘‘t INSERT {t1;...;tn} fails unless t is alpha-equivalent to some ti,
or conv ‘‘t = ti‘‘ returns |- (t = ti) = T for some ti.

See also
pred setLib.DELETE CONV, numLib.REDUCE CONV.

inst (Term)

inst : (hol_type,hol_type)subst -> term -> term

INST 451

Synopsis
Performs type instantiations in a term.

Description
The function inst should be used as follows:

inst [{redex_1, residue_1},...,{redex_n, residue_n}] tm

where each ‘redex’ is a hol_type variable, and each ‘residue’ is a hol_type and tm a
term to be type-instantiated. This call will replace each occurrence of a redex in tm

by its associated residue. Replacement is done in parallel, i.e., once a redex has been
replaced by its residue, at some place in the term, that residue at that place will not
itself be replaced in the current call. Bound term variables may be renamed in order to
preserve the term structure.

Failure
Never fails. A redex that is not a variable is simply ignored.

Example

- show_types := true;

> val it = () : unit

- inst [alpha |-> Type‘:num‘] (Term‘(x:’a) = (x:’a)‘)

> val it = ‘(x :num) = x‘ : term

- inst [bool |-> Type‘:num‘] (Term‘x:bool‘);

> val it = ‘(x :bool)‘ : term

- inst [alpha |-> bool] (mk_abs(Term‘x:bool‘,Term‘x:’a‘))

> val it = ‘\(x’ :bool). (x :bool)‘ : term

See also
Type.type subst, Lib.|->.

INST (Thm)

INST : (term,term) subst -> thm -> thm

452 CHAPTER 1. ENTRIES

Synopsis
Instantiates free variables in a theorem.

Description
INST is a rule for substituting arbitrary terms for free variables in a theorem.

A |- t INST [x1 |-> t1,...,xn |-> tn]

A[t1,...,tn/x1,...,xn]

|-

t[t1,...,tn/x1,...,xn]

Failure
Fails if, for 1 <= i <= n, some xi is not a variable, or if some xi has a different type than
its intended replacement ti.

Example
In the following example a theorem is instantiated for a specific term:

- load"arithmeticTheory";

- CONJUNCT1 arithmeticTheory.ADD_CLAUSES;

> val it = |- 0 + m = m : thm

- INST [‘‘m:num‘‘ |-> ‘‘2*x‘‘]

(CONJUNCT1 arithmeticTheory.ADD_CLAUSES);

val it = |- 0 + (2 * x) = 2 * x : thm

See also
Drule.INST TY TERM, Thm.INST TYPE, Drule.ISPEC, Drule.ISPECL, Thm.SPEC,

Drule.SPECL, Drule.SUBS, Term.subst, Thm.SUBST, Lib.|->.

INST_TY_TERM (Drule)

INST_TY_TERM :

(term,term)subst * (hol_type,hol_type)subst -> thm -> thm

Synopsis
Instantiates terms and types of a theorem.

INST TYPE 453

Description
INST_TY_TERM instantiates types in a theorem, in the same way INST_TYPE does. Then it
instantiates some or all of the free variables in the resulting theorem, in the same way
as INST.

Failure
INST_TY_TERM fails under the same conditions as either INST or INST_TYPE fail.

See also
Thm.INST, Thm.INST TYPE, Drule.ISPEC, Thm.SPEC, Drule.SUBS, Thm.SUBST.

INST_TYPE (Thm)

INST_TYPE : (hol_type,hol_type) subst -> thm -> thm

Synopsis
Instantiates types in a theorem.

Description
INST_TYPE is a primitive rule in the HOL logic, which allows instantiation of type vari-
ables.

A |- t

----------------------------------- INST_TYPE[vty1|->ty1,..., vtyn|->tyn]

A[ty1,...,tyn/vty1,...,vtyn]

|-

t[ty1,...,tyn/vty1,...,vtyn]

Type substitution is performed throughout the hypotheses and the conclusion. Variables
will be renamed if necessary to prevent distinct bound variables becoming identical after
the instantiation.

Failure
Never fails.

Uses
INST_TYPE enables polymorphic theorems to be used at any type.

Example
Supposing one wanted to specialize the theorem EQ_SYM_EQ for particular values, the
first attempt could be to use SPECL as follows:

454 CHAPTER 1. ENTRIES

- SPECL [‘‘a:num‘‘, ‘‘b:num‘‘] EQ_SYM_EQ;

uncaught exception HOL_ERR

The failure occurred because EQ_SYM_EQ contains polymorphic types. The desired spe-
cialization can be obtained by using INST_TYPE:

- load "numTheory";

- SPECL [Term ‘a:num‘, Term‘b:num‘]

(INST_TYPE [alpha |-> Type‘:num‘] EQ_SYM_EQ);

> val it = |- (a = b) = (b = a) : thm

See also
Term.inst, Thm.INST, Drule.INST TY TERM, Lib.|->.

inst_word_lengths (wordsLib)

inst_word_lengths : term -> term

Synopsis
Guess and instantiate word index type variables in a term.

Description
The function inst_word_lengths tries to instantiate type variables that correspond with
the return type of word_concat and word_extract.

Example

- load "wordsLib";

...

- wordsLib.inst_word_lengths ‘‘(7 >< 5) a @@ (4 >< 0) a‘‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c, ’d>>

<<HOL message: assigning word length(s): ’a <- 3, ’b <- 5 and ’c <- 8>>

> val it =

‘‘(((7 :num) >< (5 :num)) (a :bool[’d]) :bool[3]) @@

(((4 :num) >< (0 :num)) a :bool[5])‘‘ : term

- type_of it;

> val it = ‘‘:bool[8]‘‘ : hol_type

INSTANCE T CONV 455

Comments
The function guess_lengths adds inst_word_lengths as a post-processing stage to the
term parser.

See also
wordsLib.guess lengths, wordsLib.notify word length guesses.

INSTANCE_T_CONV (Arith)

INSTANCE_T_CONV : ((term -> term list) -> conv -> conv)

Synopsis
Function which allows a proof procedure to work on substitution instances of terms that
are in the domain of the procedure.

Description
This function generalises a conversion that is used to prove formulae true. It does
this by first replacing any syntactically unacceptable subterms with variables. It then
attempts to prove the resulting generalised formula and if successful it re-instantiates
the variables.

The first argument should be a function which computes a list of subterms of a term
which are syntactically unacceptable to the proof procedure. This function should in-
clude in its result any variables that do not appear in other subterms returned. The
second argument is the proof procedure to be generalised; this should be a conversion
which when successful returns an equation between the argument formula and T (true).

Failure
Fails if either of the applications of the argument functions fail, or if the conversion does
not return an equation of the correct form.

Example

#FORALL_ARITH_CONV "!f m (n:num). (m < (f n)) ==> (m <= (f n))";;

evaluation failed FORALL_ARITH_CONV -- formula not in the allowed subset

#INSTANCE_T_CONV non_presburger_subterms FORALL_ARITH_CONV

"!f m (n:num). (m < (f n)) ==> (m <= (f n))";;

|- (!f m n. m < (f n) ==> m <= (f n)) = T

456 CHAPTER 1. ENTRIES

int_sort (Lib)

int_sort : int list -> int list

Synopsis
Sorts a list of integers using the <= relation.

Description
The call int_sort list is equal to sort (curry (op <=)). That is, it is the specialization
of sort to the usual notion of less-than-or-equal on ML integers.

Failure
Never fails.

Example
A simple example is:

- int_sort [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9];

> val it = [1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 7, 8, 9, 9, 9] : int list

Comments
The Standard ML Basis Library also provides implementations of sorting.

See also
Lib.sort.

int_to_string (Lib)

int_to_string : int -> string

Synopsis
Translates an integer into a string.

Description
An application int_to_string i returns the printable form of i.

Failure
Never fails.

Example

intersect 457

- int_to_string 12323;

> val it = "12323" : string

- int_to_string ~1;

> val it = "~1" : string

Comments
Equivalent functionality can be found in the Standard ML Basis Library function
Int.toString.

See also
Lib.string to int.

intersect (Lib)

intersect : ’’a list -> ’’a list -> ’’a list

Synopsis
Computes the intersection of two ‘sets’.

Description
intersect l1 l2 returns a list consisting of those elements of l1 that also appear in l2.

Failure
Never fails.

Example

- intersect [1,2,3] [3,5,4,1];

> val it = [1, 3] : int list

Comments
Do not make the assumption that the order of items in the list returned by intersect

is fixed. Later implementations may use different algorithms, and return a different
concrete result while still meeting the specification.

A high-performance implementation of finite sets may be found in structure HOLset.
ML equality types are used in the implementation of intersect and its kin. This limits

its applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

458 CHAPTER 1. ENTRIES

See also
Lib.op intersect, Lib.union, Lib.U, Lib.mk set, Lib.mem, Lib.insert, Lib.set eq,

Lib.set diff.

IPSPEC (PairRules)

IPSPEC : (term -> thm -> thm)

Synopsis
Specializes a theorem, with type instantiation if necessary.

Description
This rule specializes a paired quantification as does PSPEC; it differs from it in also
instantiating the type if needed:

A |- !p:ty.tm

----------------------- IPSPEC "q:ty’"

A |- tm[q/p]

(where q is free for p in tm, and ty’ is an instance of ty).

Failure
IPSPEC fails if the input theorem is not universally quantified, if the type of the given
term is not an instance of the type of the quantified variable, or if the type variable is
free in the assumptions.

See also
Drule.ISPEC, Drule.INST TY TERM, Thm.INST TYPE, PairRules.IPSPECL,

PairRules.PSPEC, DB.match.

IPSPECL (PairRules)

IPSPECL : (term list -> thm -> thm)

Synopsis
Specializes a theorem zero or more times, with type instantiation if necessary.

Description
IPSPECL is an iterative version of IPSPEC

is abs 459

A |- !p1...pn.tm

---------------------------- IPSPECL ["q1",...,"qn"]

A |- t[q1,...qn/p1,...,pn]

(where qi is free for pi in tm).

Failure
IPSPECL fails if the list of terms is longer than the number of quantified variables in the
term, if the type instantiation fails, or if the type variable being instantiated is free in
the assumptions.

See also
Drule.ISPECL, Thm.INST TYPE, Drule.INST TY TERM, PairRules.IPSPEC, Thm.SPEC,

PairRules.PSPECL.

is_abs (Term)

is_abs : (term -> bool)

Synopsis
Tests a term to see if it is an abstraction.

Description
is_abs "\var. t" returns true. If the term is not an abstraction the result is false.

Failure
Never fails.

See also
Term.mk abs, Term.dest abs, Term.is var, Term.is const, Term.is comb.

is_arb (boolSyntax)

is_arb : term -> bool

Synopsis
Tests a term to see if it’s an instance of ARB.

460 CHAPTER 1. ENTRIES

Description
Returns true if and only if M has the form ARB.

Uses
None known.

See also
boolSyntax.mk arb, boolSyntax.dest arb.

is_bool_case (boolSyntax)

is_bool_case : term -> bool

Synopsis
Tests a case expression over bool.

Description
If M has the form bool_case M1 M2 b, then is_bool_case M returns true. Otherwise, it
returns false.

Failure
Never fails.

See also
boolSyntax.mk bool case, boolSyntax.dest bool case.

is_comb (Term)

is_comb : term -> bool

Synopsis
Tests a term to see if it is a combination (function application).

Description
If term M has the form f x, then is_comb M equals true. Otherwise, the result is false.

is cond 461

Failure
Never fails

See also
Term.mk comb, Term.dest comb, Term.is var, Term.is const, Term.is abs.

is_cond (boolSyntax)

is_cond : term -> bool

Synopsis
Tests a term to see if it is a conditional.

Description
If M has the form if t then t1 else t2 then is_cond M returns true If the term is not a
conditional the result is false.

Failure
Never fails.

See also
boolSyntax.mk cond, boolSyntax.dest cond.

is_conj (boolSyntax)

is_conj : term -> bool

Synopsis
Tests a term to see if it is a conjunction.

Description
If M has the form t1 /\ t2, then is_conj M returns true. If M is not a conjunction the
result is false.

Failure
Never fails.

462 CHAPTER 1. ENTRIES

See also
boolSyntax.mk conj, boolSyntax.dest conj.

is_cons (listSyntax)

is_cons : (term -> bool)

Synopsis
Tests a term to see if it is an application of CONS.

Description
is_cons returns true of a term representing a non-empty list. Otherwise it returns false.

Failure
Never fails.

See also
listSyntax.mk cons, listSyntax.dest cons, listSyntax.mk list,

listSyntax.dest list, listSyntax.is list.

is_const (Term)

is_const : term -> bool

Synopsis
Tests a term to see if it is a constant.

Description
If c is an instance of a previously declared HOL constant, then is_const c returns true;
otherwise the result is false.

Failure
Never fails.

See also
Term.mk const, Term.dest const, Term.is var, Term.is comb, Term.is abs.

is disj 463

is_disj (boolSyntax)

is_disj : term -> bool

Synopsis
Tests a term to see if it is a disjunction.

Description
If M has the form t1 \/ t2, then is_disj M returns true. If M is not a disjunction the
result is false.

Failure
Never fails.

See also
boolSyntax.mk disj, boolSyntax.dest disj.

IS_EL_CONV (listLib)

IS_EL_CONV : conv -> conv

Synopsis
Computes by inference the result of testing whether a list contains a certain element.

Description
IS_EL_CONV takes a conversion conv and a term tm in the following form:

IS_EL x [x0;...xn]

It returns the theorem

|- IS_EL x [x0;...xn] = F

if for every xi occurred in the list, conv (--‘x = xi‘--) returns a theorem |- P xi = F,
otherwise, if for at least one xi, evaluating conv (--‘P xi‘--) returns the theorem
|- P xi = T, then it returns the theorem

|- IS_EL P [x0;...xn] = T

464 CHAPTER 1. ENTRIES

Failure
IS_EL_CONV conv tm fails if tm is not of the form described above, or failure occurs when
evaluating conv (--‘x = xi‘--) for some xi.

Example
Evaluating

IS_EL_CONV bool_EQ_CONV (--‘IS_EL T [T;F;T]‘--);

returns the following theorem:

|- IS_EL($= T)[F;F] = F

See also
listLib.SOME EL CONV, listLib.ALL EL CONV, listLib.FOLDL CONV,

listLib.FOLDR CONV, listLib.list FOLD CONV.

is_eq (boolSyntax)

is_eq : term -> bool

Synopsis
Tests a term to see if it is an equation.

Description
If M has the form t1 = t2 then is_eq M returns true. If M is not an equation the result is
false.

Failure
Never fails.

See also
boolSyntax.mk eq, boolSyntax.dest eq.

is_exists (boolSyntax)

is_exists : term -> bool

is exists1 465

Synopsis
Tests a term to see if it is an existential quantification.

Description
If M has the form ?v. t then is_exists M returns true. If the term is not an existential
quantification the result is false.

Failure
Never fails.

See also
boolSyntax.mk exists, boolSyntax.dest exists.

is_exists1 (boolSyntax)

is_exists1 : term -> bool

Synopsis
Tests a term to see if it is a unique existence term.

Description
If M has the form ?!v. t then is_exists1 M returns true. If the term is not a unique
existence quantification the result is false.

Failure
Never fails.

See also
boolSyntax.mk exists1, boolSyntax.dest exists.

is_forall (boolSyntax)

is_forall : term -> bool

Synopsis
Tests a term to see if it is a universal quantification.

466 CHAPTER 1. ENTRIES

Description
If M is a term with the form !x. t, then is_forall M returns true. If M is not a universal
quantification the result is false.

Failure
Never fails.

See also
boolSyntax.mk forall, boolSyntax.dest forall.

is_gen_tyvar (Type)

is_gen_tyvar : hol_type -> bool

Synopsis
Checks if a type variable has been created by gen_tyvar.

Failure
Never fails.

Example

- is_gen_tyvar (gen_tyvar());

> val it = true : bool

- is_gen_tyvar bool;

> val it = false : bool

See also
Type.gen tyvar.

is_genvar (Term)

is_genvar : term -> bool

is imp 467

Synopsis
Tells if a variable has been built by invoking genvar.

Description
is_genvar v attempts to tell if v has been created by a call to genvar.

Failure
Never fails.

Example

- is_genvar (genvar bool);

> val it = true : bool

- is_genvar (mk_var ("%%genvar%%3",bool));

> val it = true : bool

Comments
As the second example shows, it is possible to fool is_genvar. However, it is useful for
derived proof tools which use it as part of their internal operations.

See also
Term.is var, Term.genvar, Type.is gen tyvar, Type.gen tyvar.

is_imp (boolSyntax)

is_imp : term -> bool

Synopsis
Tests a term to see if it is an implication or a negation.

Description
If M has the form t1 ==> t2, or the form ~t, then is_imp M returns true. If the term is
neither an implication nor a negation the result is false.

Failure
Never fails.

Comments
Yields true of negations because dest_imp destructs negations (for backwards compati-
bility with PPLAMBDA). Use is_imp_only if you don’t want this behaviour.

468 CHAPTER 1. ENTRIES

See also
boolSyntax.mk imp, boolSyntax.dest imp, boolSyntax.is imp only,

boolSyntax.dest imp only.

is_imp_only (boolSyntax)

is_imp_only : term -> bool

Synopsis
Tests a term to see if it is an implication.

Description
If M has the form t1 ==> t2 then is_imp_only M returns true. If the term is not an
implication, the result is false.

Failure
Never fails.

See also
boolSyntax.is imp, boolSyntax.mk imp, boolSyntax.dest imp,

boolSyntax.dest imp only, boolSyntax.list mk imp, boolSyntax.strip imp.

is_let (boolSyntax)

is_let : term -> bool

Synopsis
Tests a term to see if it is a let-expression.

Description
If tm is a term of the form LET M N, then dest_let tm returns true. Otherwise, it returns
false.

Failure
Never fails.

Example

is list 469

- Term ‘LET f x‘;

<<HOL message: inventing new type variable names: ’a, ’b>>

> val it = ‘LET f x‘ : term

- is_let it;

> val it = true : bool

- is_let (Term ‘let x = P /\ Q in x \/ x‘);

> val it = true : bool

See also
boolSyntax.mk let, boolSyntax.dest let.

is_list (listSyntax)

is_list : (term -> bool)

Synopsis
Tests a term to see if it is a list.

Description
is_list returns true of a term representing a list. Otherwise it returns false.

Failure
Never fails.

See also
listSyntax.mk list, listSyntax.dest list, listSyntax.mk cons,

listSyntax.dest cons, listSyntax.is cons.

is_neg (boolSyntax)

is_neg : term -> bool

Synopsis
Tests a term to see if it is a negation.

470 CHAPTER 1. ENTRIES

Description
If M has the form ~t, then is_neg M returns true. If the term is not a negation the result
is false.

Failure
Never fails.

See also
boolSyntax.mk neg, boolSyntax.dest neg.

is_numeral (numSyntax)

is_numeral : term -> bool

Synopsis
Check if HOL term is a numeral.

Description
An invocation is_numeral tm, where tm is a HOL term with the following form

<numeral> ::= 0 | NUMERAL <bits>

<bits> ::= ZERO | BIT1 (<bits>) | BIT2 (<bits>)

returns true; otherwise, false is returned. The NUMERAL constant is used as a tag sig-
nalling that its argument is indeed a numeric literal. The ZERO constant is equal to 0, and
BIT1(n) = 2*n + 1 while BIT2(n) = 2*n + 2. This representation allows asymptotically
efficient operations on numeric values.

The system prettyprinter will print a numeral as a string of digits.

Example

- is_numeral ‘‘1234‘‘;

> val it = true : bool

Failure
Fails if tm is not in the specified format.

See also
numSyntax.dest numeral, numSyntax.mk numeral.

is pabs 471

is_pabs (pairSyntax)

is_pabs : term -> bool

Synopsis
Tests a term to see if it is a paired abstraction.

Description
is_pabs "\pair. t" returns true. If the term is not a paired abstraction the result is
false.

Failure
Never fails.

See also
Term.is abs, pairSyntax.mk pabs, pairSyntax.dest pabs.

is_pair (pairSyntax)

is_pair : (term -> bool)

Synopsis
Tests a term to see if it is a pair.

Description
is_pair "(t1,t2)" returns true. If the term is not a pair the result is false.

Failure
Never fails.

See also
pairSyntax.mk pair, pairSyntax.dest pair.

is_pexists (pairSyntax)

is_pexists : (term -> bool)

472 CHAPTER 1. ENTRIES

Synopsis
Tests a term to see if it as a paired existential quantification.

Description
is_pexists "?pair. t" returns true. If the term is not a paired existential quantification
the result is false.

Failure
Never fails.

See also
boolSyntax.is exists, pairSyntax.dest pexists.

is_pforall (pairSyntax)

is_pforall : (term -> bool)

Synopsis
Tests a term to see if it is a paired universal quantification.

Description
is_pforall "!pair. t" returns true. If the term is not a a paired universal quantifica-
tion the result is false.

Failure
Never fails.

See also
boolSyntax.is forall, pairSyntax.dest pforall.

is_prenex (Arith)

is_prenex : (term -> bool)

Synopsis
Determines whether a formula is in prenex normal form.

is presburger 473

Description
This function returns true if the term it is given as argument is in prenex normal form.
If the term is not a formula the result will be true provided there are no nested Boolean
expressions involving quantifiers.

Failure
Never fails.

Example

#is_prenex "!x. ?y. x \/ y";;

true : bool

#is_prenex "!x. x ==> (?y. x /\ y)";;

false : bool

Uses
Useful for determining whether it is necessary to apply a prenex normaliser to a formula
before passing it to a function which requires the formula to be in prenex normal form.

See also
Arith.PRENEX CONV.

is_presburger (Arith)

is_presburger : (term -> bool)

Synopsis
Determines whether a formula is in the Presburger subset of arithmetic.

Description
This function returns true if the argument term is a formula in the Presburger subset
of natural number arithmetic. Presburger natural arithmetic is the subset of arithmetic
formulae made up from natural number constants, numeric variables, addition, mul-
tiplication by a constant, the natural number relations <, <=, =, >=, > and the logical
connectives ~, /\, \/, ==>, = (if-and-only-if), ! (‘forall’) and ? (‘there exists’).

Products of two expressions which both contain variables are not included in the
subset, but the function SUC which is not normally included in a specification of Pres-
burger arithmetic is allowed in this HOL implementation. This function also considers
subtraction and the predecessor function, PRE, to be part of the subset.

474 CHAPTER 1. ENTRIES

Failure
Never fails.

Example

#is_presburger "!m n p. m < (2 * n) /\ (n + n) <= p ==> m < SUC p";;

true : bool

#is_presburger "!m n p q. m < (n * p) /\ (n * p) < q ==> m < q";;

false : bool

#is_presburger "(m <= n) ==> !p. (m < SUC(n + p))";;

true : bool

#is_presburger "(m + n) - m = n";;

true : bool

Uses
Useful for determining whether a decision procedure for Presburger arithmetic is appli-
cable to a term.

See also
Arith.non presburger subterms, Arith.FORALL ARITH CONV, Arith.EXISTS ARITH CONV,

Arith.is prenex.

is_prod (pairSyntax)

is_prod : hol_type -> bool

Synopsis
Tests a type to see if it is a product type.

Description
If ty is a type of the form ty1 # ty2, then is_prod ty returns true.

Failure
Never fails.

See also
pairSyntax.dest prod, pairSyntax.mk prod.

is pselect 475

is_pselect (pairSyntax)

is_pselect : (term -> bool)

Synopsis
Tests a term to see if it is a paired choice-term.

Description
is_select "@pair. t" returns true. If the term is not a paired choice-term the result is
false.

Failure
Never fails.

See also
boolSyntax.is select, pairSyntax.dest pselect.

is_ptree (patriciaLib)

is_ptree : term -> bool

Synopsis
Term recogniser for Patricia trees.

Description
The destructor is_ptree will return true if, and only if, the supplied term is a well-
constructed, ground Patricia tree.

Example

- is_ptree ‘‘t:unit ptree‘‘;

val it = false: bool

- is_ptree ‘‘Branch 1 2 (Leaf 2 2) (Leaf 3 3)‘‘;

val it = false: bool

- is_ptree ‘‘Branch 0 0 (Leaf 1 1) (Leaf 2 2)‘‘;

val it = true: bool

476 CHAPTER 1. ENTRIES

See also
patriciaLib.mk ptree, patriciaLib.dest ptree.

is_pvar (pairSyntax)

is_pvar : (term -> bool)

Synopsis
Tests a term to see if it is a paired structure of variables.

Description
is_pvar "pvar" returns true iff pvar is a paired structure of variables. For example,
((a:*,b:*),(d:*,e:*)) is a paired structure of variables, (1,2) is not.

Failure
Never fails.

See also
Term.is var.

is_res_abstract (res_quanLib)

is_res_abstract : term -> bool

Synopsis
Tests a term to see if it is a restricted abstraction.

Description
is_res_abstract "\var::P. t" returns true. If the term is not a restricted abstraction
the result is false.

Failure
Never fails.

See also
res quanLib.mk res abstract, res quanLib.dest res abstract.

is res abstract 477

is_res_abstract (res_quanTools)

is_res_abstract : (term -> bool)

Synopsis
Tests a term to see if it is a restricted abstraction.

Description
is_res_abstract "\var::P. t" returns true. If the term is not a restricted abstraction
the result is false.

Failure
Never fails.

See also
res quanTools.mk res abstract, res quanTools.dest res abstract.

is_res_exists (res_quanLib)

is_res_exists : term -> bool

Synopsis
Tests a term to see if it is a restricted existential quantification.

Description
is_res_exists "?var::P. t" returns true. If the term is not a restricted existential
quantification the result is false.

Failure
Never fails.

See also
res quanLib.mk res exists, res quanLib.dest res exists.

is_res_exists (res_quanTools)

is_res_exists : (term -> bool)

478 CHAPTER 1. ENTRIES

Synopsis
Tests a term to see if it is a restricted existential quantification.

Description
is_res_exists "?var::P. t" returns true. If the term is not a restricted existential
quantification the result is false.

Failure
Never fails.

See also
res quanTools.mk res exists, res quanTools.dest res exists.

is_res_exists_unique (res_quanLib)

is_res_exists_unique : term -> bool

Synopsis
Tests a term to see if it is a restricted unique existential quantification.

Description
is_res_exists_unique "?!var::P. t" returns true. If the term is not a restricted unique
existential quantification the result is false.

Failure
Never fails.

See also
res quanLib.mk res exists unique, res quanLib.dest res exists unique.

is_res_forall (res_quanLib)

is_res_forall : term -> bool

Synopsis
Tests a term to see if it is a restricted universal quantification.

is res forall 479

Description
is_res_forall "!var::P. t" returns true. If the term is not a restricted universal quan-
tification the result is false.

Failure
Never fails.

See also
res quanLib.mk res forall, res quanLib.dest res forall.

is_res_forall (res_quanTools)

is_res_forall : (term -> bool)

Synopsis
Tests a term to see if it is a restricted universal quantification.

Description
is_res_forall "!var::P. t" returns true. If the term is not a restricted universal quan-
tification the result is false.

Failure
Never fails.

See also
res quanTools.mk res forall, res quanTools.dest res forall.

is_res_select (res_quanLib)

is_res_select : term -> bool

Synopsis
Tests a term to see if it is a restricted choice quantification.

Description
is_res_select "@var::P. t" returns true. If the term is not a restricted choice quantifi-
cation the result is false.

480 CHAPTER 1. ENTRIES

Failure
Never fails.

See also
res quanLib.mk res select, res quanLib.dest res select.

is_res_select (res_quanTools)

is_res_select : (term -> bool)

Synopsis
Tests a term to see if it is a restricted choice quantification.

Description
is_res_select "@var::P. t" returns true. If the term is not a restricted choice quantifi-
cation the result is false.

Failure
Never fails.

See also
res quanTools.mk res select, res quanTools.dest res select.

is_select (boolSyntax)

is_select : (term -> bool)

Synopsis
Tests a term to see if it is a choice binding.

Description
is_select "@var. t" returns true. If the term is not an epsilon-term the result is false.

Failure
Never fails.

is type 481

See also
boolSyntax.mk select, boolSyntax.dest select.

is_type (Type)

is_type : hol_type -> bool

Synopsis
Tests whether a HOL type is not a type variable.

Description
is_type ty returns true if ty is an application of a type operator and false otherwise.

Failure
Never fails.

See also
Type.op arity, Type.mk type, Type.mk thy type, Type.dest type,

Type.dest thy type.

is_var (Term)

is_var : term -> bool

Synopsis
Tests a term to see if it is a variable.

Description
If M is a HOL variable, then is_var M returns true. If the term is not a variable the result
is false.

Failure
Never fails.

See also
Term.mk var, Term.dest var, Term.is const, Term.is comb, Term.is abs.

482 CHAPTER 1. ENTRIES

is_vartype (Type)

is_vartype : type -> bool

Synopsis
Tests a type to see if it is a type variable.

Failure
Never fails.

Example

- is_vartype Type.alpha;

> val it = true : bool

- is_vartype bool;

> val it = false : bool

- is_vartype (Type ‘:’a -> bool‘);

> val it = false : bool

See also
Type.mk vartype, Type.dest vartype.

isEmpty (Tag)

isEmpty : tag -> bool

Synopsis
Tells if a tag is empty.

Description
An invocation isEmpty t returns true just in case t is the empty tag. Only theorems
built solely by HOL proof have an empty tag.

Failure
Never fails.

Example

ISPEC 483

- Tag.isEmpty (Thm.tag NOT_FORALL_THM);

> val it = true : bool

See also
Thm.tag, Thm.mk oracle thm.

ISPEC (Drule)

ISPEC : (term -> thm -> thm)

Synopsis
Specializes a theorem, with type instantiation if necessary.

Description
This rule specializes a quantified variable as does SPEC; it differs from it in also instanti-
ating the type if needed:

A |- !x:ty.tm

----------------------- ISPEC "t:ty’"

A |- tm[t/x]

(where t is free for x in tm, and ty’ is an instance of ty).

Failure
ISPEC fails if the input theorem is not universally quantified, if the type of the given
term is not an instance of the type of the quantified variable, or if the type variable is
free in the assumptions.

See also
Drule.INST TY TERM, Thm.INST TYPE, Drule.ISPECL, Thm.SPEC, Term.match term.

ISPECL (Drule)

ISPECL : term list -> thm -> thm

Synopsis
Specializes a theorem zero or more times, with type instantiation if necessary.

Description
ISPECL is an iterative version of ISPEC

484 CHAPTER 1. ENTRIES

A |- !x1...xn.t

---------------------------- ISPECL [t1,...,tn]

A |- t[t1,...tn/x1,...,xn]

(where ti is free for xi in tm).

Failure
ISPECL fails if the list of terms is longer than the number of quantified variables in the
term, if the type instantiation fails, or if the type variable being instantiated is free in
the assumptions.

See also
Thm.INST TYPE, Drule.INST TY TERM, Drule.ISPEC, Drule.PART MATCH, Thm.SPEC,

Drule.SPECL.

istream (Lib)

type (’a,’b) istream

Synopsis
Type of imperative streams

Description
The type (’a,’b) istream is an abstract type of imperative streams. These may be
created with mk_istream, advanced by next, accessed by state, and reset with reset.

Comments
Purely functional streams are well-known in functional programming, and more ele-
gant. However, this type proved useful in implementing some imperative ‘gensym’-like
algorithms used in HOL.

See also
Lib.mk istream, Lib.next, Lib.state, Lib.reset.

itlist (Lib)

itlist : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

itlist2 485

Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.

Description
itlist f [x1,...,xn] b returns

f x1 (f x2 ... (f xn b)...)

An invocation itlist f list b returns b if list is empty.

Failure
Fails if some application of f fails.

Example

- itlist (curry op+) [1,2,3,4] 0;

val it = 10 : int

See also
Lib.itlist2, Lib.rev itlist, Lib.rev itlist2, Lib.end itlist.

itlist2 (Lib)

itlist2 : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

Synopsis
Applies a function to corresponding elements of 2 lists.

Description
itlist2 f [x1,...,xn] [y1,...,yn] z returns

f x1 y1 (f x2 y2 ... (f xn yn z)...)

An invocation itlist2 f list1 list2 b returns b if list1 and list2 are empty.

Failure
Fails if the two lists are of different lengths, or if one of the applications of f fails.

Example

486 CHAPTER 1. ENTRIES

- itlist2 (fn x => fn y => fn z => (x,y)::z) [1,2] [3,4] [];

> val it = [(1,3), (2,4)] : (int * int) list

See also
Lib.itlist, Lib.rev itlist, Lib.rev itlist2, Lib.end itlist.

K (Lib)

K : ’a -> ’b -> ’a

Synopsis
Forms a constant function: K x y = x.

Failure
Never fails.

See also
Lib.##, Lib.A, Lib.B, Lib.C, Lib.I, Lib.S, Lib.W.

known_constants (Parse)

Parse.known_constants : unit -> string list

Synopsis
Returns the list of constants known to the parser.

Description
A call to this functions returns the list of constants that will be treated as such by the
parser. Those constants with names not on the list will be parsed as if they were vari-
ables.

Failure
Never fails.

See also
Parse.hide, Parse.reveal, Parse.set known constants.

LAND CONV 487

LAND_CONV (Conv)

LAND_CONV : conv -> conv

Synopsis
Applies a conversion to the left-hand argument of a binary operator.

Description
If c is a conversion that maps a term t1 to the theorem |- t1 = t1’, then the conversion
LAND_CONV c maps applications of the form f t1 t2 to theorems of the form:

|- f t1 t2 = f t1’ t2

Failure
LAND_CONV c tm fails if tm is not an application where the rator of the application is in
turn another application, or if tm has this form but the conversion c fails when applied
to the term t2. The function returned by LAND_CONV c may also fail if the ML function
c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t to a theorem
|- t = t’).

Example

- LAND_CONV REDUCE_CONV (Term‘(3 + 5) * 7‘);

> val it = |- (3 + 5) * 7 = 8 * 7 : thm

See also
Conv.ABS CONV, Conv.BINOP CONV, Conv.RAND CONV, Conv.RATOR CONV,

numLib.REDUCE CONV.

last (Lib)

last : ’a list -> ’a

Synopsis
Computes the last element of a list.

488 CHAPTER 1. ENTRIES

Description
last [x1,...,xn] returns xn.

Failure
Fails if the list is empty.

See also
Lib.butlast, Lib.el, Lib.front last.

LAST_CONV (listLib)

LAST_CONV : conv

Synopsis
Computes by inference the result of taking the last element of a list.

Description
For any object language list of the form --‘[x0;...x(n-1)]‘-- , the result of evaluating

LAST_CONV (--‘LAST [x0;...;x(n-1)]‘--)

is the theorem

|- LAST [x0;...;x(n-1)] = x(n-1)

Failure
LAST_CONV tm fails if tm is an empty list.

LAST_EXISTS_CONV (Conv)

LAST_EXISTS_CONV : conv -> conv

Synopsis
Applies a conversion to the last existential quantifier (and its body) in a chain.

Description
Application of LAST_EXISTS_CONV c to the term ‘‘?x1 .. xn x. body‘‘ will apply c to the
term ‘‘?x. body‘‘. If the result of this application is the theorem |- (?x. body) = t,
then the result of the whole will be

LAST FORALL CONV 489

|- (?x1 .. xn x. body) = (?x1 .. xn. t)

Failure
Fails if the term is not existentially quantified, or if the conversion c fails when it is
applied.

See also
Conv.BINDER CONV, Conv.LAST FORALL CONV, Conv.STRIP QUANT CONV.

LAST_FORALL_CONV (Conv)

LAST_FORALL_CONV : conv -> conv

Synopsis
Applies a conversion to the last universal quantifier (and its body) in a chain.

Description
Application of LAST_FORALL_CONV v to the term ‘‘!x1 .. xn x. body‘‘ will apply c to the
term ‘‘!x. body‘‘. If the result of this application is the theorem |- (!x. body) = t,
then the result of the whole will be

|- (?x1 .. xn x. body) = (?x1 .. xn. t)

Failure
Fails if the term is not universally quantified, or if the conversion c fails when it is
applied.

See also
Conv.BINDER CONV, Conv.LAST EXISTS CONV, Conv.STRIP QUANT CONV.

LASTN_CONV (listLib)

LASTN_CONV : conv

Synopsis
Computes by inference the result of taking the last n elements of a list.

490 CHAPTER 1. ENTRIES

Description
For any object language list of the form --‘[x0;...x(n-k);...;x(n-1)]‘-- , the result
of evaluating

LASTN_CONV (--‘LASTN k [x0;...x(n-k);...;x(n-1)]‘--)

is the theorem

|- LASTN k [x0;...;x(n-k);...;x(n-1)] = [x(n-k);...;x(n-1)]

Failure
LASTN_CONV tm fails if tm is not of the form described above, or k is greater than the
length of the list.

LE_CONV (reduceLib)

LE_CONV : conv

Synopsis
Proves result of less-than-or-equal-to ordering on two numerals.

Description
If m and n are both numerals (e.g. 0, 1, 2, 3,...), then LE_CONV "m <= n" returns the
theorem:

|- (m <= n) = T

if the natural number denoted by m is less than or equal to that denoted by n, or

|- (m <= n) = F

otherwise.

Failure
LE_CONV tm fails unless tm is of the form "m <= n", where m and n are numerals.

Example

LEAST ELIM TAC 491

#LE_CONV "12 <= 198";;

|- 12 <= 198 = T

#LE_CONV "46 <= 46";;

|- 46 <= 46 = T

#LE_CONV "13 <= 12";;

|- 13 <= 12 = F

LEAST_ELIM_TAC (numLib)

LEAST_ELIM_TAC : tactic

Synopsis
Eliminates a LEAST term from the current goal

Description
LEAST_ELIM_TAC searches the goal it is applied to for free sub-terms involving the LEAST

operator, of the form $LEAST P (P will usually be an abstraction). If such a term is found,
the tactic produces a new goal where instances of the LEAST-term have disappeared.
The resulting goal will require the proof that there exists a value satisfying P, and that
a minimal value satisfies the original goal.

Thus, LEAST_ELIM_TAC can be seen as a higher-order match against the theorem

|- !P Q.

(?n. P x) /\ (!n. (!m. m < n ==> ~P m) /\ P n ==> Q n) ==>

Q ($LEAST P)

where the new goal is the antecdent of the implication. (This theorem is LEAST_ELIM,
from theory while.)

Failure
The tactic fails if there is no free LEAST-term in the goal.

Example
When applied to the goal

?- (LEAST n. 4 < n) = 5

the tactic LEAST_ELIM_TAC produces

492 CHAPTER 1. ENTRIES

?- (?n. 4 < n) /\ !n. (!m. m < n ==> ~(4 < m)) /\ 4 < n ==> (n = 5)

Comments
This tactic assumes that there is indeed a least number satisfying the given predicate.
If there is not, then the LEAST-term will have an arbitrary value, and the proof should
proceed by showing that the enclosing predicate Q holds for all possible numbers.

If there are multiple different LEAST-terms in the goal, then LEAST_ELIM_TAC will pick
the first free LEAST-term returned by the standard find_terms function.

See also
Tactic.SELECT ELIM TAC.

LEFT_AND_EXISTS_CONV (Conv)

LEFT_AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the left conjunct outwards through a conjunction.

Description
When applied to a term of the form (?x.P) /\ Q, the conversion LEFT_AND_EXISTS_CONV

returns the theorem:

|- (?x.P) /\ Q = (?x’. P[x’/x] /\ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) /\ Q.

See also
Conv.AND EXISTS CONV, Conv.EXISTS AND CONV, Conv.RIGHT AND EXISTS CONV.

LEFT_AND_FORALL_CONV (Conv)

LEFT_AND_FORALL_CONV : conv

LEFT AND PEXISTS CONV 493

Synopsis
Moves a universal quantification of the left conjunct outwards through a conjunction.

Description
When applied to a term of the form (!x.P) /\ Q, the conversion LEFT_AND_FORALL_CONV

returns the theorem:

|- (!x.P) /\ Q = (!x’. P[x’/x] /\ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!x.P) /\ Q.

See also
Conv.AND FORALL CONV, Conv.FORALL AND CONV, Conv.RIGHT AND FORALL CONV.

LEFT_AND_PEXISTS_CONV (PairRules)

LEFT_AND_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the left conjunct outwards through a con-
junction.

Description
When applied to a term of the form (?p. t) /\ u, the conversion LEFT_AND_PEXISTS_CONV

returns the theorem:

|- (?p. t) /\ u = (?p’. t[p’/p] /\ u)

where p’ is a primed variant of the pair p that does not contains variables free in the
input term.

Failure
Fails if applied to a term not of the form (?p. t) /\ u.

See also
Conv.LEFT AND EXISTS CONV, PairRules.AND PEXISTS CONV,

PairRules.PEXISTS AND CONV, PairRules.RIGHT AND PEXISTS CONV.

494 CHAPTER 1. ENTRIES

LEFT_AND_PFORALL_CONV (PairRules)

LEFT_AND_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the left conjunct outwards through a con-
junction.

Description
When applied to a term of the form (!p. t) /\ u, the conversion LEFT_AND_PFORALL_CONV

returns the theorem:

|- (!p. t) /\ u = (!p’. t[p’/p] /\ u)

where p’ is a primed variant of p that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) /\ u.

See also
Conv.LEFT AND FORALL CONV, PairRules.AND PFORALL CONV,

PairRules.PFORALL AND CONV, PairRules.RIGHT AND PFORALL CONV.

LEFT_IMP_EXISTS_CONV (Conv)

LEFT_IMP_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the antecedent outwards through an implication.

Description
When applied to a term of the form (?x.P) ==> Q, the conversion LEFT_IMP_EXISTS_CONV

returns the theorem:

|- (?x.P) ==> Q = (!x’. P[x’/x] ==> Q)

LEFT IMP FORALL CONV 495

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) ==> Q.

See also
Conv.FORALL IMP CONV, Conv.RIGHT IMP FORALL CONV.

LEFT_IMP_FORALL_CONV (Conv)

LEFT_IMP_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the antecedent outwards through an implication.

Description
When applied to a term of the form (!x.P) ==> Q, the conversion LEFT_IMP_FORALL_CONV

returns the theorem:

|- (!x.P) ==> Q = (?x’. P[x’/x] ==> Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!x.P) ==> Q.

See also
Conv.EXISTS IMP CONV, Conv.RIGHT IMP FORALL CONV.

LEFT_IMP_PEXISTS_CONV (PairRules)

LEFT_IMP_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the antecedent outwards through an impli-
cation.

Description
When applied to a term of the form (?p. t) ==> u, the conversion LEFT_IMP_PEXISTS_CONV

returns the theorem:

496 CHAPTER 1. ENTRIES

|- (?p. t) ==> u = (!p’. t[p’/p] ==> u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (?p. t) ==> u.

See also
Conv.LEFT IMP EXISTS CONV, PairRules.PFORALL IMP CONV,

PairRules.RIGHT IMP PFORALL CONV.

LEFT_IMP_PFORALL_CONV (PairRules)

LEFT_IMP_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the antecedent outwards through an impli-
cation.

Description
When applied to a term of the form (!p. t) ==> u, the conversion LEFT_IMP_PFORALL_CONV

returns the theorem:

|- (!p. t) ==> u = (?p’. t[p’/p] ==> u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) ==> u.

See also
Conv.LEFT IMP FORALL CONV, PairRules.PEXISTS IMP CONV,

PairRules.RIGHT IMP PFORALL CONV.

LEFT_LIST_PBETA (PairRules)

LEFT_LIST_PBETA : (thm -> thm)

LEFT OR EXISTS CONV 497

Synopsis
Iteratively beta-reduces a top-level paired beta-redex on the left-hand side of an equa-
tion.

Description
When applied to an equational theorem, LEFT_LIST_PBETA applies paired beta-reduction
over a top-level chain of beta-redexes to the left-hand side (only). Variables are renamed
if necessary to avoid free variable capture.

A |- (\p1...pn. t) q1 ... qn = s

---------------------------------- LEFT_LIST_BETA

A |- t[q1/p1]...[qn/pn] = s

Failure
Fails unless the theorem is equational, with its left-hand side being a top-level paired
beta-redex.

See also
Drule.RIGHT LIST BETA, PairRules.PBETA CONV, PairRules.PBETA RULE,

PairRules.PBETA TAC, PairRules.LIST PBETA CONV, PairRules.LEFT PBETA,

PairRules.RIGHT PBETA, PairRules.RIGHT LIST PBETA.

LEFT_OR_EXISTS_CONV (Conv)

LEFT_OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the left disjunct outwards through a disjunction.

Description
When applied to a term of the form (?x.P) \/ Q, the conversion LEFT_OR_EXISTS_CONV

returns the theorem:

|- (?x.P) \/ Q = (?x’. P[x’/x] \/ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) \/ Q.

498 CHAPTER 1. ENTRIES

See also
Conv.EXISTS OR CONV, Conv.OR EXISTS CONV, Conv.RIGHT OR EXISTS CONV.

LEFT_OR_FORALL_CONV (Conv)

LEFT_OR_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the left disjunct outwards through a disjunction.

Description
When applied to a term of the form (!x.P) \/ Q, the conversion LEFT_OR_FORALL_CONV

returns the theorem:

|- (!x.P) \/ Q = (!x’. P[x’/x] \/ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!x.P) \/ Q.

See also
Conv.OR FORALL CONV, Conv.FORALL OR CONV, Conv.RIGHT OR FORALL CONV.

LEFT_OR_PEXISTS_CONV (PairRules)

LEFT_OR_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the left disjunct outwards through a dis-
junction.

Description
When applied to a term of the form (?p. t) \/ u, the conversion LEFT_OR_PEXISTS_CONV

returns the theorem:

|- (?p. t) \/ u = (?p’. t[p’/p] \/ u)

LEFT OR PFORALL CONV 499

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form (?p. t) \/ u.

See also
Conv.LEFT OR EXISTS CONV, PairRules.PEXISTS OR CONV, PairRules.OR PEXISTS CONV,

PairRules.RIGHT OR PEXISTS CONV.

LEFT_OR_PFORALL_CONV (PairRules)

LEFT_OR_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the left disjunct outwards through a disjunc-
tion.

Description
When applied to a term of the form (!p. t) \/ u, the conversion LEFT_OR_FORALL_CONV

returns the theorem:

|- (!p. t) \/ u = (!p’. t[p’/p] \/ u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) \/ u.

See also
Conv.LEFT OR FORALL CONV, PairRules.OR PFORALL CONV, PairRules.PFORALL OR CONV,

PairRules.RIGHT OR PFORALL CONV.

LEFT_PBETA (PairRules)

LEFT_PBETA : (thm -> thm)

500 CHAPTER 1. ENTRIES

Synopsis
Beta-reduces a top-level paired beta-redex on the left-hand side of an equation.

Description
When applied to an equational theorem, LEFT_PBETA applies paired beta-reduction at
top level to the left-hand side (only). Variables are renamed if necessary to avoid free
variable capture.

A |- (\x. t1) t2 = s

---------------------- LEFT_PBETA

A |- t1[t2/x] = s

Failure
Fails unless the theorem is equational, with its left-hand side being a top-level paired
beta-redex.

See also
Drule.RIGHT BETA, PairRules.PBETA CONV, PairRules.PBETA RULE,

PairRules.PBETA TAC, PairRules.RIGHT PBETA, PairRules.RIGHT LIST PBETA,

PairRules.LEFT LIST PBETA.

LENGTH_CONV (listLib)

LENGTH_CONV : conv

Synopsis
Computes by inference the length of an object-language list.

Description
For any object language list of the form --‘[x1;x2;...;xn]‘--, where x1, x2, ..., xn are
arbitrary terms of the same type, the result of evaluating

LENGTH_CONV (--‘LENGTH [x1;x2;...;xn]‘--)

is the theorem

|- LENGTH [x1;x2;...;xn] = n

let tm 501

where n is the numeral constant that denotes the length of the list.

Failure
LENGTH_CONV tm fails if tm is not of the form --‘LENGTH [x1;x2;...;xn]‘-- or --‘LENGTH []‘--.

let_tm (boolSyntax)

let_tm : term

Synopsis
Constant denoting let expressions.

Description
The ML variable boolSyntax.let_tm is bound to the term bool$LET.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.bool case,

boolSyntax.arb.

lhand (boolSyntax)

term -> term

Synopsis
Returns the left-hand argument of a binary application.

Description
A call to lhand t returns x in those situations where t is of the form ‘‘f x y‘‘.

Failure
Fails if the argument is not of the required form.

Example

502 CHAPTER 1. ENTRIES

- lhand ‘‘3 + 2‘‘;

> val it = ‘‘3‘‘ : term

Comments
The name lhand is an abbreviation of “left-hand”, but rand is so-named as an abbrevi-
ation of “operand”. Nonetheless, rand does return the right-hand argument of a binary
application.

See also
Term.rand, Term.rator.

lhs (boolSyntax)

lhs : term -> term

Synopsis
Returns the left-hand side of an equation.

Description
If M has the form t1 = t2 then lhs M returns t1.

Failure
Fails if the term is not an equation.

See also
boolSyntax.rhs, boolSyntax.dest eq, boolSyntax.mk eq.

doc.

Lib.doc

structure Lib

Synopsis
Collection of commonly used functions

Description
Lib is a collection of functions that have been found useful in writing the HOL system.

line name 503

Comments
The SML Basis Library offers alternatives to some of the functions found in Lib.

line_name (unwindLib)

line_name : (term -> string)

Synopsis
Computes the line name of an equation.

Description
line_name "!y1 ... ym. f x1 ... xn = t" returns the string ‘f‘.

Failure
Fails if the argument term is not of the specified form.

See also
unwindLib.line var.

line_var (unwindLib)

line_var : (term -> term)

Synopsis
Computes the line variable of an equation.

Description
line_var "!y1 ... ym. f x1 ... xn = t" returns the variable "f".

Failure
Fails if the argument term is not of the specified form.

See also
unwindLib.line name.

504 CHAPTER 1. ENTRIES

LIST_BETA_CONV (Drule)

LIST_BETA_CONV : conv

Synopsis
Performs an iterated beta conversion.

Description
The conversion LIST_BETA_CONV maps terms of the form

"(\x1 x2 ... xn. u) v1 v2 ... vn"

to the theorems of the form

|- (\x1 x2 ... xn. u) v1 v2 ... vn = u[v1/x1][v2/x2] ... [vn/xn]

where u[vi/xi] denotes the result of substituting vi for all free occurrences of xi in u,
after renaming sufficient bound variables to avoid variable capture.

Failure
LIST_BETA_CONV tm fails if tm does not have the form "(\x1 ... xn. u) v1 ... vn" for n
greater than 0.

Example

- LIST_BETA_CONV (Term ‘(\x y. x+y) 1 2‘);

> val it = |- (\x y. x + y)1 2 = 1 + 2 : thm

See also
Thm.BETA CONV, Conv.BETA RULE, Tactic.BETA TAC, Drule.RIGHT BETA,

Drule.RIGHT LIST BETA.

list_compare (Lib)

list_compare : (’a * ’a -> order) -> ’a list * ’a list -> order

Synopsis
Lifts a comparison function to a lexicographic ordering on lists.

LIST CONJ 505

Description
An application list_compare comp (L1,L2) uses comp as a basis for comparing the
lists L1 and L2 lexicographically, in left-to-right order. The returned value is one of
{LESS, EQUAL, GREATER}.

Failure
If comp fails when applied to corresponding elements of L1 and L2.

Example

- list_compare Int.compare ([1,2,3,4], [1,2,3,4]);

> val it = EQUAL : order

- list_compare Int.compare ([1,2,3,4], [1,2,3,4,5]);

> val it = LESS : order

- list_compare Int.compare ([1,2,3,4], [1,2,3,2]);

> val it = GREATER : order

LIST_CONJ (Drule)

LIST_CONJ : thm list -> thm

Synopsis
Conjoins the conclusions of a list of theorems.

Description

A1 |- t1 ... An |- tn

---------------------------------- LIST_CONJ

A1 u ... u An |- t1 /\ ... /\ tn

Failure
LIST_CONJ fails if applied to an empty list of theorems.

See also
Drule.BODY CONJUNCTS, Thm.CONJ, Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS,

Drule.CONJ PAIR, Tactic.CONJ TAC.

506 CHAPTER 1. ENTRIES

LIST_CONV (listLib)

LIST_CONV : conv

Synopsis
Proves theorems about list constants applied to NIL, CONS, SNOC, APPEND, FLAT and
REVERSE.

Description
LIST_CONV takes a term of the form:

CONST1 ... (CONST2 ...) ...

where CONST1 and CONST2 are operators on lists and CONST2 returns a list result. It can
be one of NIL, CONS, SNOC, APPEND, FLAT or REVERSE. The form of the resulting theorem
depends on CONST1 and CONST2. Some auxiliary information must be provided about
CONST1. LIST_CONV maintains a database of such auxiliary information. It initially holds
information about the constants in the system. However, additional information can be
supplied by the user as new constants are defined. The main information that is needed
is a theorem defining the constant in terms of FOLDR or FOLDL. The definition should have
the form:

|- CONST1 ...l... = fold f e l

where fold is either FOLDR or FOLDL, f is a function, e a base element and l a list variable.
For example, a suitable theorem for SUM is

|- SUM l = FOLDR $+ 0 l

Knowing this theorem and given the term --‘SUM (CONS x l)‘--, LIST_CONV returns the
theorem:

|- SUM (CONS x l) = x + (SUM l)

Other auxiliary theorems that are needed concern the terms f and e found in the defi-
nition with respect to FOLDR or FOLDL. For example, knowing the theorem:

|- MONOID $+ 0

and given the term --‘SUM (APPEND l1 l2)‘--, LIST_CONV returns the theorem

|- SUM (APPEND l1 l2) = (SUM l1) + (SUM l2)

LIST CONV 507

The following table shows the form of the theorem returned and the auxiliary theorems
needed if CONST1 is defined in terms of FOLDR.

CONST2 | side conditions | tm2 in result |- tm1 = tm2

==============|================================|===========================

[] | NONE | e

[x] | NONE | f x e

CONS x l | NONE | f x (CONST1 l)

SNOC x l | e is a list variable | CONST1 (f x e) l

APPEND l1 l2 | e is a list variable | CONST1 (CONST1 l1) l2

APPEND l1 l2 | |- FCOMM g f, |- LEFT_ID g e | g (CONST1 l1) (CONST2 l2)

FLAT l1 | |- FCOMM g f, |- LEFT_ID g e, |

| |- CONST3 l = FOLDR g e l | CONST3 (MAP CONST1 l)

REVERSE l | |- COMM f, |- ASSOC f | CONST1 l

REVERSE l | f == (\x l. h (g x) l) |

| |- COMM h, |- ASSOC h | CONST1 l

The following table shows the form of the theorem returned and the auxiliary theorems
needed if CONST1 is defined in terms of FOLDL.

CONST2 | side conditions | tm2 in result |- tm1 = tm2

==============|================================|===========================

[] | NONE | e

[x] | NONE | f x e

SNOC x l | NONE | f x (CONST1 l)

CONS x l | e is a list variable | CONST1 (f x e) l

APPEND l1 l2 | e is a list variable | CONST1 (CONST1 l1) l2

APPEND l1 l2 | |- FCOMM f g, |- RIGHT_ID g e | g (CONST1 l1) (CONST2 l2)

FLAT l1 | |- FCOMM f g, |- RIGHT_ID g e, |

| |- CONST3 l = FOLDR g e l | CONST3 (MAP CONST1 l)

REVERSE l | |- COMM f, |- ASSOC f | CONST1 l

REVERSE l | f == (\l x. h l (g x)) |

| |- COMM h, |- ASSOC h | CONST1 l

|- MONOID f e can be used instead of |- FCOMM f f, |- LEFT_ID f or |- RIGHT_ID f.
|- ASSOC f can also be used in place of |- FCOMM f f.

Auxiliary theorems are held in a user-updatable database. In particular, definitions
of constants in terms of FOLDR and FOLDL, and monoid, commutativity, associativity, left
identity, right identity and binary function commutativity theorems are stored. The
database can be updated by the user to allow LIST_CONV to prove theorems about new
constants. This is done by calling set_list_thm_database. The database can be in-
spected by calling list_thm_database. The database initially holds FOLDR/L theorems

508 CHAPTER 1. ENTRIES

for the following system constants: APPEND, FLAT, LENGTH, NULL, REVERSE, MAP, FILTER,
ALL_EL, SUM, SOME_EL, IS_EL, AND_EL, OR_EL, PREFIX, SUFFIX, SNOC and FLAT combined with
REVERSE. It also holds auxiliary theorems about their step functions and base elements.

Example

- LIST_CONV (--‘LENGTH ([]:’a list)‘--);

|- LENGTH [] = 0

- LIST_CONV (--‘APPEND (CONS h t) (l1:’a list)‘--);

|- APPEND (CONS h t) l1 = CONS h (APPEND t l1)

- LIST_CONV (--‘APPEND (l1:’a list) (CONS h t)‘--);

|- APPEND l1 (CONS h t) = APPEND (SNOC h l1) t

- LIST_CONV (--‘MAP (P:’a list -> ’a) (SNOC h t)‘--);

|- MAP P (SNOC h t) = SNOC (P h) (MAP P t)

- LIST_CONV (--‘SUM (FLAT l)‘--);

|- SUM (FLAT l) = SUM (MAP SUM l)

- LIST_CONV (--‘NULL (REVERSE (l:bool list))‘--);

|- NULL (REVERSE l) = NULL l

Failure
LIST_CONV tm fails if tm is not of the form described above. It also fails if no fold def-
inition for CONST1 is held in the databases, or if the required auxiliary theorems, as
described above, are not held in the databases.

See also
listLib.list thm database, listLib.PURE LIST CONV, listLib.set list thm database,

listLib.X LIST CONV.

list_FOLD_CONV (listLib)

list_FOLD_CONV : thm -> conv -> conv

Synopsis
Computes by inference the result of applying a function to the elements of a list.

Description
Evaluating list_FOLD_CONV fthm conv tm returns a theorem

LIST INDUCT TAC 509

|- CONST x0’ ... xi’ ... xn’ = tm’

The first argument fthm should be a theorem of the form

|- !x0 ... xi ... xn. CONST x0 ... xi ... xn = FOLD[LR] f e xi

where FOLD[LR] means either FOLDL or FOLDR. The last argument tm is a term of the
following form:

CONST x0’ ... xi’ ... xn’

where xi’ is a concrete list. list_FOLD_CONV first instantiates the input theorem using
tm. It then calls either FOLDL_CONV or FOLDR_CONV with the user supplied conversion conv

on the right-hand side.

Failure
list_FOLD_CONV fthm conv tm fails if fthm or tm is not of the form described above, or if
they do not agree, or the call to FOLDL_CONV OR FOLDR_CONV fails.

Uses
This function is used to implement conversions for logical constants which can be ex-
pressed in terms of the fold operators. For example, the constant SUM can be expressed
in terms of FOLDR as in the following theorem:

|- !l. SUM l = FOLDR $+ 0 l

The conversion for SUM, SUM_CONV can be implemented as

load_library_in_place num_lib;

val SUM_CONV =

list_FOLD_CONV (theorem "list" "SUM_FOLDR") Num_lib.ADD_CONV;

Then, evaluating SUM_CONV (--‘SUM [0;1;2;3]‘--) will return the following theorem:

|- SUM [0;1;2;3] = 6

See also
listLib.FOLDL CONV, listLib.FOLDR CONV.

LIST_INDUCT_TAC (listLib)

LIST_INDUCT_TAC : tactic

510 CHAPTER 1. ENTRIES

Synopsis
Performs tactical proof by structural induction on lists.

Description
LIST_INDUCT_TAC reduces a goal !l.P[l], where l ranges over lists, to two subgoals
corresponding to the base and step cases in a proof by structural induction on l. The
induction hypothesis appears among the assumptions of the subgoal for the step case.
The specification of LIST_INDUCT_TAC is:

A ?- !l. P

=== LIST_INDUCT_TAC

A |- P[NIL/l] A u {{P[l’/l]}} ?- !h. P[CONS h l’/l]

where l’ is a primed variant of l that does not appear free in the assumptions A (usually,
l’ is just l). When LIST_INDUCT_TAC is applied to a goal of the form !l.P, where l does
not appear free in P, the subgoals are just A ?- P and A u {{P}} ?- !h.P.

Failure
LIST_INDUCT_TAC g fails unless the conclusion of the goal g has the form !l.t, where the
variable l has type (ty)list for some type ty.

See also
listLib.EQ LENGTH INDUCT TAC, listLib.EQ LENGTH SNOC INDUCT TAC,

listLib.SNOC INDUCT TAC.

list_mk_abs (boolSyntax)

list_mk_abs : term list * term -> term

Synopsis
Iteratively constructs abstractions.

Description
list_mk_abs([x1,...,xn],t) returns the term \x1 ... xn.t.

Failure
Fails if the terms in the list are not variables.

See also
boolSyntax.strip abs, Term.mk abs.

list mk abs 511

list_mk_abs (Term)

list_mk_abs : term list * term -> term

Synopsis
Performs a sequence of lambda binding operations.

Description
An application list_mk_abs ([v1,...,vn], M) yields the term \v1 ... vn. M. Free oc-
currences of v1,...,vn in M become bound in the result.

Failure
Fails if if some vi (1 ¡= i ¡= n) is not a variable.

Example

- list_mk_abs ([mk_var("v1",bool),mk_var("v2",bool),mk_var("v3",bool)],

Term ‘v1 /\ v2 /\ v3‘);

> val it = ‘\v1 v2 v3. v1 /\ v2 /\ v3‘ : term

Comments
In the current implementation, list_mk_abs is more efficient than iteration of mk_abs for
larger tasks.

See also
Term.mk abs, boolSyntax.list mk forall, boolSyntax.list mk exists.

list_mk_anylet (pairSyntax)

list_mk_anylet : (term * term) list list * term -> term

Synopsis
Construct arbitrary let terms.

Description
The invocation list_mk_anylet ([[(a1,b1),...,(an,bn)], ... [(u1,v1),...,(uk,vk)]],body)

returns a term with surface syntax

512 CHAPTER 1. ENTRIES

let a1 = b1 and ... an = bn in

... in

let u1 = v1 and ... and uk = vk

in body

Failure
If any binding pair (x,y) is such that x and y have different types.

Example

list_mk_anylet

([[(‘‘x:’a‘‘, ‘‘P:’a‘‘)],

[(‘‘(y:’a, z:ind)‘‘, ‘‘M:’a#ind‘‘)],

[(‘‘f (x:’a):bool‘‘, ‘‘N:bool‘‘),

(‘‘g:bool->’a‘‘, ‘‘K (v:’a):bool->’a‘‘)]], ‘‘g (f (x:’a):bool):’a‘‘);

> val it = ‘let x = P in

let (y,z) = M in

let f x = N

and g = K v

in g (f x)‘

Uses
Programming that involves manipulation of term syntax.

See also
boolSyntax.dest let, pairSyntax.mk anylet, pairSyntax.strip anylet,

pairSyntax.dest anylet.

list_mk_binder (Term)

list_mk_binder : term option -> term list * term -> term

Synopsis
Performs a sequence of variable binding operations on a term

Description
An application list_mk_binder (SOME c) ([v1,...,vn],M) builds the term c (\v1. ... (c (\vn. M) ...)).
The term c should be a binder, that is, a constant that takes a lambda abstraction and

list mk binder 513

returns a bound term. Thus list_mk_binder implements Church’s view that variable
binding operations should be reduced to lambda-binding.

An application list_mk_binder NONE ([v1,...,vn],M) builds the term \v1...vn. M.

Failure
list_mk_binder opt ([v1,...,vn],M) fails if some vi 1 <= i <= n is not a variable. It
also fails if the constructed term c (\v1. ... (c (\vn. M) ...)) is not well typed.

Example
Repeated existential quantification is easy to code up using list_mk_binder. For testing,
we make a list of boolean variables.

- fun upto b t acc = if b >= t then rev acc else upto (b+1) t (b::acc)

fun vlist n = map (C (curry mk_var) bool o concat "v" o int_to_string)

(upto 0 n []);

val vars = vlist 100;

> val vars =

[‘v0‘, ‘v1‘, ‘v2‘, ‘v3‘, ‘v4‘, ‘v5‘, ‘v6‘, ‘v7‘, ‘v8‘, ‘v9‘, ‘v10‘, ‘v11‘,

‘v12‘, ‘v13‘, ‘v14‘, ‘v15‘, ‘v16‘, ‘v17‘, ‘v18‘, ‘v19‘, ‘v20‘, ‘v21‘,

‘v22‘, ‘v23‘, ‘v24‘, ‘v25‘, ‘v26‘, ‘v27‘, ‘v28‘, ‘v29‘, ‘v30‘, ‘v31‘,

‘v32‘, ‘v33‘, ‘v34‘, ‘v35‘, ‘v36‘, ‘v37‘, ‘v38‘, ‘v39‘, ‘v40‘, ‘v41‘,

‘v42‘, ‘v43‘, ‘v44‘, ‘v45‘, ‘v46‘, ‘v47‘, ‘v48‘, ‘v49‘, ‘v50‘, ‘v51‘,

‘v52‘, ‘v53‘, ‘v54‘, ‘v55‘, ‘v56‘, ‘v57‘, ‘v58‘, ‘v59‘, ‘v60‘, ‘v61‘,

‘v62‘, ‘v63‘, ‘v64‘, ‘v65‘, ‘v66‘, ‘v67‘, ‘v68‘, ‘v69‘, ‘v70‘, ‘v71‘,

‘v72‘, ‘v73‘, ‘v74‘, ‘v75‘, ‘v76‘, ‘v77‘, ‘v78‘, ‘v79‘, ‘v80‘, ‘v81‘,

‘v82‘, ‘v83‘, ‘v84‘, ‘v85‘, ‘v86‘, ‘v87‘, ‘v88‘, ‘v89‘, ‘v90‘, ‘v91‘,

‘v92‘, ‘v93‘, ‘v94‘, ‘v95‘, ‘v96‘, ‘v97‘, ‘v98‘, ‘v99‘] : term list

Now we exercise list_mk_binder.

- val exl_tm = list_mk_binder (SOME boolSyntax.existential)

(vars, list_mk_conj vars);

> val exl_tm =

‘?v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38

v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52 v53 v54 v55 v56

v57 v58 v59 v60 v61 v62 v63 v64 v65 v66 v67 v68 v69 v70 v71 v72 v73 v74

v75 v76 v77 v78 v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91 v92

v93 v94 v95 v96 v97 v98 v99.

v0 /\ v1 /\ v2 /\ v3 /\ v4 /\ v5 /\ v6 /\ v7 /\ v8 /\ v9 /\ v10 /\

514 CHAPTER 1. ENTRIES

v11 /\ v12 /\ v13 /\ v14 /\ v15 /\ v16 /\ v17 /\ v18 /\ v19 /\ v20 /\

v21 /\ v22 /\ v23 /\ v24 /\ v25 /\ v26 /\ v27 /\ v28 /\ v29 /\ v30 /\

v31 /\ v32 /\ v33 /\ v34 /\ v35 /\ v36 /\ v37 /\ v38 /\ v39 /\ v40 /\

v41 /\ v42 /\ v43 /\ v44 /\ v45 /\ v46 /\ v47 /\ v48 /\ v49 /\ v50 /\

v51 /\ v52 /\ v53 /\ v54 /\ v55 /\ v56 /\ v57 /\ v58 /\ v59 /\ v60 /\

v61 /\ v62 /\ v63 /\ v64 /\ v65 /\ v66 /\ v67 /\ v68 /\ v69 /\ v70 /\

v71 /\ v72 /\ v73 /\ v74 /\ v75 /\ v76 /\ v77 /\ v78 /\ v79 /\ v80 /\

v81 /\ v82 /\ v83 /\ v84 /\ v85 /\ v86 /\ v87 /\ v88 /\ v89 /\ v90 /\

v91 /\ v92 /\ v93 /\ v94 /\ v95 /\ v96 /\ v97 /\ v98 /\ v99‘ : term

Comments
Terms with many consecutive binders should be constructed using list_mk_binder and
its instantiations list_mk_abs, list_mk_forall, and list_mk_exists. In the current im-
plementation of HOL, iterating mk_abs, mk_forall, or mk_exists is far slower for terms
with many consecutive binders.

See also
Term.list mk abs, boolSyntax.list mk forall, boolSyntax.list mk exists,

Term.strip binder.

list_mk_comb (Term)

list_mk_comb : term * term list -> term

Synopsis
Iteratively constructs combinations (function applications).

Description
list_mk_comb(t,[t1,...,tn]) returns t t1 ... tn.

Failure
Fails if the types of t1,...,tn are not equal to the argument types of t. It is not necessary
for all the arguments of t to be given. In particular the list of terms t1,...,tn may be
empty.

Example

list mk conj 515

- list_mk_comb(conditional,[T, mk_var("one",alpha), mk_var("two",alpha)]);

> val it = ‘(if T then one else two)‘ : term

- list_mk_comb(universal,[]);

> val it = ‘$!‘ : term

- try list_mk_comb(universal,[F]);

Exception raised at Term.list_mk_comb:

incompatible types

See also
boolSyntax.strip comb, Term.mk comb.

list_mk_conj (boolSyntax)

list_mk_conj : term list -> term

Synopsis
Constructs the conjunction of a list of terms.

Description
list_mk_conj([t1,...,tn]) returns t1 /\ ... /\ tn.

Failure
Fails if the list is empty or if the list has more than one element, one or more of which
are not of type bool.

Example

- list_mk_conj [T,F,T];

> val it = ‘T /\ F /\ T‘ : term

- try list_mk_conj [T,mk_var("x",alpha),F];

Exception raised at boolSyntax.mk_conj:

Non-boolean argument

516 CHAPTER 1. ENTRIES

- list_mk_conj [mk_var("x",alpha)];

> val it = ‘x‘ : term

See also
boolSyntax.strip conj, boolSyntax.mk conj.

list_mk_disj (boolSyntax)

list_mk_disj : term list -> term

Synopsis
Constructs the disjunction of a list of terms.

Description
list_mk_disj([t1,...,tn]) returns t1 \/ ... \/ tn.

Failure
Fails if the list is empty or if the list has more than one element, one or more of which
are not of type bool.

Example

- list_mk_disj [T,F,T];

> val it = ‘T \/ F \/ T‘ : term

- try list_mk_disj [T,mk_var("x",alpha),F];

Exception raised at boolSyntax.mk_disj:

Non-boolean argument

- list_mk_disj [mk_var("x",alpha)];

> val it = ‘x‘ : term

See also
boolSyntax.strip disj, boolSyntax.mk disj.

list mk exists 517

list_mk_exists (boolSyntax)

list_mk_exists : term list * term -> term

Synopsis
Iteratively constructs an existential quantification.

Description
list_mk_exists([x1,...,xn],t) returns ?x1 ... xn. t.

Failure
Fails if the terms in the list are not variables or if t is not of type bool and the list of
terms is non-empty. If the list of terms is empty the type of t can be anything.

See also
boolSyntax.strip exists, boolSyntax.mk exists.

LIST_MK_EXISTS (Drule)

LIST_MK_EXISTS : (term list -> thm -> thm)

Synopsis
Multiply existentially quantifies both sides of an equation using the given variables.

Description
When applied to a list of terms [x1;...;xn], where the xi are all variables, and a theo-
rem A |- t1 = t2, the inference rule LIST_MK_EXISTS existentially quantifies both sides
of the equation using the variables given, none of which should be free in the assump-
tion list.

A |- t1 = t2

-------------------------------------- LIST_MK_EXISTS ["x1";...;"xn"]

A |- (?x1...xn. t1) = (?x1...xn. t2)

Failure
Fails if any term in the list is not a variable or is free in the assumption list, or if the
theorem is not equational.

518 CHAPTER 1. ENTRIES

See also
Drule.EXISTS EQ, Drule.MK EXISTS.

list_mk_forall (boolSyntax)

list_mk_forall : term list * term -> term

Synopsis
Iteratively constructs a universal quantification.

Description
list_mk_forall([x1,...,xn],t) returns !x1 ... xn. t.

Failure
Fails if the terms in the list are not variables or if t is not of type bool and the list of
terms is non-empty. If the list of terms is empty the type of t can be anything.

See also
boolSyntax.strip forall, boolSyntax.mk forall.

list_mk_fun (boolSyntax)

list_mk_fun : hol_type list * hol_type -> hol_type

Synopsis
Iteratively constructs function types.

Description
list_mk_fun([ty1,...,tyn],ty) returns ty1 -> (... (tyn -> t)...).

Failure
Never fails.

Example

- list_mk_fun ([alpha,bool],beta);

> val it = ‘:’a -> bool -> ’b‘ : hol_type

list mk icomb 519

See also
boolSyntax.strip fun, Type.mk type, Type.-->.

list_mk_icomb (boolSyntax)

term * term list -> term

Synopsis
Folds mk_icomb over a series of arguments.

Description
A call to list_mk_icomb(f,args) combines f with each of the elements of the list args in
turn, moving from left to right. If args is empty, then the result is simply f. When args

is non-empty, the growing application-term is created with successive calls to mk_icomb,
possibly causing type variables in any of the terms to become instantiated.

Failure
Fails if any of the underlying calls to mk_icomb fails, which will occur if the type of the
accumulating term (starting with f) is not of a function type, or if it has a domain type
that can not be instantiated to equal the type of the next argument term.

Comments
list_mk_icomb is to mk_icomb what list_mk_comb is to mk_comb.

See also
Term.list mk comb, Term.mk comb, boolSyntax.mk icomb.

list_mk_imp (boolSyntax)

list_mk_imp : term list * term -> term

Synopsis
Iteratively constructs implications.

Description
list_mk_imp([t1,...,tn],t) returns t1 ==> (... (tn ==> t)...).

520 CHAPTER 1. ENTRIES

Failure
Fails if any of t1,...,tn are not of type bool. Also fails if the list of terms is non-empty
and t is not of type bool. If the list of terms is empty the type of t can be anything.

Example

- list_mk_imp ([T,F],T);

> val it = ‘T ==> F ==> T‘ : term

- try list_mk_imp ([T,F],mk_var("x",alpha));

evaluation failed list_mk_imp

- list_mk_imp ([],mk_var("x",alpha));

> val it = ‘x‘ : term

See also
boolSyntax.strip imp, boolSyntax.mk imp.

list_mk_pabs (pairSyntax)

list_mk_pabs : term list * term -> term

Synopsis
Iteratively constructs paired abstractions.

Description
list_mk_pabs([p1,...,pn], t) returns \p1 ... pn. t.

Failure
Fails with list_mk_pabs if the terms in the list are not paired structures of variables.

See also
boolSyntax.list mk abs, pairSyntax.strip pabs, pairSyntax.mk pabs.

list_mk_pair (pairSyntax)

list_mk_pair : term list -> term

LIST MK PEXISTS 521

Synopsis
Constructs a tuple from a list of terms.

Description
list_mk_pair([t1,...,tn]) returns the term (t1,...,tn).

Failure
Fails if the list is empty.

Example

- pairSyntax.list_mk_pair [Term ‘1‘, T, Term ‘2‘];

> val it = ‘(1,T,2)‘ : term

- pairSyntax.list_mk_pair [Term ‘1‘];

> val it = ‘1‘ : term

See also
pairSyntax.strip pair, pairSyntax.mk pair.

LIST_MK_PEXISTS (PairRules)

LIST_MK_PEXISTS : (term list -> thm -> thm)

Synopsis
Multiply existentially quantifies both sides of an equation using the given pairs.

Description
When applied to a list of terms [p1;...;pn], where the pi are all paired structures of
variables, and a theorem A |- t1 = t2, the inference rule LIST_MK_PEXISTS existentially
quantifies both sides of the equation using the pairs given, none of the variables in the
pairs should be free in the assumption list.

A |- t1 = t2

-------------------------------------- LIST_MK_PEXISTS ["x1";...;"xn"]

A |- (?x1...xn. t1) = (?x1...xn. t2)

522 CHAPTER 1. ENTRIES

Failure
Fails if any term in the list is not a paired structure of variables, or if any variable is free
in the assumption list, or if the theorem is not equational.

See also
Drule.LIST MK EXISTS, PairRules.PEXISTS EQ, PairRules.MK PEXISTS.

LIST_MK_PFORALL (PairRules)

LIST_MK_PFORALL : (term list -> thm -> thm)

Synopsis
Multiply universally quantifies both sides of an equation using the given pairs.

Description
When applied to a list of terms [p1;...;pn], where the pi are all paired structures of
variables, and a theorem A |- t1 = t2, the inference rule LIST_MK_PFORALL universally
quantifies both sides of the equation using the pairs given, none of the variables in the
pairs should be free in the assumption list.

A |- t1 = t2

-------------------------------------- LIST_MK_PFORALL ["x1";...;"xn"]

A |- (!x1...xn. t1) = (!x1...xn. t2)

Failure
Fails if any term in the list is not a paired structure of variables, or if any variable is free
in the assumption list, or if the theorem is not equational.

See also
Drule.LIST MK EXISTS, PairRules.PFORALL EQ, PairRules.MK PFORALL.

list_mk_res_exists (res_quanLib)

list_mk_res_exists : ((term # term) list # term) -> term)

Synopsis
Iteratively constructs a restricted existential quantification.

Description

list mk res exists 523

list_mk_res_exists([("x1","P1");...;("xn","Pn")],"t")

returns "?x1::P1. ... ?xn::Pn. t".

Failure
Fails with list_mk_res_exists if the first terms xi in the pairs are not a variable or if the
second terms Pi in the pairs and t are not of type ":bool" if the list is non-empty. If the
list is empty the type of t can be anything.

See also
res quanLib.strip res exists, res quanLib.mk res exists.

list_mk_res_exists (res_quanTools)

list_mk_res_exists : ((term # term) list # term) -> term)

Synopsis
Iteratively constructs a restricted existential quantification.

Description
list_mk_res_exists([("x1","P1");...;("xn","Pn")],"t")

returns "?x1::P1. ... ?xn::Pn. t".

Failure
Fails with list_mk_res_exists if the first terms xi in the pairs are not a variable or if the
second terms Pi in the pairs and t are not of type ":bool" if the list is non-empty. If the
list is empty the type of t can be anything.

See also
res quanTools.strip res exists, res quanTools.mk res exists.

list_mk_res_forall (res_quanLib)

list_mk_res_forall : (term # term) list # term) -> term

Synopsis
Iteratively constructs a restricted universal quantification.

Description

524 CHAPTER 1. ENTRIES

list_mk_res_forall([("x1","P1");...;("xn","Pn")],"t")

returns "!x1::P1. ... !xn::Pn. t".

Failure
Fails with list_mk_res_forall if the first terms xi in the pairs are not a variable or if the
second terms Pi in the pairs and t are not of type ":bool" if the list is non-empty. If the
list is empty the type of t can be anything.

See also
res quanLib.strip res forall, res quanLib.mk res forall.

list_mk_res_forall (res_quanTools)

list_mk_res_forall : ((term # term) list # term) -> term)

Synopsis
Iteratively constructs a restricted universal quantification.

Description

list_mk_res_forall([("x1","P1");...;("xn","Pn")],"t")

returns "!x1::P1. ... !xn::Pn. t".

Failure
Fails with list_mk_res_forall if the first terms xi in the pairs are not a variable or if the
second terms Pi in the pairs and t are not of type ":bool" if the list is non-empty. If the
list is empty the type of t can be anything.

See also
res quanTools.strip res forall, res quanTools.mk res forall.

LIST_MP (Drule)

LIST_MP : thm list -> thm -> thm

LIST PBETA CONV 525

Synopsis
Performs a chain of Modus Ponens inferences.

Description
When applied to theorems A1 |- t1, ..., An |- tn and a theorem which is a chain of
implications with the successive antecedents the same as the conclusions of the theo-
rems in the list (up to alpha-conversion), A |- t1 ==> ... ==> tn ==> t, the LIST_MP

inference rule performs a chain of MP inferences to deduce A u A1 u ... u An |- t.

A1 |- t1 ... An |- tn A |- t1 ==> ... ==> tn ==> t

--- LIST_MP

A u A1 u ... u An |- t

Failure
Fails unless the theorem is a chain of implications whose consequents are the same as
the conclusions of the list of theorems (up to alpha-conversion), in sequence.

See also
Thm.EQ MP, Drule.MATCH MP, Tactic.MATCH MP TAC, Thm.MP, Tactic.MP TAC.

LIST_PBETA_CONV (PairRules)

LIST_PBETA_CONV : conv

Synopsis
Performs an iterated paired beta-conversion.

Description
The conversion LIST_PBETA_CONV maps terms of the form

(\p1 p2 ... pn. t) q1 q2 ... qn

to the theorems of the form

|- (\p1 p2 ... pn. t) q1 q2 ... qn = t[q1/p1][q2/p2] ... [qn/pn]

where t[qi/pi] denotes the result of substituting qi for all free occurrences of pi in t,
after renaming sufficient bound variables to avoid variable capture.

Failure
LIST_PBETA_CONV tm fails if tm does not have the form (\p1 ... pn. t) q1 ... qn for n

greater than 0.

Example

526 CHAPTER 1. ENTRIES

- LIST_PBETA_CONV (Term ‘(\(a,b) (c,d) . a + b + c + d) (1,2) (3,4)‘);

> val it = |- (\(a,b) (c,d). a + b + c + d) (1,2) (3,4) = 1 + 2 + 3 + 4 : thm

See also
Drule.LIST BETA CONV, PairRules.PBETA CONV, Conv.BETA RULE, Tactic.BETA TAC,

PairRules.RIGHT PBETA, PairRules.RIGHT LIST PBETA, PairRules.LEFT PBETA,

PairRules.LEFT LIST PBETA.

list_ss (bossLib)

list_ss : simpset

Synopsis
Simplification set for lists.

Description
The simplification set list_ss is a version of arith_ss enhanced for the theory of
lists. The following rewrites are currently used to augment those already present from
arith_ss:

|- (!l. APPEND [] l = l) /\

!l1 l2 h. APPEND (h::l1) l2 = h::APPEND l1 l2

|- (!l1 l2 l3. (APPEND l1 l2 = APPEND l1 l3) = (l2 = l3)) /\

!l1 l2 l3. (APPEND l2 l1 = APPEND l3 l1) = (l2 = l3)

|- (!l. EL 0 l = HD l) /\ !l n. EL (SUC n) l = EL n (TL l)

|- (!P. EVERY P [] = T) /\ !P h t. EVERY P (h::t) = P h /\ EVERY P t

|- (FLAT [] = []) /\ !h t. FLAT (h::t) = APPEND h (FLAT t)

|- (LENGTH [] = 0) /\ !h t. LENGTH (h::t) = SUC (LENGTH t)

|- (!f. MAP f [] = []) /\ !f h t. MAP f (h::t) = f h::MAP f t

|- (!f. MAP2 f [] [] = []) /\

!f h1 t1 h2 t2.

MAP2 f (h1::t1) (h2::t2) = f h1 h2::MAP2 f t1 t2

|- (!x. MEM x [] = F) /\ !x h t. MEM x (h::t) = (x = h) \/ MEM x t

|- (NULL [] = T) /\ !h t. NULL (h::t) = F

|- (REVERSE [] = []) /\ !h t. REVERSE (h::t) = APPEND (REVERSE t) [h]

|- (SUM [] = 0) /\ !h t. SUM (h::t) = h + SUM t

|- !h t. HD (h::t) = h

|- !h t. TL (h::t) = t

list thm database 527

|- !l1 l2 l3. APPEND l1 (APPEND l2 l3) = APPEND (APPEND l1 l2) l3

|- !l. ~NULL l ==> (HD l::TL l = l)

|- !a0 a1 a0’ a1’. (a0::a1 = a0’::a1’) = (a0 = a0’) /\ (a1 = a1’)

|- !l1 l2. LENGTH (APPEND l1 l2) = LENGTH l1 + LENGTH l2

|- !l f. LENGTH (MAP f l) = LENGTH l

|- !f l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2)

|- !a1 a0. ~(a0::a1 = [])

|- !a1 a0. ~([] = a0::a1)

|- !l f. ((MAP f l = []) = (l = [])) /\

(([] = MAP f l) = (l = []))

|- !l. APPEND l [] = l

|- !l x. ~(l = x::l) /\ ~(x::l = l)

|- (!v f. case v f [] = v) /\

!v f a0 a1. case v f (a0::a1) = f a0 a1

|- (!l1 l2. ([] = APPEND l1 l2) = (l1 = []) /\ (l2 = [])) /\

!l1 l2. (APPEND l1 l2 = []) = (l1 = []) /\ (l2 = [])

|- (ZIP ([][]) = []) /\

!x1 l1 x2 l2. ZIP (x1::l1,x2::l2) = (x1,x2)::ZIP (l1,l2)

|- (UNZIP [] = ([],[])) /\

!x l. UNZIP (x::l) = (FST x::FST (UNZIP l),SND x::SND (UNZIP l))

|- !P l1 l2. EVERY P (APPEND l1 l2) = EVERY P l1 /\ EVERY P l2

|- !P l1 l2. EXISTS P (APPEND l1 l2) = EXISTS P l1 \/ EXISTS P l2

|- !e l1 l2. MEM e (APPEND l1 l2) = MEM e l1 \/ MEM e l2

|- (!x. LAST [x] = x) /\ !x y z. LAST (x::y::z) = LAST (y::z)

|- (!x. FRONT [x] = []) /\ !x y z. FRONT (x::y::z) = x::FRONT (y::z)

|- (!f e. FOLDL f e [] = e) /\

!f e x l. FOLDL f e (x::l) = FOLDL f (f e x) l

|- (!f e. FOLDR f e [] = e) /\

!f e x l. FOLDR f e (x::l) = f x (FOLDR f e l)

See also
BasicProvers.RW TAC, BasicProvers.SRW TAC, simpLib.SIMP TAC, simpLib.SIMP CONV,

simpLib.SIMP RULE, BasicProvers.bool ss, bossLib.std ss, bossLib.arith ss.

list_thm_database (listLib)

list_thm_database: unit -> {{Aux_thms: thm list, Fold_thms: thm list}}

528 CHAPTER 1. ENTRIES

Synopsis
Returns the theorems known by LIST_CONV.

Description
The conversion LIST_CONV uses a database of theorems relating to system list constants.
These theorems fall into two categories: definitions of list operators in terms of FOLDR
and FOLDL; and auxiliary theorems about the base element and step functions in those
definitions. list_thm_database provides a means of inspecting the database.

A call to list_thm_database() returns a pair of lists. The first element of the pair
contains the known fold definitions. The second contains the known auxiliary theorems.

The following is an example of a fold definition in the database:

|- !l. SUM l = FOLDR $+ 0 l

Here $+ is the step function and 0 is the base element of the definition. Definitions are
initially held for the following system operators: APPEND, FLAT, LENGTH, NULL, REVERSE,
MAP, FILTER, ALL_EL, SUM, SOME_EL, IS_EL, AND_EL, OR_EL, PREFIX, SUFFIX, SNOC and FLAT

combined with REVERSE.
The following is an example of an auxiliary theorem:

|- MONOID $+ 0

Auxiliary theorems stored include monoid, commutativity, associativity, binary function
commutativity, left identity and right identity theorems.

Failure
Never fails.

See also
listLib.LIST CONV, listLib.set list thm database, listLib.X LIST CONV.

listDB (DB)

listDB : unit -> data list

Synopsis
All theorems, axioms, and definitions in the currently loaded theory segments.

Description
An invocation listDB() returns everything that has been stored in all theory segments
currently loaded.

Example

LT CONV 529

- length (listDB());

> val it = 736 : int

See also
DB.thy, DB.theorems, DB.definitions, DB.axioms, DB.find, DB.match.

LT_CONV (reduceLib)

LT_CONV : conv

Synopsis
Proves result of less-than ordering on two numerals.

Description
If m and n are both numerals (e.g. 0, 1, 2, 3,...), then LT_CONV "m < n" returns the
theorem:

|- (m < n) = T

if the natural number denoted by m is less than that denoted by n, or

|- (m < n) = F

otherwise.

Failure
LT_CONV tm fails unless tm is of the form "m < n", where m and n are numerals.

Example

#LT_CONV "0 < 12";;

|- 0 < 12 = T

#LT_CONV "13 < 13";;

|- 13 < 13 = F

#LT_CONV "25 < 12";;

|- 25 < 12 = F

530 CHAPTER 1. ENTRIES

map2 (Lib)

map2 : (’a -> ’b -> ’c) -> ’a list -> ’b list -> ’c list

Synopsis
Maps a function over two lists to create one new list.

Description
map2 f [x1,...,xn] [y1,...,yn] returns [f x1 y1,...,f xn yn].

Failure
Fails if the two lists are of different lengths. Also fails if any f xi yi fails.

Example

- map2 (curry op+) [1,2,3] [3,2,1];

> val it = [4, 4, 4] : int list

See also
Lib.itlist, Lib.rev itlist, Lib.itlist2, Lib.rev itlist2.

MAP2_CONV (listLib)

MAP2_CONV : conv -> conv

Synopsis
Compute the result of mapping a binary function down two lists.

Description
The function MAP2_CONV is a conversion for computing the result of mapping a binary
function f:ty1->ty2->ty3 down two lists --‘[l11;...;l1n]‘-- whose elements are of
type ty1 and --‘[l21;...;l2n]‘-- whose elements are of type ty2. The lengths of
the two lists must be identical. The first argument to MAP2_CONV is expected to be a
conversion that computes the result of applying the function f to a pair of corresponding
elements of these lists. When applied to a term --‘f l1i l2i‘--, this conversion should
return a theorem of the form |- (f l1i l2i) = ri, where ri is the result of applying
the function f to the elements l1i and l2i.

Given an appropriate conv, the conversion MAP2_CONV conv takes a term of the form
--‘MAP2 f [l11;...;dl2tn] [l21;...;l2n]‘-- and returns the theorem

MAP CONV 531

|- MAP2 f [l11;...;l1n] [l21;...;l2n] = [r1;...;rn]

where conv (--‘f l1i l2i‘--) returns |- (f l1i l2i) = ri for i from 1 to n.

Example
The following is a very simple example in which the corresponding elements from the
two lists are summed to form the resulting list:

- load_library_in_place num_lib;

- MAP2_CONV Num_lib.ADD_CONV (--‘MAP2 $+ [1;2;3] [1;2;3]‘--);

|- MAP2 $+ [1;2;3] [1;2;3] = [2;4;6]

Failure
MAP2_CONV conv fails if applied to a term not of the form described above. An application
of MAP2_CONV conv to a term --‘MAP2 f [l11;...;l1n] [l21;...;l2n]‘-- fails unless for
all i where 1<=i<=n evaluating conv (--‘f l1i l2i‘--) returns |- (f l1i l2i) = ri for
some ri.

See also
listLib.MAP CONV.

MAP_CONV (listLib)

MAP_CONV : conv -> conv

Synopsis
Compute the result of mapping a function down a list.

Description
The function MAP_CONV is a parameterized conversion for computing the result of map-
ping a function f:ty1->ty2 down a list --‘[t1;...;tn]‘-- of elements of type ty1. The
first argument to MAP_CONV is expected to be a conversion that computes the result of
applying the function f to an element of this list. When applied to a term --‘f ti‘--,
this conversion should return a theorem of the form |- (f ti) = ri, where ri is the
result of applying the function f to the element ti.

Given an appropriate conv, the conversion MAP_CONV conv takes a term of the form
--‘MAP f [t1;...;tn]‘-- to the theorem

|- MAP f [t1;...;tn] = [r1;...;rn]

532 CHAPTER 1. ENTRIES

where conv (--‘f ti‘--) returns |- (f ti) = ri for i from 1 to n.

Example
The following is a very simple example in which no computation is done for applications
of the function being mapped down a list:

- MAP_CONV ALL_CONV (--‘MAP SUC [1;2;1;4]‘--);

|- MAP SUC[1;2;1;4] = [SUC 1;SUC 2;SUC 1;SUC 4]

The result just contains applications of SUC, since the supplied conversion ALL_CONV does
no evaulation.

We now construct a conversion that maps SUC n for any numeral n to the numeral
standing for the successor of n:

- fun SUC_CONV tm =

let val n = string_to_int(#Name(dest_const(rand tm)))

val sucn = mk_const{{Name =int_to_string(n+1), Ty=(==‘:num‘==)}}

in

SYM (num_CONV sucn)

end;

SUC_CONV = - : conv

The result is a conversion that inverts num_CONV:

- num_CONV (--‘4‘--);

|- 4 = SUC 3

- SUC_CONV (--‘SUC 3‘--);

|- SUC 3 = 4

The conversion SUC_CONV can then be used to compute the result of mapping the succes-
sor function down a list of numerals:

- MAP_CONV SUC_CONV (--‘MAP SUC [1;2;1;4]‘--);

|- MAP SUC[1;2;1;4] = [2;3;2;5]

Failure
MAP_CONV conv fails if applied to a term not of the form --‘MAP f [t1;...;tn]‘--. An
application of MAP_CONV conv to a term --‘MAP f [t1;...;tn]‘-- fails unless for all ti
in the list [t1;...;tn], evaluating conv (--‘f ti‘--) returns |- (f ti) = ri for some
ri.

MAP EVERY 533

MAP_EVERY (Tactical)

MAP_EVERY : ((* -> tactic) -> * list -> tactic)

Synopsis
Sequentially applies all tactics given by mapping a function over a list.

Description
When applied to a tactic-producing function f and an operand list [x1;...;xn], the
elements of which have the same type as f’s domain type, MAP_EVERY maps the function
f over the list, producing a list of tactics, then applies these tactics in sequence as in the
case of EVERY. The effect is:

MAP_EVERY f [x1;...;xn] = (f x1) THEN ... THEN (f xn)

If the operand list is empty, then MAP_EVERY has no effect.

Failure
The application of MAP_EVERY to a function and operand list fails iff the function fails
when applied to any element in the list. The resulting tactic fails iff any of the resulting
tactics fails.

Example
A convenient way of doing case analysis over several boolean variables is:

MAP_EVERY BOOL_CASES_TAC ["var1:bool";...;"varn:bool"]

See also
Tactical.EVERY, Tactical.FIRST, Tactical.MAP FIRST, Tactical.THEN.

MAP_FIRST (Tactical)

MAP_FIRST : ((’a -> tactic) -> ’a list -> tactic)

Synopsis
Applies first tactic that succeeds in a list given by mapping a function over a list.

534 CHAPTER 1. ENTRIES

Description
When applied to a tactic-producing function f and an operand list [x1,...,xn], the
elements of which have the same type as f’s domain type, MAP_FIRST maps the function
f over the list, producing a list of tactics, then tries applying these tactics to the goal
till one succeeds. If f(xm) is the first to succeed, then the overall effect is the same as
applying f(xm). Thus:

MAP_FIRST f [x1,...,xn] = (f x1) ORELSE ... ORELSE (f xn)

Failure
The application of MAP_FIRST to a function and tactic list fails iff the function does when
applied to any of the elements of the list. The resulting tactic fails iff all the resulting
tactics fail when applied to the goal.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.MAP EVERY, Tactical.ORELSE.

mapfilter (Lib)

mapfilter : (’a -> ’b) -> ’a list -> ’b list

Synopsis
Applies a function to every element of a list, returning a list of results for those elements
for which application succeeds.

Failure
If f x raises Interrupt for some element x of l, then mapfilter f l fails.

Example

- mapfilter hd [[1,2,3],[4,5],[],[6,7,8],[]];

> val it = [1, 4, 6] : int list

See also
Lib.filter.

match (DB)

match : string list -> term -> data list

match 535

Synopsis
Attempt to find matching theorems in the specified theories.

Description
An invocation DB.match [s1,...,sn] M collects all theorems, definitions, and axioms of
the theories designated by s1,...,sn that have a subterm that matches M. If there are no
matches, the empty list is returned.

The strings s1,...,sn should be a subset of the currently loaded theory segments. The
string "-" may be used to designate the current theory segment. If the list of theories is
empty, then all currently loaded theories are searched.

Failure
Never fails.

Example

- DB.match ["bool","pair"] (Term ‘(a = b) = c‘);

<<HOL message: inventing new type variable names: ’a>>

> val it =

[(("bool", "EQ_CLAUSES"),

(|- !t.((T = t) = t) /\ ((t = T) = t) /\

((F = t) = ~t) /\ ((t = F) = ~t), Db.Thm)),

(("bool", "EQ_EXPAND"),

(|- !t1 t2. (t1 = t2) = t1 /\ t2 \/ ~t1 /\ ~t2, Db.Thm)),

(("bool", "EQ_IMP_THM"),

(|- !t1 t2. (t1 = t2) = (t1 ==> t2) /\ (t2 ==> t1), Db.Thm)),

(("bool", "EQ_SYM_EQ"), (|- !x y. (x = y) = (y = x), Db.Thm)),

(("bool", "FUN_EQ_THM"), (|- !f g. (f = g) = !x. f x = g x, Db.Thm)),

(("bool", "OR_IMP_THM"), (|- !A B. (A = B \/ A) = B ==> A, Db.Thm)),

(("bool", "REFL_CLAUSE"), (|- !x. (x = x) = T, Db.Thm)),

(("pair", "CLOSED_PAIR_EQ"),

(|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b), Db.Thm)),

(("pair", "CURRY_ONE_ONE_THM"),

(|- (CURRY f = CURRY g) = (f = g), Db.Thm)),

(("pair", "PAIR_EQ"), (|- ((x,y) = (a,b)) = (x = a) /\ (y = b), Db.Thm)),

(("pair", "UNCURRY_ONE_ONE_THM"),

(|- (UNCURRY f = UNCURRY g) = (f = g), Db.Thm))] :

((string * string) * (thm * class)) list

Comments
The notion of matching is a restricted version of higher-order matching.

536 CHAPTER 1. ENTRIES

Uses
For locating theorems when doing interactive proof.

See also
DB.matcher, DB.matchp, DB.find, DB.theorems, Db.thy, Db.listDB.

match (hol88Lib)

match : term -> term -> (term * term) list * (hol_type * hol_type) list

Synopsis
Finds instantiations to match one term to another.

Description
When applied to two terms, match_term attempts to find a set of type and term instan-
tiations for the first term (only) to make it equal the second. If it succeeds, it returns
the instantiations in the form of a pair containing a hol88 term substitution and a hol88
type substitution. If the first term represents the conclusion of a theorem, the returned
instantiations are of the appropriate form to be passed to INST_TY_TERM.

Failure
Fails if the term cannot be matched by one-way instantiation.

Comments
Note that INST_TY_TERM may still fail (when a variable that is instantiated occurs free in
the theorem’s assumptions).

Superseded by Term.match_term.

See also
Term.match term.

MATCH_ABBREV_TAC (Q)

Q.MATCH_ABBREV_TAC : term quotation -> tactic

Synopsis
Introduces abbreviations by matching a pattern against the goal statement.

MATCH ACCEPT TAC 537

Description
When applied to the goal (asl, w), the tactic Q.MATCH_ABBREV_TAC q parses the quota-
tion q in the context of the goal, producing a term to use as a pattern. The tactic then
attempts a (first order) match of the pattern against the term w. Variables that occur
in both the pattern and the goal are treated as “local constants”, and will not acquire
instantiations.

For each variable v in the pattern that has not been treated as a local constant, there
will be a instantiation term t, such that the substitution pattern[v1 |-> t1, v2 |-> t2, ...]

produces w. The effect of the tactic is to then perform abbreviations in the goal, replac-
ing each t with the corresponding v, and adding assumptions of the form Abbrev(v = t)

to the goal.

Failure
MATCH_ABBREV_TAC fails if the pattern provided does not match the goal, or if variables
from the goal are used in the pattern in ways that make the pattern fail to type-check.

Example
If the current goal is

?- (n + 10) * y <= 42315 /\ (!x y. x < y ==> f x < f y)

then applying the tactic Q.MATCH_ABBREV_TAC ‘X <= Y /\ P‘ results in the goal

Abbrev(X = (n + 10) * y),

Abbrev(Y = 42315),

Abbrev(P = !x y. x < y ==> f x < f y)

?-

X <= Y /\ P

See also
Q.ABBREV TAC, Q.HO MATCH ABBREV TAC.

MATCH_ACCEPT_TAC (Tactic)

MATCH_ACCEPT_TAC : thm_tactic

Synopsis
Solves a goal which is an instance of the supplied theorem.

538 CHAPTER 1. ENTRIES

Description
When given a theorem A’ |- t and a goal A ?- t’ where t can be matched to t’ by
instantiating variables which are either free or universally quantified at the outer level,
including appropriate type instantiation, MATCH_ACCEPT_TAC completely solves the goal.

A ?- t’

========= MATCH_ACCEPT_TAC (A’ |- t)

Unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has a conclusion which is instantiable to match that of the goal.

Example
The following example shows variable and type instantiation at work. We can use the
polymorphic list theorem HD:

HD = |- !h t. HD(CONS h t) = h

to solve the goal:

?- HD [1;2] = 1

simply by:

MATCH_ACCEPT_TAC HD

See also
Tactic.ACCEPT TAC.

MATCH_ASSUM_ABBREV_TAC (Q)

Q.MATCH_ASSUM_ABBREV_TAC : term quotation -> tactic

Synopsis
Introduces abbreviations by matching a pattern against an assumption.

Description
When applied to the goal (asl, w), the tactic Q.MATCH_ASSUM_ABBREV_TAC q parses the
quotation q in the context of the goal, producing a term to use as a pattern. The tactic

MATCH ASSUM RENAME TAC 539

then attempts a (first order) match of the pattern against each term in asl, stopping on
the first matching assumption a. Variables that occur in both the pattern and the goal
are treated as “local constants”, and will not acquire instantiations.

For each variable v in the pattern that has not been treated as a local constant, there
will be a instantiation term t, such that the substitution pattern[v1 |-> t1, v2 |-> t2, ...]

produces a. The effect of the tactic is to then perform abbreviations in the goal, replac-
ing each t with the corresponding v, and adding assumptions of the form Abbrev(v = t)

to the goal.

Failure
MATCH_ABBREV_TAC fails if the pattern provided does not match any assumption, or if
variables from the goal are used in the pattern in ways that make the pattern fail to
type-check.

Comments
This tactic improves on the following tedious workflow: Q.PAT_ASSUM pat MP_TAC,
Q.MATCH_ABBREV_TAC ‘pat ==> X‘, Q.UNABBREV_TAC ‘X‘, STRIP_TAC.

See also
Q.MATCH ABBREV TAC, Q.MATCH ASSUM RENAME TAC.

MATCH_ASSUM_RENAME_TAC (Q)

Q.MATCH_ASSUM_RENAME_TAC : term quotation -> string list -> tactic

Synopsis
Replaces selected terms with new variables by matching a pattern against an assump-
tion.

Description
When applied to the goal (asl, w), the tactic Q.MATCH_ASSUM_RENAME_TAC q ls parses the
quotation q in the context of the goal, producing a term to use as a pattern. The tactic
then attempts a (first order) match of the pattern against each term in asl, stopping on
the first matching assumption a.

For each variable v in the pattern, there will be an instantiation term t, such that the
substitution pattern[v1 |-> t1, v2 |-> t2, ...] produces a. The effect of the tactic is
to then replace each t with the corresponding v, yielding a new goal. The list ls is of
exceptions: if a variable v’s name appears in ls, then no replacement of v for t is made.

540 CHAPTER 1. ENTRIES

Failure
MATCH_ASSUM_RENAME_TAC fails if the pattern provided does not match any assumption,
or if variables from the goal are used in the pattern in ways that make the pattern fail
to type-check.

Example
If the current goal is

(f x = Pair C’’ C0’) ?- (f C’’ = f C0’)

then applying the tactic Q.MATCH_ASSUM_RENAME_TAC ‘X = Pair c1 c2‘ ["X"] results in
the goal

(f x = Pair c1 c2) ?- (f c1 = f c2)

Comments
This tactic improves on the following tedious workflow: Q.PAT_ASSUM pat MP_TAC,
Q.MATCH_ABBREV_TAC ‘pat ==> X‘, Q.UNABBREV_TAC ‘X‘, markerLib.RM_ALL_ABBREVS_TAC,
STRIP_TAC.

See also
Q.MATCH RENAME TAC.

MATCH_MP (Drule)

MATCH_MP : thm -> thm -> thm

Synopsis
Modus Ponens inference rule with automatic matching.

Description
When applied to theorems A1 |- !x1...xn. t1 ==> t2 and A2 |- t1’, the inference
rule MATCH_MP matches t1 to t1’ by instantiating free or universally quantified variables
in the first theorem (only), and returns a theorem A1 u A2 |- !xa..xk. t2’, where t2’

is a correspondingly instantiated version of t2. Polymorphic types are also instantiated
if necessary.

Variables free in the consequent but not the antecedent of the first argument theorem
will be replaced by variants if this is necessary to maintain the full generality of the
theorem, and any which were universally quantified over in the first argument theorem
will be universally quantified over in the result, and in the same order.

MATCH MP TAC 541

A1 |- !x1..xn. t1 ==> t2 A2 |- t1’

-------------------------------------- MATCH_MP

A1 u A2 |- !xa..xk. t2’

Failure
Fails unless the first theorem is a (possibly repeatedly universally quantified) implication
whose antecedent can be instantiated to match the conclusion of the second theorem,
without instantiating any variables which are free in A1, the first theorem’s assumption
list.

Example
In this example, automatic renaming occurs to maintain the most general form of the
theorem, and the variant corresponding to z is universally quantified over, since it was
universally quantified over in the first argument theorem.

- val ith = (GENL [Term ‘x:num‘, Term ‘z:num‘]

o DISCH_ALL

o AP_TERM (Term ‘$+ (w + z)‘))

(ASSUME (Term ‘x:num = y‘));

> val ith = |- !x z. (x = y) ==> (w + z + x = w + z + y) : thm

- val th = ASSUME (Term ‘w:num = z‘);

> val th = [w = z] |- w = z : thm

- MATCH_MP ith th;

> val it = [w = z] |- !z’. w’ + z’ + w = w’ + z’ + z : thm

See also
Thm.EQ MP, Tactic.MATCH MP TAC, Thm.MP, Tactic.MP TAC,

ConseqConv.CONSEQ REWRITE CONV.

MATCH_MP_TAC (Tactic)

MATCH_MP_TAC : thm_tactic

Synopsis
Reduces the goal using a supplied implication, with matching.

Description
When applied to a theorem of the form

542 CHAPTER 1. ENTRIES

A’ |- !x1...xn. s ==> !y1...ym. t

MATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t’ is a substitution
and/or type instance of t to the corresponding instance of s. Any variables free in s but
not in t will be existentially quantified in the resulting subgoal:

A ?- !v1...vi. t’

====================== MATCH_MP_TAC (A’ |- !x1...xn. s ==> !y1...tm. t)

A ?- ?z1...zp. s’

where z1, ..., zp are (type instances of) those variables among x1, ..., xn that do not
occur free in t. Note that this is not a valid tactic unless A’ is a subset of A.

Failure
Fails unless the theorem is an (optionally universally quantified) implication whose con-
sequent can be instantiated to match the goal. The generalized variables v1, ..., vi must
occur in s’ in order for the conclusion t of the supplied theorem to match t’.

See also
Thm.EQ MP, Drule.MATCH MP, Thm.MP, Tactic.MP TAC, ConseqConv.CONSEQ CONV TAC.

MATCH_RENAME_TAC (Q)

Q.MATCH_RENAME_TAC : term quotation -> string list -> tactic

Synopsis
Replaces selected terms with new variables by matching a pattern against the goal state-
ment.

Description
When applied to the goal (asl, w), the tactic Q.MATCH_RENAME_TAC q ls parses the quo-
tation q in the context of the goal, producing a term to use as a pattern. The tactic then
attempts a (first order) match of the pattern against the term w.

For each variable v in the pattern, there will be an instantiation term t, such that the
substitution pattern[v1 |-> t1, v2 |-> t2, ...] produces w. The effect of the tactic is
to then replace each t with the corresponding v, yielding a new goal. The list ls is of
exceptions: if a variable v’s name appears in ls, then no replacement of v for t is made.

Failure
MATCH_RENAME_TAC fails if the pattern provided does not match the goal, or if variables
from the goal are used in the pattern in ways that make the pattern fail to type-check.

match term 543

Example
If the current goal is

?- (f x = Pair C’’ C0’) ==> (f C’’ = f C0’)

then applying the tactic Q.MATCH_RENAME_TAC ‘(f x = Pair c1 c2) ==> X‘ ["X"] results
in the goal

?- (f x = Pair c1 c2) ==> (f c1 = f c2)

Comments
This tactic is equivalent to first applying Q.MATCH_ABBREV_TAC q, then applying Q.RM_ABBREV_TAC ‘v‘

for each v in q whose name is not in ls.

See also
Q.MATCH ABBREV TAC, Q.MATCH ASSUM RENAME TAC.

match_term (Term)

match_term : term -> term -> (term,term) subst * (hol_type,hol_type) subst

Synopsis
Finds instantiations to match one term to another.

Description
An application match_term M N attempts to find a set of type and term instantiations for
M to make it alpha-convertible to N. If match_term succeeds, it returns the instantiations
in the form of a pair containing a term substitution and a type substitution. In particular,
if match_term pat ob succeeds in returning a value (S,T), then

aconv (subst S (inst T pat)) ob.

Failure
Fails if the term cannot be matched by one-way instantiation.

Example
The following shows how match_term could be used to match the conclusion of a theo-
rem to a term.

544 CHAPTER 1. ENTRIES

- val th = REFL (Term ‘x:’a‘);

val th = |- x = x : thm

- match_term (concl th) (Term ‘1 = 1‘);

val it = ([{redex = ‘x‘, residue = ‘1‘}],

[{redex = ‘:’a‘, residue = ‘:num‘}])

: term subst * hol_type subst

- INST_TY_TERM it th;

val it = |- 1 = 1

Comments
For instantiating theorems PART_MATCH is usually easier to use.

See also
Type.match type, Drule.INST TY TERM, Drule.PART MATCH.

match_terml (Term)

match_terml

: hol_type list -> term set -> term -> term

-> (term,term) subst * (hol_type,hol_type) subst

Synopsis
Match two terms while restricting some instantiations.

Description
An invocation match_terml avoid_tys avoid_tms pat ob (tmS,tyS), if it does not raise
an exception, returns a pair of substitutions (S,T) such that

aconv (subst S (inst T pat)) ob.

The arguments avoid_tys and avoid_tms specify type and term variables in pat that are
not allowed to become redexes in S and T.

Failure
match_terml will fail if no S and T meeting the above requirements can be found. If a
match (S,T) between pat and ob can be found, but elements of avoid_tys would appear

match type 545

as redexes in T or elements of avoid_tms would appear as redexes in S, then match_terml

will also fail.

Example

- val (S,T) = match_terml [] empty_varset

(Term ‘\x:’a. x = f (y:’b)‘)

(Term ‘\a. a = ~p‘);

> val S = [{redex = ‘(f :’b -> ’a)‘, residue = ‘$~‘},

{redex = ‘(y :’b)‘, residue = ‘(p :bool)‘}] : ...

val T = [{redex = ‘:’b‘, residue = ‘:bool‘},

{redex = ‘:’a‘, residue = ‘:bool‘}] : ...

- match_terml [alpha] empty_varset (* forbid instantiation of ’a *)

(Term ‘\x:’a. x = f (y:’b)‘)

(Term ‘\a. a = ~p‘);

! Uncaught exception:

! HOL_ERR

- match_terml [] (HOLset.add(empty_varset,mk_var("y",beta)))

(Term ‘\x:’a. x = f (y:’b)‘)

(Term ‘\a. a = ~p‘);

! Uncaught exception:

! HOL_ERR

See also
Term.match term, Term.raw match, Term.subst, Term.inst, Type.match typel,

Type.type subst.

match_type (Type)

match_type : hol_type -> hol_type -> hol_type subst

Synopsis
Calculates a substitution theta such that instantiating the first argument with theta

equals the second argument.

Description
If match_type ty1 ty2 succeeds, then

546 CHAPTER 1. ENTRIES

type_subst (match_type ty1 ty2) ty1 = ty2

Failure
If no such substitution can be found.

Example

- match_type alpha (Type‘:num‘);

> val it = [{redex = ‘:’a‘, residue = ‘:num‘}] : hol_type subst

- let val patt = Type‘:(’a -> bool) -> ’b‘

val ty = Type‘:(num -> bool) -> bool‘

in

type_subst (match_type patt ty) patt = ty

end;

> val it = true : bool

- match_type (alpha --> alpha)

(ind --> bool);

! Uncaught exception:

! HOL_ERR

See also
Term.match term, Type.type subst.

match_typel (Type)

match_typel : hol_type list -> hol_type -> hol_type

-> (hol_type, hol_type) subst

Synopsis
Match types with restrictions.

Description
An invocation match_typel away pat ty matches pat to ty in the same way as match_type,
but prohibits any of the type variables in away from being instantiated. In effect, the

matcher 547

elements of away, although type variables, are treated as constants in pat during the
matching process.

Failure
An invocation of match_typel away pat ty will fail if match_type pat ty would fail. It
will also fail if match_type pat ty would succeed giving a substitution [{redex_1,residue_1},...,{redex_n,residue_n}]

where one or more of the redex_i are members of away.

Example
In the first example, we perform a normal match operation

- match_typel [] (alpha --> beta --> gamma)

(bool --> ind --> delta);

> val it = [{redex = ‘:’c‘, residue = ‘:’d‘},

{redex = ‘:’b‘, residue = ‘:ind‘},

{redex = ‘:’a‘, residue = ‘:bool‘}] : ...

Now we require that gamma, although a type variable in the pattern, not be instantiable.
In the first try, the match succeeds because ’c is mapped only to itself. In the second, it
fails because an association is made between ’c and ’d.

- match_typel [gamma] (alpha --> beta --> gamma)

(bool --> ind --> gamma);

> val it = [{redex = ‘:’b‘, residue = ‘:ind‘},

{redex = ‘:’a‘, residue = ‘:bool‘}] : ...

- match_typel [gamma] (alpha --> beta --> gamma)

(bool --> ind --> delta);

! Uncaught exception:

! HOL_ERR

Comments
The use of away allows matching to take account of type variables that are ’frozen’ (by
occurring in the hypotheses of a theorem, for example). This allows certain fruitless
proof attempts to be avoided at the matching stage.

See also
Type.match type, Term.match term., HolKernel.ho match term, Type.type subst.

matcher (DB)

matcher : (term -> term -> ’a) -> string list -> term -> data list

548 CHAPTER 1. ENTRIES

Synopsis
All theory elements matching a given term.

Description
An invocation matcher pm [thy1,...,thyn] M collects all elements of the theory seg-
ments thy1,...,thyn that have a subterm N such that pm M does not fail (raise an excep-
tion) when applied to N. Thus matcher potentially traverses all subterms of all theorems
in all the listed theories in its search for ‘matches’.

If the list of theory segments is empty, then all currently loaded segments are exam-
ined. The string "-" may be used to designate the current theory segment.

Failure
Never fails, but may return an empty list.

Example

- DB.matcher match_term ["relation"] (Term ‘P \/ Q‘);

> val it =

[(("relation", "RC_def"), (|- !R x y. RC R x y = (x = y) \/ R x y, Def)),

(("relation", "RTC_CASES1"),

(|- !R x y. RTC R x y = (x = y) \/ ?u. R x u /\ RTC R u y, Thm)),

(("relation", "RTC_CASES2"),

(|- !R x y. RTC R x y = (x = y) \/ ?u. RTC R x u /\ R u y, Thm)),

(("relation", "RTC_TC_RC"),

(|- !R x y. RTC R x y ==> RC R x y \/ TC R x y, Thm)),

(("relation", "TC_CASES1"),

(|- !R x z. TC R x z ==> R x z \/ ?y. R x y /\ TC R y z, Thm)),

(("relation", "TC_CASES2"),

(|- !R x z. TC R x z ==> R x z \/ ?y. TC R x y /\ R y z, Thm))] :

((string * string) * (thm * class)) list

- DB.matcher (ho_match_term [] empty_varset) [] (Term ‘?x. P x \/ Q x‘);

<<HOL message: inventing new type variable names: ’a>>

> val it =

[(("arithmetic", "ODD_OR_EVEN"),

(|- !n. ?m. (n = SUC (SUC 0) * m) \/ (n = SUC (SUC 0) * m + 1), Thm)),

(("bool", "EXISTS_OR_THM"),

(|- !P Q. (?x. P x \/ Q x) = (?x. P x) \/ ?x. Q x, Thm)),

(("bool", "LEFT_OR_EXISTS_THM"),

(|- !P Q. (?x. P x) \/ Q = ?x. P x \/ Q, Thm)),

(("bool", "RIGHT_OR_EXISTS_THM"),

matchp 549

(|- !P Q. P \/ (?x. Q x) = ?x. P \/ Q x, Thm)),

(("sum", "IS_SUM_REP"),

(|- !f.

IS_SUM_REP f =

?v1 v2.

(f = (\b x y. (x = v1) /\ b)) \/ (f = (\b x y. (y = v2) /\ ~b)),

Def))] : ((string * string) * (thm * class)) list

Comments
Usually, pm will be a pattern-matcher, but it need not be.

See also
DB.match, DB.apropos, DB.matchp, DB.find.

matchp (DB)

matchp : (thm -> bool) -> string list -> data list

Synopsis
All theory elements satisfying a predicate.

Description
An invocation matchp P [thy1,...,thyn] collects all elements of the theory segments
thy1,...,thyn that P holds of. If the list of theory segments is empty, then all currently
loaded segments are examined. The string "-" may be used to designate the current
theory segment.

Failure
Fails if P fails when applied to a theorem in one of the theories being searched.

Example
The following query returns all unconditional rewrite rules in the theory pair.

- matchp (is_eq o snd o strip_forall o concl) ["pair"];

> val it =

[(("pair", "CLOSED_PAIR_EQ"),

(|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b), Thm)),

(("pair", "COMMA_DEF"), (|- !x y. (x,y) = ABS_prod (MK_PAIR x y), Def)),

550 CHAPTER 1. ENTRIES

(("pair", "CURRY_DEF"), (|- !f x y. CURRY f x y = f (x,y), Def)),

(("pair", "CURRY_ONE_ONE_THM"), (|- (CURRY f = CURRY g) = (f = g), Thm)),

(("pair", "CURRY_UNCURRY_THM"), (|- !f. CURRY (UNCURRY f) = f, Thm)),

(("pair", "ELIM_PEXISTS"),

(|- (?p. P (FST p) (SND p)) = ?p1 p2. P p1 p2, Thm)),

(("pair", "ELIM_PFORALL"),

(|- (!p. P (FST p) (SND p)) = !p1 p2. P p1 p2, Thm)),

(("pair", "ELIM_UNCURRY"),

(|- !f. UNCURRY f = (\x. f (FST x) (SND x)), Thm)),

(("pair", "EXISTS_PROD"), (|- (?p. P p) = ?p_1 p_2. P (p_1,p_2), Thm)),

(("pair", "FORALL_PROD"), (|- (!p. P p) = !p_1 p_2. P (p_1,p_2), Thm)),

(("pair", "FST"), (|- !x y. FST (x,y) = x, Thm)),

(("pair", "IS_PAIR_DEF"),

(|- !P. IS_PAIR P = ?x y. P = MK_PAIR x y, Def)),

(("pair", "LAMBDA_PROD"),

(|- !P. (\p. P p) = (\(p1,p2). P (p1,p2)), Thm)),

(("pair", "LET2_RAND"),

(|- !P M N. P (let (x,y) = M in N x y) = (let (x,y) = M in P (N x y)),

Thm)),

(("pair", "LET2_RATOR"),

(|- !M N b. (let (x,y) = M in N x y) b = (let (x,y) = M in N x y b),

Thm)),

(("pair", "LEX_DEF"),

(|- !R1 R2. R1 LEX R2 = (\(s,t) (u,v). R1 s u \/ (s = u) /\ R2 t v),

Def)),

(("pair", "MK_PAIR_DEF"),

(|- !x y. MK_PAIR x y = (\a b. (a = x) /\ (b = y)), Def)),

(("pair", "PAIR"), (|- !x. (FST x,SND x) = x, Def)),

(("pair", "pair_case_def"), (|- case = UNCURRY, Def)),

(("pair", "pair_case_thm"), (|- case f (x,y) = f x y, Thm)),

(("pair", "PAIR_EQ"), (|- ((x,y) = (a,b)) = (x = a) /\ (y = b), Thm)),

(("pair", "PAIR_MAP"),

(|- !f g p. (f ## g) p = (f (FST p),g (SND p)), Def)),

(("pair", "PAIR_MAP_THM"),

(|- !f g x y. (f ## g) (x,y) = (f x,g y), Thm)),

(("pair", "PEXISTS_THM"), (|- !P. (?x y. P x y) = ?(x,y). P x y, Thm)),

(("pair", "PFORALL_THM"), (|- !P. (!x y. P x y) = !(x,y). P x y, Thm)),

(("pair", "RPROD_DEF"),

(|- !R1 R2. RPROD R1 R2 = (\(s,t) (u,v). R1 s u /\ R2 t v), Def)),

(("pair", "SND"), (|- !x y. SND (x,y) = y, Thm)),

max print depth 551

(("pair", "UNCURRY"), (|- !f v. UNCURRY f v = f (FST v) (SND v), Def)),

(("pair", "UNCURRY_CURRY_THM"), (|- !f. UNCURRY (CURRY f) = f, Thm)),

(("pair", "UNCURRY_DEF"), (|- !f x y. UNCURRY f (x,y) = f x y, Thm)),

(("pair", "UNCURRY_ONE_ONE_THM"),

(|- (UNCURRY f = UNCURRY g) = (f = g), Thm)),

(("pair", "UNCURRY_VAR"),

(|- !f v. UNCURRY f v = f (FST v) (SND v), Thm))]

: ((string * string) * (thm * class)) list

See also
DB.match, DB.matcher, DB.apropos, DB.find.

max_print_depth (Globals)

max_print_depth : int ref

Synopsis
Sets depth bound on prettyprinting.

Description
The reference variable max_print_depth is used to define the maximum depth of print-
ing for the pretty printer. If the number of blocks (an internal notion used by the
prettyprinter) becomes greater than the value set by max_print_depth then the blocks
are abbreviated by the holophrast By default, the value of max_print_depth is ~1.
This is interpreted to mean ‘print everything’.

Failure
Never fails.

Example
To change the maximum depth setting to 10, the command will be:

- max_print_depth := 10;

> val it = () : unit

The theorem numeralTheory.numeral_distrib then prints as follows:

552 CHAPTER 1. ENTRIES

- numeralTheory.numeral_distrib;

> val it =

|- (!n. 0 + n = n) /\ (!n. n + 0 = n) /\

(!n m. NUMERAL n + NUMERAL m = NUMERAL (iZ (n + m))) /\

(!n. 0 * n = 0) /\ (!n. n * 0 = 0) /\

(!n m. * = NUMERAL (... * ...)) /\

(!n. ... - ... = 0) /\ (!n. ... = ...) /\ (!...) /\ ... /\ ...

: thm

measureInduct_on (bossLib)

measureInduct_on : term quotation -> tactic

Synopsis
Perform complete induction with a supplied measure function.

Description
If q parses into a well-typed term M N, an invocation measureInduct_on q begins a proof
by induction, using M to map N into a number. The term N should occur free in the
current goal.

Failure
If M N does not parse into a term or if N does not occur free in the current goal.

Example
Suppose we wish to prove P (APPEND l1 l2) by induction on the length of l1. Then
measureInduct_on ‘LENGTH ll‘ yields the goal

{ !y. LENGTH y < LENGTH l1 ==> P (APPEND y l2) } ?- P (APPEND l1 l2)

See also
bossLib.completeInduct on, bossLib.Induct, bossLib.Induct on.

mem (Lib)

mem : ’’a -> ’’a list -> bool

merge 553

Synopsis
Tests whether a list contains a certain member.

Description
An invocation mem x [x1,...,xn] returns true if some xi in the list is equal to x. Other-
wise it returns false.

Failure
Never fails.

Comments
Note that the type of the members of the list must be an SML equality type. If set
operations on a non-equality type are desired, use the ‘op ’ variants, which take an
equality predicate as an extra argument.

A high-performance implementation of finite sets may be found in structure HOLset.

See also
Lib.op mem, Lib.insert, Lib.tryfind, Lib.exists, Lib.all, Lib.assoc,

Lib.rev assoc.

merge (Tag)

merge : tag -> tag -> tag

Synopsis
Combine two tags into one.

Description
When two theorems interact via inference, their tags are merged. This propagates to
the new theorem the fact that either or both were constructed via shortcut.

Failure
Never fails.

Example

- Tag.merge (Tag.read "foo") (Tag.read "bar");

> val it = Kerneltypes.TAG(["bar", "foo"], []) : tag

- Tag.merge it (Tag.read "foo");

> val it = Kerneltypes.TAG(["bar", "foo"], []) : tag

554 CHAPTER 1. ENTRIES

Comments
Although it is not harmful to use this entrypoint, there is little reason to, since the merge
operation is only used inside the HOL kernel.

See also
Tag.read, Thm.mk oracle thm, Thm.tag.

MESG_outstream (Feedback)

MESG_outstream : TextIO.outstream ref

Synopsis
Reference to output stream used when printing HOL_MESG

Description
The value of reference cell MESG_outstream controls where HOL_MESG prints its argument.

The default value of MESG_outstream is TextIO.stdOut.

Example

- val ostrm = TextIO.openOut "foo";

> val ostrm = <outstream> : outstream

- MESG_outstream := ostrm;

> val it = () : unit

- HOL_MESG "Nattering nabobs of negativity.";

> val it = () : unit

- TextIO.closeOut ostrm;

> val it = () : unit

- val istrm = TextIO.openIn "foo";

> val istrm = <instream> : instream

- print (TextIO.inputAll istrm);

<<HOL message: Nattering nabobs of negativity.>>

MESG to string 555

See also
Feedback, Feedback.HOL MESG, Feedback.ERR outstream, Feedback.WARNING outstream,

Feedback.emit MESG.

MESG_to_string (Feedback)

MESG_to_string : (string -> string) ref

Synopsis
Alterable function for formatting HOL_MESG

Description
MESG_to_string is a reference to a function for formatting the argument to an applica-
tion of HOL_MESG.

The default value of MESG_to_string is format_MESG.

Example

- fun alt_MESG_report s = String.concat["Dear HOL user: ", s, "\n"];

- MESG_to_string := alt_MESG_report;

- HOL_MESG "Hi there."

Dear HOL user: Hi there.

> val it = () : unit

See also
Feedback, Feedback.HOL MESG, Feedback.format MESG, Feedback.ERR to string,

Feedback.WARNING to string.

MESON_TAC (mesonLib)

MESON_TAC : thm list -> tactic

556 CHAPTER 1. ENTRIES

Synopsis
Performs first order proof search to prove the goal, using the given theorems as addi-
tional assumptions in the search.

Description
MESON_TAC performs first order proof using the model elimination algorithm. This algo-
rithm is semi-complete for pure first order logic. It makes special provision for handling
polymorphic and higher-order values, and often this is sufficient. It does not handle
conditional expressions at all, and these should be eliminated before MESON_TAC is ap-
plied.
MESON_TAC works by first converting the problem instance it is given into an internal

format where it can do proof search efficiently, without having to do proof search at the
level of HOL inference. If a proof is found, this is translated back into applications of
HOL inference rules, proving the goal.

The feedback given by MESON_TAC is controlled by the level of the integer reference
variable mesonLib.chatting. At level zero, nothing is printed. At the default level of
one, a line of dots is printed out as the proof progresses. At all other values for this
variable, MESON_TAC is most verbose. If the proof is progressing quickly then it is often
worth waiting for it to go quite deep into its search. Once a proof slows down, it is not
usually worth waiting for it after it has gone through a few (no more than five or six)
levels. (At level one, a “level” is represented by the printing of a single dot.)

Failure
MESON_TAC fails if it searches to a depth equal to the contents of the reference variable
mesonLib.max_depth (set to 30 by default, but changeable by the user) without finding
a proof. Shouldn’t fail otherwise.

Uses
MESON_TAC can only progress the goal to a successful proof of the (whole) goal or not at
all. In this respect it differs from tactics such as simplification and rewriting. Its ability
to solve existential goals and to make effective use of transitivity theorems make it a
particularly powerful tactic.

Comments
The assumptions of a goal are ignored when MESON_TAC is applied. To include assump-
tions use ASM_MESON_TAC.

See also
mesonLib.ASM MESON TAC, mesonLib.GEN MESON TAC.

MK ABS 557

MK_ABS (Drule)

MK_ABS : (thm -> thm)

Synopsis
Abstracts both sides of an equation.

Description
When applied to a theorem A |- !x. t1 = t2, whose conclusion is a universally quan-
tified equation, MK_ABS returns the theorem A |- \x. t1 = \x. t2.

A |- !x. t1 = t2

-------------------------- MK_ABS

A |- (\x. t1) = (\x. t2)

Failure
Fails unless the theorem is a (singly) universally quantified equation.

See also
Thm.ABS, Drule.HALF MK ABS, Thm.MK COMB, Drule.MK EXISTS.

mk_abs (Term)

mk_abs : term * term -> term

Synopsis
Constructs an abstraction.

Description
mk_abs (v, t) returns the lambda abstraction \v. t. All free occurrences of v in t

thereby become bound.

Failure
Fails if v is not a variable.

See also
Term.dest abs, Term.is abs, boolSyntax.list mk abs, Term.mk var, Term.mk const,

Term.mk comb.

558 CHAPTER 1. ENTRIES

mk_anylet (pairSyntax)

mk_anylet : (term * term) list * term -> term

Synopsis
Constructs arbitrary let terms.

Description
The invocation mk_anylet ([(a1,b1),...,(an,bn)],N) returns a term of the form
‘LET P Q‘, which will prettyprint as let a1 = b1 and ... and an = bn in N. The in-
ternal representation is equal to

LET (...(LET (\an ...\a1. N) bn) ...) b1

Each ai can be a varstruct (a single variable or a tuple of variables), or a function
variable applied to a sequence of varstructs. In the usual case, only a single binding is
made, i.e., mk_anylet ([(a,b)],N), and the result is equal to LET (\a. N) b.

Failure
Fails if the type of any ai is not equal to the type of the corresponding bi.

Example

- strip_comb (mk_anylet ([(Term‘x‘, Term‘M‘)], Term‘N x‘));

> val it = (‘LET‘, [‘\x. N x‘, ‘M‘]) : term * term list

- mk_anylet ([(‘‘f (x:’a,y:’b):’c‘‘, ‘‘M:’c‘‘), (‘‘g (z:’c) :’d‘‘, ‘‘N:’d‘‘)],

‘‘g (f (a:’a,b:’b):’c):’d‘);

> val it = ‘‘let f (x,y) = M and g z = N in g (f (a,b))‘‘ : term

Uses
Programming that involves manipulation of term syntax.

See also
boolSyntax.mk let, boolSyntax.dest let, boolSyntax.is let,

pairSyntax.list mk anylet, pairSyntax.dest anylet.

mk_arb (boolSyntax)

mk_arb : hol_type -> term

mk bool case 559

Synopsis
Creates a type instance of the ARB constant.

Description
For any HOL type ty, mk_arb ty creates a type instance of the ARB constant.

Failure
Never fails.

Comments
ARB is a constant of type ’a. It is sometimes used for creating pseudo-partial functions.

See also
boolSyntax.dest arb, boolSyntax.is arb, boolSyntax.arb.

mk_bool_case (boolSyntax)

mk_bool_case : term * term * term -> term

Synopsis
Constructs a case expression over bool.

Description
mk_bool_case M1 M2 b returns bool_case M1 M2 b. The prettyprinter displays this as
case b of T -> M1 || F -> M2. The bool_case constant may be thought of as a pattern-
matching version of the conditional.

Failure
Fails if b is not of type bool. Also fails if M1 and M2 do not have the same type.

Example

- mk_bool_case (Term‘f x‘,Term‘b:’b‘,Term‘x:bool‘);

<<HOL message: inventing new type variable names: ’a, ’b>>

> val it = ‘case x of T -> f x || F -> b‘ : term

See also
boolSyntax.dest bool case, boolSyntax.is bool case.

560 CHAPTER 1. ENTRIES

mk_comb (Term)

mk_comb : term * term -> term

Synopsis
Constructs a combination (function application).

Description
mk_comb (t1,t2) returns the combination t1 t2.

Failure
Fails if t1 does not have a function type, or if t1 has a function type, but its domain does
not equal the type of t2.

Example

- mk_comb (neg_tm,T);

> val it = ‘~T‘ : term

- mk_comb(T, T) handle e => Raise e;

Exception raised at Term.mk_comb:

incompatible types

See also
Term.dest comb, Term.is comb, Term.list mk comb, Term.mk var, Term.mk const,

Term.mk abs.

MK_COMB (Thm)

MK_COMB : thm * thm -> thm

Synopsis
Proves equality of combinations constructed from equal functions and operands.

Description
When applied to theorems A1 |- f = g and A2 |- x = y, the inference rule MK_COMB

returns the theorem A1 u A2 |- f x = g y.

MK COMB TAC 561

A1 |- f = g A2 |- x = y

--------------------------- MK_COMB

A1 u A2 |- f x = g y

Failure
Fails unless both theorems are equational and f and g are functions whose domain types
are the same as the types of x and y respectively.

See also
Thm.AP TERM, Thm.AP THM, Tactic.MK COMB TAC.

MK_COMB_TAC (Tactic)

MK_COMB_TAC : tactic

Synopsis
Breaks an equality between applications into two equality goals: one for the functions,
and other for the arguments.

Description
MK_COMB_TAC reduces a goal of the form A ?- f x = g y to the goals A ?- f = g and
A ?- x = y.

A ?- f x = g y

=========================== MK_COMB_TAC

A ?- f = g, A ?- x = y

Failure
Fails unless the goal is equational, with both sides being applications.

See also
Thm.MK COMB, Thm.AP TERM, Thm.AP THM, Tactic.AP THM TAC.

mk_cond (boolSyntax)

mk_cond : term * term * term -> term

562 CHAPTER 1. ENTRIES

Synopsis
Constructs a conditional term.

Description
mk_cond(t,t1,t2) constructs an application COND t t1 t2. This is rendered by the pret-
typrinter as if t then t1 else t2.

Failure
Fails if t is not of type bool or if t2 and t2 are of different types.

Comments
The prettyprinter can be trained to print if t then t1 else t2 as t => t1 | t2.

See also
boolSyntax.dest cond, boolSyntax.is cond.

mk_conj (boolSyntax)

mk_conj : term * term -> term

Synopsis
Constructs a conjunction.

Description
mk_conj(t1, t2) returns the term t1 /\ t2.

Failure
Fails if t1 and t2 do not both have type bool.

See also
boolSyntax.dest conj, boolSyntax.is conj, boolSyntax.list mk conj,

boolSyntax.strip conj.

mk_cons (listSyntax)

mk_cons : {hd :term, tl :term} -> term

mk const 563

Synopsis
Constructs a CONS pair.

Description
mk_cons{hd = t, tl = ‘[t1;...;tn]‘} returns ‘[t;t1;...;tn]‘.

Failure
Fails if tl is not a list or if hd is not of the same type as the elements of the list.

See also
listSyntax.dest cons, listSyntax.is cons, listSyntax.mk list,

listSyntax.dest list, listSyntax.is list.

mk_const (Term)

mk_const : string * hol_type -> term

Synopsis
Constructs a constant.

Description
If n is a string that has been previously declared to be a constant with type ty and
and ty1 is an instance of ty, then mk_const(n,ty1) returns the specified instance of the
constant.

(A type ty1 is an ’instance’ of a type ty2 when match_type ty2 ty1 does not fail.)
Note, however, that constants with the same name (and type) may be declared in

different theories. If two theories having constants with the same name n are in the an-
cestry of the current theory, then mk_const(n,ty) will issue a warning before arbitrarily
selecting which constant to construct. In such situations, mk_thy_const allows one to
specify exactly which constant to use.

Failure
Fails if n is not the name of a known constant, or if ty is not an instance of the type that
the constant has in the signature.

Example

- mk_const ("T", bool);

> val it = ‘T‘ : term

564 CHAPTER 1. ENTRIES

- mk_const ("=", bool --> bool --> bool);

> val it = ‘$=‘ : term

- try mk_const ("test", bool);

Exception raised at Term.mk_const:

test not found

The following example shows a new constant being introduced that has the same
name as the standard equality of HOL. Then we attempt to make an instance of that
constant.

- new_constant ("=", bool --> bool --> bool);

> val it = () : unit

- mk_const("=", bool --> bool --> bool);

<<HOL warning: Term.mk_const: "=": more than one possibility>>

> val it = ‘$=‘ : term

See also
Term.mk thy const, Term.dest const, Term.is const, Term.mk var, Term.mk comb,

Term.mk abs, Type.match type.

mk_disj (boolSyntax)

mk_disj : term * term -> term

Synopsis
Constructs a disjunction.

Description
If t1 and t2 are terms, both of type bool, then mk_disj(t1,t2) returns the term t1 \/ t2.

Failure
Fails if t1 or t2 does not have type bool.

See also
boolSyntax.dest disj, boolSyntax.is disj, boolSyntax.list mk disj,

boolSyntax.strip disj.

mk eq 565

mk_eq (boolSyntax)

mk_eq : term * term -> term

Synopsis
Constructs an equation.

Description
mk_eq(t1, t2) returns the term t1 = t2.

Failure
Fails if the type of t1 is not equal to that of t2.

See also
boolSyntax.dest eq, boolSyntax.is eq.

mk_exists (boolSyntax)

mk_exists : term * term -> term

Synopsis
Term constructor for existential quantification.

Description
If v is a variable and t is a term of type bool, then mk_exists (v,t) returns the term
?v. t.

Failure
Fails if v is not a variable or if t is not of type bool.

See also
boolSyntax.dest exists, boolSyntax.is exists, boolSyntax.list mk exists,

boolSyntax.strip exists.

MK_EXISTS (Drule)

MK_EXISTS : (thm -> thm)

566 CHAPTER 1. ENTRIES

Synopsis
Existentially quantifies both sides of a universally quantified equational theorem.

Description
When applied to a theorem A |- !x. t1 = t2, the inference rule MK_EXISTS returns the
theorem A |- (?x. t1) = (?x. t2).

A |- !x. t1 = t2

-------------------------- MK_EXISTS

A |- (?x. t1) = (?x. t2)

Failure
Fails unless the theorem is a singly universally quantified equation.

See also
Thm.AP TERM, Drule.EXISTS EQ, Thm.GEN, Drule.LIST MK EXISTS, Drule.MK ABS.

mk_exists1 (boolSyntax)

mk_exists1 : term * term -> term

Synopsis
Term constructor for unique existence.

Description
If v is a variable and t is a term of type bool, then mk_exists1 (v,t) returns the term
?!v. t.

Failure
Fails if v is not a variable or if t is not of type bool.

See also
boolSyntax.dest exists1, boolSyntax.is exists1.

mk_forall (boolSyntax)

mk_forall : term * term -> term

mk HOL ERR 567

Synopsis
Term constructor for universal quantification.

Description
If v is a variable and t is a term of type bool, then mk_forall (v,t) returns the term
!v. t.

Failure
Fails if v is not a variable or if t is not of type bool.

See also
boolSyntax.dest forall, boolSyntax.is forall, boolSyntax.list mk forall,

boolSyntax.strip forall.

mk_HOL_ERR (Feedback)

mk_HOL_ERR : string -> string -> string -> exn

Synopsis
Creates an application of HOL_ERR.

Description
mk_HOL_ERR provides a curried interface to the standard HOL_ERR exception; experience
has shown that this is often more convenient.

Failure
Never fails.

Example

- mk_HOL_ERR "Module" "function" "message"

> val it = HOL_ERR : exn

- print(exn_to_string it);

Exception raised at Module.function:

message

> val it = () : unit

568 CHAPTER 1. ENTRIES

See also
Feedback, Feedback.HOL ERR, Feedback.error record.

mk_icomb (boolSyntax)

term * term -> term

Synopsis
Forms an application term, possibly instantiating the function.

Description
A call to mk_icomb(f,x) checks to see if the term f, which must have function type, can
have any of its type variables instantiated so as to make the domain of the function
match the type of x. If so, then the call returns the application of the instantiated f to x.

Failure
Fails if there is no way to instantiate the function term to make its domain match the
argument’s type.

Example
Note how both the S combinator and the argument have type variables invented for
them when the two quotations are parsed.

- val t = mk_icomb(‘‘S‘‘, ‘‘\n:num b. (n,b)‘‘);

<<HOL message: inventing new type variable names: ’a, ’b, ’c>>

<<HOL message: inventing new type variable names: ’a>>

> val t = ‘‘S (\n b. (n,b))‘‘ : term

The resulting term t has only the type variable :’a left after instantiation.

- type_of t;

> val it = ‘‘:(num -> ’a) -> num -> num # ’a‘‘ : hol_type

This term can now be combined with an argument and the final type variable instanti-
ated:

- mk_icomb(t, ‘‘ODD‘‘);

> val it = ‘‘S (\n b. (n,b)) ODD‘‘ : term

- type_of it;

> val it = ‘‘:num -> num # bool‘‘;

mk imp 569

Attempting to use mk_comb above results in immediate error because it requires domain
and arguments types to be identical:

- mk_comb(‘‘S‘‘, ‘‘\n:num b. (n,b)‘‘) handle e => Raise e;

<<HOL message: inventing new type variable names: ’a, ’b, ’c>>

<<HOL message: inventing new type variable names: ’a>>

Exception raised at Term.mk_comb:

incompatible types

! Uncaught exception:

! HOL_ERR

See also
boolSyntax.list mk icomb, Term.mk comb.

mk_imp (boolSyntax)

mk_imp : term * term -> term

Synopsis
Constructs an implication.

Description
If t1 and t2 are terms of type bool, then mk_imp(t1,t2) constructs the term t1 ==> t2.

Failure
Fails if t1 and t2 are not both of type bool.

See also
boolSyntax.dest imp, boolSyntax.dest imp only, boolSyntax.is imp,

boolSyntax.is imp only, boolSyntax.list mk imp.

mk_istream (Lib)

mk_istream : (’a -> ’a) -> ’a -> (’a -> ’b) -> (’a,’b) istream

570 CHAPTER 1. ENTRIES

Synopsis
Create a stream.

Description
An application mk_istream trans init proj creates an imperative stream of elements.
The stream is generated by applying trans to the state. The first element in the stream
state is init. The value of the state is obtained by applying proj.

Failure
If an application of trans or proj fails when applied to the state.

Example
The following creates a stream of distinct strings.

- mk_istream (fn x => x+1) 0 (concat "gsym" o int_to_string);

> val it = <istream> : (int, string) istream

Comments
It is aesthetically unpleasant that the underlying implementation type is visible.

See any book on ML programming to see how functional streams are built.

See also
Lib.next, Lib.state, Lib.reset.

mk_let (boolSyntax)

mk_let : term * term -> term

Synopsis
Constructs a let term.

Description
The invocation mk_let (M,N) returns the term ‘LET M N‘. If M is of the form \x.t then
the result will be pretty-printed as let x = N in t. Since LET M N is defined to be M N,
one can think of a let-expression as a suspended beta-redex (if that helps).

Failure
Fails if the types of M and N are such that LET M N is not well-typed, i.e., the type of M

must be a function type, and the type of N must equal the domain of the type of M.

Example

mk list 571

- mk_let(Term‘\x. x \/ x‘, Term‘Q /\ R‘);

> val it = ‘let x = Q /\ R in x \/ x‘ : term

Comments
let expressions may be nested.

Pairing can also be used in the let syntax, provided pairTheory has been loaded. The
library pairLib provides support for manipulating ‘paired’ lets.

See also
boolSyntax.dest let, boolSyntax.is let, pairSyntax.mk anylet.

mk_list (listSyntax)

mk_list : {els : term list, ty : hol_type} -> term

Synopsis
Constructs an object-level (HOL) list from an ML list of terms.

Description
mk_list{els = [t1, ..., tn], ty = ty} returns [t1;...;tn]:ty list. The type argu-
ment is required so that empty lists can be constructed.

Failure
Fails if any term in the list is not of the type specified as the second argument.

See also
listSyntax.dest list, listSyntax.is list, listSyntax.mk cons,

listSyntax.dest cons, listSyntax.is cons.

mk_neg (boolSyntax)

mk_neg : (term -> term)

Synopsis
Constructs a negation.

572 CHAPTER 1. ENTRIES

Description
mk_neg "t" returns "~t".

Failure
Fails with mk_neg unless t is of type bool.

See also
boolSyntax.dest neg, boolSyntax.is neg.

mk_numeral (numSyntax)

mk_numeral : Arbnum.num -> term

Synopsis
Convert ML bignum value to HOL numeral.

Description
An invocation mk_numeral n, where n is an ML value of type Arbnum.num returns the
corrresponding HOL term.

Example

- Arbnum.fromString "1234";

> val it = 1234 : num

- mk_numeral it;

> val it = ‘‘1234‘‘ : term

Failure
Never fails.

See also
numSyntax.dest numeral, numSyntax.is numeral.

mk_oracle_thm (Thm)

mk_oracle_thm : string -> term list * term -> thm

mk oracle thm 573

Synopsis
Construct a theorem without proof, and tag it.

Description
In principle, nearly every theorem of interest can be proved in HOL by using only the
axioms and primitive rules of inference. The use of ML to orchestrate larger inference
steps from the primitives, along with support in HOL for goal-directed proof, consider-
ably eases the task of formal proof. Nearly every theorem of interest can therefore be
produced as the end product of a chain of primitive inference steps, and HOL imple-
mentations strive to keep this purity.

However, it is occasionally useful to interface HOL with trusted external tools that
also produce, in some sense, theorems that would be derivable in HOL. It is clearly a
burden to require that HOL proofs accompany such theorems so that they can be (re-
)derived in HOL. In order to support greater interoperation of proof tools, therefore,
HOL provides the notion of a ‘tagged’ theorem.

A tagged theorem is manufactured by invoking mk_oracle_thm tag (A,w), where A is
a list of HOL terms of type bool, and w is also a HOL term of boolean type. No proof
is done; the sequent is merely injected into the type of theorems, and the tag value is
attached to it. The result is the theorem A |- w.

The tag value stays with the theorem, and it propagates in a hereditary fashion to
any theorem derived from the tagged theorem. Thus, if one examines a theorem with
Thm.tag and finds that it has no tag, then the theorem has been derived purely by proof
steps in the HOL logic. Otherwise, shortcuts have been taken, and the external tools,
also known as ‘oracles’, used to make the shortcuts are signified by the tags.

Failure
If some element of A does not have type bool, or w does not have type bool, or the tag
string doesn’t represent a valid tag (which occurs if it is the string "DISK_THM", or if it is
a string containing unprintable characters).

Example
In the following, we construct a tag and then make a rogue rule of inference.

- val tag = "SimonSays";

> val tag = "SimonSays" : string

- val SimonThm = mk_oracle_thm tag;

> val SimonThm = fn : term list * term -> thm

- val th = SimonThm ([], Term ‘!x. x‘);;

> val th = |- !x. x : thm

574 CHAPTER 1. ENTRIES

- val th1 = SPEC F th;

> val th1 = |- F : thm

- (show_tags := true; th1);

> val it = [oracles: SimonSays] [axioms:] [] |- F : thm

Tags accumulate in a manner similar to logical hypotheses.

- CONJ th1 th1;

> val it = [oracles: SimonSays] [axioms:] [] |- F /\ F : thm

- val SerenaThm = mk_oracle_thm "Serena";

> val SerenaThm = fn : term list * term -> thm

- CONJ th1 (SerenaThm ([],T));

> val it = [oracles: Serena, SimonSays] [axioms:] [] |- F /\ T : thm

Comments
It is impossible to detach a tag from a theorem.

See also
Thm.add tag, Thm.mk thm, Tag.read, Thm.tag.

MK_PABS (PairRules)

MK_PABS : (thm -> thm)

Synopsis
Abstracts both sides of an equation.

Description
When applied to a theorem A |- !p. t1 = t2, whose conclusion is a paired universally
quantified equation, MK_PABS returns the theorem A |- (\p. t1) = (\p. t2).

A |- !p. t1 = t2

-------------------------- MK_PABS

A |- (\p. t1) = (\p. t2)

mk pabs 575

Failure
Fails unless the theorem is a (singly) paired universally quantified equation.

See also
Drule.MK ABS, PairRules.PABS, PairRules.HALF MK PABS, PairRules.MK PEXISTS.

mk_pabs (pairSyntax)

mk_pabs : term * term -> term

Synopsis
Constructs a paired abstraction.

Description
If M is the tuple (v1,..(..)..,vn), and N is an arbitrary term, then mk_pabs (M,N) returns
the paired abstraction ‘\(v1,..(..)..,vn).N‘.

Failure
Fails unless M is an arbitrarily nested pair composed from variables, with no repetitions
of variables.

See also
pairSyntax.dest pabs, pairSyntax.is pabs, Term.mk abs.

MK_PAIR (PairRules)

MK_PAIR : thm -> thm -> thm

Synopsis
Proves equality of pairs constructed from equal components.

Description
When applied to theorems A1 |- a = x and A2 |- b = y, the inference rule MK_PAIR

returns the theorem A1 u A2 |- (a,b) = (x,y).

A1 |- a = x A2 |- b = y

--------------------------- MK_PAIR

A1 u A2 |- (a,b) = (x,y)

576 CHAPTER 1. ENTRIES

Failure
Fails unless both theorems are equational.

mk_pair (pairSyntax)

mk_pair : term * term -> term

Synopsis
Constructs object-level pair from a pair of terms.

Description
mk_pair (t1,t2) returns (t1,t2).

Failure
Never fails.

See also
pairSyntax.dest pair, pairSyntax.is pair, pairSyntax.list mk pair.

MK_PEXISTS (PairRules)

MK_PEXISTS : (thm -> thm)

Synopsis
Existentially quantifies both sides of a universally quantified equational theorem.

Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PEXISTS returns the
theorem A |- (?x. t1) = (?x. t2).

A |- !p. t1 = t2

-------------------------- MK_PEXISTS

A |- (?p. t1) = (?p. t2)

MK PFORALL 577

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PairRules.PEXISTS EQ, PairRules.PGEN, PairRules.LIST MK PEXISTS,

PairRules.MK PABS.

MK_PFORALL (PairRules)

MK_PFORALL : (thm -> thm)

Synopsis
Universally quantifies both sides of a universally quantified equational theorem.

Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PFORALL returns the
theorem A |- (!x. t1) = (!x. t2).

A |- !p. t1 = t2

-------------------------- MK_PFORALL

A |- (!p. t1) = (!p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PairRules.PFORALL EQ, PairRules.LIST MK PFORALL, PairRules.MK PABS.

mk_primed_var (Term)

mk_primed_var : string * hol_type -> term

Synopsis
Primes a variable name sufficiently to make it distinct from all constants.

578 CHAPTER 1. ENTRIES

Description
When applied to a record made from a string v and a type ty, the function mk_primed_var

constructs a variable whose name consists of v followed by however many primes are
necessary to make it distinct from any constants in the current theory.

Failure
Never fails.

Example

- new_theory "wombat";

> val it = () : unit

- mk_primed_var("x", bool);

> val it = ‘x‘ : term

- new_constant("x", alpha);

> val it = () : unit

- mk_primed_var("x", bool);

> val it = ‘x’‘ : term

See also
Term.genvar, Term.variant, Globals.priming.

mk_prod (pairSyntax)

mk_prod : hol_type * hol_type -> hol_type

Synopsis
Constructs a product type from two constituent types.

Description
mk_prod(ty1, ty2) returns ty1 # t2.

Failure
Never fails.

See also
pairSyntax.is prod, pairSyntax.dest prod.

MK PSELECT 579

MK_PSELECT (PairRules)

MK_PSELECT : (thm -> thm)

Synopsis
Quantifies both sides of a universally quantified equational theorem with the choice
quantifier.

Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PSELECT returns the
theorem A |- (@x. t1) = (@x. t2).

A |- !p. t1 = t2

-------------------------- MK_PSELECT

A |- (@p. t1) = (@p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PairRules.PSELECT EQ, PairRules.MK PABS.

mk_ptree (patriciaLib)

mk_ptree : term_ptree -> term

Synopsis
Term constructor for Patricia trees.

Description
The constructor mk_ptree will return a HOL term that corresponds with the supplied ML
Patricia tree. The ML abstract data type term_ptree is defined in patriciaLib.

Failure
The conversion will fail if the terms stored in the supplied Patricia tree do not all have
the same type.

Example

580 CHAPTER 1. ENTRIES

- mk_ptree (int_ptree_of_list [(1,‘‘T‘‘), (2, ‘‘2‘‘)]);

Exception-

HOL_ERR

{message = "", origin_function = "mk_branch", origin_structure =

"HolKernel"} raised

- mk_ptree (int_ptree_of_list [(1,‘‘1‘‘), (2, ‘‘2‘‘)]);

val it = ‘‘Branch 0 0 (Leaf 1 1) (Leaf 2 2)‘‘: term

Comments
When working with large trees it is a good idea constrain term printing by setting Glob-
als.max print depth.

See also
patriciaLib.dest ptree, patriciaLib.is ptree.

mk_res_abstract (res_quanLib)

mk_res_abstract : (term # term # term) -> term

Synopsis
Term constructor for restricted abstraction.

Description
mk_res_abstract("var","P","t") returns "\var :: P . t".

Failure
Fails with mk_res_abstract if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanLib.dest res abstract, res quanLib.is res abstract.

mk_res_abstract (res_quanTools)

mk_res_abstract : ((term # term # term) -> term)

mk res exists 581

Synopsis
Term constructor for restricted abstraction.

Description
mk_res_abstract("var","P","t") returns "\var :: P . t".

Failure
Fails with mk_res_abstract if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanTools.dest res abstract, res quanTools.is res abstract.

mk_res_exists (res_quanLib)

mk_res_exists : ((term # term # term) -> term)

Synopsis
Term constructor for restricted existential quantification.

Description
mk_res_exists("var","P","t") returns "?var :: P . t".

Failure
Fails with mk_res_exists if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanLib.dest res exists, res quanLib.is res exists,

res quanLib.list mk res exists.

mk_res_exists (res_quanTools)

mk_res_exists : ((term # term # term) -> term)

Synopsis
Term constructor for restricted existential quantification.

582 CHAPTER 1. ENTRIES

Description
mk_res_exists("var","P","t") returns "?var :: P . t".

Failure
Fails with mk_res_exists if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanTools.dest res exists, res quanTools.is res exists,

res quanTools.list mk res exists.

mk_res_exists_unique (res_quanLib)

mk_res_exists_unique : (term # term # term) -> term

Synopsis
Term constructor for restricted unique existential quantification.

Description
mk_res_exists_unique ("var","P","t") returns "?!var :: P . t".

Failure
Fails with mk_res_exists_unique if the first term is not a variable or if P and t are not of
type ":bool".

See also
res quanLib.dest res exists unique, res quanLib.is res exists unique.

mk_res_forall (res_quanLib)

mk_res_forall : (term # term # term) -> term

Synopsis
Term constructor for restricted universal quantification.

Description
mk_res_forall("var","P","t") returns "!var :: P . t".

mk res forall 583

Failure
Fails with mk_res_forall if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanLib.dest res forall, res quanLib.is res forall,

res quanLib.list mk res forall.

mk_res_forall (res_quanTools)

mk_res_forall : ((term # term # term) -> term)

Synopsis
Term constructor for restricted universal quantification.

Description
mk_res_forall("var","P","t") returns "!var :: P . t".

Failure
Fails with mk_res_forall if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanTools.dest res forall, res quanTools.is res forall,

res quanTools.list mk res forall.

mk_res_select (res_quanLib)

mk_res_select : (term # term # term) -> term

Synopsis
Term constructor for restricted choice quantification.

Description
mk_res_select("var","P","t") returns "@var :: P . t".

584 CHAPTER 1. ENTRIES

Failure
Fails with mk_res_select if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanLib.dest res select, res quanLib.is res select.

mk_res_select (res_quanTools)

mk_res_select : ((term # term # term) -> term)

Synopsis
Term constructor for restricted choice quantification.

Description
mk_res_select("var","P","t") returns "@var :: P . t".

Failure
Fails with mk_res_select if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanTools.dest res select, res quanTools.is res select.

mk_select (boolSyntax)

mk_select : term * term -> term

Synopsis
Constructs a choice-term.

Description
If v is a variable and t is a term of type bool, then mk_select (v,t) returns @var. t.

Failure
Fails if v is not a variable or if t is not of type bool.

mk set 585

See also
boolSyntax.dest select, boolSyntax.is select.

mk_set (Lib)

mk_set : ’’a list -> ’’a list

Synopsis
Transforms a list into one with distinct elements.

Description
An invocation mk_set list returns a list consisting of the distinct members of list. In
particular, the result list has no repeated elements.

Failure
Never fails.

Example

- mk_set [1,1,1,2,2,2,3,3,4];

> val it = [1, 2, 3, 4] : int list

Comments
In some programming situations, it is convenient to implement sets by lists, in which
case mk_set may be helpful. However, such an implementation is only suitable for small
sets.

A high-performance implementation of finite sets may be found in structure HOLset.
ML equality types are used in the implementation of mk_set and its kin. This limits

its applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op mk set, Lib.mem, Lib.insert, Lib.union, Lib.U, Lib.set diff,

Lib.subtract, Lib.intersect, Lib.null intersection, Lib.set eq.

mk_simpset (simpLib)

simpLib.mk_simpset : ssfrag list -> simpset

586 CHAPTER 1. ENTRIES

Synopsis
Creates a simpset by combining a list of ssfrag values.

Description
This function creates a simpset value by repeatedly adding (as per the ++ operator)
simpset fragment values to the base empty_ss.

Failure
Never fails.

Uses
Creates simpsets, which are a necessary argument to any simplification function.

See also
simpLib.++, simpLib.rewrites, simpLib.SIMP CONV.

mk_state (holCheckLib)

mk_state : term -> (string,term) list -> term

Synopsis
Given the initial states and transition system of a HolCheck model, constructs a state
tuple that can be used to specify HolCheck properites.

Description
HolCheck models atomic propositions in properties as functions on the state. Thus we
need a representation of the state to specify properties. This function is used to create
such a representative. Its return value is also passed to holCheckLib.set state to ensure
that the properties and the model use the same state tuple.

See also
holCheckLib.holCheck, holCheckLib.set state.

mk_thm (Thm)

mk_thm : term list * term -> thm

mk thm 587

Synopsis
Creates an arbitrary theorem (dangerous!)

Description
The function mk_thm can be used to construct an arbitrary theorem. It is applied to a
pair consisting of the desired assumption list (possibly empty) and conclusion. All the
terms therein should be of type bool.

mk_thm([a1,...,an],c) = ({a1,...,an} |- c)

mk_thm is an application of mk_oracle_thm, and every application of it tags the resulting
theorem with MK_THM.

Failure
Fails unless all the terms provided for assumptions and conclusion are of type bool.

Example
The following shows how to create a simple contradiction:

- val falsity = mk_thm([],boolSyntax.F);

> val falsity = |- F : thm

- Globals.show_tags := true;

> val it = () : unit

- falsity;

> val it = [oracles: MK_THM] [axioms:] [] |- F : thm

Comments
Although mk_thm can be useful for experimentation or temporarily plugging gaps, its use
should be avoided if at all possible in important proofs, because it can be used to create
theorems leading to contradictions. The example above is a trivial case, but it is all too
easy to create a contradiction by asserting ‘obviously sound’ theorems.

All theorems which are likely to be needed can be derived using only HOL’s inbuilt ax-
ioms and primitive inference rules, which are provably sound (see the DESCRIPTION).
Basing all proofs, normally via derived rules and tactics, on just these axioms and infer-
ence rules gives proofs which are (apart from bugs in HOL or the underlying system)
completely secure. This is one of the great strengths of HOL, and it is foolish to sacrifice
it to save a little work.

Because of the way tags are propagated during proof, a theorem proved with the aid
of mk_thm is detectable by examining its tag.

588 CHAPTER 1. ENTRIES

See also
Theory.new axiom, Thm.mk oracle thm, Thm.tag, Globals.show tags.

mk_thy_const (Term)

mk_thy_const : {Thy:string, Name:string, Ty:hol_type} -> term

Synopsis
Constructs a constant.

Description
If n is a string that has been previously declared to be a constant with type ty in theory
thy, and ty1 is an instance of ty, then mk_thy_const{Name=n, Thy=thy, Ty=ty1} returns
the specified instance of the constant.

(A type ty1 is an ’instance’ of a type ty2 when match_type ty2 ty1 does not fail.)

Failure
Fails if n is not the name of a constant in theory thy, if thy is not in the ancestry of the
current theory, or if ty1 is not an instance of ty.

Example
- mk_thy_const {Name="T", Thy="bool", Ty=bool};

> val it = ‘T‘ : term

- try mk_thy_const {Name = "bar", Thy="foo", Ty=bool};

Exception raised at Term.mk_thy_const:

"foo$bar" not found

See also
Term.dest thy const, Term.mk const, Term.dest const, Term.is const, Term.mk var,

Term.mk comb, Term.mk abs, Type.match type.

mk_thy_type (Type)

mk_thy_type

: {Thy:string, Tyop:string, Args:hol_type list} -> hol_type

Synopsis
Constructs a type.

mk type 589

Description
If s is a string that has been previously declared to be a type with arity type n in theory
thy, and the length of tyl is equal to n, then mk_thy_type{Tyop=s, Thy=thy, Args=tyl}

returns the requested compound type.

Failure
Fails if s is not the name of a type in theory thy, if thy is not in the ancestry of the
current theory, or if n is not the length of tyl.

Example

- mk_thy_type {Tyop="fun", Thy="min", Args = [alpha,bool]};

> val it = ‘:’a -> bool‘ : hol_type

- try mk_thy_type {Tyop="bar", Thy="foo", Args = []};

Exception raised at Type.mk_thy_type:

"foo$bar" not found

Comments
In general, mk_thy_type is to be preferred over mk_type because HOL provides a fresh
namespace for each theory (mk_type is a holdover from a time when there was only one
namespace shared by all theories).

See also
Type.mk type, Type.dest thy type, Term.mk const, Term.mk thy const.

mk_type (Type)

mk_type : string * hol_type list -> hol_type

Synopsis
Constructs a compound type.

Description
mk_type(tyop,[ty1,...,tyn]) returns the HOL type (ty1,...,tyn)tyop, provided tyop

is the name of a known n-ary type constructor.

590 CHAPTER 1. ENTRIES

Failure
Fails if tyop is not the name of a known type, or if tyop is known, but the length of the
list of argument types is not equal to the arity of tyop.

Example

- mk_type ("bool",[]);

> val it = ‘:bool‘ : hol_type

- mk_type ("fun",[alpha,it]);

> val it = ‘:’a -> bool‘ : hol_type

Comments
Note that type operators with the same name (and arity) may be declared in different
theories. If two theories having type operators with the same name s are in the ancestry
of the current theory, then mk_type(s,tyl) will issue a warning before arbitrarily select-
ing which type operator to use. In such situations, it is preferable to use mk_thy_type

since it allows one to specify exactly which type operator to use.

See also
Type.mk thy type, Type.dest type, Type.mk vartype, Type.-->.

mk_var (Term)

mk_var : string * hol_type -> term

Synopsis
Constructs a variable of given name and type.

Description
If v is a string and ty is a HOL type, then mk_var(v, ty) returns a HOL variable.

Failure
Never fails.

Comments
mk_var can be used to construct variables with names which are not acceptable to the
term parser. In particular, a variable with the name of a known constant can be con-
structed using mk_var.

mk vartype 591

See also
Term.dest var, Term.is var, Term.mk const, Term.mk comb, Term.mk abs.

mk_vartype (Type)

mk_vartype : string -> hol_type

Synopsis
Constructs a type variable of the given name.

Failure
Fails if the string does not begin with ’.

Example

- mk_vartype "’giraffe";

> val it = ‘:’giraffe‘ : hol_type

- try mk_vartype "test";

Exception raised at Type.mk_vartype:

incorrect syntax

See also
Type.dest vartype, Type.is vartype, Type.mk type.

mk_word_size (wordsLib)

mk_word_size : int -> unit

Synopsis
Adds a type abbreviation and theorems for a given word length.

Description
An invocation of mk_word_size n introduces a type abbreviation for words of length n.
Theorems for dimindex(:n), dimword(:n) and INT_MIN(:n) are generated and stored.

Example

592 CHAPTER 1. ENTRIES

- mk_word_size 128

> val it = () : unit

- ‘‘:word128‘‘

> val it = ‘‘:bool[128]‘‘ : hol_type

- theorem "dimword_128"

> val it = |- dimword (:128) = 340282366920938463463374607431768211456 : thm

Comments
The type abbreviation will only print when type_pp.pp_array_types is set to false.

See also
Parse.type abbrev, wordsLib.SIZES CONV, wordsLib.SIZES ss.

mlquote (Lib)

mlquote : string -> string

Synopsis
Put quotation marks around a string.

Description
Like quote, mlquote s puts quotation marks around a string. However, it also transforms
the characters in a string so that, when printed, it would be a valid ML lexeme.

Failure
Never fails

Example

- print (quote "foo\nbar" ^ "\n");

"foo

bar"

> val it = () : unit

- print (mlquote "foo\nbar" ^ "\n");

"foo\nbar"

> val it = () : unit

MOD CONV 593

See also
Lib.quote.

MOD_CONV (reduceLib)

MOD_CONV : conv

Synopsis
Calculates by inference the remainder after dividing one numeral by another.

Description
If m and n are numerals (e.g. 0, 1, 2, 3,...), then MOD_CONV "m MOD n" returns the theorem:

|- m MOD n = s

where s is the numeral that denotes the remainder after dividing, with truncation, the
natural number denoted by m by the natural number denoted by n.

Failure
MOD_CONV tm fails unless tm is of the form "m MOD n", where m and n are numerals, or if n
denotes zero.

Example

#MOD_CONV "0 MOD 0";;

evaluation failed MOD_CONV

#MOD_CONV "0 MOD 12";;

|- 0 MOD 12 = 0

#MOD_CONV "2 MOD 0";;

evaluation failed MOD_CONV

#MOD_CONV "144 MOD 12";;

|- 144 MOD 12 = 0

#MOD_CONV "7 MOD 2";;

|- 7 MOD 2 = 1

594 CHAPTER 1. ENTRIES

monitoring (computeLib)

monitoring : (term -> bool) option ref

Synopsis
Monitoring support for evaluation

Description
The reference variable monitoring provides a simple way to view the operation of EVAL,
EVAL_RULE, and EVAL_TAC. The initial value of monitoring is NONE. If one wants to mon-
itor the expansion of a function, defined with constant c, then setting monitoring to
SOME (same_const c) will tell the system to print out the expansion of c by the evalua-
tion entrypoints. To monitor the expansions of a collection of functions, defined with
c1,...,cn, then monitoring can be set to

SOME (fn x => same_const c1 x orelse ... orelse same_const cn x)

Failure
Never fails.

Example

- val [FACT] = decls "FACT";

> val FACT = ‘FACT‘ : term

- computeLib.monitoring := SOME (same_const FACT);

- EVAL (Term ‘FACT 4‘);

FACT 4 = (if 4 = 0 then 1 else 4 * FACT (PRE 4))

FACT 3 = (if 3 = 0 then 1 else 3 * FACT (PRE 3))

FACT 2 = (if 2 = 0 then 1 else 2 * FACT (PRE 2))

FACT 1 = (if 1 = 0 then 1 else 1 * FACT (PRE 1))

FACT 0 = (if 0 = 0 then 1 else 0 * FACT (PRE 0))

> val it = |- FACT 4 = 24 : thm

See also
computeLib.RESTR EVAL CONV, Term.decls.

MP 595

MP (Thm)

MP : thm -> thm -> thm

Synopsis
Implements the Modus Ponens inference rule.

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t1, the inference rule MP returns
the theorem A1 u A2 |- t2.

A1 |- t1 ==> t2 A2 |- t1

---------------------------- MP

A1 u A2 |- t2

Failure
Fails unless the first theorem is an implication whose antecedent is the same as the
conclusion of the second theorem (up to alpha-conversion).

See also
Thm.EQ MP, Drule.LIST MP, Drule.MATCH MP, Tactic.MATCH MP TAC, Tactic.MP TAC.

MP_TAC (Tactic)

MP_TAC : thm_tactic

Synopsis
Reduces a goal to implication from a known theorem.

Description
When applied to the theorem A’ |- s and the goal A ?- t, the tactic MP_TAC reduces the
goal to A ?- s ==> t. Unless A’ is a subset of A, this is an invalid tactic.

A ?- t

============== MP_TAC (A’ |- s)

A ?- s ==> t

596 CHAPTER 1. ENTRIES

Failure
Never fails.

See also
Tactic.MATCH MP TAC, Thm.MP, Tactic.UNDISCH TAC.

MUL_CONV (reduceLib)

MUL_CONV : conv

Synopsis
Calculates by inference the product of two numerals.

Description
If m and n are numerals (e.g. 0, 1, 2, 3,...), then MUL_CONV "m * n" returns the theorem:

|- m * n = s

where s is the numeral that denotes the product of the natural numbers denoted by m

and n.

Failure
MUL_CONV tm fails unless tm is of the form "m * n", where m and n are numerals.

Example

#MUL_CONV "0 * 12";;

|- 0 * 12 = 0

#MUL_CONV "1 * 1";;

|- 1 * 1 = 1

#MUL_CONV "6 * 11";;

|- 6 * 11 = 66

NEG_DISCH (Drule)

NEG_DISCH : term -> thm -> thm

NEGATE CONV 597

Synopsis
Discharges an assumption, transforming |- s ==> F into |- ~s.

Description
When applied to a term s and a theorem A |- t, the inference rule NEG_DISCH returns
the theorem A - {s} |- s ==> t, or if t is just F, returns the theorem A - {s} |- ~s.

A |- F

-------------------- NEG_DISCH [special case]

A - {s} |- ~s

A |- t

-------------------- NEG_DISCH [general case]

A - {s} |- s ==> t

Failure
Fails unless the supplied term has type bool.

See also
Thm.DISCH, Thm.NOT ELIM, Thm.NOT INTRO.

NEGATE_CONV (Arith)

NEGATE_CONV : (conv -> conv)

Synopsis
Function for negating the operation of a conversion that proves a formula to be either
true or false.

Description
This function negates the operation of a conversion that proves a formula to be either
true or false. For example, if conv proves "t" to be equal to "T" then NEGATE_CONV conv

will prove "~t" to be "F".

Failure
Fails if the application of the conversion to the negation of the formula does not yield
either "T" or "F".

Example

598 CHAPTER 1. ENTRIES

#ARITH_CONV "!n. 0 <= n";;

|- (!n. 0 <= n) = T

#NEGATE_CONV ARITH_CONV "~(!n. 0 <= n)";;

|- ~(!n. 0 <= n) = F

#NEGATE_CONV ARITH_CONV "?n. ~(0 <= n)";;

|- (?n. ~0 <= n) = F

negation (boolSyntax)

negation : term

Synopsis
Constant denoting logical negation.

Description
The ML variable boolSyntax.negation is bound to the term bool$~.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.conditional,

boolSyntax.bool case, boolSyntax.let tm, boolSyntax.arb.

NEQ_CONV (reduceLib)

NEQ_CONV : conv

Synopsis
Proves equality or inequality of two numerals.

Description
If m and n are both numerals (e.g. 0, 1, 2, 3,...), then NEQ_CONV "m = n" returns the
theorem:

new axiom 599

|- (m = n) = T

if m and n are identical, or

|- (m = n) = F

if m and n are distinct.

Failure
NEQ_CONV tm fails unless tm is of the form "m = n", where m and n are numerals.

Example

#NEQ_CONV "12 = 12";;

|- (12 = 12) = T

#NEQ_CONV "14 = 25";;

|- (14 = 25) = F

new_axiom (Theory)

new_axiom : string * term -> thm

Synopsis
Install a new axiom in the current theory.

Description
If M is a term of type bool, a call new_axiom(name,M) creates a theorem

|- tm

and stores it away in the current theory segment under name.

Failure
Fails if the given term does not have type bool.

Example

- new_axiom("untrue", Term ‘!x. x = 1‘);

> val it = |- !x. x = 1 : thm

600 CHAPTER 1. ENTRIES

Comments
For most purposes, it is unnecessary to declare new axioms: all of classical mathematics
can be derived by definitional extension alone. Proceeding by definition is not only more
elegant, but also guarantees the consistency of the deductions made. However, there
are certain entities which cannot be modelled in simple type theory without further
axioms, such as higher transfinite ordinals.

See also
Thm.mk thm, Definition.new definition, Definition.new specification.

new_binder (boolSyntax)

new_binder : string * hol_type -> unit

Synopsis
Sets up a new binder in the current theory.

Description
A call new_binder(bnd,ty) declares a new binder bnd in the current theory. The type
must be of the form (’a -> ’b) -> ’c, because being a binder, bnd will apply to an
abstraction; for example

!x:bool. (x=T) \/ (x=F)

is actually a prettyprinting of

$! (\x. (x=T) \/ (x=F))

Failure
Fails if the type does not correspond to the above pattern.

Example

- new_theory "anorak";

() : unit

- new_binder ("!!", (bool-->bool)-->bool);;

() : unit

- Term ‘!!x. T‘;

> val it = ‘!! x. T‘ : term

new binder definition 601

See also
Theory.constants, Theory.new constant, boolSyntax.new infix,

Definition.new definition, boolSyntax.new infixl definition,

boolSyntax.new infixr definition, boolSyntax.new binder definition.

new_binder_definition (boolSyntax)

new_binder_definition : string * term -> thm

Synopsis
Defines a new constant, giving it the syntactic status of a binder.

Description
The function new_binder_definition provides a facility for making definitional exten-
sions to the current theory by introducing a constant definition. It takes a pair of argu-
ments, consisting of the name under which the resulting theorem will be saved in the
current theory segment and a term giving the desired definition. The value returned by
new_binder_definition is a theorem which states the definition requested by the user.

Let v1, ..., vn be syntactically distinct tuples constructed from the variables x1,...,xm.
A binder is defined by evaluating

new_binder_definition (name, ‘b v1 ... vn = t‘)

where b does not occur in t, all the free variables that occur in t are a subset of
x1,...,xn, and the type of b has the form (ty1->ty2)->ty3. This declares b to be a
new constant with the syntactic status of a binder in the current theory, and with the
definitional theorem

|- !x1...xn. b v1 ... vn = t

as its specification. This constant specification for b is saved in the current theory under
the name name and is returned as a theorem.

The equation supplied to new_binder_definition may optionally have any of its free
variables universally quantified at the outermost level. The constant b has binder status
only after the definition has been made.

Failure
new_binder_definition fails if t contains free variables that are not in any one of the
variable structures v1, ..., vn or if any variable occurs more than once in v1, ..., v2.
Failure also occurs if the type of b is not of the form appropriate for a binder, namely a

602 CHAPTER 1. ENTRIES

type of the form (ty1->ty2)->ty3. Finally, failure occurs if there is a type variable in v1,
..., vn or t that does not occur in the type of b.

Example
The unique-existence quantifier ?! is defined as follows.

- new_binder_definition

(‘EXISTS_UNIQUE_DEF‘,

Term‘$?! = \P:(*->bool). ($? P) /\ (!x y. ((P x) /\ (P y)) ==> (x=y))‘);

> val it = |- $?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y))) : thm

Comments
It is a common practice among HOL users to write a $ before the constant being defined
as a binder to indicate that it will have a special syntactic status after the definition is
made:

new_binder_definition(name, Term ‘$b = ... ‘);

This use of $ is not necessary; but after the definition has been made $ must, of course,
be used if the syntactic status of b needs to be suppressed.

See also
Definition.new definition, boolSyntax.new infixl definition,

boolSyntax.new infixr definition, Prim rec.new recursive definition,

TotalDefn.Define.

new_constant (Theory)

new_constant : string * hol_type -> unit

Synopsis
Declares a new constant in the current theory.

Description
A call new_constant(n,ty) installs a new constant named n in the current theory. Note
that new_constant does not specify a value for the constant, just a name and type. The
constant may have a polymorphic type, which can be used in arbitrary instantiations.

new definition 603

Failure
Never fails, but issues a warning if the name is not a valid constant name. It will
overwrite an existing constant with the same name in the current theory.

See also
Theory.constants, boolSyntax.new infix, boolSyntax.new binder,

Definition.new definition, Definition.new type definition,

Definition.new specification, Theory.new axiom,

boolSyntax.new infixl definition, boolSyntax.new infixr definition,

boolSyntax.new binder definition.

new_definition (Definition)

new_definition : string * term -> thm

Synopsis
Declare a new constant and install a definitional axiom in the current theory.

Description
The function new_definition provides a facility for definitional extensions to the cur-
rent theory. It takes a pair argument consisting of the name under which the resulting
definition will be saved in the current theory segment, and a term giving the desired def-
inition. The value returned by new_definition is a theorem which states the definition
requested by the user.

Let v_1,...,v_n be tuples of distinct variables, containing the variables x_1,...,x_m.
Evaluating new_definition (name, c v_1 ... v_n = t), where c is not already a con-
stant, declares the sequent ({},\v_1 ... v_n. t) to be a definition in the current the-
ory, and declares c to be a new constant in the current theory with this definition as its
specification. This constant specification is returned as a theorem with the form

|- !x_1 ... x_m. c v_1 ... v_n = t

and is saved in the current theory under name. Optionally, the definitional term argu-
ment may have any of its variables universally quantified.

Failure
new_definition fails if t contains free variables that are not in x_1, ..., x_m (this is equiva-
lent to requiring \v_1 ... v_n. t to be a closed term). Failure also occurs if any variable
occurs more than once in v_1, ..., v_n. Finally, failure occurs if there is a type variable
in v_1, ..., v_n or t that does not occur in the type of c.

604 CHAPTER 1. ENTRIES

Example
A NAND relation can be defined as follows.

- new_definition (

"NAND2",

Term‘NAND2 (in_1,in_2) out = !t:num. out t = ~(in_1 t /\ in_2 t)‘);

> val it =

|- !in_1 in_2 out.

NAND2 (in_1,in_2) out = !t. out t = ~(in_1 t /\ in_2 t)

: thm

See also
Definition.new specification, boolSyntax.new binder definition,

boolSyntax.new infixl definition, boolSyntax.new infixr definition,

Prim rec.new recursive definition, TotalDefn.Define.

new_infix (boolSyntax)

new_infix : string * hol_type * int -> unit

Synopsis
Declares a new infix constant in the current theory.

Description
A call new_infix ("i", ty, n) makes i a right associative infix constant in the current
theory. It has binding strength of n, the larger this number, the more tightly the infix
will attempt to “grab” arguments to its left and right. Note that the call to new_infix

does not specify the value of the constant. The constant may have a polymorphic type,
which may be arbitrarily instantiated. Like any other infix or binder, its special parse
status may be suppressed by preceding it with a dollar sign.

Comments
Infixes defined with new_infix associate to the right, i.e., A <op> B <op> C is equivalent
to A op (B <op> C). Some standard infixes, with their precedences and associativities in
the system are:

new infix 605

$, ---> 50 RIGHT

$= ---> 100 NONASSOC

$==> ---> 200 RIGHT

$\/ ---> 300 RIGHT

$/\ ---> 400 RIGHT

$>, $< ---> 450 RIGHT

$>=, $<= ---> 450 RIGHT

$+, $- ---> 500 LEFT

$*, $DIV ---> 600 LEFT

$MOD ---> 650 LEFT

$EXP ---> 700 RIGHT

$o ---> 800 RIGHT

Note that the arithmetic operators +, -, *, DIV and MOD are left associative in hol98
releases from Taupo onwards. Non-associative infixes (= above, for example) will cause
parse errors if an attempt is made to group them (e.g., x = y = z).

Failure
Fails if the name is not a valid constant name.

Example
The following shows the use of the infix and the prefix form of an infix constant. It also
shows binding resolution between infixes of different precedence.

- new_infix("orelse", Type‘:bool->bool->bool‘, 50);

val it = () : unit

- Term‘T \/ T orelse F‘;

val it = ‘T \/ T orelse F‘ : term

- --‘$orelse T F‘--;

val it = ‘T orelse F‘ : term

- dest_comb (--‘T \/ T orelse F‘--);

> val it = (‘$orelse (T \/ T)‘, ‘F‘) : term * term

See also
Parse.add infix, Theory.constants, Theory.new constant, boolSyntax.new binder,

Definition.new definition, boolSyntax.new binder definition.

606 CHAPTER 1. ENTRIES

new_infixl_definition (boolSyntax)

new_infixl_definition : string * term * int -> thm

Synopsis
Declares a new left associative infix constant and installs a definition in the current
theory.

Description
The function new_infix_definition provides a facility for definitional extensions to
the current theory. It takes a triple consisting of the name under which the result-
ing definition will be saved in the current theory segment, a term giving the desired
definition and an integer giving the precedence of the infix. The value returned by
new_infix_definition is a theorem which states the definition requested by the user.

Let v_1 and v_2 be tuples of distinct variables, containing the variables x_1,...,x_m.
Evaluating new_infix_definition (name, ix v_1 v_2 = t) declares the sequent ({},\v_1 v_2. t)

to be a definition in the current theory, and declares ix to be a new constant in the
current theory with this definition as its specification. This constant specification is
returned as a theorem with the form

|- !x_1 ... x_m. v_1 ix v_2 = t

and is saved in the current theory under (the name) name. Optionally, the definitional
term argument may have any of its variables universally quantified. The constant ix has
infix status only after the infix declaration has been processed. It is therefore necessary
to use the constant in normal prefix position when making the definition.

Failure
new_infixl_definition fails if t contains free variables that are not in either of the vari-
able structures v_1 and v_2 (this is equivalent to requiring \v_1 v_2. t to be a closed
term); or if any variable occurs more than once in v_1, v_2. It also fails if the prece-
dence level chosen for the infix is already home to parsing rules of a different form of
fixity (infixes associating in a different way, or suffixes, prefixes etc). Finally, failure
occurs if there is a type variable in v_1, ..., v_n or t that does not occur in the type of ix.

Example
The nand function can be defined as follows.

- new_infix_definition

("nand", --‘$nand in_1 in_2 = ~(in_1 /\ in_2)‘--, 500);;

> val it = |- !in_1 in_2. in_1 nand in_2 = ~(in_1 /\ in_2) : thm

new infixr definition 607

Comments
It is a common practice among HOL users to write a $ before the constant being defined
as an infix to indicate that after the definition is made, it will have a special syntactic
status; ie. to write:

new_infixl_definition("ix_DEF", Term ‘$ix m n = ... ‘)

This use of $ is not necessary; but after the definition has been made $ must, of course,
be used if the syntactic status needs to be suppressed.

In releases of hol98 past Taupo 1, new_infixl_definition and its sister new_infixr_definition
replace the old new_infix_definition, which has been superseded. Its behaviour was
to define a right associative infix, so can be freely replaced by new_infixr_definition.

See also
boolSyntax.new binder definition, Definition.new definition,

Definition.new specification, boolSyntax.new infixr definition,

Prim rec.new recursive definition, TotalDefn.Define.

new_infixr_definition (boolSyntax)

new_infixr_definition : string * term * int -> thm

Synopsis
Declares a new right associative infix constant and installs a definition in the current
theory.

Description
The function new_infixr_definition has exactly the same effect as new_infixl_definition
except that the infix constant defined will associate to the right.

See also
Definition.new definition, Definition.new specification, boolSyntax.new infix,

boolSyntax.new infixl definition.

new_recursive_definition (Prim_rec)

new_recursive_definition : {name:string, def:term, rec_axiom:thm} -> thm

Synopsis
Defines a primitive recursive function over a concrete recursive type.

608 CHAPTER 1. ENTRIES

Description
new_recursive_definition provides a facility for defining primitive recursive functions
on arbitrary concrete recursive types. name is a name under which the resulting def-
inition will be saved in the current theory segment. def is a term giving the desired
primitive recursive function definition. rec_axiom is the primitive recursion theorem for
the concrete type in question; this must be a theorem obtained from define_type. The
value returned by new_recursive_definition is a theorem which states the primitive re-
cursive definition requested by the user. This theorem is derived by formal proof from
an instance of the general primitive recursion theorem given as the second argument.

A theorem th of the form returned by define_type is a primitive recursion theorem for
an automatically-defined concrete type ty. Let C1, ..., Cn be the constructors of this type,
and let ‘(Ci vs)’ represent a (curried) application of the ith constructor to a sequence
of variables. Then a curried primitive recursive function fn over ty can be specified by
a conjunction of (optionally universally-quantified) clauses of the form:

fn v1 ... (C1 vs1) ... vm = body1 /\

fn v1 ... (C2 vs2) ... vm = body2 /\

.

.

fn v1 ... (Cn vsn) ... vm = bodyn

where the variables v1, ..., vm, vs are distinct in each clause, and where in the ith clause
fn appears (free) in bodyi only as part of an application of the form:

fn t1 ... v ... tm

in which the variable v of type ty also occurs among the variables vsi.
If tm is a conjunction of clauses, as described above, then evaluating:

new_recursive_definition{name=name, rec_axiom=th,def=tm}

automatically proves the existence of a function fn that satisfies the defining equations
supplied as the fourth argument, and then declares a new constant in the current the-
ory with this definition as its specification. This constant specification is returned as a
theorem and is saved in the current theory segment under the name name.
new_recursive_definition also allows the supplied definition to omit clauses for any

number of constructors. If a defining equation for the ith constructor is omitted, then
the value of fn at that constructor:

fn v1 ... (Ci vsi) ... vn

is left unspecified (fn, however, is still a total function).

new recursive definition 609

Failure
A call to new_recursive_definition fails if the supplied theorem is not a primitive re-
cursion theorem of the form returned by define_type; if the term argument supplied is
not a well-formed primitive recursive definition; or if any other condition for making a
constant specification is violated (see the failure conditions for new_specification).

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.

?! fn.

(!x. fn(LEAF x) = f0 x) /\

(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

new_recursive_definition can be used to define primitive recursive functions over bi-
nary trees. Suppose the value of th is this theorem. Then a recursive function Leaves,
which computes the number of leaves in a binary tree, can be defined recursively as
shown below:

- val Leaves = new_recursive_definition

{name = "Leaves",

rec_axiom = th,

def= --‘(Leaves (LEAF (x:’a)) = 1) /\

(Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))‘--};

> val Leaves =

|- (!x. Leaves (LEAF x) = 1) /\

!t1 t2. Leaves (NODE t1 t2) = Leaves t1 + Leaves t2 : thm

The result is a theorem which states that the constant Leaves satisfies the primitive-
recursive defining equations supplied by the user.

The function defined using new_recursive_definition need not, in fact, be recursive.
Here is the definition of a predicate IsLeaf, which is true of binary trees which are
leaves, but is false of the internal nodes in a binary tree:

- val IsLeaf = new_recursive_definition

{name = "IsLeaf",

rec_axiom = th,

def = --‘(IsLeaf (NODE t1 t2) = F) /\

(IsLeaf (LEAF (x:’a)) = T)‘--};

> val IsLeaf = |- (!t1 t2. IsLeaf (NODE t1 t2) = F) /\

!x. IsLeaf (LEAF x) = T : thm

610 CHAPTER 1. ENTRIES

Note that the equations defining a (recursive or non-recursive) function on binary trees
by cases can be given in either order. Here, the NODE case is given first, and the LEAF

case second. The reverse order was used in the above definition of Leaves.
new_recursive_definition also allows the user to partially specify the value of a func-

tion defined on a concrete type, by allowing defining equations for some of the con-
structors to be omitted. Here, for example, is the definition of a function Label which
extracts the label from a leaf node. The value of Label applied to an internal node is
left unspecified:

- val Label = new_recursive_definition

{name = "Label",

rec_axiom = th,

def = --‘Label (LEAF (x:’a)) = x‘--};

> val Label = |- !x. Label (LEAF x) = x : thm

Curried functions can also be defined, and the recursion can be on any argument. The
next definition defines an infix function << which expresses the idea that one tree is a
proper subtree of another.

- val _ = set_fixity ("<<", Infixl 231);

- val Subtree = new_recursive_definition

{name = "Subtree",

rec_axiom = th,

def = --‘($<< (t:’a bintree) (LEAF (x:’a)) = F) /\

($<< t (NODE t1 t2) = (t = t1) \/

(t = t2) \/

($<< t t1) \/

($<< t t2))‘--};

> val Subtree =

|- (!t x. t << LEAF x = F) /\

!t t1 t2.

t << NODE t1 t2 = (t = t1) \/ (t = t2) \/

(t << t1) \/ (t << t2) : thm

Note that the fixity of the identifier << is set independently of the definition.

See also
bossLib.Hol datatype, Prim rec.prove rec fn exists, TotalDefn.Define,

Parse.set fixity.

new specification 611

new_specification (Definition)

new_specification : string * string list * thm -> thm

Synopsis
Introduce a constant or constants satisfying a given property.

Description
The ML function new_specification implements the primitive rule of constant specifi-
cation for the HOL logic. Evaluating:

new_specification (name, ["c1",...,"cn"], |- ?x1...xn. t)

simultaneously introduces new constants named c1,...,cn satisfying the property:

|- t[c1,...,cn/x1,...,xn]

This theorem is stored, with name name, as a definition in the current theory segment.
It is also returned by the call to new_specification

Failure
new_specification fails if the theorem argument has assumptions or free variables. It
also fails if the supplied constant names c1, ..., cn are not distinct. It also fails if the
length of the existential prefix of the theorem is not at least n. Finally, failure occurs if
some ci does not contain all the type variables that occur in the term ?x1...xn. t.

Uses
new_specification can be used to introduce constants that satisfy a given property with-
out having to make explicit equational constant definitions for them. For example, the
built-in constants MOD and DIV are defined in the system by first proving the theorem:

th |- ?MOD DIV.

!n. 0 < n ==> !k. (k = (DIV k n * n) + MOD k n) /\ MOD k n < n

and then making the constant specification:

new_specification ("DIVISION", ["MOD","DIV"], th)

This introduces the constants MOD and DIV with the defining property shown above.

Comments
The introduced constants have a prefix parsing status. To alter this, use set_fixity.
Typical fixity values are Prefix, Binder, Infixl n, Infixr n, Suffix n, TruePrefix n or
Closefix.

612 CHAPTER 1. ENTRIES

See also
Definition.new definition, boolSyntax.new binder definition,

boolSyntax.new infixl definition, boolSyntax.new infixr definition,

TotalDefn.Define, Parse.set fixity.

new_theory (Theory)

new_theory : string -> unit

Synopsis
Creates a new theory segment.

Description
A theory consists of a hierarchy of named parts called ‘theory segments’. All theory
segments have a ‘theory’ of the same name associated with them consisting of the theory
segment itself together with the contents of all its ancestors. Each axiom, definition,
specification and theorem belongs to a particular theory segment.

Calling new_theory thy creates a new, and empty, theory segment having name thy.
The theory segment which was current before the call becomes a parent of the new
theory segment. The new theory therefore consists of the current theory extended with
the new theory segment. The new theory segment replaces its parent as the current
theory segment. The parent segment is exported to disk.

In the interests of interactive usability, the behaviour of new_theory has some special
cases. First, if new_theory thy is called in a situation where the current theory segment
is already called thy, then this is interpreted as the user wanting to restart the current
segment. In that case, the current segment is wiped clean (types and constants declared
in it are removed from the signature, and all definitions, theorems and axioms are
deleted) but is otherwise unchanged (it keeps the same parents, for example).

Second, if the current theory segment is empty and named "scratch", then new_theory thy

creates a new theory segment the parents of which are the parents of "scratch". (This
situation is almost never visible to users.)

Failure
A call new_theory thy fails if the name thy is unsuitable for use as a filename. In partic-
ular, it should be an alphanumeric identifier.

Failure also occurs if thy is the name of a currently loaded theory segment. In general,
all theory names, whether loaded or not, should be distinct. Moreover, the names
should be distinct even when case distinctions are ignored.

new theory 613

Example
In the following, we follow a standard progression: start HOL up and declare a new
theory segment.

- current_theory();

> val it = "scratch" : string

- parents "-";

> val it = ["list", "option"] : string list

- new_theory "foo";

<<HOL message: Created theory "foo">>

> val it = () : unit

- parents "-";

> val it = ["list", "option"] : string list

Next we make a definition, prove and store a theorem, and then change our mind about
the name of the defined constant. Restarting the current theory keeps the static theory
context fixed but clears the current segment so that we have a clean slate to work from.

- val def = new_definition("foo", Term ‘foo x = x + x‘);

> val def = |- !x. foo x = x + x : thm

val thm = Q.store_thm("foo_thm", ‘foo x = 2 * x‘,

RW_TAC arith_ss [def]);

> val thm = |- foo x = 2 * x : thm

- new_theory "foo";

<<HOL message: Restarting theory "foo">>

> val it = () : unit

val def = new_definition("twice", Term ‘twice x = x + x‘);

> val def = |- !x. twice x = x + x : thm

- curr_defs();

> val it = [("twice", |- !x. twice x = x + x)]

: (string * thm) list

Comments
The theory file in which the data of the new theory segment is ultimately stored will
have name thyTheory in the directory in which export_theory is called.

614 CHAPTER 1. ENTRIES

Uses
Modularizing large formalizations. By splitting a formalization effort into theory seg-
ments by use of new_theory, the work required if definitions, etc., need to be changed is
minimized. Only the associated segment and its descendants need be redefined.

See also
Theory.current theory, Theory.new axiom, Theory.parents, boolSyntax.new binder,

Theory.new constant, Definition.new definition, boolSyntax.new infix,

Definition.new specification, Theory.new type, DB.print theory, Theory.save thm,

Theory.export theory, Theory.after new theory.

new_type (Theory)

new_type : string * int -> unit

Synopsis
Declares a new type or type constructor.

Description
A call new_type(t,n) declares a new n-ary type constructor called t in the current theory
segment. If n is zero, this is just a new base type.

Failure
Never fails, but issues a warning if the name is not a valid type name. It will overwrite
an existing type operator with the same name in the current theory.

Example
A non-definitional version of ZF set theory might declare a new type set and start using
it as follows:

- new_theory"ZF";

<<HOL message: Created theory "ZF">>

> val it = () : unit

- new_type("set", 0);;

> val it = () : unit

- new_constant ("mem", Type‘:set->set->bool‘);

> val it = () : unit

new type definition 615

- new_axiom("EXT", Term‘(!z. mem z x = mem z y) ==> (x = y)‘);

> val it = |- (!z. mem z x = mem z y) ==> (x = y) : thm

See also
Theory.types, Theory.new constant, Theory.new axiom.

new_type_definition (Definition)

new_type_definition : string * thm -> thm

Synopsis
Defines a new type constant or type operator.

Description
The ML function new_type_definition implements the primitive HOL rule of definition
for introducing new type constants or type operators into the logic. If t is a term of type
ty->bool containing n distinct type variables, then evaluating:

new_type_definition (tyop, |- ?x. t x)

results in tyop being declared as a new n-ary type operator in the current theory and
returned by the call to new_type_definition. This new type operator is characterized by
a definitional axiom of the form:

|- ?rep:(’a,...,’n)op->tyop. TYPE_DEFINITION t rep

which is stored as a definition in the current theory segment under the automatically-
generated name op_TY_DEF. The arguments to the new type operator occur in the order
given by an alphabetic ordering of the name of the corresponding type variables. The
constant TYPE_DEFINITION in this axiomatic characterization of tyop is defined by:

|- TYPE_DEFINITION (P:’a->bool) (rep:’b->’a) =

(!x’ x’’. (rep x’ = rep x’’) ==> (x’ = x’’)) /\

(!x. P x = (?x’. x = rep x’))

Thus |- ?rep. TYPE_DEFINITION P rep asserts that there is a bijection between the
newly defined type (’a,...,’n)tyop and the set of values of type ty that satisfy P.

616 CHAPTER 1. ENTRIES

Failure
Executing new_type_definition(tyop,th) fails if th is not an assumption-free theorem
of the form |- ?x. t x. Failure also occurs if the type of t is not of the form ty->bool.

Example
In this example, a type containing three elements is defined. The predicate defining the
type is over the type bool # bool.

app load ["PairedLambda", "Q"]; open PairedLambda pairTheory;

- val tyax =

new_type_definition ("three",

Q.prove(‘?p. (\(x,y). ~(x /\ y)) p‘,

Q.EXISTS_TAC ‘(F,F)‘ THEN GEN_BETA_TAC THEN REWRITE_TAC []));

> val tyax = |- ?rep. TYPE_DEFINITION (\(x,y). ~(x /\ y)) rep : thm

Comments
Usually, once a type has been defined, maps between the representation type and the
new type need to be proved. This may be accomplished using define_new_type_bijections.
In the example, the two functions are named abs3 and rep3.

- val three_bij = define_new_type_bijections

{name="three_tybij", ABS="abs3", REP="rep3", tyax=tyax};

> val three_bij =

|- (!a. abs3 (rep3 a) = a) /\

(!r. (\(x,y). ~(x /\ y)) r = (rep3 (abs3 r) = r))

Properties of the maps may be conveniently proved with prove_abs_fn_one_one,
prove_abs_fn_onto, prove_rep_fn_one_one, and prove_rep_fn_onto. In this case, we
need only prove_abs_fn_one_one.

- val abs_11 = GEN_BETA_RULE (prove_abs_fn_one_one three_bij);

> val abs_11 =

|- !r r’.

~(FST r /\ SND r) ==>

~(FST r’ /\ SND r’) ==>

((abs3 r = abs3 r’) = (r = r’)) : thm

Now we address how to define constants designating the three elements of our example
type. We will use new_specification to create these constants (say e1, e2, and e3) and
their characterizing property, which is

next 617

~(e1 = e2) /\ ~(e2 = e3) /\ ~(e3 = e1)

A simple lemma stating that the abstraction function doesn’t confuse any of the repre-
sentations is required:

- val abs_distinct =

REWRITE_RULE (PAIR_EQ::pair_rws)

(LIST_CONJ (map (C Q.SPECL abs_11)

[[‘(F,F)‘,‘(F,T)‘],

[‘(F,T)‘,‘(T,F)‘],

[‘(T,F)‘,‘(F,F)‘]]));

> val abs_distinct =

|- ~(abs3 (F,F) = abs3 (F,T)) /\

~(abs3 (F,T) = abs3 (T,F)) /\

~(abs3 (T,F) = abs3 (F,F)) : thm

Finally, we can introduce the constants and their property.

- val THREE = new_specification

("THREE", ["e1", "e2", "e3"],

PROVE [abs_distinct]

(Term‘?x y z:three. ~(x=y) /\ ~(y=z) /\ ~(z=x)‘));

> val THREE = |- ~(e1 = e2) /\ ~(e2 = e3) /\ ~(e3 = e1) : thm

See also
Drule.define new type bijections, Prim rec.prove abs fn one one,

Prim rec.prove abs fn onto, Drule.prove rep fn one one, Drule.prove rep fn onto,

Definition.new specification.

next (Lib)

next : (’a,’b) istream -> (’a,’b) istream

Synopsis
Move to the next element in the stream.

Description
An application next istrm moves to the next element in the stream.

618 CHAPTER 1. ENTRIES

Failure
If the transition function supplied when building the stream fails on the current state.

Example

- val istrm = mk_istream (fn x => x+1) 0 (concat "gsym" o int_to_string);

> val it = <istream> : (int, string) istream

- next istrm;

> val it = <istream> : (int, string) istream

Comments
Perhaps the type of next should be (’a,’b) istream -> unit.

See also
Lib.mk istream, Lib.state, Lib.reset.

NO_CONV (Conv)

NO_CONV : conv

Synopsis
Conversion that always fails.

Failure
NO_CONV always fails.

See also
Conv.ALL CONV.

NO_TAC (Tactical)

NO_TAC : tactic

Synopsis
Tactic which always fails.

NO THEN 619

Description
Whatever goal it is applied to, NO_TAC always fails with string ‘NO_TAC‘.

Failure
Always fails.

See also
Tactical.ALL TAC, Thm cont.ALL THEN, Tactical.FAIL TAC, Thm cont.NO THEN.

NO_THEN (Thm_cont)

NO_THEN : thm_tactical

Synopsis
Theorem-tactical which always fails.

Description
When applied to a theorem-tactic and a theorem, the theorem-tactical NO_THEN always
fails with string ‘NO_THEN‘.

Failure
Always fails when applied to a theorem-tactic and a theorem (note that it never gets as
far as being applied to a goal!)

Uses
Writing compound tactics or tacticals.

See also
Tactical.ALL TAC, Thm cont.ALL THEN, Tactical.FAIL TAC, Tactical.NO TAC.

non_presburger_subterms (Arith)

non_presburger_subterms : (term -> term list)

Synopsis
Computes the subterms of a term that are not in the Presburger subset of arithmetic.

620 CHAPTER 1. ENTRIES

Description
This function computes a list of subterms of a term that are not in the Presburger subset
of natural number arithmetic. All numeric variables in the term are included in the
result. Presburger natural arithmetic is the subset of arithmetic formulae made up from
natural number constants, numeric variables, addition, multiplication by a constant,
the natural number relations <, <=, =, >=, > and the logical connectives ~, /\, \/, ==>, =
(if-and-only-if), ! (‘forall’) and ? (‘there exists’).

Products of two expressions which both contain variables are not included in the
subset, so such products will appear in the result list. However, the function SUC which is
not normally included in a specification of Presburger arithmetic is allowed in this HOL
implementation. This function also considers subtraction and the predecessor function,
PRE, to be part of the subset.

Failure
Never fails.

Example

#non_presburger_subterms "!m n p. m < (2 * n) /\ (n + n) <= p ==> m < SUC p";;

["m"; "n"; "p"] : term list

#non_presburger_subterms "!m n p q. m < (n * p) /\ (n * p) < q ==> m < q";;

["m"; "n * p"; "q"] : term list

#non_presburger_subterms "(m + n) - m = f n";;

["m"; "n"; "f n"] : term list

See also
Arith.INSTANCE T CONV, Arith.is presburger.

non_type_definitions (EmitTeX)

non_type_definitions : string -> (string * thm) list

Synopsis
A versions of definitions that attempts to filter out definitions created by Hol_datatype.

non type definitions 621

Description
An invocation non_type_definitions thy, where thy is the name of a currently loaded
theory segment, will return a list of the definitions stored in that theory. Each definition
is paired with its name in the result.

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example
- new_theory "example";

<<HOL message: Created theory "example">>

> val it = () : unit

- val _ = Hol_datatype ‘example = First | Second‘;

<<HOL message: Defined type: "example">>

- val example_def = Define

‘(example First = Second) /\ (example Second = First)‘;

Definition has been stored under "example_def".

> val example_def = |- (example First = Second) /\ (example Second = First) :

thm

- definitions "example";

> val it =

[("example_TY_DEF", |- ?rep. TYPE_DEFINITION (\n. n < 2) rep),

("example_BIJ",

|- (!a. num2example (example2num a) = a) /\

!r. (\n. n < 2) r = (example2num (num2example r) = r)),

("First", |- First = num2example 0),

("Second", |- Second = num2example 1),

("example_size_def", |- !x. example_size x = 0),

("example_case",

|- !v0 v1 x.

(case x of First -> v0 || Second -> v1) =

(\m. (if m = 0 then v0 else v1)) (example2num x)),

("example_def", |- (example First = Second) /\ (example Second = First))]

: (string * thm) list

- EmitTeX.non_type_definitions "example";

> val it =

[("example_def", |- (example First = Second) /\ (example Second = First))]

: (string * thm) list

622 CHAPTER 1. ENTRIES

See also
DB.definitions, bossLib.Hol datatype.

non_type_theorems (EmitTeX)

non_type_theorems : string -> (string * thm) list

Synopsis
A versions of theorems that attempts to filter out theorems created by Hol_datatype.

Description
An invocation non_type_theorems thy, where thy is the name of a currently loaded the-
ory segment, will return a list of the theorems stored in that theory. Axioms and defini-
tions are excluded. Each theorem is paired with its name in the result.

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- new_theory "example";

<<HOL message: Created theory "example">>

> val it = () : unit

- val _ = Hol_datatype ‘example = First | Second‘;

<<HOL message: Defined type: "example">>

- val example_def = Define

‘(example First = Second) /\ (example Second = First)‘;

Definition has been stored under "example_def".

> val example_def = |- (example First = Second) /\ (example Second = First) :

thm

- save_thm("example_thm",

METIS_PROVE [example_def, theorem "example_nchotomy"]

‘‘!x. example (example x) = x‘‘);

metis: r[+0+5]+0+0+0+0+6+2+2+1+0+1+1#

> val it = |- !x. example (example x) = x : thm

- theorems "example";

non type theorems 623

> val it =

[("num2example_example2num", |- !a. num2example (example2num a) = a),

("example2num_num2example",

|- !r. r < 2 = (example2num (num2example r) = r)),

("num2example_11",

|- !r r’.

r < 2 ==> r’ < 2 ==> ((num2example r = num2example r’) = (r = r’))),

("example2num_11", |- !a a’. (example2num a = example2num a’) = (a = a’)),

("num2example_ONTO", |- !a. ?r. (a = num2example r) /\ r < 2),

("example2num_ONTO", |- !r. r < 2 = ?a. r = example2num a),

("num2example_thm",

|- (num2example 0 = First) /\ (num2example 1 = Second)),

("example2num_thm",

|- (example2num First = 0) /\ (example2num Second = 1)),

("example_EQ_example",

|- !a a’. (a = a’) = (example2num a = example2num a’)),

("example_case_def",

|- (!v0 v1. (case First of First -> v0 || Second -> v1) = v0) /\

!v0 v1. (case Second of First -> v0 || Second -> v1) = v1),

("datatype_example", |- DATATYPE (example First Second)),

("example_distinct", |- ~(First = Second)),

("example_case_cong",

|- !M M’ v0 v1.

(M = M’) /\ ((M’ = First) ==> (v0 = v0’)) /\

((M’ = Second) ==> (v1 = v1’)) ==>

((case M of First -> v0 || Second -> v1) =

case M’ of First -> v0’ || Second -> v1’)),

("example_nchotomy", |- !a. (a = First) \/ (a = Second)),

("example_Axiom", |- !x0 x1. ?f. (f First = x0) /\ (f Second = x1)),

("example_induction", |- !P. P First /\ P Second ==> !a. P a),

("example_thm", |- !x. example (example x) = x)] : (string * thm) list

- EmitTeX.non_type_theorems "example";

> val it = [("example_thm", |- !x. example (example x) = x)] :

(string * thm) list

See also
DB.theorems, bossLib.Hol datatype.

624 CHAPTER 1. ENTRIES

norm_subst (Term)

norm_subst : (hol_type,hol_type) subst

-> (term,term) subst -> (term,term)subst

Synopsis
Instantiate term substitution by a type substitution.

Description
The substitutions coming from raw_match need to be normalized before they can be ap-
plied by inference rules like INST_TY_TERM. An invocation raw_match avoid_tys avoid_tms pat ob A

returns a pair of substitutions (S,(T,Id)). The Id component can be ignored. The S

component is a substitution for term variables, but it has to be instantiated by T in order
to be suitable for use by INST_TY_TERM. In this case, one uses norm_subst T S. Thus a
suitable input for INST_TY_TERM would be (norm_subst T S, T).

Failure
Never fails.

Example

- val (S,(T,_)) = raw_match [] empty_varset

(Term ‘\x:’a. x = f (y:’b)‘)

(Term ‘\a. a = ~p‘) ([],([],[]));

> val S = [{redex = ‘(f :’b -> ’a)‘, residue = ‘$~‘},

{redex = ‘(y :’b)‘, residue = ‘(p :bool)‘}] : ...

val T = [{redex = ‘:’b‘, residue = ‘:bool‘},

{redex = ‘:’a‘, residue = ‘:bool‘}] : ...

- norm_subst T S;

> val it =

[{redex = ‘(y :bool)‘, residue = ‘(p :bool)‘},

{redex = ‘(f :bool -> bool)‘, residue = ‘$~‘}]

: {redex : term, residue : term} list

Comments
Higher level matching routines, like match_term and match_terml already return normal-
ized substitutions.

NOT CONV 625

See also
Term.raw match, Term.match term, Term.match terml.

NOT_CONV (reduceLib)

NOT_CONV : conv

Synopsis
Simplifies certain boolean negation expressions.

Description
If tm corresponds to one of the forms given below, where t is an arbitrary term of type
bool, then NOT_CONV tm returns the corresponding theorem.

NOT_CONV "~F" = |- ~F = T

NOT_CONV "~T" = |- ~T = F

NOT_CONV "~~t" = |- ~~t = t

Failure
NOT_CONV tm fails unless tm has one of the forms indicated above.

Example

#NOT_CONV "~~~~T";;

|- ~~~~T = ~~T

#NOT_CONV "~~T";;

|- ~~T = T

#NOT_CONV "~T";;

|- ~T = F

NOT_ELIM (Thm)

NOT_ELIM : thm -> thm

626 CHAPTER 1. ENTRIES

Synopsis
Transforms |- ~t into |- t ==> F.

Description
When applied to a theorem A |- ~t, the inference rule NOT_ELIM returns the theorem
A |- t ==> F.

A |- ~t

-------------- NOT_ELIM

A |- t ==> F

Failure
Fails unless the theorem has a negated conclusion.

See also
Drule.IMP ELIM, Thm.NOT INTRO.

NOT_EQ_SYM (Drule)

NOT_EQ_SYM : (thm -> thm)

Synopsis
Swaps left-hand and right-hand sides of a negated equation.

Description
When applied to a theorem A |- ~(t1 = t2), the inference rule NOT_EQ_SYM returns the
theorem A |- ~(t2 = t1).

A |- ~(t1 = t2)

----------------- NOT_EQ_SYM

A |- ~(t2 = t1)

Failure
Fails unless the theorem’s conclusion is a negated equation.

See also
Conv.DEPTH CONV, Thm.REFL, Thm.SYM.

NOT EXISTS CONV 627

NOT_EXISTS_CONV (Conv)

NOT_EXISTS_CONV : conv

Synopsis
Moves negation inwards through an existential quantification.

Description
When applied to a term of the form ~(?x.P), the conversion NOT_EXISTS_CONV returns
the theorem:

|- ~(?x.P) = !x.~P

Failure
Fails if applied to a term not of the form ~(?x.P).

See also
Conv.EXISTS NOT CONV, Conv.FORALL NOT CONV, Conv.NOT FORALL CONV.

NOT_FORALL_CONV (Conv)

NOT_FORALL_CONV : conv

Synopsis
Moves negation inwards through a universal quantification.

Description
When applied to a term of the form ~(!x.P), the conversion NOT_FORALL_CONV returns
the theorem:

|- ~(!x.P) = ?x.~P

It is irrelevant whether x occurs free in P.

Failure
Fails if applied to a term not of the form ~(!x.P).

628 CHAPTER 1. ENTRIES

See also
Conv.EXISTS NOT CONV, Conv.FORALL NOT CONV, Conv.NOT EXISTS CONV.

NOT_INTRO (Thm)

NOT_INTRO : (thm -> thm)

Synopsis
Transforms |- t ==> F into |- ~t.

Description
When applied to a theorem A |- t ==> F, the inference rule NOT_INTRO returns the the-
orem A |- ~t.

A |- t ==> F

-------------- NOT_INTRO

A |- ~t

Failure
Fails unless the theorem has an implicative conclusion with F as the consequent.

See also
Drule.IMP ELIM, Thm.NOT ELIM.

NOT_PEXISTS_CONV (PairRules)

NOT_PEXISTS_CONV : conv

Synopsis
Moves negation inwards through a paired existential quantification.

Description
When applied to a term of the form ~(?p. t), the conversion NOT_PEXISTS_CONV returns
the theorem:

|- ~(?p. t) = (!p. ~t)

NOT PFORALL CONV 629

Failure
Fails if applied to a term not of the form ~(?p. t).

See also
Conv.NOT EXISTS CONV, PairRules.PEXISTS NOT CONV, PairRules.PFORALL NOT CONV,

PairRules.NOT PFORALL CONV.

NOT_PFORALL_CONV (PairRules)

NOT_PFORALL_CONV : conv

Synopsis
Moves negation inwards through a paired universal quantification.

Description
When applied to a term of the form ~(!p. t), the conversion NOT_PFORALL_CONV returns
the theorem:

|- ~(!p. t) = (?p. ~t)

It is irrelevant whether any variables in p occur free in t.

Failure
Fails if applied to a term not of the form ~(!p. t).

See also
Conv.NOT FORALL CONV, PairRules.PEXISTS NOT CONV, PairRules.PFORALL NOT CONV,

PairRules.NOT PEXISTS CONV.

notify_word_length_guesses (wordsLib)

notify_word_length_guesses : bool ref

Synopsis
Controls notification of word length guesses.

Description
When the reference notify_word_length_guesses is true a HOL message is printed (in
interactive sessions) when the function inst_word_lengths instantiates types in a term.

Example

630 CHAPTER 1. ENTRIES

- load "wordsLib";

...

- wordsLib.notify_word_length_guesses := false;

> val it = () : unit

- wordsLib.inst_word_lengths ‘‘(7 >< 5) a @@ (4 >< 0) a‘‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c, ’d>>

> val it = ‘‘(7 >< 5) a @@ (4 >< 0) a‘‘ : term

- type_of it;

> val it = ‘‘:bool[8]‘‘ : hol_type

Comments
By default notify_word_length_guesses is true.

See also
wordsLib.guess lengths, wordsLib.inst word lengths.

NTAC (Tactic)

NTAC : int -> tactic -> tactic

Synopsis
Apply tactic a specified number of times.

Description
An invocation NTAC n tac applies the tactic tac exactly n times. If n <= 0 then the goal
is unchanged.

Failure
Fails if tac fails.

Example
Suppose we have the following goal:

?- x = y

We apply a tactic for symmetry of equality 3 times:

NTAC 3 (PURE_ONCE_REWRITE_TAC [EQ_SYM_EQ])

and obtain

Ntimes 631

?- y = x

Uses
Controlling iterated application tactics.

See also
Rewrite.PURE ONCE REWRITE TAC, Tactical.REPEAT, Conv.REPEATC.

Ntimes (Drule)

Ntimes : thm -> int -> thm

Synopsis
Rewriting control

Description
When used as an argument to the rewriter or simplifier, Ntimes th n is a directive saying
that th should be used at most n times in the rewriting process. This is useful for
controlling looping rewrites.

Failure
Never fails.

Example
Suppose factorial was defined as follows:

- val fact_def = Define ‘fact n = if n=0 then 1 else n * fact (n-1)‘;

Equations stored under "fact_def".

Induction stored under "fact_ind".

> val fact_def = |- fact n = (if n = 0 then 1 else n * fact (n - 1)) : thm

The theorem fact_def is a looping rewrite since the recursive call fac (n-1) matches
the left-hand side of fact_def. Thus, a naive application of the simplifier will loop:

- SIMP_CONV arith_ss [fact_def] ‘‘fact 6‘‘;

(* looping *)

> Interrupted.

In order to expand the definition of fact_def three times, the following invocation can
be made

632 CHAPTER 1. ENTRIES

- SIMP_CONV arith_ss [Ntimes Fact_def 3] ‘‘fact 6‘‘;

> val it = |- fact 6 = 6 * (5 * (4 * fact 3)) : thm

Comments
Use of Ntimes does not compose well. For example,

tac1 THENL [SIMP_TAC std_ss [Ntimes th 1],

SIMP_TAC std_ss [Ntimes th 1]]

is not equivalent in behaviour to

tac1 THEN SIMP_TAC std_ss [Ntimes th 1].

In the first call two rewrites using th can occur; in the second, only one can occur.

See also
Drule.Once, Tactical.THEN, simpLib.SIMP TAC, bossLib.RW TAC,

Rewrite.REWRITE TAC.

null_intersection (Lib)

null_intersection : ’’a list -> ’’a list -> bool

Synopsis
Tells if two lists have no common elements.

Description
An invocation null_intersection l1 l2 is equivalent to null(intersect l1 l2), but is
more efficient in the case where the intersection is not empty.

Failure
Never fails.

Example

- null_intersection [1,2,3,4] [5,6,7,8];

> val it = true : bool

- null_intersection [1,2,3,4] [8,5,3];

> val it = false : bool

num CONV 633

Comments
A high-performance implementation of finite sets may be found in structure HOLset.

See also
Lib.intersect, Lib.union, Lib.U, Lib.mk set, Lib.mem, Lib.insert, Lib.set eq,

Lib.set diff.

num_CONV (numLib)

num_CONV : conv

Synopsis
Equates a non-zero numeral with the form SUC x for some x.

Example

- num_CONV ‘‘1203‘‘;

> val it = |- 1203 = SUC 1202 : thm

Failure
Fails if the argument term is not a numeral of type ‘‘:num‘‘, or if the argument is ‘‘0‘‘.

See also
numLib.SUC TO NUMERAL DEFN CONV.

NUM_DEPTH_CONSEQ_CONV (ConseqConv)

NUM_DEPTH_CONSEQ_CONV : directed_conseq_conv -> int -> directed_conseq_conv

Synopsis
Applies a consequence conversion at most a given number of times to the sub-terms of
a term, in bottom-up order.

Description
While DEPTH_CONSEQ_CONV c tm applies c repeatedly, NUM_DEPTH_CONSEQ_CONV c n tm ap-
plies it at most n-times.

634 CHAPTER 1. ENTRIES

See also
Conv.DEPTH CONV, ConseqConv.ONCE DEPTH CONSEQ CONV,

ConseqConv.DEPTH CONSEQ CONV, ConseqConv.DEPTH STRENGTHEN CONSEQ CONV.

occs_in (pairSyntax)

occs_in : (term -> term -> bool)

Synopsis
Occurrence check for bound variables.

Description
When applied to two terms p and t, where p is a paired structure of variables, the
function occs_in returns true if and of the constituent variables of p occurs free in t,
and false otherwise.

Failure
Fails of p is not a paired structure of variables.

See also
Term.free in, hol88Lib.frees, hol88Lib.freesl, thm frees.

Once (Drule)

Once : thm -> thm

Synopsis
Rewriting control

Description
When used as an argument to the rewriter or simplifier, Once th is a directive saying that
th should be used at most once in the rewriting process. This is useful for controlling
looping rewrites.

Failure
Never fails.

Example
Suppose factorial was defined as follows:

ONCE ASM REWRITE RULE 635

- val fact_def = Define ‘fact n = if n=0 then 1 else n * fact (n-1)‘;

Equations stored under "fact_def".

Induction stored under "fact_ind".

> val fact_def = |- fact n = (if n = 0 then 1 else n * fact (n - 1)) : thm

The theorem fact_def is a looping rewrite since the recursive call fac (n-1) matches
the left-hand side of fact_def. Thus, a naive application of the simplifier will loop:

- SIMP_CONV arith_ss [fact_def] ‘‘fact 6‘‘;

(* looping *)

> Interrupted.

In order to expand the definition of fact_def, the following invocation can be made

- SIMP_CONV arith_ss [Once fact_def] ‘‘fact 6‘‘;

> val it = |- fact 6 = 6 * fact 5 : thm

Comments
Use of Once does not compose well. For example,

tac1 THENL [SIMP_TAC std_ss [Once th],

SIMP_TAC std_ss [Once th]]

is not equivalent in behaviour to

tac1 THEN SIMP_TAC std_ss [Once th].

In the first call two rewrites using th can occur; in the second, only one can occur.

See also
Drule.Ntimes, Tactical.THEN, simpLib.SIMP TAC, bossLib.RW TAC,

Rewrite.ONCE REWRITE TAC.

ONCE_ASM_REWRITE_RULE (Rewrite)

ONCE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem once including built-in rewrites and the theorem’s assumptions.

636 CHAPTER 1. ENTRIES

Description
ONCE_ASM_REWRITE_RULE applies all possible rewrites in one step over the subterms in
the conclusion of the theorem, but stops after rewriting at most once at each subterm.
This strategy is specified as for ONCE_DEPTH_CONV. For more details see ASM_REWRITE_RULE,
which does search recursively (to any depth) for matching subterms. The general strat-
egy for rewriting theorems is described under GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This tactic is used when rewriting with the hypotheses of a theorem (as well as a given
list of theorems and basic_rewrites), when more than one pass is not required or would
result in divergence.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,

Rewrite.FILTER ONCE ASM REWRITE RULE, Rewrite.GEN REWRITE RULE,

Conv.ONCE DEPTH CONV, Rewrite.ONCE REWRITE RULE, Rewrite.PURE ASM REWRITE RULE,

Rewrite.PURE ONCE ASM REWRITE RULE, Rewrite.PURE REWRITE RULE,

Rewrite.REWRITE RULE.

ONCE_ASM_REWRITE_TAC (Rewrite)

ONCE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal once including built-in rewrites and the goal’s assumptions.

Description
ONCE_ASM_REWRITE_TAC behaves in the same way as ASM_REWRITE_TAC, but makes one pass
only through the term of the goal. The order in which the given theorems are applied
is an implementation matter and the user should not depend on any ordering. See
GEN_REWRITE_TAC for more information on rewriting a goal in HOL.

Failure
ONCE_ASM_REWRITE_TAC does not fail and, unlike ASM_REWRITE_TAC, does not diverge. The
resulting tactic may not be valid, if the rewrites performed add new assumptions to the
theorem eventually proved.

ONCE DEPTH CONSEQ CONV 637

Example
The use of ONCE_ASM_REWRITE_TAC to control the amount of rewriting performed is illus-
trated below:

- ONCE_ASM_REWRITE_TAC []

([Term‘ (a:’a) = b‘, Term ‘(b:’a) = c‘], Term ‘P (a:’a): bool‘);

> val it = ([([‘a = b‘, ‘b = c‘], ‘P b‘)], fn)

: (term list * term) list * (thm list -> thm)

- (ONCE_ASM_REWRITE_TAC [] THEN ONCE_ASM_REWRITE_TAC [])

([Term‘(a:’a) = b‘, Term‘(b:’a) = c‘], Term ‘P (a:’a): bool‘);

> val it = ([([‘a = b‘, ‘b = c‘], ‘P c‘)], fn)

: (term list * term) list * (thm list -> thm)

Uses
ONCE_ASM_REWRITE_TAC can be applied once or iterated as required to give the effect of
ASM_REWRITE_TAC, either to avoid divergence or to save inference steps.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.GEN REWRITE TAC,

Rewrite.ONCE ASM REWRITE TAC, Rewrite.ONCE REWRITE TAC,

Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,

Rewrite.PURE ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,

Tactic.SUBST TAC.

ONCE_DEPTH_CONSEQ_CONV (ConseqConv)

ONCE_DEPTH_CONSEQ_CONV : directed_conseq_conv -> directed_conseq_conv

Synopsis
Applies a consequence conversion at most once to a sub-terms of a term.

Description
While DEPTH_CONSEQ_CONV c tm applies c repeatedly, ONCE_DEPTH_CONSEQ_CONV c tm ap-
plies c at most once.

638 CHAPTER 1. ENTRIES

See also
Conv.DEPTH CONV, ConseqConv.NUM DEPTH CONSEQ CONV, ConseqConv.DEPTH CONSEQ CONV,

ConseqConv.DEPTH STRENGTHEN CONSEQ CONV.

ONCE_DEPTH_CONV (Conv)

ONCE_DEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion once to the first suitable sub-term(s) encountered in top-down
order.

Description
ONCE_DEPTH_CONV c tm applies the conversion c once to the first subterm or subterms
encountered in a top-down ‘parallel’ search of the term tm for which c succeeds. If the
conversion c fails on all subterms of tm, the theorem returned is |- tm = tm.

Failure
Never fails.

Example
The following example shows how ONCE_DEPTH_CONV applies a conversion to only the
first suitable subterm(s) found in a top-down search:

- ONCE_DEPTH_CONV BETA_CONV (Term ‘(\x. (\y. y + x) 1) 2‘);

> val it = |- (\x. (\y. y + x)1)2 = (\y. y + 2) 1 : thm

Here, there are two beta-redexes in the input term. One of these occurs within the
other, so BETA_CONV is applied only to the outermost one.

Note that the supplied conversion is applied by ONCE_DEPTH_CONV to all independent
subterms at which it succeeds. That is, the conversion is applied to every suitable
subterm not contained in some other subterm for which the conversions also succeeds,
as illustrated by the following example:

- ONCE_DEPTH_CONV numLib.num_CONV (Term ‘(\x. (\y. y + x) 1) 2‘);

> val it = |- (\x. (\y. y + x)1)2 = (\x. (\y. y + x)(SUC 0))(SUC 1) : thm

Here num_CONV is applied to both 1 and 2, since neither term occurs within a larger
subterm for which the conversion num_CONV succeeds.

ONCE REWRITE CONV 639

Uses
ONCE_DEPTH_CONV is frequently used when there is only one subterm to which the desired
conversion applies. This can be much faster than using other functions that attempt to
apply a conversion to all subterms of a term (e.g. DEPTH_CONV). If, for example, the
current goal in a goal-directed proof contains only one beta-redex, and one wishes to
apply BETA_CONV to it, then the tactic

CONV_TAC (ONCE_DEPTH_CONV BETA_CONV)

may, depending on where the beta-redex occurs, be much faster than

CONV_TAC (TOP_DEPTH_CONV BETA_CONV)

ONCE_DEPTH_CONV c may also be used when the supplied conversion c never fails, in
which case using a conversion such as DEPTH_CONV c, which applies c repeatedly would
never terminate.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the exception QConv.UNCHANGED may be generated
and later trapped. The behaviour of the function is dependent on this use of failure. So,
if the conversion given as an argument happens to generate the same exception, the
operation of ONCE_DEPTH_CONV will be unpredictable.

See also
Conv.DEPTH CONV, Conv.REDEPTH CONV, Conv.TOP DEPTH CONV.

ONCE_REWRITE_CONV (Rewrite)

ONCE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term, including built-in tautologies in the list of rewrites.

Description
ONCE_REWRITE_CONV searches for matching subterms and applies rewrites once at each
subterm, in the manner specified for ONCE_DEPTH_CONV. The rewrites which are used
are obtained from the given list of theorems and the set of tautologies stored in
basic_rewrites. See GEN_REWRITE_CONV for the general method of using theorems to
rewrite a term.

640 CHAPTER 1. ENTRIES

Failure
ONCE_REWRITE_CONV does not fail; it does not diverge.

Uses
ONCE_REWRITE_CONV can be used to rewrite a term when recursive rewriting is not desired.

See also
Rewrite.GEN REWRITE CONV, Rewrite.PURE ONCE REWRITE CONV,

Rewrite.PURE REWRITE CONV, Rewrite.REWRITE CONV.

ONCE_REWRITE_RULE (Rewrite)

ONCE_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem, including built-in tautologies in the list of rewrites.

Description
ONCE_REWRITE_RULE searches for matching subterms and applies rewrites once at each
subterm, in the manner specified for ONCE_DEPTH_CONV. The rewrites which are used
are obtained from the given list of theorems and the set of tautologies stored in
basic_rewrites. See GEN_REWRITE_RULE for the general method of using theorems to
rewrite an object theorem.

Failure
ONCE_REWRITE_RULE does not fail; it does not diverge.

Uses
ONCE_REWRITE_RULE can be used to rewrite a theorem when recursive rewriting is not
desired.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE,

Rewrite.ONCE ASM REWRITE RULE, Rewrite.PURE ONCE REWRITE RULE,

Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

ONCE_REWRITE_TAC (Rewrite)

ONCE_REWRITE_TAC : thm list -> tactic

ONCE REWRITE TAC 641

Synopsis
Rewrites a goal only once with basic_rewrites and the supplied list of theorems.

Description
A set of equational rewrites is generated from the theorems supplied by the user and
the set of basic tautologies, and these are used to rewrite the goal at all subterms at
which a match is found in one pass over the term part of the goal. The result is returned
without recursively applying the rewrite theorems to it. The order in which the given
theorems are applied is an implementation matter and the user should not depend on
any ordering. More details about rewriting can be found under GEN_REWRITE_TAC.

Failure
ONCE_REWRITE_TAC does not fail and does not diverge. It results in an invalid tactic if any
of the applied rewrites introduces new assumptions to the theorem eventually proved.

Example
Given a theorem list:

thl = [|- a = b, |- b = c, |- c = a]

the tactic ONCE_REWRITE_TAC thl can be iterated as required without diverging:

- ONCE_REWRITE_TAC thl ([], Term ‘P (a:’a) :bool‘);

> val it = ([([], ‘P b‘)], fn)

: (term list * term) list * (thm list -> thm)

- (ONCE_REWRITE_TAC thl THEN ONCE_REWRITE_TAC thl)

([], Term ‘P a‘);

> val it = ([([], ‘P c‘)], fn)

: (term list * term) list * (thm list -> thm)

- (NTAC 3 (ONCE_REWRITE_TAC thl)) ([], Term ‘P a‘);

> val it = ([([], ‘P a‘)], fn)

: (term list * term) list * (thm list -> thm)

Uses
ONCE_REWRITE_TAC can be used iteratively to rewrite when recursive rewriting would
diverge. It can also be used to save inference steps.

See also
Rewrite.ASM REWRITE TAC, Drule.Once, Rewrite.ONCE ASM REWRITE TAC,

Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE REWRITE TAC,

Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC, Tactic.SUBST TAC.

642 CHAPTER 1. ENTRIES

op_arity (Type)

op_arity : {Thy:string, Tyop:string} -> int option

Synopsis
Return the arity of a type operator.

Description
An invocation op_arity{Tyop,Thy} returns NONE if the given record does not identify
a type operator in the current type signature. Otherwise, it returns SOME n, where n

identifies the number of arguments the specified type operator takes.

Failure
Never fails.

Example

- op_arity{Tyop="fun", Thy="min"};

> val it = SOME 2 : int option

- op_arity{Tyop="foo", Thy="min"};

> val it = NONE : int option

See also
Type.decls.

op_insert (Lib)

op_insert (’a -> ’a -> bool) -> ’a -> ’a list -> ’a list

Synopsis
Add an element to a list if it is not already there.

Description
If there exists an element y in list, such that eq x y, then insert eq x list equals
list. Otherwise, x is added to list.

op intersect 643

Failure
Never fails.

Example

- op_insert (fn x => fn y => x = y mod 2) 1 [3,2];

> val it = [3, 2] : int list

- op_insert aconv (Term ‘\x. x /\ y‘)

[T, Term ‘\z. z /\ y‘, F];

> val it = [‘T‘, ‘\z. z /\ y‘, ‘F‘] : term list

- op_insert aconv (Term ‘\x. x /\ y‘)

[T, Term ‘\z. z /\ a‘, F];

> val it = [‘\x. x /\ y‘, ‘T‘, ‘\z. z /\ a‘, ‘F‘] : term list

Comments
There is no requirement that eq be recognizable as a kind of equality (it could be imple-
mented by an order relation, for example).

One should not write code that depends on the arrangement of elements in the result.
A high-performance implementation of finite sets may be found in structure HOLset.

See also
Lib.insert, Lib.op mem, Lib.op union, Lib.op mk set, Lib.op U, Lib.op intersect,

Lib.op set diff.

op_intersect (Lib)

op_intersect : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis
Computes the intersection of two ‘sets’.

Description
op_intersect eq l1 l2 returns a list consisting of those elements of l1 that are eq to
some element in l2.

Failure
Fails if an application of eq fails.

Example

644 CHAPTER 1. ENTRIES

- op_intersect aconv [Term ‘\x:bool.x‘, Term ‘\x y. x /\ y‘]

[Term ‘\y:bool.y‘, Term ‘\x y. x /\ z‘];

> val it = [‘\x. x‘] : term list

Comments
The order of items in the list returned by op_intersect is not dependable.

A high-performance implementation of finite sets may be found in structure HOLset.
There is no requirement that eq be recognizable as a kind of equality (it could be

implemented by an order relation, for example).

See also
Lib.intersect, Lib.op mem, Lib.op insert, Lib.op mk set, Lib.op union, Lib.op U,

Lib.op set diff.

op_mem (Lib)

op_mem : (’a -> ’a -> bool) -> ’a -> ’a list -> bool

Synopsis
Tests whether a list contains a certain element.

Description
An invocation op_mem eq x [x1,...,xn] returns true if, for some xi in the list, eq xi x

evaluates to true. Otherwise it returns false.

Failure
Only fails if an application of eq fails.

Example

- op_mem aconv (Term ‘\x. x /\ y‘) [T, Term ‘\z. z /\ y‘, F];

> val it = true : bool

Comments
A high-performance implementation of finite sets may be found in structure HOLset.

See also
Lib.mem, Lib.op insert, Lib.tryfind, Lib.exists, Lib.all, Lib.assoc,

Lib.rev assoc, Lib.assoc1, Lib.assoc2, Lib.op union, Lib.op mk set, Lib.op U,

Lib.op intersect, Lib.op set diff.

op mk set 645

op_mk_set (Lib)

op_mk_set : (’a -> ’a -> bool) -> ’a list -> ’a list

Synopsis
Transforms a list into one with elements that are distinct modulo the supplied relation.

Description
An invocation op_mk_set eq list returns a list consisting of the eq-distinct members of
list. In particular, the result list will not contain elements x and y at different positions
such that eq x y evaluates to true.

Failure
If an application of eq fails when applied to two elements of list.

Example

- op_mk_set aconv [Term ‘\x y. x /\ y‘,

Term ‘\y x. y /\ x‘,

Term ‘\z a. z /\ a‘];

> val it = [‘\z a. z /\ a‘] : term list

Comments
The order of items in the list returned by op_mk_set is not dependable.

A high-performance implementation of finite sets may be found in structure HOLset.
There is no requirement that eq be recognizable as a kind of equality (it could be

implemented by an order relation, for example).

See also
Lib.mk set, Lib.op mem, Lib.op insert, Lib.op union, Lib.op U, Lib.op intersect,

Lib.op set diff.

op_set_diff (Lib)

op_set_diff : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

646 CHAPTER 1. ENTRIES

Synopsis
Computes the set-theoretic difference of two ‘sets’, modulo a supplied relation.

Description
op_set_diff eq l1 l2 returns a list consisting of those elements of l1 that are not eq to
some element of l2.

Failure
Fails if an application of eq fails.

Example

- op_set_diff (fn x => fn y => x mod 2 = y mod 2) [1,2,3] [4,5,6];

> val it = [] : int list

- op_set_diff (fn x => fn y => x mod 2 = y mod 2) [1,2,3] [2,4,6,8];

> val it = [1, 3] : int list

Comments
The order in which the elements occur in the resulting list should not be depended
upon.

A high-performance implementation of finite sets may be found in structure HOLset.

See also
Lib.set diff, Lib.op mem, Lib.op insert, Lib.op union, Lib.op U, Lib.op mk set,

Lib.op intersect.

op_U (Lib)

op_U : (’a -> ’a -> bool) -> ’a list list -> ’a list

Synopsis
Takes the union of a list of sets, modulo the supplied relation.

Description
An application op_U eq [l1, ..., ln] is equivalent to op_union eq l1 (... (op_union eq ln-1, ln)...).
Thus, every element that occurs in one of the lists will appear in the result. However, if
there are two elements x and y from different lists such that eq x y, then only one of x
and y will appear in the result.

union 647

Failure
If an application of eq fails when applied to two elements from the lists.

Example

- op_U (fn x => fn y => x mod 2 = y mod 2)

[[1,2,3], [4,5,6], [2,4,6,8,10]];

> val it = [5, 2, 4, 6, 8, 10] : int list

Comments
The order in which the elements occur in the resulting list should not be depended
upon.

A high-performance implementation of finite sets may be found in structure HOLset.
There is no requirement that eq be recognizable as a kind of equality (it could be

implemented by an order relation, for example).

See also
Lib.U, Lib.op mem, Lib.op insert, Lib.op union, Lib.op mk set, Lib.op intersect,

Lib.op set diff.

union (Lib)

union : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis
Computes the union of two ‘sets’.

Description
If l1 and l2 are both ‘sets’ (lists with no repeated members), union eq l1 l2 returns the
set union of l1 and l2, using eq as the implementation of element equality. If one or
both of l1 and l2 have repeated elements, there may be repeated elements in the result.

Failure
If some application of eq fails.

Example

- op_union (fn x => fn y => x mod 2 = y mod 2) [1,2,3] [5,4,7];

> val it = [5, 4, 7] : int list

648 CHAPTER 1. ENTRIES

Comments
Do not make the assumption that the order of items in the list returned by op_union

is fixed. Later implementations may use different algorithms, and return a different
concrete result while still meeting the specification.

There is no requirement that eq be recognizable as a kind of equality (it could be
implemented by an order relation, for example).

A high-performance implementation of finite sets may be found in structure HOLset.

See also
Lib.union, Lib.op mem, Lib.op insert, Lib.op mk set, Lib.op U, Lib.op intersect,

Lib.op set diff.

OR_CONV (reduceLib)

OR_CONV : conv

Synopsis
Simplifies certain boolean disjunction expressions.

Description
If tm corresponds to one of the forms given below, where t is an arbitrary term of type
bool, then OR_CONV tm returns the corresponding theorem. Note that in the last case the
disjuncts need only be alpha-equivalent rather than strictly identical.

OR_CONV "T \/ t" = |- T \/ t = T

OR_CONV "t \/ T" = |- t \/ T = T

OR_CONV "F \/ t" = |- F \/ t = t

OR_CONV "t \/ F" = |- t \/ F = t

OR_CONV "t \/ t" = |- t \/ t = t

Failure
OR_CONV tm fails unless tm has one of the forms indicated above.

Example

#OR_CONV "F \/ T";;

|- F \/ T = T

#OR_CONV "X \/ F";;

OR EL CONV 649

|- X \/ F = X

#OR_CONV "(!n. n + 1 = SUC n) \/ (!m. m + 1 = SUC m)";;

|- (!n. n + 1 = SUC n) \/ (!m. m + 1 = SUC m) = (!n. n + 1 = SUC n)

OR_EL_CONV (listLib)

OR_EL_CONV : conv

Synopsis
Computes by inference the result of taking the disjunction of the elements of a boolean
list.

Description
For any object language list of the form --‘[x1;x2;...;xn]‘--, where x1, x2, ..., xn are
boolean expressions, the result of evaluating

OR_EL_CONV (--‘OR_EL [x1;x2;...;xn]‘--)

is the theorem

|- OR_EL [x1;x2;...;xn] = b

where b is either the boolean constant that denotes the disjunction of the elements of
the list, or a disjunction of those xi that are not boolean constants.

Example

- OR_EL_CONV (--‘OR_EL [T;F;F;T]‘--);

|- OR_EL [T;F;F;T] = T

- OR_EL_CONV (--‘OR_EL [F;F;F]‘--);

|- OR_EL [F;F;F] = F

- OR_EL_CONV (--‘OR_EL [F;x;y]‘--);

|- OR_EL [F; x; y] = x \/ y

- OR_EL_CONV (--‘OR_EL [x;T;y]‘--);

|- OR_EL [x; T; y] = T

650 CHAPTER 1. ENTRIES

Failure
OR_EL_CONV tm fails if tm is not of the form described above.

OR_EXISTS_CONV (Conv)

OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification outwards through a disjunction.

Description
When applied to a term of the form (?x.P) \/ (?x.Q), the conversion OR_EXISTS_CONV

returns the theorem:

|- (?x.P) \/ (?x.Q) = (?x. P \/ Q)

Failure
Fails if applied to a term not of the form (?x.P) \/ (?x.Q).

See also
Conv.EXISTS OR CONV, Conv.LEFT OR EXISTS CONV, Conv.RIGHT OR EXISTS CONV.

OR_FORALL_CONV (Conv)

OR_FORALL_CONV : conv

Synopsis
Moves a universal quantification outwards through a disjunction.

Description
When applied to a term of the form (!x.P) \/ (!x.Q), where x is free in neither P nor
Q, OR_FORALL_CONV returns the theorem:

|- (!x. P) \/ (!x. Q) = (!x. P \/ Q)

OR PEXISTS CONV 651

Failure
OR_FORALL_CONV fails if it is applied to a term not of the form (!x.P) \/ (!x.Q), or if it
is applied to a term (!x.P) \/ (!x.Q) in which the variable x is free in either P or Q.

See also
Conv.FORALL OR CONV, Conv.LEFT OR FORALL CONV, Conv.RIGHT OR FORALL CONV.

OR_PEXISTS_CONV (PairRules)

OR_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification outwards through a disjunction.

Description
When applied to a term of the form (?p. t) \/ (?p. u), the conversion OR_PEXISTS_CONV

returns the theorem:

|- (?p. t) \/ (?p. u) = (?p. t \/ u)

Failure
Fails if applied to a term not of the form (?p. t) \/ (?p. u).

See also
Conv.OR EXISTS CONV, PairRules.PEXISTS OR CONV, PairRules.LEFT OR PEXISTS CONV,

PairRules.RIGHT OR PEXISTS CONV.

OR_PFORALL_CONV (PairRules)

OR_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification outwards through a disjunction.

Description
When applied to a term of the form (!p. t) \/ (!p. u), where no variables from p are
free in either t nor u, OR_PFORALL_CONV returns the theorem:

652 CHAPTER 1. ENTRIES

|- (!p. t) \/ (!p. u) = (!p. t \/ u)

Failure
OR_PFORALL_CONV fails if it is applied to a term not of the form (!p. t) \/ (!p. u), or
if it is applied to a term (!p. t) \/ (!p. u) in which the variables from p are free in
either t or u.

See also
Conv.OR FORALL CONV, PairRules.PFORALL OR CONV, PairRules.LEFT OR PFORALL CONV,

PairRules.RIGHT OR PFORALL CONV.

ORELSE (Tactical)

op ORELSE : tactic * tactic -> tactic

Synopsis
Applies first tactic, and if it fails, applies the second instead.

Description
If T1 and T2 are tactics, T1 ORELSE T2 is a tactic which applies T1 to a goal, and if it fails,
applies T2 to the goal instead.

Failure
The application of ORELSE to a pair of tactics never fails. The resulting tactic fails if both
T1 and T2 fail when applied to the relevant goal.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.THEN.

ORELSE_CONSEQ_CONV (ConseqConv)

ORELSE_CONSEQ_CONV : (conseq_conv -> conseq_conv -> conseq_conv)

Synopsis
Applies the first of two consequence conversions that succeeds.

ORELSE TCL 653

See also
Conv.ORELSEC, ConseqConv.FIRST CONSEQ CONV.

ORELSE_TCL (Thm_cont)

$ORELSE_TCL : (thm_tactical -> thm_tactical -> thm_tactical)

Synopsis
Applies a theorem-tactical, and if it fails, tries a second.

Description
When applied to two theorem-tacticals, ttl1 and ttl2, a theorem-tactic ttac, and a
theorem th, if ttl1 ttac th succeeds, that gives the result. If it fails, the result is
ttl2 ttac th, which may itself fail.

Failure
ORELSE_TCL fails if both the theorem-tacticals fail when applied to the given theorem-
tactic and theorem.

See also
Thm cont.EVERY TCL, Thm cont.FIRST TCL, Thm cont.THEN TCL.

ORELSEC (Conv)

op ORELSEC : (conv -> conv -> conv)

Synopsis
Applies the first of two conversions that succeeds.

Description
(c1 ORELSEC c2) ‘‘t‘‘ returns the result of applying the conversion c1 to the term
‘‘t‘‘ if this succeeds. Otherwise (c1 ORELSEC c2) ‘‘t‘‘ returns the result of applying
the conversion c2 to the term ‘‘t‘‘. If either conversion raises the UNCHANGED exception
when applied, this is passed on to ORELSEC’s caller.

Failure
(c1 ORELSEC c2) ‘‘t‘‘ fails if both c1 and c2 fail when applied to ‘‘t‘‘.

654 CHAPTER 1. ENTRIES

See also
Conv.FIRST CONV.

output_words_as (wordsLib)

output_words_as : (int * num -> radix) -> unit

Synopsis
Controls pretty-printing of word literals.

Description
A call to output_words_as f makes function f determine the output base for word liter-
als. The funtion f takes a word-length/word-value pair and returns the required output
radix.

Example
The default setting is:

output_words_as

(fn (l, v) =>

if Arbnum.<=(Arbnum.fromHexString "10000", v) then

StringCvt.HEX

else

StringCvt.DEC);

The l = 0 case is used for word literals with non-numeric index types.

- wordsLib.output_words_as

(fn (l,_) => if l = 0 then StringCvt.HEX else StringCvt.DEC);

- ‘‘32w‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘0x20w‘‘ : term

- ‘‘32w:word5‘‘;

> val it = ‘‘32w‘‘ : term

Comments
Printing and parsing in octal is controlled by the reference base_tokens.allow_octal_input.
Pretty-printing for word literals can be turned off with a call to wordsLib.output_words_as_dec.

output words as bin 655

See also
Parse.add user printer, wordsLib.output words as dec,

wordsLib.output words as bin, wordsLib.output words as oct,

wordsLib.output words as hex.

output_words_as_bin (wordsLib)

output_words_as_bin : unit -> unit

Synopsis
Makes word literals pretty-print as binary.

Description
A call to output_words_as_bin will make word literals output in binary format.

Example

- wordsLib.output_words_as_bin();

- EVAL ‘‘$FCP ODD : word8‘‘;

> val it = |- $FCP ODD = 0b10101010w : thm

See also
wordsLib.output words as, wordsLib.remove word printer,

wordsLib.output words as dec, wordsLib.output words as oct,

wordsLib.output words as hex.

output_words_as_dec (wordsLib)

output_words_as_gec : unit -> unit

Synopsis
Makes word literals pretty-print as decimal.

Description
A call to output_words_as_dec will make word literals output in decimal format.

Example

656 CHAPTER 1. ENTRIES

- ‘‘0x100000w‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘0x100000w‘‘ : term

- wordsLib.output_words_as_dec();

- ‘‘0x100000w‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘1048576w‘‘ : term

See also
wordsLib.output words as, wordsLib.remove word printer,

wordsLib.output words as dec, wordsLib.output words as bin,

wordsLib.output words as oct.

output_words_as_hex (wordsLib)

output_words_as_hex : unit -> unit

Synopsis
Makes word literals pretty-print as hexadecimal.

Description
A call to output_words_as_hex will make word literals output in hexadecimal format.

Example

- wordsLib.output_words_as_hex();

- EVAL ‘‘44w : word32 << 3‘‘

> val it = |- 0x2Cw << 3 = 0x160w : thm

See also
wordsLib.output words as, wordsLib.remove word printer,

wordsLib.output words as dec, wordsLib.output words as bin,

wordsLib.output words as oct.

output_words_as_oct (wordsLib)

output_words_as_oct : unit -> unit

overload on 657

Synopsis
Makes word literals pretty-print as octal.

Description
A call to output_words_as_oct will make word literals output in octal format.

Example

- ‘‘032w:word5‘‘;

> val it = ‘‘32w‘‘ : term

- wordsLib.output_words_as_oct();

- ‘‘032w:word5‘‘;

> val it = ‘‘032w‘‘ : term

- wordsLib.output_words_as_dec();

- ‘‘032w:word5‘‘;

> val it = ‘‘26w‘‘ : term

Comments
Printing and parsing in octal is controlled by the reference base_tokens.allow_octal_input.
A call to output_words_as_oct sets this value to true.

See also
wordsLib.output words as, wordsLib.remove word printer,

wordsLib.output words as dec, wordsLib.output words as bin,

wordsLib.output words as hex.

overload_on (Parse)

Parse.overload_on : string * term -> unit

Synopsis
Establishes a term as one of the overloading possibilities for a string.

Description
Calling overload_on(name,tm) establishes tm as a possible resolution of the overloaded
name. The call to overload_on also ensures that tm is the first in the list of possible
resolutions chosen when a string might be parsed into a term in more than one way, and
this is the only effect if this combination is already recorded as a possible overloading.

658 CHAPTER 1. ENTRIES

When printing, this call causes tm to be seen as the operator name. The string name may
prompt further pretty-printing if it is involved in any of the relevant grammar’s rules for
concrete syntax.

If tm is an abstraction, then the parser will perform beta-reductions if the term is the
function part of a redex position.

Failure
Never fails.

Example
We define the equivalent of intersection over predicates:

- val inter = new_definition("inter", Term‘inter p q x = p x /\ q x‘);

<<HOL message: inventing new type variable names: ’a.>>

> val inter = |- !p q x. inter p q x = p x /\ q x : thm

We overload on our new intersection constant, and can be sure that in ambiguous situ-
ations, it will be preferred:

- overload_on ("/\\", Term‘inter‘);

<<HOL message: inventing new type variable names: ’a.>>

> val it = () : unit

- Term‘p /\ q‘;

<<HOL message: more than one resolution of overloading was possible.>>

<<HOL message: inventing new type variable names: ’a.>>

> val it = ‘p /\ q‘ : term

- type_of it;

> val it = ‘:’a -> bool‘ : hol_type

Note that the original constant is considered overloaded to itself, so that our one call
to overload_on now allows for two possibilities whenever the identifier /\ is seen. In
order to make normal conjunction the preferred choice, we can call overload_on with
the original constant:

- overload_on ("/\\", Term‘bool$/\‘);

> val it = () : unit

- Term‘p /\ q‘;

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ‘p /\ q‘ : term

- type_of it;

> val it = ‘:bool‘ : hol_type

p 659

Note that in order to specify the original conjunction constant, we used the qualified
identifier syntax, with the $. If we’d used just /\, the overloading would have ensured
that this was parsed as inter. Instead of the qualified identifier syntax, we could have
also constrained the type of conjunction explicitly so that the original constant would
be the only possibility. Thus:

- overload_on ("/\\", Term‘/\ :bool->bool->bool‘);

> val it = () : unit

The ability to overload to abstractions allows the use of simple symbols for “compli-
cated” effects, without needing to actually define new constants.

- overload_on ("|<", Term‘\x y. ~(x < y)‘);

> val it = () : unit

- set_fixity "|<" (Infix(NONASSOC, 450));

> val it = () : unit

- val t = Term‘p |< q‘;

> val t = ‘p |< q‘ : term

- dest_neg t;

> Val it = ‘p < q‘ : term

This facility is used to provide symbols for “is-not-equal” (<>), and “is-not-a-member”
(NOTIN).

Comments
Overloading with abandon can lead to input that is very hard to make sense of,
and so should be used with caution. There is a temporary version of this function:
temp_overload_on.

See also
Parse.clear overloads on, Parse.set fixity.

p (proofManagerLib)

p : unit -> proof

660 CHAPTER 1. ENTRIES

Synopsis
Prints the top levels of the subgoal package goal stack.

Description
The function p is part of the subgoal package. For a description of the subgoal package,
see set_goal.

Failure
Never fails.

Uses
Examining the proof state during an interactive proof session.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

P_FUN_EQ_CONV (PairRules)

P_FUN_EQ_CONV : (term -> conv)

Synopsis
Performs extensionality conversion for functions (function equality).

Description
The conversion P_FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. For any
paired variable structure "p" and equation "f = g", where p is of type ty1 and f and g

are functions of type ty1->ty2, a call to P_FUN_EQ_CONV "p" "f = g" returns the theorem:

|- (f = g) = (!p. f p = g p)

Failure
P_FUN_EQ_CONV p tm fails if p is not a paired structure of variables or if tm is not an
equation f = g where f and g are functions. Furthermore, if f and g are functions
of type ty1->ty2, then the pair x must have type ty1; otherwise the conversion fails.
Finally, failure also occurs if any of the variables in p is free in either f or g.

P PCHOOSE TAC 661

See also
Conv.FUN EQ CONV, PairRules.PEXT.

P_PCHOOSE_TAC (PairRules)

P_PCHOOSE_TAC : (term -> thm_tactic)

Synopsis
Assumes a theorem, with existentially quantified pair replaced by a given witness.

Description
P_PCHOOSE_TAC expects a pair q and theorem with a paired existentially quantified con-
clusion. When applied to a goal, it adds a new assumption obtained by introducing the
pair q as a witness for the pair p whose existence is asserted in the theorem.

A ?- t

=================== P_CHOOSE_TAC "q" (A1 |- ?p. u)

A u {u[q/p]} ?- t ("y" not free anywhere)

Failure
Fails if the theorem’s conclusion is not a paired existential quantification, or if the
first argument is not a paired structure of variables. Failures may arise in the tactic-
generating function. An invalid tactic is produced if the introduced variable is free in u

or t, or if the theorem has any hypothesis which is not alpha-convertible to an assump-
tion of the goal.

See also
Tactic.X CHOOSE TAC, PairRules.PCHOOSE, PairRules.PCHOOSE THEN,

PairRules.P PCHOOSE THEN.

P_PCHOOSE_THEN (PairRules)

P_PCHOOSE_THEN : (term -> thm_tactical)

Synopsis
Replaces existentially quantified pair with given witness, and passes it to a theorem-
tactic.

662 CHAPTER 1. ENTRIES

Description
P_PCHOOSE_THEN expects a pair q, a tactic-generating function f:thm->tactic, and a the-
orem of the form (A1 |- ?p. u) as arguments. A new theorem is created by introducing
the given pair q as a witness for the pair p whose existence is asserted in the original the-
orem, (u[q/p] |- u[q/p]). If the tactic-generating function f applied to this theorem
produces results as follows when applied to a goal (A ?- u):

A ?- t

========= f ({u[q/p]} |- u[q/p])

A ?- t1

then applying (P_PCHOOSE_THEN "q" f (A1 |- ?p. u)) to the goal (A ?- t) produces the
subgoal:

A ?- t

========= P_PCHOOSE_THEN "q" f (A1 |- ?p. u)

A ?- t1 ("q" not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a paired structure of variables. Failures may arise in the tactic-generating function.
An invalid tactic is produced if the introduced variable is free in u or t, or if the theorem
has any hypothesis which is not alpha-convertible to an assumption of the goal.

See also
Thm cont.X CHOOSE THEN, PairRules.PCHOOSE, PairRules.PCHOOSE THEN,

PairRules.P PCHOOSE TAC.

P_PGEN_TAC (PairRules)

P_PGEN_TAC : (term -> tactic)

Synopsis
Specializes a goal with the given paired structure of variables.

Description
When applied to a paired structure of variables p’, and a goal A ?- !p. t, the tactic
P_PGEN_TAC returns the goal A ?- t[p’/p].

P PSKOLEM CONV 663

A ?- !p. t

============== P_PGEN_TAC "p’"

A ?- t[p’/x]

Failure
Fails unless the goal’s conclusion is a paired universal quantification and the term a
paired structure of variables of the appropriate type. It also fails if any of the variables
of the supplied structure occurs free in either the assumptions or (initial) conclusion of
the goal.

See also
Tactic.X GEN TAC, PairRules.FILTER PGEN TAC, PairRules.PGEN, PairRules.PGENL,

PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSPEC TAC.

P_PSKOLEM_CONV (PairRules)

P_PSKOLEM_CONV : (term -> conv)

Synopsis
Introduces a user-supplied Skolem function.

Description
P_PSKOLEM_CONV takes two arguments. The first is a variable f, which must range over
functions of the appropriate type, and the second is a term of the form !p1...pn. ?q. t

(where pi and q may be pairs). Given these arguments, P_PSKOLEM_CONV returns the
theorem:

|- (!p1...pn. ?q. t) = (?f. !p1...pn. tm[f p1 ... pn/q])

which expresses the fact that a skolem function f of the universally quantified variables
p1...pn may be introduced in place of the the existentially quantified pair p.

Failure
P_PSKOLEM_CONV f tm fails if f is not a variable, or if the input term tm is not a term of
the form !p1...pn. ?q. t, or if the variable f is free in tm, or if the type of f does not
match its intended use as an n-place curried function from the pairs p1...pn to a value
having the same type as p.

See also
Conv.X SKOLEM CONV, PairRules.PSKOLEM CONV.

664 CHAPTER 1. ENTRIES

PABS (PairRules)

PABS : (term -> thm -> thm)

Synopsis
Paired abstraction of both sides of an equation.

Description

A |- t1 = t2

------------------------ ABS "p" [Where p is not free in A]

A |- (\p.t1) = (\p.t2)

Failure
If the theorem is not an equation, or if any variable in the paired structure of variables
p occurs free in the assumptions A.

EXAMPLE

- PABS (Term ‘(x:’a,y:’b)‘) (REFL (Term ‘(x:’a,y:’b)‘));

> val it = |- (\(x,y). (x,y)) = (\(x,y). (x,y)) : thm

See also
Thm.ABS, PairRules.PABS CONV, PairRules.PETA CONV, PairRules.PEXT,

PairRules.MK PABS.

PABS_CONV (PairRules)

PABS_CONV : conv -> conv

Synopsis
Applies a conversion to the body of a paired abstraction.

Description
If c is a conversion that maps a term t to the theorem |- t = t’, then the conversion
PABS_CONV c maps abstractions of the form \p.t to theorems of the form:

|- (\p.t) = (\p.t’)

paconv 665

That is, ABS_CONV c "\p.t" applies p to the body of the paired abstraction "\p.t".

Failure
PABS_CONV c tm fails if tm is not a paired abstraction or if tm has the form "\p.t" but the
conversion c fails when applied to the term t. The function returned by ABS_CONV p may
also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that
maps a term t to a theorem |- t = t’).

Example

- PABS_CONV SYM_CONV (Term ‘\(x,y). (1,2) = (x,y)‘);

> val it = |- (\(x,y). (1,2) = (x,y)) = (\(x,y). (x,y) = (1,2)) : thm

See also
Conv.ABS CONV, PairRules.PSUB CONV.

paconv (pairSyntax)

paconv : (term -> term -> bool)

Synopsis
Tests for alpha-equivalence of terms.

Description
When applied to a pair of terms t1 and t2, paconv returns true if the terms are alpha-
equivalent.

Failure
Never fails.

Comments
paconv is implemented as curry (can (uncurry PALPHA)).

See also
PairRules.PALPHA, Term.aconv.

pair (Lib)

pair : ’a -> ’b -> ’a * ’b

666 CHAPTER 1. ENTRIES

Synopsis
Makes two values into a pair.

Description
pair x y returns (x, y).

Failure
Never fails.

See also
Lib.rpair, Lib.swap, Lib.fst, Lib.snd, Lib.pair of list, Lib.triple,

Lib.quadruple, Lib.curry, Lib.uncurry.

PAIR_CONV (PairRules)

PAIR_CONV : (conv -> conv)

Synopsis
Applies a conversion to all the components of a pair structure.

Description
For any conversion c, the function returned by PAIR_CONV c is a conversion that applies
c to all the components of a pair. If the term t is not a pair, them PAIR_CONV c t applies
c to t. If the term t is the pair (t1,t2) then PAIR c t recursively applies PAIR_CONV c to
t1 and t2.

Failure
The conversion returned by PAIR_CONV c will fail for the pair structure t if the conversion
c would fail for any of the components of t.

See also
Conv.RAND CONV, Conv.RATOR CONV.

pair_of_list (Lib)

pair_of_list : ’a list -> ’a * ’a

PAIRED BETA CONV 667

Synopsis
Turns a two-element list into a pair.

Description
pair_of_list [x, y] returns (x, y).

Failure
Fails if applied to a list that is not of length 2.

See also
Lib.singleton of list, Lib.triple of list, Lib.quadruple of list.

PAIRED_BETA_CONV (PairedLambda)

PAIRED_BETA_CONV : conv

Synopsis
Performs generalized beta conversion for tupled beta-redexes.

Description
The conversion PAIRED_BETA_CONV implements beta-reduction for certain applications of
tupled lambda abstractions called ‘tupled beta-redexes’. Tupled lambda abstractions
have the form \<vs>.tm, where <vs> is an arbitrarily-nested tuple of variables called a
‘varstruct’. For the purposes of PAIRED_BETA_CONV, the syntax of varstructs is given by:

<vs> ::= (v1,v2) | (<vs>,v) | (v,<vs>) | (<vs>,<vs>)

where v, v1, and v2 range over variables. A tupled beta-redex is an application of
the form (\<vs>.tm) t, where the term t is a nested tuple of values having the same
structure as the varstruct <vs>. For example, the term:

(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))

is a tupled beta-redex, but the term:

(\((a,b),(c,d)). a + b + c + d) ((1,2),p)

is not, since p is not a pair of terms.
Given a tupled beta-redex (\<vs>.tm) t, the conversion PAIRED_BETA_CONV performs

generalized beta-reduction and returns the theorem

|- (\<vs>.tm) t = t[t1,...,tn/v1,...,vn]

668 CHAPTER 1. ENTRIES

where ti is the subterm of the tuple t that corresponds to the variable vi in the varstruct
<vs>. In the simplest case, the varstruct <vs> is flat, as in the term:

(\(v1,...,vn).t) (t1,...,tn)

When applied to a term of this form, PAIRED_BETA_CONV returns:

|- (\(v1, ... ,vn).t) (t1, ... ,tn) = t[t1,...,tn/v1,...,vn]

As with ordinary beta-conversion, bound variables may be renamed to prevent free
variable capture. That is, the term t[t1,...,tn/v1,...,vn] in this theorem is the result
of substituting ti for vi in parallel in t, with suitable renaming of variables to prevent
free variables in t1, ..., tn becoming bound in the result.

Failure
PAIRED_BETA_CONV tm fails if tm is not a tupled beta-redex, as described above. Note that
ordinary beta-redexes are specifically excluded: PAIRED_BETA_CONV fails when applied to
(\v.t)u. For these beta-redexes, use BETA_CONV, or GEN_BETA_CONV.

Example
The following is a typical use of the conversion:

- PairedLambda.PAIRED_BETA_CONV

(Term ‘(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))‘);

> val it = |- (\((a,b),c,d). a+b+c+d) ((1,2),3,4) = 1+2+3+4 : thm

Note that the term to which the tupled lambda abstraction is applied must have the
same structure as the varstruct. For example, the following succeeds:

- PairedLambda.PAIRED_BETA_CONV

(Term ‘(\((a,b),p). a + b) ((1,2),(3+5,4))‘);

> val it = |- (\((a,b),p). a + b)((1,2),3 + 5,4) = 1 + 2 : thm

but the following call fails:

- PairedLambda.PAIRED_BETA_CONV

(Term ‘(\((a,b),(c,d)). a + b + c + d) ((1,2),p)‘);

! Uncaught exception:

! HOL_ERR

because p is not a pair.

See also
Thm.BETA CONV, Conv.BETA RULE, Tactic.BETA TAC, Drule.LIST BETA CONV,

Drule.RIGHT BETA, Drule.RIGHT LIST BETA.

PAIRED ETA CONV 669

PAIRED_ETA_CONV (PairedLambda)

PAIRED_ETA_CONV : conv

Synopsis
Performs generalized eta conversion for tupled eta-redexes.

Description
The conversion PAIRED_ETA_CONV generalizes ETA_CONV to eta-redexes with tupled ab-
stractions.

PAIRED_ETA_CONV \(v1..(..)..vn). f (v1..(..)..vn)

= |- \(v1..(..)..vn). f (v1..(..)..vn) = f

Failure
Fails unless the given term is a paired eta-redex as illustrated above.

Comments
Note that this result cannot be achieved by ordinary eta-reduction because the tupled
abstraction is a surface syntax for a term which does not correspond to a normal pattern
for eta reduction. Taking the term apart reveals the true form of a paired eta redex:

- dest_comb (Term ‘\(x:num,y:num). FST (x,y)‘)

> val it = (‘UNCURRY‘, ‘\x y. FST (x,y)‘) : term * term

Example
The following is a typical use of the conversion:

val SELECT_PAIR_EQ = Q.prove

(‘(@(x:’a,y:’b). (a,b) = (x,y)) = (a,b)‘,

CONV_TAC (ONCE_DEPTH_CONV PairedLambda.PAIRED_ETA_CONV) THEN

ACCEPT_TAC (SYM (MATCH_MP SELECT_AX (REFL (Term ‘(a:’a,b:’b)‘)))));

See also
Drule.ETA CONV.

PALPHA (PairRules)

PALPHA : term -> term -> thm

670 CHAPTER 1. ENTRIES

Synopsis
Proves equality of paired alpha-equivalent terms.

Description
When applied to a pair of terms t1 and t1’ which are alpha-equivalent, ALPHA returns
the theorem |- t1 = t1’.

------------- PALPHA "t1" "t1’"

|- t1 = t1’

The difference between PALPHA and ALPHA is that PALPHA is prepared to consider pair
structures of different structure to be alpha-equivalent. In its most trivial case this
means that PALPHA can consider a variable and a pair to alpha-equivalent.

Failure
Fails unless the terms provided are alpha-equivalent.

Example

- PALPHA (Term ‘\(x:’a,y:’a). (x,y)‘) (Term‘\xy:’a#’a. xy‘);

> val it = |- (\(x,y). (x,y)) = (\xy. xy) : thm

Comments
Alpha-converting a paired abstraction to a nonpaired abstraction can introduce in-
stances of the terms FST and SND. A paired abstraction and a nonpaired abstraction
will be considered equivalent by PALPHA if the nonpaired abstraction contains all those
instances of FST and SND present in the paired abstraction, plus the minimum additional
instances of FST and SND. For example:

- PALPHA

(Term ‘\(x:’a,y:’b). (f x y (x,y)):’c‘)

(Term ‘\xy:’a#’b. (f (FST xy) (SND xy) xy):’c‘);

> val it = |- (\(x,y). f x y (x,y)) = (\xy. f (FST xy) (SND xy) xy) : thm

- PALPHA

(Term ‘\(x:’a,y:’b). (f x y (x,y)):’c‘)

(Term ‘\xy:’a#’b. (f (FST xy) (SND xy) (FST xy, SND xy)):’c‘)

handle e => Raise e;

Exception raised at ??.failwith:

PALPHA

! Uncaught exception:

! HOL_ERR

PALPHA CONV 671

See also
Thm.ALPHA, Term.aconv, PairRules.PALPHA CONV, PairRules.GEN PALPHA CONV.

PALPHA_CONV (PairRules)

PALPHA_CONV : term -> conv

Synopsis
Renames the bound variables of a paired lambda-abstraction.

Description
If q is a variable of type ty and \p.t is a paired abstraction in which the bound pair p

also has type ty, then ALPHA_CONV q "\p.t" returns the theorem:

|- (\p.t) = (\q’. t[q’/p])

where the pair q’:ty is a primed variant of q chosen so that none of its components are
free in \p.t. The pairs p and q need not have the same structure, but they must be of
the same type.

Example
PALPHA_CONV renames the variables in a bound pair:

- PALPHA_CONV

(Term ‘((w:’a,x:’a),(y:’a,z:’a))‘)

(Term ‘\((a:’a,b:’a),(c:’a,d:’a)). (f a b c d):’a‘);

> val it = |- (\((a,b),c,d). f a b c d) = (\((w,x),y,z). f w x y z) : thm

The new bound pair and the old bound pair need not have the same structure.

- PALPHA_CONV

(Term ‘((wx:’a#’a),(y:’a,z:’a))‘)

(Term ‘\((a:’a,b:’a),(c:’a,d:’a)). (f a b c d):’a‘);

> val it = |- (\((a,b),c,d). f a b c d) =

(\(wx,y,z). f (FST wx) (SND wx) y z) : thm

PALPHA_CONV recognises subpairs of a pair as variables and preserves structure accord-
ingly.

- PALPHA_CONV

(Term ‘((wx:’a#’a),(y:’a,z:’a))‘)

(Term ‘\((a:’a,b:’a),(c:’a,d:’a)). (f (a,b) c d):’a‘);

> val it = |- (\((a,b),c,d). f (a,b) c d) = (\(wx,y,z). f wx y z) : thm

672 CHAPTER 1. ENTRIES

Comments
PALPHA_CONV will only ever add the terms FST and SND, i.e., it will never remove them.
This means that while \(x,y). x + y can be converted to \xy. (FST xy) + (SND xy), it
can not be converted back again.

Failure
PALPHA_CONV q tm fails if q is not a variable, if tm is not an abstraction, or if q is a variable
and tm is the lambda abstraction \p.t but the types of p and q differ.

See also
Drule.ALPHA CONV, PairRules.PALPHA, PairRules.GEN PALPHA CONV.

parents (Theory)

parents : string -> string list

Synopsis
Lists the parent theories of a named theory.

Description
If s is the name of the current theory or an ancestor of the current theory, the call
parents s returns a list of strings that identify the parent theories of s. The shorthand
"-" may be used to denote the name of the current theory segment.

Failure
Fails if the named theory is not an ancestor of the current theory.

Example

- parents "bool";

> val it = ["min"] : string list

- parents "min";

> val it = [] : string list

- current_theory();

> val it = "scratch" : string

- parents "-";

> val it = ["list", "option"] : string list

parse from grammars 673

See also
Theory.ancestry, Theory.current theory.

parse_from_grammars (Parse)

parse_from_grammars :

(type_grammar.grammar * term_grammar.grammar) ->

((hol_type frag list -> hol_type) * (term frag list -> term))

Synopsis
Returns parsing functions based on the supplied grammars.

Description
When given a pair consisting of a type and a term grammar, this function returns parsing
functions that use those grammars to turn strings (strictly, quotations) into types and
terms respectively.

Failure
Can’t fail immediately. However, when the precedence matrix for the term parser is
built on first application of the term parser, this may generate precedence conflict errors
depending on the rules in the grammar.

Example
First the user loads arithmeticTheory to augment the built-in grammar with the ability
to lex numerals and deal with symbols such as + and -:

- load "arithmeticTheory";

> val it = () : unit

- val t = Term‘2 + 3‘;

> val t = ‘2 + 3‘ : term

Then the parse_from_grammars function is used to make the values Type and Term use
the grammar present in the simpler theory of booleans. Using this function fails to parse
numerals or even the + infix:

- val (Type,Term) = parse_from_grammars boolTheory.bool_grammars;

> val Type = fn : hol_type frag list -> hol_type

val Term = fn : term frag list -> term

- Term‘2 + 3‘;

674 CHAPTER 1. ENTRIES

<<HOL message: No numerals currently allowed.>>

! Uncaught exception:

! HOL_ERR <poly>

- Term‘x + y‘;

<<HOL message: inventing new type variable names: ’a, ’b.>>

> val it = ‘x $+ y‘ : term

But, as the last example above also demonstrates, the installed pretty-printer is still
dependent on the global grammar, and the global value of Term can still be accessed
through the Parse structure:

- t;

> val it = ‘2 + 3‘ : term

- Parse.Term‘2 + 3‘;

> val it = ‘2 + 3‘ : term

Uses
This function is used to ensure that library code has access to a term parser that is a
known quantity. In particular, it is not good form to have library code that depends on
the default parsers Term and Type. When the library is loaded, which may happen at any
stage, these global values may be such that the parsing causes quite unexpected results
or failures.

See also
Parse.add rule, Parse.print from grammars, Parse.Term.

parse_in_context (Parse)

Parse.parse_in_context : term list -> term quotation -> term

Synopsis
Parses a quotation into a term, using the terms as typing context.

Description
Where the Term function parses a quotation in isolation of all possible contexts (except
inasmuch as the global grammar provides a form of context), this function uses the
additional parameter, a list of terms, to help in giving variables in the quotation types.

PART MATCH 675

Thus, Term‘x‘ will either guess the type ‘‘:’a‘‘ for this quotation, or refuse to parse
it at all, depending on the value of the guessing_tyvars flag. The parse_in_context

function, in contrast, will attempt to find a type for x from the list of free variables.
If the quotation already provides enough context in itself to determine a type for

a variable, then the context is not consulted, and a conflicting type there for a given
variable is ignored.

Failure
Fails if the quotation doesn’t make syntactic sense, or if the assignment of context types
to otherwise unconstrained variables in the quotation causes overloading resolution to
fail. The latter would happen if the variable x was given boolean type in the context, if
+ was overloaded to be over either :num or :int, and if the quotation was x + y.

Example

<< There should be an example here >>

Uses
Used in many of the Q module’s variants of the standard tactics in order to have a goal
provide contextual information to the parsing of arguments to tactics.

See also
Parse.Term.

PART_MATCH (Drule)

PART_MATCH : (term -> term) -> thm -> term -> thm

Synopsis
Instantiates a theorem by matching part of it to a term.

Description
When applied to a ‘selector’ function of type term -> term, a theorem and a term:

PART_MATCH fn (A |- !x1...xn. t) tm

the function PART_MATCH applies fn to t’ (the result of specializing universally quantified
variables in the conclusion of the theorem), and attempts to match the resulting term
to the argument term tm. If it succeeds, the appropriately instantiated version of the
theorem is returned.

676 CHAPTER 1. ENTRIES

Failure
Fails if the selector function fn fails when applied to the instantiated theorem, or if the
match fails with the term it has provided.

Example
Suppose that we have the following theorem:

th = |- !x. x==>x

then the following:

PART_MATCH (fst o dest_imp) th "T"

results in the theorem:

|- T ==> T

because the selector function picks the antecedent of the implication (the inbuilt spe-
cialization gets rid of the universal quantifier), and matches it to T.

See also
Thm.INST TYPE, Drule.INST TY TERM, Term.match term.

PART_PMATCH (PairRules)

PART_PMATCH : ((term -> term) -> thm -> term -> thm)

Synopsis
Instantiates a theorem by matching part of it to a term.

Description
When applied to a ‘selector’ function of type term -> term, a theorem and a term:

PART_MATCH fn (A |- !p1...pn. t) tm

the function PART_PMATCH applies fn to t’ (the result of specializing universally quanti-
fied pairs in the conclusion of the theorem), and attempts to match the resulting term
to the argument term tm. If it succeeds, the appropriately instantiated version of the
theorem is returned.

Failure
Fails if the selector function fn fails when applied to the instantiated theorem, or if the
match fails with the term it has provided.

partial 677

See also
Drule.PART MATCH.

partial (Lib)

partial : exn -> (’a -> ’b option) -> ’a -> ’b

Synopsis
Converts a total function to a partial function.

Description
In ML, there are two main ways for a function to signal that it has been called on an
element outside of its intended domain of application: exceptions and options. The
function partial maps a function returning an element in an option type to one that
may raise an exception. Thus, if f x returns NONE, then partial e f x results in the
exception e being raised. If f x returns SOME y, then partial e f x returns y.

The function partial has an inverse total. Generally speaking, (partial err o total) f

equals f, provided that err is the only exception that f raises. Similarly, (total o partial err) f

is equal to f.

Failure
When application of the second argument to the third argument returns NONE.

Example

- Int.fromString "foo";

> val it = NONE : int option

- partial (Fail "not convertable") Int.fromString "foo";

! Uncaught exception:

! Fail "not convertable"

- (total o partial (Fail "not convertable")) Int.fromString "foo";

> val it = NONE : int option

See also
Lib.total.

678 CHAPTER 1. ENTRIES

partition (Lib)

partition : (’a -> bool) -> ’a list -> ’a list * ’a list

Synopsis
Split a list by a predicate

Description
An invocation partition P l divides l into a pair of lists (l1,l2). P holds of each
element of l1, and P does not hold of any element of l2.

Failure
If applying P to any element of l results in failure.

Example

- partition (fn i => i mod 2 = 0) [1,2,3,4,5,6,7,8,9];

> val it = ([2, 4, 6, 8], [1, 3, 5, 7, 9]) : int list * int list

- partition (fn _ => true) [1,2,3];

> val it = ([1, 2, 3], []) : int list * int list

- partition (fn _ => raise Fail "") ([]:int list);

> val it = ([], []) : int list * int list

- partition (fn _ => raise Fail "") [1];

! Uncaught exception:

! Fail ""

See also
Lib.split after, Lib.pluck.

PAT_ASSUM (Tactical)

PAT_ASSUM : term -> thm_tactic -> tactic

PAT ASSUM 679

Synopsis
Finds the first assumption that matches the term argument, applies the theorem tactic
to it, and removes this assumption.

Description
The tactic

PAT_ASSUM tm ttac ([A1, ..., An], g)

finds the first Ai which matches tm using higher-order pattern matching in the sense of
ho_match_term. Unless there is just one match otherwise, free variables in the pattern
that are also free in the assumptions or the goal must not be bound by the match. In
effect, these variables are being treated as local constants.

Failure
Fails if the term doesn’t match any of the assumptions, or if the theorem-tactic fails
when applied to the first assumption that does match the term.

Example
The tactic

PAT_ASSUM (Term‘x:num = y‘) SUBST_ALL_TAC

searches the assumptions for an equality over numbers and causes its right hand side
to be substituted for its left hand side throughout the goal and assumptions. It also
removes the equality from the assumption list. Trying to use FIRST_ASSUM above (i.e.,
replacing PAT_ASSUM with FIRST_ASSUM and dropping the term argument entirely) would
require that the desired equality was the first such on the list of assumptions, and would
leave an equality on the assumption list of the form x = x.

If one is trying to solve the goal

{ !x. f x = g (x + 1), !x. g x = f0 (f x)} ?- f x = g y

rewriting with the assumptions directly will cause a loop. Instead, one might want to
rewrite with the formula for f. This can be done in an assumption-order-independent
way with

PAT_ASSUM (Term‘!x. f x = f’ x‘) (fn th => REWRITE_TAC [th])

This use of the tactic exploits higher order matching to match the RHS of the assump-
tion, and the fact that f is effectively a local constant in the goal to find the correct
assumption.

See also
Tactical.ASSUM LIST, Tactical.EVERY, Tactical.EVERY ASSUM, Tactical.FIRST,

Tactical.MAP EVERY, Tactical.MAP FIRST, Thm cont.UNDISCH THEN, Term.match term.

680 CHAPTER 1. ENTRIES

PBETA_CONV (PairRules)

PBETA_CONV : conv

Synopsis
Performs a general beta-conversion.

Description
The conversion PBETA_CONV maps a paired beta-redex "(\p.t)q" to the theorem

|- (\p.t)q = t[q/p]

where u[q/p] denotes the result of substituting q for all free occurrences of p in t, after
renaming sufficient bound variables to avoid variable capture. Unlike PAIRED_BETA_CONV,
PBETA_CONV does not require that the structure of the argument match the structure of
the pair bound by the abstraction. However, if the structure of the argument does match
the structure of the pair bound by the abstraction, then PAIRED_BETA_CONV will do the
job much faster.

Failure
PBETA_CONV tm fails if tm is not a paired beta-redex.

Example
PBETA_CONV will reduce applications with arbitrary structure.

- PBETA_CONV

(Term ‘((\((a:’a,b:’a),(c:’a,d:’a)). f a b c d) ((w,x),(y,z))):’a‘);

> val it = |- (\((a,b),c,d). f a b c d) ((w,x),y,z) = f w x y z : thm

PBETA_CONV does not require the structure of the argument and the bound pair to
match.

- PBETA_CONV

(Term ‘((\((a:’a,b:’a),(c:’a,d:’a)). f a b c d) ((w,x),yz)):’a‘);

> val it = |- (\((a,b),c,d). f a b c d) ((w,x),yz) =

f w x (FST yz) (SND yz) : thm

PBETA_CONV regards component pairs of the bound pair as variables in their own right
and preserves structure accordingly:

- PBETA_CONV

(Term ‘((\((a:’a,b:’a),(c:’a,d:’a)). f (a,b) (c,d)) (wx,(y,z))):’a‘);

> val it = |- (\((a,b),c,d). f (a,b) (c,d)) (wx,y,z) = f wx (y,z) : thm

PBETA RULE 681

See also
Thm.BETA CONV, PairedLambda.PAIRED BETA CONV, PairRules.PBETA RULE,

PairRules.PBETA TAC, PairRules.LIST PBETA CONV, PairRules.RIGHT PBETA,

PairRules.RIGHT LIST PBETA, PairRules.LEFT PBETA, PairRules.LEFT LIST PBETA.

PBETA_RULE (PairRules)

PBETA_RULE : (thm -> thm)

Synopsis
Beta-reduces all the paired beta-redexes in the conclusion of a theorem.

Description
When applied to a theorem A |- t, the inference rule PBETA_RULE beta-reduces all beta-
redexes, at any depth, in the conclusion t. Variables are renamed where necessary to
avoid free variable capture.

A |-((\p. s1) s2)....

---------------------------- BETA_RULE

A |-(s1[s2/p])....

Failure
Never fails, but will have no effect if there are no paired beta-redexes.

See also
Conv.BETA RULE, PairRules.PBETA CONV, PairRules.PBETA TAC,

PairRules.RIGHT PBETA, PairRules.LEFT PBETA.

PBETA_TAC (PairRules)

PBETA_TAC : tactic

Synopsis
Beta-reduces all the paired beta-redexes in the conclusion of a goal.

Description
When applied to a goal A ?- t, the tactic PBETA_TAC produces a new goal which results
from beta-reducing all paired beta-redexes, at any depth, in t. Variables are renamed
where necessary to avoid free variable capture.

682 CHAPTER 1. ENTRIES

A ?- ...((\p. s1) s2)...

========================== PBETA_TAC

A ?- ...(s1[s2/p])...

Failure
Never fails, but will have no effect if there are no paired beta-redexes.

See also
Tactic.BETA TAC, PairRules.PBETA CONV, PairRules.PBETA RULE.

pbody (pairSyntax)

pbody : (term -> term)

Synopsis
Returns the body of a paired abstraction.

Description
pbody "\pair. t" returns "t".

Failure
Fails unless the term is a paired abstraction.

See also
Term.body, pairSyntax.dest pabs.

PCHOOSE (PairRules)

PCHOOSE : term * thm -> thm -> thm

Synopsis
Eliminates paired existential quantification using deduction from a particular witness.

Description
When applied to a term-theorem pair (q,A1 |- ?p. s) and a second theorem of the
form A2 u {s[q/p]} |- t, the inference rule PCHOOSE produces the theorem A1 u A2 |- t.

PCHOOSE TAC 683

A1 |- ?p. s A2 u {s[q/p]} |- t

------------------------------------ PCHOOSE ("q",(A1 |- ?q. s))

A1 u A2 |- t

Where no variable in the paired variable structure q is free in A1, A2 or t.

Failure
Fails unless the terms and theorems correspond as indicated above; in particular q must
have the same type as the pair existentially quantified over, and must not contain any
variable free in A1, A2 or t.

See also
Thm.CHOOSE, PairRules.PCHOOSE TAC, PairRules.PEXISTS, PairRules.PEXISTS TAC,

PairRules.PSELECT ELIM.

PCHOOSE_TAC (PairRules)

PCHOOSE_TAC : thm_tactic

Synopsis
Adds the body of a paired existentially quantified theorem to the assumptions of a goal.

Description
When applied to a theorem A’ |- ?p. t and a goal, CHOOSE_TAC adds t[p’/p] to the
assumptions of the goal, where p’ is a variant of the pair p which has no components
free in the assumption list; normally p’ is just p.

A ?- u

==================== CHOOSE_TAC (A’ |- ?q. t)

A u {t[p’/p]} ?- u

Unless A’ is a subset of A, this is not a valid tactic.

Failure
Fails unless the given theorem is a paired existential quantification.

See also
Tactic.CHOOSE TAC, PairRules.PCHOOSE THEN, PairRules.P PCHOOSE TAC.

684 CHAPTER 1. ENTRIES

PCHOOSE_THEN (PairRules)

PCHOOSE_THEN : thm_tactical

Synopsis
Applies a tactic generated from the body of paired existentially quantified theorem.

Description
When applied to a theorem-tactic ttac, a paired existentially quantified theorem:

A’ |- ?p. t

and a goal, CHOOSE_THEN applies the tactic ttac (t[p’/p] |- t[p’/p]) to the goal,
where p’ is a variant of the pair p chosen to have no components free in the assumption
list of the goal. Thus if:

A ?- s1

========= ttac (t[q’/q] |- t[q’/q])

B ?- s2

then

A ?- s1

========== CHOOSE_THEN ttac (A’ |- ?q. t)

B ?- s2

This is invalid unless A’ is a subset of A.

Failure
Fails unless the given theorem is a paired existential quantification, or if the resulting
tactic fails when applied to the goal.

See also
Thm cont.CHOOSE THEN, PairRules.PCHOOSE TAC, PairRules.P PCHOOSE THEN.

PETA_CONV (PairRules)

PETA_CONV : conv

PEXISTENCE 685

Synopsis
Performs a top-level paired eta-conversion.

Description
PETA_CONV maps an eta-redex \p. t p, where none of variables in the paired structure
of variables p occurs free in t, to the theorem |- (\p. t p) = t.

Failure
Fails if the input term is not a paired eta-redex.

PEXISTENCE (PairRules)

PEXISTENCE : (thm -> thm)

Synopsis
Deduces paired existence from paired unique existence.

Description
When applied to a theorem with a paired unique-existentially quantified conclusion,
EXISTENCE returns the same theorem with normal paired existential quantification over
the same pair.

A |- ?!p. t

------------- PEXISTENCE

A |- ?p. t

Failure
Fails unless the conclusion of the theorem is a paired unique-existential quantification.

See also
Conv.EXISTENCE, PairRules.PEXISTS UNIQUE CONV.

PEXISTS (PairRules)

PEXISTS : term * term -> thm -> thm)

686 CHAPTER 1. ENTRIES

Synopsis
Introduces paired existential quantification given a particular witness.

Description
When applied to a pair of terms and a theorem, where the first term a paired exis-
tentially quantified pattern indicating the desired form of the result, and the second a
witness whose substitution for the quantified pair gives a term which is the same as the
conclusion of the theorem, PEXISTS gives the desired theorem.

A |- t[q/p]

------------- EXISTS ("?p. t","q")

A |- ?p. t

Failure
Fails unless the substituted pattern is the same as the conclusion of the theorem.

Example
The following examples illustrate the various uses of PEXISTS:

- PEXISTS (Term‘?x. x + 2 = x + 2‘, Term‘1‘) (REFL (Term‘1 + 2‘));

> val it = |- ?x. x + 2 = x + 2 : thm

- PEXISTS (Term‘?y. 1 + y = 1 + y‘, Term‘2‘) (REFL (Term‘1 + 2‘));

> val it = |- ?y. 1 + y = 1 + y : thm

- PEXISTS (Term‘?(x,y). x + y = x + y‘, Term‘(1,2)‘) (REFL (Term‘1 + 2‘));

> val it = |- ?(x,y). x + y = x + y : thm

- PEXISTS (Term‘?(a:’a,b:’a). (a,b) = (a,b)‘, Term‘ab:’a#’a‘)

(REFL (Term ‘ab:’a#’a‘));

> val it = |- ?(a,b). (a,b) = (a,b) : thm

See also
Thm.EXISTS, PairRules.PCHOOSE, PairRules.PEXISTS TAC.

PEXISTS_AND_CONV (PairRules)

PEXISTS_AND_CONV : conv

PEXISTS CONV 687

Synopsis
Moves a paired existential quantification inwards through a conjunction.

Description
When applied to a term of the form ?p. t /\ u, where variables in p are not free in
both t and u, PEXISTS_AND_CONV returns a theorem of one of three forms, depending on
occurrences of variables from p in t and u. If p contains variables free in t but none in
u, then the theorem:

|- (?p. t /\ u) = (?p. t) /\ u

is returned. If p contains variables free in u but none in t, then the result is:

|- (?p. t /\ u) = t /\ (?x. u)

And if p does not contain any variable free in either t nor u, then the result is:

|- (?p. t /\ u) = (?x. t) /\ (?x. u)

Failure
PEXISTS_AND_CONV fails if it is applied to a term not of the form ?p. t /\ u, or if it is
applied to a term ?p. t /\ u in which variables in p are free in both t and u.

See also
Conv.EXISTS AND CONV, PairRules.AND PEXISTS CONV,

PairRules.LEFT AND PEXISTS CONV, PairRules.RIGHT AND PEXISTS CONV.

PEXISTS_CONV (PairRules)

PEXISTS_CONV : conv

Synopsis
Eliminates paired existential quantifier by introducing a paired choice-term.

Description
The conversion PEXISTS_CONV expects a boolean term of the form (?p. t[p]), where p

may be a paired structure or variables, and converts it to the form (t [@p. t[p]]).

--------------------------------- PEXISTS_CONV "(?p. t[p])"

(|- (?p. t[p]) = (t [@p. t[p]])

688 CHAPTER 1. ENTRIES

Failure
Fails if applied to a term that is not a paired existential quantification.

See also
PairRules.PSELECT RULE, PairRules.PSELECT CONV, PairRules.PEXISTS RULE,

PairRules.PSELECT INTRO, PairRules.PSELECT ELIM.

PEXISTS_EQ (PairRules)

PEXISTS_EQ : (term -> thm -> thm)

Synopsis
Existentially quantifies both sides of an equational theorem.

Description
When applied to a paired structure of variables p and a theorem whose conclusion is
equational:

A |- t1 = t2

the inference rule PEXISTS_EQ returns the theorem:

A |- (?p. t1) = (?p. t2)

provided the none of the variables in p is not free in any of the assumptions.

A |- t1 = t2

-------------------------- PEXISTS_EQ "p" [where p is not free in A]

A |- (?p. t1) = (?p. t2)

Failure
Fails unless the theorem is equational with both sides having type bool, or if the term is
not a paired structure of variables, or if any variable in the pair to be quantified over is
free in any of the assumptions.

See also
Drule.EXISTS EQ, PairRules.PEXISTS IMP, PairRules.PFORALL EQ,

PairRules.MK PEXISTS, PairRules.PSELECT EQ.

PEXISTS IMP 689

PEXISTS_IMP (PairRules)

PEXISTS_IMP : (term -> thm -> thm)

Synopsis
Existentially quantifies both the antecedent and consequent of an implication.

Description
When applied to a paired structure of variables p and a theorem A |- t1 ==> t2, the
inference rule PEXISTS_IMP returns the theorem A |- (?p. t1) ==> (?p. t2), provided
no variable in p is free in the assumptions.

A |- t1 ==> t2

-------------------------- EXISTS_IMP "x" [where x is not free in A]

A |- (?x.t1) ==> (?x.t2)

Failure
Fails if the theorem is not implicative, or if the term is not a paired structure of variables,
of if any variable in the pair is free in the assumption list.

See also
Drule.EXISTS IMP, PairRules.PEXISTS EQ.

PEXISTS_IMP_CONV (PairRules)

PEXISTS_IMP_CONV : conv

Synopsis
Moves a paired existential quantification inwards through an implication.

Description
When applied to a term of the form ?p. t ==> u, where variables from p are not free in
both t and u, PEXISTS_IMP_CONV returns a theorem of one of three forms, depending on
occurrences of variable from p in t and u. If variables from p are free in t but none are
in u, then the theorem:

|- (?p. t ==> u) = (!p. t) ==> u

690 CHAPTER 1. ENTRIES

is returned. If variables from p are free in u but none are in t, then the result is:

|- (?p. t ==> u) = t ==> (?p. u)

And if no variable from p is free in either t nor u, then the result is:

|- (?p. t ==> u) = (!p. t) ==> (?p. u)

Failure
PEXISTS_IMP_CONV fails if it is applied to a term not of the form ?p. t ==> u, or if it is
applied to a term ?p. t ==> u in which the variables from p are free in both t and u.

See also
Conv.EXISTS IMP CONV, PairRules.LEFT IMP PFORALL CONV,

PairRules.RIGHT IMP PEXISTS CONV.

PEXISTS_NOT_CONV (PairRules)

PEXISTS_NOT_CONV : conv

Synopsis
Moves a paired existential quantification inwards through a negation.

Description
When applied to a term of the form ?p. ~t, the conversion PEXISTS_NOT_CONV returns
the theorem:

|- (?p. ~t) = ~(!p. t)

Failure
Fails if applied to a term not of the form ?p. ~t.

See also
Conv.EXISTS NOT CONV, PairRules.PFORALL NOT CONV, PairRules.NOT PEXISTS CONV,

PairRules.NOT PFORALL CONV.

PEXISTS_OR_CONV (PairRules)

PEXISTS_OR_CONV : conv

PEXISTS RULE 691

Synopsis
Moves a paired existential quantification inwards through a disjunction.

Description
When applied to a term of the form ?p. t \/ u, the conversion PEXISTS_OR_CONV returns
the theorem:

|- (?p. t \/ u) = (?p. t) \/ (?p. u)

Failure
Fails if applied to a term not of the form ?p. t \/ u.

See also
Conv.EXISTS OR CONV, PairRules.OR PEXISTS CONV, PairRules.LEFT OR PEXISTS CONV,

PairRules.RIGHT OR PEXISTS CONV.

PEXISTS_RULE (PairRules)

PEXISTS_RULE : (thm -> thm)

Synopsis
Introduces a paired existential quantification in place of a paired choice.

Description
The inference rule PEXISTS_RULE expects a theorem asserting that (@p. t) denotes a
pair for which t holds. The equivalent assertion that there exists a p for which t holds
is returned.

A |- t[(@p. t)/p]

------------------ PEXISTS_RULE

A |- ?p. t

Failure
Fails if applied to a theorem the conclusion of which is not of the form (t[(@p.t)/p]).

See also
PairRules.PEXISTS CONV, PairRules.PSELECT RULE, PairRules.PSELECT CONV,

PairRules.PSELECT INTRO, PairRules.PSELECT ELIM.

692 CHAPTER 1. ENTRIES

PEXISTS_TAC (PairRules)

PEXISTS_TAC : (term -> tactic)

Synopsis
Reduces paired existentially quantified goal to one involving a specific witness.

Description
When applied to a term q and a goal ?p. t, the tactic PEXISTS_TAC reduces the goal to
t[q/p].

A ?- ?p. t

============= EXISTS_TAC "q"

A ?- t[q/p]

Failure
Fails unless the goal’s conclusion is a paired existential quantification and the term
supplied has the same type as the quantified pair in the goal.

Example
The goal:

?- ?(x,y). (x,y)=(1,2)

can be solved by:

PEXISTS_TAC "(1,2)" THEN REFL_TAC

See also
Tactic.EXISTS TAC, PairRules.PEXISTS.

PEXISTS_UNIQUE_CONV (PairRules)

PEXISTS_UNIQUE_CONV : conv

Synopsis
Expands with the definition of paired unique existence.

PEXT 693

Description
Given a term of the form "?!p. t[p]", the conversion PEXISTS_UNIQUE_CONV proves that
this assertion is equivalent to the conjunction of two statements, namely that there
exists at least one pair p such that t[p], and that there is at most one value p for which
t[p] holds. The theorem returned is:

|- (?!p. t[p]) = (?p. t[p]) /\ (!p p’. t[p] /\ t[p’] ==> (p = p’))

where p’ is a primed variant of the pair p none of the components of which appear free
in the input term. Note that the quantified pair p need not in fact appear free in the
body of the input term. For example, PEXISTS_UNIQUE_CONV "?!(x,y). T" returns the
theorem:

|- (?!(x,y). T) =

(?(x,y). T) /\ (!(x,y) (x’,y’). T /\ T ==> ((x,y) = (x’,y’)))

Failure
PEXISTS_UNIQUE_CONV tm fails if tm does not have the form "?!p.t".

See also
Conv.EXISTS UNIQUE CONV, PairRules.PEXISTENCE.

PEXT (PairRules)

PEXT : (thm -> thm)

Synopsis
Derives equality of functions from extensional equivalence.

Description
When applied to a theorem A |- !p. t1 p = t2 p, the inference rule PEXT returns the
theorem A |- t1 = t2.

A |- !p. t1 p = t2 p

---------------------- PEXT [where p is not free in t1 or t2]

A |- t1 = t2

Failure
Fails if the theorem does not have the form indicated above, or if any of the component
variables in the paired variable structure p is free either of the functions t1 or t2.

Example

694 CHAPTER 1. ENTRIES

- PEXT (ASSUME (Term ‘!(x,y). ((f:(’a#’a)->’a) (x,y)) = (g (x,y))‘));

> val it = [.] |- f = g : thm

See also
Drule.EXT, Thm.AP THM, PairRules.PETA CONV, Conv.FUN EQ CONV,

PairRules.P FUN EQ CONV.

PFORALL_AND_CONV (PairRules)

PFORALL_AND_CONV : conv

Synopsis
Moves a paired universal quantification inwards through a conjunction.

Description
When applied to a term of the form !p. t /\ u, the conversion PFORALL_AND_CONV re-
turns the theorem:

|- (!p. t /\ u) = (!p. t) /\ (!p. u)

Failure
Fails if applied to a term not of the form !p. t /\ u.

See also
Conv.FORALL AND CONV, PairRules.AND PFORALL CONV,

PairRules.LEFT AND PFORALL CONV, PairRules.RIGHT AND PFORALL CONV.

PFORALL_EQ (PairRules)

PFORALL_EQ : (term -> thm -> thm)

Synopsis
Universally quantifies both sides of an equational theorem.

Description
When applied to a paired structure of variables p and a theorem

PFORALL IMP CONV 695

A |- t1 = t2

whose conclusion is an equation between boolean terms:

PFORALL_EQ

returns the theorem:

A |- (!p. t1) = (!p. t2)

unless any of the variables in p is free in any of the assumptions.

A |- t1 = t2

-------------------------- PFORALL_EQ "p" [where p is not free in A]

A |- (!p. t1) = (!p. t2)

Failure
Fails if the theorem is not an equation between boolean terms, or if the supplied term is
not a paired structure of variables, or if any of the variables in the supplied pair is free
in any of the assumptions.

See also
Drule.FORALL EQ, PairRules.PEXISTS EQ, PairRules.PSELECT EQ.

PFORALL_IMP_CONV (PairRules)

PFORALL_IMP_CONV : conv

Synopsis
Moves a paired universal quantification inwards through an implication.

Description
When applied to a term of the form !p. t ==> u, where variables from p are not free in
both t and u, PFORALL_IMP_CONV returns a theorem of one of three forms, depending on
occurrences of the variables from p in t and u. If variables from p are free in t but none
are in u, then the theorem:

|- (!p. t ==> u) = (?p. t) ==> u

is returned. If variables from p are free in u but none are in t, then the result is:

|- (!p. t ==> u) = t ==> (!p. u)

696 CHAPTER 1. ENTRIES

And if no variable from p is free in either t nor u, then the result is:

|- (!p. t ==> u) = (?p. t) ==> (!p. u)

Failure
PFORALL_IMP_CONV fails if it is applied to a term not of the form !p. t ==> u, or if it is
applied to a term !p. t ==> u in which variables from p are free in both t and u.

See also
Conv.FORALL IMP CONV, PairRules.LEFT IMP PEXISTS CONV,

PairRules.RIGHT IMP PFORALL CONV.

PFORALL_NOT_CONV (PairRules)

PFORALL_NOT_CONV : conv

Synopsis
Moves a paired universal quantification inwards through a negation.

Description
When applied to a term of the form !p. ~t, the conversion PFORALL_NOT_CONV returns
the theorem:

|- (!p. ~t) = ~(?p. t)

Failure
Fails if applied to a term not of the form !p. ~t.

See also
Conv.FORALL NOT CONV, PairRules.PEXISTS NOT CONV, PairRules.NOT PEXISTS CONV,

PairRules.NOT PFORALL CONV.

PFORALL_OR_CONV (PairRules)

PFORALL_OR_CONV : conv

PGEN 697

Synopsis
Moves a paired universal quantification inwards through a disjunction.

Description
When applied to a term of the form !p. t \/ u, where no variable in p is free in both
t and u, PFORALL_OR_CONV returns a theorem of one of three forms, depending on occur-
rences of the variables from p in t and u. If variables from p are free in t but not in u,
then the theorem:

|- (!p. t \/ u) = (!p. t) \/ u

is returned. If variables from p are free in u but none are free in t, then the result is:

|- (!p. t \/ u) = t \/ (!t. u)

And if no variable from p is free in either t nor u, then the result is:

|- (!p. t \/ u) = (!p. t) \/ (!p. u)

Failure
PFORALL_OR_CONV fails if it is applied to a term not of the form !p. t \/ u, or if it is
applied to a term !p. t \/ u in which variables from p are free in both t and u.

See also
Conv.FORALL OR CONV, PairRules.OR PFORALL CONV, PairRules.LEFT OR PFORALL CONV,

PairRules.RIGHT OR PFORALL CONV.

PGEN (PairRules)

PGEN : (term -> thm -> thm)

Synopsis
Generalizes the conclusion of a theorem.

Description
When applied to a paired structure of variables p and a theorem A |- t, the inference
rule PGEN returns the theorem A |- !p. t, provided that no variable in p occurs free in
the assumptions A. There is no compulsion that the variables of p should be free in t.

A |- t

------------ PGEN "p" [where p does not occur free in A]

A |- !p. t

698 CHAPTER 1. ENTRIES

Failure
Fails if p is not a paired structure of variables, of if any variable in p is free in the
assumptions.

See also
Thm.GEN, PairRules.PGENL, PairRules.PGEN TAC, PairRules.PSPEC,

PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSPEC TAC.

PGEN_TAC (PairRules)

PGEN_TAC : tactic

Synopsis
Strips the outermost paired universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !p. t, the tactic PGEN_TAC reduces it to A ?- t[p’/p] where
p’ is a variant of the paired variable structure p chosen to avoid clashing with any
variables free in the goal’s assumption list. Normally p’ is just p.

A ?- !p. t

============== PGEN_TAC

A ?- t[p’/p]

Failure
Fails unless the goal’s conclusion is a paired universally quantification.

See also
Tactic.GEN TAC, PairRules.FILTER PGEN TAC, PairRules.PGEN, PairRules.PGENL,

PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSPEC TAC,

PairRules.PSTRIP TAC, PairRules.P PGEN TAC.

PGENL (PairRules)

PGENL : (term list -> thm -> thm)

pluck 699

Synopsis
Generalizes zero or more pairs in the conclusion of a theorem.

Description
When applied to a list of paired variable structures [p1;...;pn] and a theorem A |- t,
the inference rule PGENL returns the theorem A |- !p1...pn. t, provided none of the
constituent variables from any of the pairs pi occur free in the assumptions.

A |- t

------------------ PGENL "[p1;...;pn]" [where no pi is free in A]

A |- !p1...pn. t

Failure
Fails unless all the terms in the list are paired structures of variables, none of the vari-
ables from which are free in the assumption list.

See also
Thm.GENL, PairRules.PGEN, PairRules.PGEN TAC, PairRules.PSPEC,

PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSPEC TAC.

pluck (Lib)

pluck : (’a -> bool) -> ’a list -> ’a * ’a list

Synopsis
Pull an element out of a list.

Description
An invocation pluck P [x1,...,xk,...,xn] returns a pair (xk,[x1,...,xk-1,xk+1,...xn]),
where xk has been lifted out of the list without disturbing the relative positions of the
other elements. For this to happen, P xk must hold, and P xi must not have held for
x1,...,xk-1.

Failure
If the input list is empty. Also fails if P holds of no member of the list. Also fails if an
application of P fails.

Example

700 CHAPTER 1. ENTRIES

- val (x,rst) = pluck (fn x => x mod 2 = 0) [1,2,3];

> val x = 2 : int

val rst = [1, 3] : int list

See also
Lib.first, Lib.filter, Lib.mapfilter, Lib.assoc1, Lib.assoc2, Lib.assoc,

Lib.rev assoc.

++ (bossLib)

op ++ : simpset * ssfrag -> simpset

Synopsis
Infix operator for augmenting simpsets with ssfrag values.

Description
The ++ function combines its two arguments and creates a new simpset. This is a way
of creating simpsets that are tailored to the particular simplification task at hand.

Failure
Never fails.

Example
Here we add the UNWIND_ss ssfrag value to the pure_ss simpset to exploit the former’s
point-wise elimination conversions.

- SIMP_CONV (pureSimps.pure_ss ++ boolSimps.UNWIND_ss) []

(Term‘!x. x ==> (?y. P(x,y) /\ (y = 5))‘);

> val it = |- (!x. x ==> (?y. P (x,y) /\ (y = 5))) = P (T,5) : thm

See also
simpLib.mk simpset, simpLib.rewrites, simpLib.SIMP CONV, pureSimps.pure ss.

PMATCH_MP (PairRules)

PMATCH_MP : (thm -> thm -> thm)

PMATCH MP TAC 701

Synopsis
Modus Ponens inference rule with automatic matching.

Description
When applied to theorems A1 |- !p1...pn. t1 ==> t2 and A2 |- t1’, the inference
rule PMATCH_MP matches t1 to t1’ by instantiating free or paired universally quantified
variables in the first theorem (only), and returns a theorem A1 u A2 |- !pa..pk. t2’,
where t2’ is a correspondingly instantiated version of t2. Polymorphic types are also
instantiated if necessary.

Variables free in the consequent but not the antecedent of the first argument theorem
will be replaced by variants if this is necessary to maintain the full generality of the
theorem, and any pairs which were universally quantified over in the first argument
theorem will be universally quantified over in the result, and in the same order.

A1 |- !p1..pn. t1 ==> t2 A2 |- t1’

-------------------------------------- MATCH_MP

A1 u A2 |- !pa..pk. t2’

Failure
Fails unless the first theorem is a (possibly repeatedly paired universally quantified)
implication whose antecedent can be instantiated to match the conclusion of the second
theorem, without instantiating any variables which are free in A1, the first theorem’s
assumption list.

See also
Drule.MATCH MP.

PMATCH_MP_TAC (PairRules)

PMATCH_MP_TAC : thm_tactic

Synopsis
Reduces the goal using a supplied implication, with matching.

Description
When applied to a theorem of the form

A’ |- !p1...pn. s ==> !q1...qm. t

702 CHAPTER 1. ENTRIES

PMATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t’ is a substitution
and/or type instance of t to the corresponding instance of s. Any variables free in s but
not in t will be existentially quantified in the resulting subgoal:

A ?- !u1...ui. t’

====================== PMATCH_MP_TAC (A’ |- !p1...pn. s ==> !q1...qm. t)

A ?- ?w1...wp. s’

where w1, ..., wp are (type instances of) those pairs among p1, ..., pn having variables
that do not occur free in t. Note that this is not a valid tactic unless A’ is a subset of A.

Failure
Fails unless the theorem is an (optionally paired universally quantified) implication
whose consequent can be instantiated to match the goal. The generalized pairs u1, ...,
ui must occur in s’ in order for the conclusion t of the supplied theorem to match t’.

See also
Tactic.MATCH MP TAC.

polymorphic (Type)

polymorphic : hol_type -> bool

Synopsis
Checks if there is a type variable in a type

Description
An invocation polymorphic ty checks to see if ty has an occurrence of any type variable.
It is equivalent in functionality to not o null o type_vars, but may be more efficient in
some situations, since it can stop processing once it finds one type variable.

Failure
Never fails.

Example

- polymorphic (bool --> alpha --> ind);

> val it = true : bool

POP ASSUM 703

Comments
polymorphic is also equivalent to exists_tyvar (K true), and no faster.

See also
Type.type vars, Type.type var in, Type.exists tyvar.

POP_ASSUM (Tactical)

POP_ASSUM : thm_tactic -> tactic

Synopsis
Applies tactic generated from the first element of a goal’s assumption list.

Description
When applied to a theorem-tactic and a goal, POP_ASSUM applies the theorem-tactic to
the ASSUMEd first element of the assumption list, and applies the resulting tactic to the
goal without the first assumption in its assumption list:

POP_ASSUM f ({A1,...,An} ?- t) = f (A1 |- A1) ({A2,...,An} ?- t)

Failure
Fails if the assumption list of the goal is empty, or the theorem-tactic fails when applied
to the popped assumption, or if the resulting tactic fails when applied to the goal (with
depleted assumption list).

Comments
It is possible simply to use the theorem ASSUME A1 as required rather than use POP_ASSUM;
this will also maintain A1 in the assumption list, which is generally useful. In addition,
this approach can equally well be applied to assumptions other than the first.

There are admittedly times when POP_ASSUM is convenient, but it is most unwise to
use it if there is more than one assumption in the assumption list, since this introduces
a dependency on the ordering, which is vulnerable to changes in the HOL system.

Another point to consider is that if the relevant assumption has been obtained by
DISCH_TAC, it is often cleaner to use DISCH_THEN with a theorem-tactic. For example,
instead of:

DISCH_TAC THEN POP_ASSUM (\th. SUBST1_TAC (SYM th))

one might use

704 CHAPTER 1. ENTRIES

DISCH_THEN (SUBST1_TAC o SYM)

Example
The goal:

{4 = SUC x} ?- x = 3

can be solved by:

POP_ASSUM

(fn th => REWRITE_TAC[REWRITE_RULE[num_CONV (Term‘4‘, INV_SUC_EQ] th]])

Uses
Making more delicate use of an assumption than rewriting or resolution using it.

See also
Tactical.ASSUM LIST, Tactical.EVERY ASSUM, Tactic.IMP RES TAC,

Tactical.POP ASSUM LIST, Rewrite.REWRITE TAC.

POP_ASSUM_LIST (Tactical)

POP_ASSUM_LIST : (thm list -> tactic) -> tactic

Synopsis
Generates a tactic from the assumptions, discards the assumptions and applies the tac-
tic.

Description
When applied to a function and a goal, POP_ASSUM_LIST applies the function to a list
of theorems corresponding to the ASSUMEd assumptions of the goal, then applies the
resulting tactic to the goal with an empty assumption list.

POP_ASSUM_LIST f ({A1,...,An} ?- t) = f [A1 |- A1, ..., An |- An] (?- t)

Failure
Fails if the function fails when applied to the list of ASSUMEd assumptions, or if the
resulting tactic fails when applied to the goal with no assumptions.

pp tag 705

Comments
There is nothing magical about POP_ASSUM_LIST: the same effect can be achieved by
using ASSUME a explicitly wherever the assumption a is used. If POP_ASSUM_LIST is used,
it is unwise to select elements by number from the ASSUMEd-assumption list, since this
introduces a dependency on ordering.

Example
Suppose we have a goal of the following form:

{a /\ b, c, (d /\ e) /\ f} ?- t

Then we can split the conjunctions in the assumption list apart by applying the tactic:

POP_ASSUM_LIST (MAP_EVERY STRIP_ASSUME_TAC)

which results in the new goal:

{a, b, c, d, e, f} ?- t

Uses
Making more delicate use of the assumption list than simply rewriting or using resolu-
tion.

See also
Tactical.ASSUM LIST, Tactical.EVERY ASSUM, Tactic.IMP RES TAC,

Tactical.POP ASSUM, Rewrite.REWRITE TAC.

pp_tag (Tag)

pp_tag : ppstream -> tag -> unit

Synopsis
Prettyprinter for tags.

Description
An invocation pp_tag ppstrm t will place a representation of tag t on prettyprinting
stream ppstrm.

Failure
Never fails.

Example

706 CHAPTER 1. ENTRIES

- val ppstrm = PP.mk_ppstream (Portable.defaultConsumer());

> val ppstrm = <ppstream> : ppstream

- Tag.pp_tag ppstrm (Tag.read "fooble");

> val it = () : unit

- (PP.flush_ppstream ppstrm; print "\n");

[oracles: fooble] [axioms:]

> val it = () : unit

Comments
In MoscowML, Meta.installPP will install pp_tag in the top-level loop.

pp_term_without_overloads_on (Parse)

Parse.pp_term_without_overloads_on :

string list -> Portable.ppstream -> term -> unit

Synopsis
Printing function for terms without using overload mappings of certain tokens.

Description
The call pp_term_without_overloads_on ls returns a printing function to print terms
without using any overload mappings of the tokens in ls, using the system’s standard
pretty-printing stream type.

Example

> val termpp = pp_term_without_overloads_on ["+"];

val termpp = fn: ppstream -> term -> unit

> val _ = Portable.pprint termpp ‘‘x + y‘‘ before print"\n";

arithmetic$+ x y

>

Failure
Should never fail.

PRE CONV 707

See also
Parse.pp term without overloads, Parse.print term without overloads on,

Parse.term without overloads on to string, Parse.print from grammars.

PRE_CONV (reduceLib)

PRE_CONV : conv

Synopsis
Calculates by inference the predecessor of a numeral.

Description
If n is a numeral (e.g. 0, 1, 2, 3,...), then PRE_CONV "PRE n" returns the theorem:

|- PRE n = s

where s is the numeral that denotes the predecessor of the natural number denoted by
n.

Failure
PRE_CONV tm fails unless tm is of the form "PRE n", where n is a numeral.

Example

#PRE_CONV "PRE 0";;

|- PRE 0 = 0

#PRE_CONV "PRE 1";;

|- PRE 1 = 0

#PRE_CONV "PRE 22";;

|- PRE 22 = 21

prefer_form_with_tok (Parse)

prefer_form_with_tok : {term_name : string, tok : string} -> unit

708 CHAPTER 1. ENTRIES

Synopsis
Sets a grammar rule’s preferred flag, causing it to be preferentially printed.

Description
A call to prefer_form_with_tok causes the parsing/pretty-printing rule specified by the
term_name-tok combination to be the preferred rule for pretty-printing purposes. This
change affects the global grammar.

Failure
Never fails.

Example
The initially preferred rule for conditional expressions causes them to print using the
if-then-else syntax. If the user prefers the “traditional” syntax with =>-|, this change
can be brought about as follows:

- prefer_form_with_tok {term_name = "COND", tok = "=>"};

> val it = () : unit

- Term‘if p then q else r‘;

<<HOL message: inventing new type variable names: ’a.>>

> val it = ‘p => q | r‘ : term

Comments
As the example above demonstrates, using this function does not affect the parser at all.

There is a companion temp_prefer_form_with_tok function, which has the same effect
on the global grammar, but which does not cause this effect to persist when the current
theory is exported.

prefer_int (intLib)

intLib.prefer_int : unit -> unit

Synopsis
Makes the parser favour integer possibilities in ambiguous terms.

Description
Calling prefer_int() causes the global grammar to be altered so that the standard
arithmetic operator symbols (+, *, etc.), as well as numerals, are given integral types

PRENEX CONV 709

if possible. This effect is brought about through the application of multiple calls
to temp_overload_on, so that the “arithmetic symbols” need not have been previ-
ously mapping to integral possibilities at all (as would be the situation after a call to
deprecate_int).

Failure
Never fails.

See also
intLib.deprecate int, Parse.overload on.

PRENEX_CONV (Arith)

PRENEX_CONV : conv

Synopsis
Puts a formula into prenex normal form.

Description
This function puts a formula into prenex normal form, and in the process splits any
Boolean equalities (if-and-only-if) into two implications. If there is a Boolean-valued
subterm present as the condition of a conditional, the subterm will be put in prenex
normal form, but quantifiers will not be moved out of the condition. Some renaming of
variables may take place.

Failure
Never fails.

Example

#PRENEX_CONV "!m n. (m <= n) ==> !p. (m < SUC(n + p))";;

|- (!m n. m <= n ==> (!p. m < (SUC(n + p)))) =

(!m n p. m <= n ==> m < (SUC(n + p)))

#PRENEX_CONV "!p. (!m. m >= p) = (p = 0)";;

|- (!p. (!m. m >= p) = (p = 0)) =

(!p m. ?m’. (m’ >= p ==> (p = 0)) /\ ((p = 0) ==> m >= p))

#PRENEX_CONV "!m. (((m = 0) ==> (!n. m <= n)) => 0 | m) + m = m";;

|- (!m. (((m = 0) ==> (!n. m <= n)) => 0 | m) + m = m) =

(!m. ((!n. (m = 0) ==> m <= n) => 0 | m) + m = m)

710 CHAPTER 1. ENTRIES

Uses
Useful as a preprocessor to decision procedures which require their argument formula
to be in prenex normal form.

See also
Arith.is prenex.

prim_mk_const (Term)

prim_mk_const : {Thy:string, Name:string} -> term

Synopsis
Build a constant.

Description
If Name is the name of a previously declared constant in theory Thy, then prim_mk_const {Thy,Name}

will return the specified constant.

Failure
If Name is not the name of a constant declared in theory Thy.

Example

- prim_mk_const {Thy="min", Name="="};

> val it = ‘$=‘ : term

- type_of it;

> val it = ‘:’a -> ’a -> bool‘ : hol_type

Comments
The difference between mk_thy_const (and mk_const) and prim_mk_const is that mk_thy_const
and mk_const will create type instances of polymorphic constants, while prim_mk_const

merely returns the originally declared constant.

See also
Term.mk thy const.

prim variant 711

prim_variant (Term)

prim_variant : term list -> term -> term

Synopsis
Rename a variable to be different from any in a list.

Description
The function prim_variant is exactly the same as variant, except that it doesn’t rename
away from constants.

Failure
prim_variant l t fails if any term in the list l is not a variable or if t is not a variable.

Example

- variant [] (mk_var("T",bool));

> val it = ‘T’‘ : term

- prim_variant [] (mk_var("T",bool));

> val it = ‘T‘ : term

Comments
The extra amount of renaming that variant does is useful when generating new con-
stant names (even though it returns a variable) inside high-level definition mechanisms.
Otherwise, prim_variant seems preferable.

See also
Term.variant, Term.mk var, Term.genvar, Term.mk primed var.

prime (Lib)

prime : string -> string

Synopsis
Attach a prime mark to a string.

712 CHAPTER 1. ENTRIES

Description
A call prime s is equal to s ^ "’".

Failure
Never fails.

See also
Term.variant.

priming (Globals)

priming : string option ref

Synopsis
Controls how variables get renamed.

Description
The flag Globals.priming controls how certain system function perform renaming of
variables. When priming has the value NONE, renaming is achieved by concatenation of
primes (’). When priming has the value SOME s, renaming is achieved by incrementing
a counter.

The default value of priming is NONE.

Example

- mk_primed_var ("T",bool);

> val it = ‘T’‘ : term

- with_flag (priming,SOME "_") mk_primed_var ("T",bool);

> val it = ‘T_1‘ : term

Comments
Proofs should be re-run in the same priming regime as they were originally performed
in, since different styles of renaming can break proofs.

See also
Term.variant, Term.subst, Term.inst, Term.mk primed var, Lib.with flag.

print backend term without overloads on 713

print_backend_term_without_overloads_on
(Parse)

Parse.print_backend_term_without_overloads_on : string list -> term -> unit

Synopsis
Prints a term to the screen (standard out), using current backend information, without
using overload mappings of certain tokens.

Description
The call print_backend_term_without_overloads_on ls t prints t to the screen, as ap-
propriate for the current backend, without using any overloads on tokens in ls.

If the current backend is a color-capable terminal, for example, the printed string
will contain escape codes for coloring free and bound variables, which should then be
interpreted by the terminal as colors.

Failure
Should never fail.

See also
Parse.print term without overloads on,

Parse.print backend term without overloads,

Parse.term without overloads on to backend string, Parse.clear overloads on,

Parse.print backend term.

print_datatypes (EmitTeX)

print_datatypes : string -> unit

Synopsis
Prints datatype declarations for the named theory to the screeen (standard out).

Description
An invocation of print_datatypes thy, where thy is the name of a currently loaded
theory segment, will print the datatype declarations made in that theory.

714 CHAPTER 1. ENTRIES

Failure
Never fails. If thy is not the name of a currently loaded theory segment then no output
will be produced.

Example

- new_theory "example";

<<HOL message: Created theory "example">>

> val it = () : unit

- val _ = Hol_datatype ‘example = First | Second‘;

<<HOL message: Defined type: "example">>

- EmitTeX.print_datatypes "example";

example = First | Second

> val it = () : unit

See also
EmitTeX.datatype thm to string, bossLib.Hol datatype.

print_from_grammars (Parse)

print_from_grammars :

(type_grammar.grammar * term_grammar.grammar) ->

((Portable.ppstream -> hol_type -> unit) *

(Portable.ppstream -> term -> unit))

Synopsis
Returns printing functions based on the supplied grammars.

Description
When given a pair consisting of a type and term grammar (such a pair is exported with
every theory, under the name <thy>_grammars), this function returns printing functions
that use those grammars to render terms and types using the system’s standard pretty-
printing stream type.

Failure
Never fails.

Example
With arithmeticTheory loaded, arithmetic expressions and numerals print pleasingly:

print term 715

- load "arithmeticTheory";

> val it = () : unit

- ‘‘3 + x * 4‘‘;

> val it = ‘‘3 + x * 4‘‘ : term

The printing of these terms is controlled by the global grammar, which is augmented
when the theory of arithmetic is loaded. Printing functions based on the grammar of
the base theory bool can be defined:

- val (typepp, termpp) = print_from_grammars bool_grammars

> val typepp = fn : ppstream -> hol_type -> unit

val termpp = fn : ppstream -> term -> unit

These functions can then be used to print arithmetic terms (note that neither the global
parser nor printer are disturbed by this activity), using the Portable.pprint function:

- Portable.pprint termpp ‘‘3 + x * 4‘‘;

arithmetic$+

(arithmetic$NUMERAL

(arithmetic$BIT1 (arithmetic$BIT1 arithmetic$ZERO)))

(arithmetic$* x

(arithmetic$NUMERAL

(arithmetic$BIT2 (arithmetic$BIT1 arithmetic$ZERO))))

> val it = () : unit

Not only have the fixities of + and * been ignored, but the constants in the term, belong-
ing to arithmeticTheory, are all printed in “long identifier” form because the grammars
from boolTheory don’t know about them.

Uses
Printing terms with early grammars such as bool_grammars can remove layers of poten-
tially confusing pretty-printing, including complicated concrete syntax and overloading,
and even the underlying representation of numerals.

See also
Parse.parse from grammars, Parse.print term by grammar, Parse.Term.

print_term (Parse)

Parse.print_term : term -> unit

716 CHAPTER 1. ENTRIES

Synopsis
Prints a term to the screen (standard out).

Description
The function print_term prints a term to the screen. It first converts the term into a
string, and then outputs that string to the standard output stream.

The conversion to the string is done by term_to_string. The term is printed using the
pretty-printing information contained in the global grammar.

Failure
Should never fail.

See also
Parse.term to string.

print_term_as_tex (EmitTeX)

print_term_as_tex : term -> unit

Synopsis
Prints a term as LaTeX.

Description
An invocation of print_term_as_tex tm will print the term tm, replacing various charac-
ter patterns (e.g. /\ and \/) with LaTeX commands. The translation is controlled by the
string to string function EmitTeX.hol_to_tex.

Failure
Should never fail.

Example

- EmitTeX.print_term_as_tex ‘‘\l h. {x | l <= x /\ x <= h}‘‘ before print "\n";

\HOLTokenLambda{}l h. \HOLTokenLeftbrace{}x | l \HOLTokenLeq{} x \HOLTokenConj{} x \HOLTokenLeq{} h\HOLTokenRightbrace{}

> val it = () : unit

Comments
The LaTeX style file holtexbasic.sty (or holtex.sty) should be used and the output
should be pasted into a Verbatim environment.

print term by grammar 717

See also
EmitTeX.print type as tex, EmitTeX.print theorem as tex,

EmitTeX.print theory as tex, EmitTeX.print theories as tex doc,

EmitTeX.tex theory.

print_term_by_grammar (Parse)

print_term_by_grammar :

(type_grammar.grammar * term_grammar.grammar) -> term -> unit

Synopsis
Prints a term to standard out, using grammars to specify how.

Description
Where print_term uses the (implicit) global grammars to control the printing of its term
argument, the print_term_by_grammar uses user-supplied grammars. These can control
the printing of concrete syntax (operator fixities and precedency) and the degree of
constant overloading.

Failure
Never fails.

See also
Parse.print from grammars.

print_term_without_overloads_on (Parse)

Parse.print_term_without_overloads_on : string list -> term -> unit

Synopsis
Prints a term to the screen (standard out), without using overload mappings of certain
tokens.

Description
The call print_term_without_overloads_on ls t prints t to the screen without using
any overloads on tokens in ls.

Example

718 CHAPTER 1. ENTRIES

> val _ = print_term_without_overloads_on ["+"] ‘‘x + y‘‘ before print "\n";

arithmetic$+ x y

>

Failure
Should never fail.

See also
Parse.print backend term without overloads on,

Parse.print term without overloads, Parse.term without overloads on to string,

Parse.clear overloads on, Parse.print term.

print_theorem_as_tex (EmitTeX)

print_theorem_as_tex : thm -> unit

Synopsis
Prints a theorem as LaTeX.

Description
An invocation of print_theorem_as_tex thm will print the term thm, replacing various
character patterns (e.g. /\ and \/) with LaTeX commands. The translation is controlled
by the string to string function EmitTeX.hol_to_tex. If the theorem is for a datatype
then the function datatype_thm_to_string is used to produce the orginal declaration.

Failure
Should never fail.

Example

- EmitTeX.print_theorem_as_tex listTheory.CONS before print "\n";

\HOLTokenTurnstile{} \HOLTokenForall{}l. \HOLTokenNeg{}NULL l \HOLTokenImp{} (HD l::TL l = l)

> val it = () : unit

- EmitTeX.print_theorem_as_tex listTheory.datatype_list before print "\n";

list = [] | CONS of \HOLTokenQuote{}a \HOLTokenImp{} \HOLTokenQuote{}a list

> val it = () : unit

print theories as tex doc 719

Comments
The LaTeX style file holtexbasic.sty (or holtex.sty) should be used and the output
should be pasted into a Verbatim environment.

See also
EmitTeX.print term as tex, EmitTeX.print type as tex,

EmitTeX.print theory as tex, EmitTeX.print theories as tex doc,

EmitTeX.tex theory.

print_theories_as_tex_doc (EmitTeX)

print_theories_as_tex_doc : string list -> string -> unit

Synopsis
Emits theories as LaTeX commands and creates a document template.

Description
An invocation of print_theories_as_tex_doc thys name will export the named theories
thys as a collection of LaTeX commands and it will also generate a document, whose
file name is given by name, that presents all of the theories. The theories are exported
with print_theory_as_tex.

Failure
Will fail if there is a system error when trying to write the files. It will not overwite the
file name, however, the theories may be overwritten.

Example
The invocation

- EmitTeX.print_theories_as_tex_doc ["arithmetic", "list", "words"] "report";

> val it = () : unit

will generate four files ”HOLarithmetic.tex”, ”HOLlist.tex”, ”HOLwords.tex” and ”re-
port.tex”.

The document can be built as follows:

$ cp $HOLHOME/src/emit/holtex.sty .

$ pdflatex report

$ makeindex report

$ pdflatex report

720 CHAPTER 1. ENTRIES

See also
EmitTeX.print term as tex, EmitTeX.print type as tex,

EmitTeX.print theorem as tex, EmitTeX.print theory as tex, EmitTeX.tex theory.

print_theory (DB)

print_theory : string -> unit

Synopsis
Print a theory on the standard output.

Description
An invocation print_theory s will display the contents of the theory segment s on the
standard output. The string "-" may be used to denote the current theory segment.

Failure
If s is not the name of a loaded theory.

Example

- print_theory "combin";

Theory: combin

Parents:

bool

Term constants:

C :(’a -> ’b -> ’c) -> ’b -> ’a -> ’c

I :’a -> ’a

K :’a -> ’b -> ’a

S :(’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c

W :(’a -> ’a -> ’b) -> ’a -> ’b

o :(’c -> ’b) -> (’a -> ’c) -> ’a -> ’b

Definitions:

K_DEF |- K = (\x y. x)

S_DEF |- S = (\f g x. f x (g x))

I_DEF |- I = S K K

C_DEF |- combin$C = (\f x y. f y x)

print theory as tex 721

W_DEF |- W = (\f x. f x x)

o_DEF |- !f g. f o g = (\x. f (g x))

Theorems:

o_THM |- !f g x. (f o g) x = f (g x)

o_ASSOC |- !f g h. f o g o h = (f o g) o h

K_THM |- !x y. K x y = x

S_THM |- !f g x. S f g x = f x (g x)

C_THM |- !f x y. combin$C f x y = f y x

W_THM |- !f x. W f x = f x x

I_THM |- !x. I x = x

I_o_ID |- !f. (I o f = f) /\ (f o I = f)

> val it = () : unit

See also
DB.dest theory, DB.thy.

print_theory_as_tex (EmitTeX)

print_theory_as_tex : string -> unit

Synopsis
Emits a theory as LaTeX commands.

Description
An invocation of print_theory_as_tex thy will export the named theory as a collection
of LaTeX commands. The output file is named ”HOLthy.tex”, where thy is the named
theory. The prefix ”HOL” can be changed by setting holPrefix. The file is stored in the
directory emitTeXDir. By default the current working directory is used.

The LaTeX file will contain commands for displaying the theory’s datatypes, defini-
tions and theorems.

Failure
Will fail if there is a system error when trying to write the file. If the theory is not loaded
then a message will be printed and an empty file will be created.

Example
The list theory is exported with:

722 CHAPTER 1. ENTRIES

- EmitTeX.print_theory_as_tex "list";

> val it = () : unit

The resulting file can be included in a LaTeX document with

\input{HOLlist}

Some examples of the available LaTeX commands are listed below:

\HOLlistDatatypeslist

\HOLlistDefinitionsALLXXDISTINCT

\HOLlistTheoremsALLXXDISTINCTXXFILTER

Underscores in HOL names are replaced by ”XX”; quotes become ”YY” and numerals are
expanded out e.g. ”1” becomes ”One”.

Complete listings of the datatypes, definitions and theorems are displayed with:

\HOLlistDatatypes

\HOLlistDefinitions

\HOLlistTheorems

The date the theory was build can be displayed with:

\HOLlistDate

The generated LaTeX will reflect the output of Parse.thm_to_string, which is un-
der the control of the user. For example, the line width can be changed by setting
Globals.linewidth.

The Verbatim display environment is used, however, ”boxed” versions can be con-
structed. For example,

\BUseVerbatim{HOLlistDatatypeslist}

can be used inside tables and figures.

Comments
The LaTeX style file holtexbasic.sty (or holtex.sty) should be used. These style files
can be modified by the user. For example, the font can be changed to Helvetica with

\fvset{fontfamily=helvetica}

However, note that this will adversely effect the alignment of the output.

See also
EmitTeX.print term as tex, EmitTeX.print type as tex,

EmitTeX.print theorem as tex, EmitTeX.print theories as tex doc,

EmitTeX.tex theory.

print type as tex 723

print_type_as_tex (EmitTeX)

print_type_as_tex : hol_type -> unit

Synopsis
Prints a type as LaTeX.

Description
An invocation of print_type_as_tex ty will print the type ty, replacing various charac-
ter patterns (e.g. # and ->) with LaTeX commands. The translation is controlled by the
string to string function EmitTeX.hol_to_tex.

Failure
Should never fail.

Example

- EmitTeX.print_type_as_tex ‘‘:bool # bool -> num‘‘ before print "\n";

:bool \HOLTokenProd{} bool \HOLTokenMap{} num

> val it = () : unit

Comments
The LaTeX style file holtexbasic.sty (or holtex.sty) should be used and the output
should be pasted into a Verbatim environment.

See also
EmitTeX.print term as tex, EmitTeX.print theorem as tex,

EmitTeX.print theory as tex, EmitTeX.print theories as tex doc,

EmitTeX.tex theory.

PROVE (BasicProvers)

PROVE : thm list -> term -> thm

Synopsis
Prove a theorem with use of supplied lemmas.

724 CHAPTER 1. ENTRIES

Description
bossLib.PROVE is identical to BasicProvers.PROVE.

See also
bossLib.PROVE.

PROVE (bossLib)

PROVE : thm list -> term -> thm

Synopsis
Prove a theorem with use of supplied lemmas.

Description
An invocation PROVE thl M attempts to prove M using an automated reasoner supplied
with the lemmas in thl. The automated reasoner performs a first order proof search.
It currently provides some support for polymorphism and higher-order values (lambda
terms).

Failure
If the proof search fails, or if M does not have type bool.

Example

- PROVE [] (concl SKOLEM_THM);

Meson search level:

> val it = |- !P. (!x. ?y. P x y) = ?f. !x. P x (f x) : thm

- let open arithmeticTheory

in

PROVE [ADD_ASSOC, ADD_SYM, ADD_CLAUSES]

(Term ‘x + 0 + y + z = y + (z + x)‘)

end;

Meson search level:

> val it = |- x + 0 + y + z = y + (z + x) : thm

Comments
Some output (a row of dots) is currently generated as PROVE works. If the frequency of
dot emission becomes slow, that is a sign that the term is not likely to be proved with
the current lemmas.

prove 725

Unlike MESON_TAC, PROVE can handle terms with conditionals.

See also
bossLib.PROVE TAC, mesonLib.MESON TAC, mesonLib.ASM MESON TAC.

prove (Tactical)

prove : term * tactic -> thm

Synopsis
Attempts to prove a boolean term using the supplied tactic.

Description
When applied to a term-tactic pair (tm,tac), the function prove attempts to prove the
goal ?- tm, that is, the term tm with no assumptions, using the tactic tac. If prove

succeeds, it returns the corresponding theorem A |- tm, where the assumption list A

may not be empty if the tactic is invalid; prove has no inbuilt validity-checking.

Failure
Fails if the term is not of type bool (and so cannot possibly be the conclusion of a
theorem), or if the tactic cannot solve the goal.

See also
Tactical.TAC PROOF.

prove_abs_fn_one_one (Drule)

prove_abs_fn_one_one : thm -> thm

Synopsis
Proves that a type abstraction function is one-to-one (injective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

726 CHAPTER 1. ENTRIES

then prove_abs_fn_one_one th proves from this theorem that the function abs is one-to-
one for values that satisfy P, returning the theorem:

|- !r r’. P r ==> P r’ ==> ((abs r = abs r’) = (r = r’))

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,

Prim rec.prove abs fn onto, Drule.prove rep fn one one, Drule.prove rep fn onto.

prove_abs_fn_one_one (Prim_rec)

prove_abs_fn_one_one : thm -> thm

Synopsis
Proves that a type abstraction function is one-to-one (injective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_one_one th proves from this theorem that the function abs is one-to-
one for values that satisfy P, returning the theorem:

|- !r r’. P r ==> P r’ ==> ((abs r = abs r’) = (r = r’))

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,

Prim rec.prove abs fn onto, Drule.prove rep fn one one, Drule.prove rep fn onto.

prove_abs_fn_onto (Drule)

prove_abs_fn_onto : thm -> thm

prove abs fn onto 727

Synopsis
Proves that a type abstraction function is onto (surjective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_onto th proves from this theorem that the function abs is onto, re-
turning the theorem:

|- !a. ?r. (a = abs r) /\ P r

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,

Prim rec.prove abs fn one one, Drule.prove rep fn one one,

Drule.prove rep fn onto.

prove_abs_fn_onto (Prim_rec)

prove_abs_fn_onto : thm -> thm

Synopsis
Proves that a type abstraction function is onto (surjective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_onto th proves from this theorem that the function abs is onto, re-
turning the theorem:

|- !a. ?r. (a = abs r) /\ P r

728 CHAPTER 1. ENTRIES

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,

Prim rec.prove abs fn one one, Drule.prove rep fn one one,

Drule.prove rep fn onto.

prove_cases_thm (Prim_rec)

prove_cases_thm : (thm -> thm)

Synopsis
Proves a structural cases theorem for an automatically-defined concrete type.

Description
prove_cases_thm takes as its argument a structural induction theorem, in the form re-
turned by prove_induction_thm for an automatically-defined concrete type. When ap-
plied to such a theorem, prove_cases_thm automatically proves and returns a theorem
which states that every value the concrete type in question is denoted by the value
returned by some constructor of the type.

Failure
Fails if the argument is not a theorem of the form returned by prove_induction_thm

Example
Given the following structural induction theorem for labelled binary trees:

|- !P. (!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>

(!b. P b)

prove_cases_thm proves and returns the theorem:

|- !b. (?x. b = LEAF x) \/ (?b1 b2. b = NODE b1 b2)

This states that every labelled binary tree b is either a leaf node with a label x or a tree
with two subtrees b1 and b2.

See also
Prim rec.INDUCT THEN, Prim rec.new recursive definition,

Prim rec.prove constructors distinct, Prim rec.prove constructors one one,

Prim rec.prove induction thm, Prim rec.prove rec fn exists.

prove constructors distinct 729

prove_constructors_distinct (Prim_rec)

prove_constructors_distinct : (thm -> thm)

Synopsis
Proves that the constructors of an automatically-defined concrete type yield distinct
values.

Description
prove_constructors_distinct takes as its argument a primitive recursion theorem, in
the form returned by define_type for an automatically-defined concrete type. When
applied to such a theorem, prove_constructors_distinct automatically proves and re-
turns a theorem which states that distinct constructors of the concrete type in question
yield distinct values of this type.

Failure
Fails if the argument is not a theorem of the form returned by define_type, or if the
concrete type in question has only one constructor.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.

?! fn.

(!x. fn(LEAF x) = f0 x) /\

(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_constructors_distinct proves and returns the theorem:

|- !x b1 b2. ~(LEAF x = NODE b1 b2)

This states that leaf nodes are different from internal nodes. When the concrete type in
question has more than two constructors, the resulting theorem is just conjunction of
inequalities of this kind.

See also
Prim rec.INDUCT THEN, Prim rec.new recursive definition,

Prim rec.prove cases thm, Prim rec.prove constructors one one,

Prim rec.prove induction thm, Prim rec.prove rec fn exists.

730 CHAPTER 1. ENTRIES

prove_constructors_one_one (Prim_rec)

prove_constructors_one_one : (thm -> thm)

Synopsis
Proves that the constructors of an automatically-defined concrete type are injective.

Description
prove_constructors_one_one takes as its argument a primitive recursion theorem, in
the form returned by define_type for an automatically-defined concrete type. When
applied to such a theorem, prove_constructors_one_one automatically proves and re-
turns a theorem which states that the constructors of the concrete type in question are
injective (one-to-one). The resulting theorem covers only those constructors that take
arguments (i.e. that are not just constant values).

Failure
Fails if the argument is not a theorem of the form returned by define_type, or if all the
constructors of the concrete type in question are simply constants of that type.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.

?! fn.

(!x. fn(LEAF x) = f0 x) /\

(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_constructors_one_one proves and returns the theorem:

|- (!x x’. (LEAF x = LEAF x’) = (x = x’)) /\

(!b1 b2 b1’ b2’.

(NODE b1 b2 = NODE b1’ b2’) = (b1 = b1’) /\ (b2 = b2’))

This states that the constructors LEAF and NODE are both injective.

See also
Prim rec.INDUCT THEN, Prim rec.new recursive definition,

Prim rec.prove cases thm, Prim rec.prove constructors distinct,

Prim rec.prove induction thm, Prim rec.prove rec fn exists.

PROVE HYP 731

PROVE_HYP (Drule)

PROVE_HYP : thm -> thm -> thm

Synopsis
Eliminates a provable assumption from a theorem.

Description
When applied to two theorems, PROVE_HYP returns a theorem having the conclusion of
the second. The new hypotheses are the union of the two hypothesis sets (first deleting,
however, the conclusion of the first theorem from the hypotheses of the second).

A1 |- t1 A2 |- t2

------------------------ PROVE_HYP

A1 u (A2 - {t1}) |- t2

Failure
Never fails.

Comments
This is the Cut rule. It is not necessary for the conclusion of the first theorem to be the
same as an assumption of the second, but PROVE_HYP is otherwise of doubtful value.

See also
Thm.DISCH, Thm.MP, Drule.UNDISCH.

prove_induction_thm (Prim_rec)

prove_induction_thm : (thm -> thm)

Synopsis
Derives structural induction for an automatically-defined concrete type.

Description
prove_induction_thm takes as its argument a primitive recursion theorem, in the form
returned by define_type for an automatically-defined concrete type. When applied to

732 CHAPTER 1. ENTRIES

such a theorem, prove_induction_thm automatically proves and returns a theorem that
states a structural induction principle for the concrete type described by the argument
theorem. The theorem returned by prove_induction_thm is in a form suitable for use
with the general structural induction tactic INDUCT_THEN.

Failure
Fails if the argument is not a theorem of the form returned by define_type.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.

?! fn.

(!x. fn(LEAF x) = f0 x) /\

(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_induction_thm proves and returns the theorem:

|- !P. (!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>

(!b. P b)

This theorem states the principle of structural induction on labelled binary trees: if a
predicate P is true of all leaf nodes, and if whenever it is true of two subtrees b1 and b2

it is also true of the tree NODE b1 b2, then P is true of all labelled binary trees.

See also
Prim rec.INDUCT THEN, Prim rec.new recursive definition,

Prim rec.prove cases thm, Prim rec.prove constructors distinct,

Prim rec.prove constructors one one, Prim rec.prove rec fn exists.

prove_model (holCheckLib)

prove_model : model -> model

Synopsis
Attempts to discharge all assumptions to the term bdd’s and theorems in the results list
of the HolCheck model.

Description
HolCheck uses postponed proof verification to speed up the model checking work-flow.
Any success theorems and term bdd’s thus end up with several undischarged assump-
tions. The idea is that the time-consuming proof verification can be postponed to a later
time, when the user is otherwise occupied (e.g. asleep).

prove rec fn exists 733

Failure
Fails if not called in the same HOL session that generated the results. This is because the
required proof tactics are accumulated in memory as closures. Moscow ML (in which
HOL is implemented) cannot persist closures.

Comments
Other than the failure scenario documented above, a failure in the proof verification
points to a bug in the HolCheck proof verification machinery; it does not invalidate the
result.

See also
holCheckLib.holCheck, holCheckLib.get results.

prove_rec_fn_exists (Prim_rec)

prove_rec_fn_exists : thm -> term -> thm

Synopsis
Proves the existence of a primitive recursive function over a concrete recursive type.

Description
prove_rec_fn_exists is a version of new_recursive_definition which proves only that
the required function exists; it does not make a constant specification. The first argu-
ment is a primitive recursion theorem of the form generated by Hol_datatype, and the
second is a user-supplied primitive recursive function definition. The theorem which
is returned asserts the existence of the recursively-defined function in question (if it is
primitive recursive over the type characterized by the theorem given as the first argu-
ment). See the entry for new_recursive_definition for details.

Failure
As for new_recursive_definition.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.

?fn.

(!a. fn (LEAF a) = f0 a) /\

!a0 a1. fn (NODE a0 a1) = f1 a0 a1 (fn a0) (fn a1) : thm

734 CHAPTER 1. ENTRIES

prove_rec_fn_exists can be used to prove the existence of primitive recursive functions
over binary trees. Suppose the value of th is this theorem. Then the existence of a
recursive function Leaves, which computes the number of leaves in a binary tree, can
be proved as shown below:

- prove_rec_fn_exists th

‘‘(Leaves (LEAF (x:’a)) = 1) /\

(Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))‘‘;

> val it =

|- ?Leaves.

(!x. Leaves (LEAF x) = 1) /\

!t1 t2. Leaves (NODE t1 t2) = Leaves t1 + Leaves t2 : thm

The result should be compared with the example given under new_recursive_definition.

See also
bossLib.Hol datatype, Prim rec.new recursive definition.

prove_rep_fn_one_one (Drule)

prove_rep_fn_one_one : thm -> thm

Synopsis
Proves that a type representation function is one-to-one (injective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_rep_fn_one_one th proves from this theorem that the function rep is one-to-
one, returning the theorem:

|- !a a’. (rep a = rep a’) = (a = a’)

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,

Prim rec.prove abs fn one one, Prim rec.prove abs fn onto,

Drule.prove rep fn onto.

prove rep fn onto 735

prove_rep_fn_onto (Drule)

prove_rep_fn_onto : thm -> thm

Synopsis
Proves that a type representation function is onto (surjective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_rep_fn_onto th proves from this theorem that the function rep is onto the
set of values that satisfy P, returning the theorem:

|- !r. P r = (?a. r = rep a)

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,

Prim rec.prove abs fn one one, Prim rec.prove abs fn onto,

Drule.prove rep fn one one.

PROVE_TAC (BasicProvers)

PROVE_TAC : thm list -> tactic

Synopsis
Solve a goal with use of hypotheses and supplied lemmas.

Description
bossLib.PROVE_TAC is identical to BasicProvers.PROVE_TAC.

See also
bossLib.PROVE TAC.

736 CHAPTER 1. ENTRIES

PROVE_TAC (bossLib)

PROVE_TAC : thm list -> tactic

Synopsis
Solve a goal with use of hypotheses and supplied lemmas.

Description
An invocation PROVE_TAC thl attempts to solve the goal it is applied to by executing a
proof procedure that is semi-complete for pure first order logic. The assumptions of the
goal and the theorems in thl are used. The procedure makes special provision for han-
dling polymorphic and higher-order values (lambda terms). It also handles conditional
expressions.

Failure
PROVE_TAC fails if it searches to a depth equal to the contents of the reference variable
mesonLib.max_depth (set to 30 by default, but changeable by the user) without finding
a proof.

Comments
PROVE_TAC can only progress the goal to a successful proof of the goal or not at all. In
this respect it differs from tactics such as simplification and rewriting. Its ability to solve
existential goals and to make effective use of transitivity theorems make it a particularly
powerful tactic.

See also
bossLib.PROVE, mesonLib.MESON TAC, mesonLib.ASM MESON TAC,

mesonLib.GEN MESON TAC.

PRUNE_CONV (unwindLib)

PRUNE_CONV : conv

Synopsis
Prunes all hidden variables.

Description
PRUNE_CONV "?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp" returns a
theorem of the form:

PRUNE ONCE CONV 737

|- (?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp) =

(t1 /\ ... /\ tp)

where each eqni has the form "!y1 ... ym. li x1 ... xn = b" and li does not appear
free in any of the other conjuncts or in b. The conversion works if one or more of the
eqni’s are not present, that is if li is not free in any of the conjuncts, but does not work
if li appears free in more than one of the conjuncts. p may be zero, that is, all the
conjuncts may be eqni’s. In this case the result will be simply T (true). Also, for each
eqni, m and n may be zero.

Failure
Fails if the argument term is not of the specified form or if any of the li’s are free in
more than one of the conjuncts or if the equation for any li is recursive.

Example

#PRUNE_CONV

"?l2 l1.

(!(x:num). l1 x = F) /\ (!x. l2 x = ~(out x)) /\ (!(x:num). out x = T)";;

|- (?l2 l1. (!x. l1 x = F) /\ (!x. l2 x = ~out x) /\ (!x. out x = T)) =

(!x. out x = T)

See also
unwindLib.PRUNE ONCE CONV, unwindLib.PRUNE ONE CONV, unwindLib.PRUNE SOME CONV,

unwindLib.PRUNE SOME RIGHT RULE, unwindLib.PRUNE RIGHT RULE.

PRUNE_ONCE_CONV (unwindLib)

PRUNE_ONCE_CONV : conv

Synopsis
Prunes one hidden variable.

Description
PRUNE_ONCE_CONV "?l. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp" returns a the-
orem of the form:

|- (?l. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp) =

(t1 /\ ... /\ ti /\ t(i+1) /\ ... /\ tp)

738 CHAPTER 1. ENTRIES

where eq has the form "!y1 ... ym. l x1 ... xn = b" and l does not appear free in
the ti’s or in b. The conversion works if eq is not present, that is if l is not free in any
of the conjuncts, but does not work if l appears free in more than one of the conjuncts.
Each of m, n and p may be zero.

Failure
Fails if the argument term is not of the specified form or if l is free in more than one of
the conjuncts or if the equation for l is recursive.

Example

#PRUNE_ONCE_CONV "?l2. (!(x:num). l1 x = F) /\ (!x. l2 x = ~(l1 x))";;

|- (?l2. (!x. l1 x = F) /\ (!x. l2 x = ~l1 x)) = (!x. l1 x = F)

See also
unwindLib.PRUNE ONE CONV, unwindLib.PRUNE SOME CONV, unwindLib.PRUNE CONV,

unwindLib.PRUNE SOME RIGHT RULE, unwindLib.PRUNE RIGHT RULE.

PRUNE_ONE_CONV (unwindLib)

PRUNE_ONE_CONV : (string -> conv)

Synopsis
Prunes a specified hidden variable.

Description
PRUNE_ONE_CONV ‘lj‘ when applied to the term:

"?l1 ... lj ... lr. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp"

returns a theorem of the form:

|- (?l1 ... lj ... lr. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp) =

(?l1 ... l(j-1) l(j+1) ... lr. t1 /\ ... /\ ti /\ t(i+1) /\ ... /\ tp)

where eq has the form "!y1 ... ym. lj x1 ... xn = b" and lj does not appear free in
the ti’s or in b. The conversion works if eq is not present, that is if lj is not free in any
of the conjuncts, but does not work if lj appears free in more than one of the conjuncts.
Each of m, n and p may be zero.

If there is more than one line with the specified name (but with different types), the
one that appears outermost in the existential quantifications is pruned.

PRUNE RIGHT RULE 739

Failure
Fails if the argument term is not of the specified form or if lj is free in more than one of
the conjuncts or if the equation for lj is recursive. The function also fails if the specified
line is not one of the existentially quantified lines.

Example

#PRUNE_ONE_CONV ‘l2‘ "?l2 l1. (!(x:num). l1 x = F) /\ (!x. l2 x = ~(l1 x))";;

|- (?l2 l1. (!x. l1 x = F) /\ (!x. l2 x = ~l1 x)) = (?l1. !x. l1 x = F)

#PRUNE_ONE_CONV ‘l1‘ "?l2 l1. (!(x:num). l1 x = F) /\ (!x. l2 x = ~(l1 x))";;

evaluation failed PRUNE_ONE_CONV

See also
unwindLib.PRUNE ONCE CONV, unwindLib.PRUNE SOME CONV, unwindLib.PRUNE CONV,

unwindLib.PRUNE SOME RIGHT RULE, unwindLib.PRUNE RIGHT RULE.

PRUNE_RIGHT_RULE (unwindLib)

PRUNE_RIGHT_RULE : (thm -> thm)

Synopsis
Prunes all hidden variables.

Description
PRUNE_RIGHT_RULE behaves as follows:

A |- !z1 ... zr.

t = ?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp

A |- !z1 ... zr. t = t1 /\ ... /\ tp

where each eqni has the form "!y1 ... ym. li x1 ... xn = b" and li does not appear
free in any of the other conjuncts or in b. The rule works if one or more of the eqni’s
are not present, that is if li is not free in any of the conjuncts, but does not work if li
appears free in more than one of the conjuncts. p may be zero, that is, all the conjuncts
may be eqni’s. In this case the result will be simply T (true). Also, for each eqni, m and
n may be zero.

740 CHAPTER 1. ENTRIES

Failure
Fails if the argument theorem is not of the specified form or if any of the li’s are free in
more than one of the conjuncts or if the equation for any li is recursive.

Example

#PRUNE_RIGHT_RULE

(ASSUME

"!(in:num->bool) (out:num->bool).

DEV (in,out) =

?(l1:num->bool) l2.

(!x. l1 x = F) /\ (!x. l2 x = ~(in x)) /\ (!x. out x = ~(in x))");;

. |- !in out. DEV(in,out) = (!x. out x = ~in x)

See also
unwindLib.PRUNE SOME RIGHT RULE, unwindLib.PRUNE ONCE CONV,

unwindLib.PRUNE ONE CONV, unwindLib.PRUNE SOME CONV, unwindLib.PRUNE CONV.

PRUNE_SOME_CONV (unwindLib)

PRUNE_SOME_CONV : (string list -> conv)

Synopsis
Prunes several hidden variables.

Description
PRUNE_SOME_CONV [‘li1‘;...;‘lik‘] when applied to the term:

"?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp"

returns a theorem of the form:

|- (?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp) =

(?li(k+1) ... lir. t1 /\ ... /\ tp)

where for 1 <= j <= k, each eqnij has the form:

"!y1 ... ym. lij x1 ... xn = b"

and lij does not appear free in any of the other conjuncts or in b. The li’s are related
by the equation:

PRUNE SOME RIGHT RULE 741

{{li1,...,lik}} u {{li(k+1),...,lir}} = {{l1,...,lr}}

The conversion works if one or more of the eqnij’s are not present, that is if lij is not
free in any of the conjuncts, but does not work if lij appears free in more than one of
the conjuncts. p may be zero, that is, all the conjuncts may be eqnij’s. In this case the
body of the result will be T (true). Also, for each eqnij, m and n may be zero.

If there is more than one line with a specified name (but with different types), the
one that appears outermost in the existential quantifications is pruned. If such a line
name is mentioned twice in the list, the two outermost occurrences of lines with that
name will be pruned, and so on.

Failure
Fails if the argument term is not of the specified form or if any of the lij’s are free in
more than one of the conjuncts or if the equation for any lij is recursive. The function
also fails if any of the specified lines are not one of the existentially quantified lines.

Example

#PRUNE_SOME_CONV [‘l1‘;‘l2‘]

"?l3 l2 l1.

(!(x:num). l1 x = F) /\ (!x. l2 x = ~(l3 x)) /\ (!(x:num). l3 x = T)";;

|- (?l3 l2 l1. (!x. l1 x = F) /\ (!x. l2 x = ~l3 x) /\ (!x. l3 x = T)) =

(?l3. !x. l3 x = T)

See also
unwindLib.PRUNE ONCE CONV, unwindLib.PRUNE ONE CONV, unwindLib.PRUNE CONV,

unwindLib.PRUNE SOME RIGHT RULE, unwindLib.PRUNE RIGHT RULE.

PRUNE_SOME_RIGHT_RULE (unwindLib)

PRUNE_SOME_RIGHT_RULE : (string list -> thm -> thm)

Synopsis
Prunes several hidden variables.

Description
PRUNE_SOME_RIGHT_RULE [‘li1‘;...;‘lik‘] behaves as follows:

742 CHAPTER 1. ENTRIES

A |- !z1 ... zr.

t = ?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp

A |- !z1 ... zr. t = ?li(k+1) ... lir. t1 /\ ... /\ tp

where for 1 <= j <= k, each eqnij has the form:

"!y1 ... ym. lij x1 ... xn = b"

and lij does not appear free in any of the other conjuncts or in b. The li’s are related
by the equation:

{{li1,...,lik}} u {{li(k+1),...,lir}} = {{l1,...,lr}}

The rule works if one or more of the eqnij’s are not present, that is if lij is not free
in any of the conjuncts, but does not work if lij appears free in more than one of the
conjuncts. p may be zero, that is, all the conjuncts may be eqnij’s. In this case the
conjunction will be transformed to T (true). Also, for each eqnij, m and n may be zero.

If there is more than one line with a specified name (but with different types), the
one that appears outermost in the existential quantifications is pruned. If such a line
name is mentioned twice in the list, the two outermost occurrences of lines with that
name will be pruned, and so on.

Failure
Fails if the argument theorem is not of the specified form or if any of the lij’s are free in
more than one of the conjuncts or if the equation for any lij is recursive. The function
also fails if any of the specified lines are not one of the existentially quantified lines.

Example

#PRUNE_SOME_RIGHT_RULE [‘l1‘;‘l2‘]

(ASSUME

"!(in:num->bool) (out:num->bool).

DEV (in,out) =

?(l1:num->bool) l2.

(!x. l1 x = F) /\ (!x. l2 x = ~(in x)) /\ (!x. out x = ~(in x))");;

. |- !in out. DEV(in,out) = (!x. out x = ~in x)

See also
unwindLib.PRUNE RIGHT RULE, unwindLib.PRUNE ONCE CONV, unwindLib.PRUNE ONE CONV,

unwindLib.PRUNE SOME CONV, unwindLib.PRUNE CONV.

PSELECT CONV 743

PSELECT_CONV (PairRules)

PSELECT_CONV : conv

Synopsis
Eliminates a paired epsilon term by introducing a existential quantifier.

Description
The conversion PSELECT_CONV expects a boolean term of the form "t[@p.t[p]/p]", which
asserts that the epsilon term @p.t[p] denotes a pair, p say, for which t[p] holds. This
assertion is equivalent to saying that there exists such a pair, and PSELECT_CONV applied
to a term of this form returns the theorem |- t[@p.t[p]/p] = ?p. t[p].

Failure
Fails if applied to a term that is not of the form "p[@p.t[p]/p]".

See also
Conv.SELECT CONV, PairRules.PSELECT ELIM, PairRules.PSELECT INTRO,

PairRules.PSELECT RULE.

PSELECT_ELIM (PairRules)

PSELECT_ELIM : thm -> term * thm -> thm

Synopsis
Eliminates a paired epsilon term, using deduction from a particular instance.

Description
PSELECT_ELIM expects two arguments, a theorem th1, and a pair (p,th2): term * thm.
The conclusion of th1 must have the form P($@ P), which asserts that the epsilon term
$@ P denotes some value at which P holds. The paired variable structure p appears only
in the assumption P p of the theorem th2. The conclusion of the resulting theorem
matches that of th2, and the hypotheses include the union of all hypotheses of the
premises excepting P p.

A1 |- P($@ P) A2 u {P p} |- t

------------------------------------- PSELECT_ELIM th1 (p ,th2)

A1 u A2 |- t

744 CHAPTER 1. ENTRIES

where p is not free in A2. If p appears in the conclusion of th2, the epsilon term will
NOT be eliminated, and the conclusion will be t[$@ P/p].

Failure
Fails if the first theorem is not of the form A1 |- P($@ P), or if any of the variables from
the variable structure p occur free in any other assumption of th2.

See also
Drule.SELECT ELIM, PairRules.PCHOOSE, PairRules.PSELECT CONV,

PairRules.PSELECT INTRO, PairRules.PSELECT RULE.

PSELECT_EQ (PairRules)

PSELECT_EQ : (term -> thm -> thm)

Synopsis
Applies epsilon abstraction to both terms of an equation.

Description
When applied to a paired structure of variables p and a theorem whose conclusion is
equational:

A |- t1 = t2

the inference rule PSELECT_EQ returns the theorem:

A |- (@p. t1) = (@p. t2)

provided no variable in p is free in the assumptions.

A |- t1 = t2

-------------------------- SELECT_EQ "p" [where p is not free in A]

A |- (@p. t1) = (@p. t2)

Failure
Fails if the conclusion of the theorem is not an equation, of if p is not a paired structure
of variables, or if any variable in p is free in A.

See also
Drule.SELECT EQ, PairRules.PFORALL EQ, PairRules.PEXISTS EQ.

PSELECT INTRO 745

PSELECT_INTRO (PairRules)

PSELECT_INTRO : (thm -> thm)

Synopsis
Introduces an epsilon term.

Description
PSELECT_INTRO takes a theorem with an applicative conclusion, say P x, and returns a
theorem with the epsilon term $@ P in place of the original operand x.

A |- P x

-------------- PSELECT_INTRO

A |- P($@ P)

The returned theorem asserts that $@ P denotes some value at which P holds.

Failure
Fails if the conclusion of the theorem is not an application.

Comments
This function is exactly the same as SELECT_INTRO, it is duplicated in the pair library for
completeness.

See also
Drule.SELECT INTRO, PairRules.PEXISTS, PairRules.PSELECT CONV,

PairRules.PSELECT ELIM, PairRules.PSELECT RULE.

PSELECT_RULE (PairRules)

PSELECT_RULE : (thm -> thm)

Synopsis
Introduces a paired epsilon term in place of a paired existential quantifier.

Description
The inference rule PSELECT_RULE expects a theorem asserting the existence of a pair p

such that t holds. The equivalent assertion that the epsilon term @p.t denotes a pair p

for which t holds is returned as a theorem.

746 CHAPTER 1. ENTRIES

A |- ?p. t

------------------ PSELECT_RULE

A |- t[(@p.t)/p]

Failure
Fails if applied to a theorem the conclusion of which is not a paired existential quantifier.

See also
Drule.SELECT RULE, PairRules.PCHOOSE, PairRules.PSELECT CONV,

PairRules.PEXISTS CONV, PairRules.PSELECT ELIM, PairRules.PSELECT INTRO.

PSKOLEM_CONV (PairRules)

PSKOLEM_CONV : conv

Synopsis
Proves the existence of a pair of Skolem functions.

Description
When applied to an argument of the form !p1...pn. ?q. tm, the conversion PSKOLEM_CONV

returns the theorem:

|- (!p1...pn. ?q. tm) = (?q’. !p1...pn. tm[q’ p1 ... pn/yq)

where q’ is a primed variant of the pair q not free in the input term.

Failure
PSKOLEM_CONV tm fails if tm is not a term of the form !p1...pn. ?q. tm.

Example
Both q and any pi may be a paired structure of variables:

- PSKOLEM_CONV

(Term ‘!(x11:’a,x12:’a) (x21:’a,x22:’a).

?(y1:’a,y2:’a). tm x11 x12 x21 x21 y1 y2‘);

> val it =

|- (!(x11,x12) (x21,x22). ?(y1,y2). tm x11 x12 x21 x21 y1 y2) =

?(y1,y2).

!(x11,x12) (x21,x22).

tm x11 x12 x21 x21 (y1 (x11,x12) (x21,x22)) (y2 (x11,x12) (x21,x22))

: thm

PSPEC 747

See also
Conv.SKOLEM CONV, PairRules.P PSKOLEM CONV.

PSPEC (PairRules)

PSPEC : (term -> thm -> thm)

Synopsis
Specializes the conclusion of a theorem.

Description
When applied to a term q and a theorem A |- !p. t, then PSPEC returns the theorem
A |- t[q/p]. If necessary, variables will be renamed prior to the specialization to ensure
that q is free for p in t, that is, no variables free in q become bound after substitution.

A |- !p. t

-------------- PSPEC "q"

A |- t[q/p]

Failure
Fails if the theorem’s conclusion is not a paired universal quantification, or if p and q

have different types.

Example
PSPEC specialised paired quantifications.

- PSPEC (Term ‘(1,2)‘) (ASSUME (Term‘!(x,y). (x + y) = (y + x)‘));

> val it = [.] |- 1 + 2 = 2 + 1 : thm

PSPEC treats paired structures of variables as variables and preserves structure accord-
ingly.

- PSPEC (Term ‘x:’a#’a‘) (ASSUME (Term ‘!(x:’a,y:’a). (x,y) = (x,y)‘));

> val it = [.] |- x = x : thm

See also
Thm.SPEC, PairRules.IPSPEC, PairRules.PSPECL, PairRules.PSPEC ALL,

PairRules.PGEN, PairRules.PGENL.

748 CHAPTER 1. ENTRIES

PSPEC_ALL (PairRules)

PSPEC_ALL : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with its own quantified pairs.

Description
When applied to a theorem A |- !p1...pn. t, the inference rule PSPEC_ALL returns the
theorem A |- t[p1’/p1]...[pn’/pn] where the pi’ are distinct variants of the corre-
sponding pi, chosen to avoid clashes with any variables free in the assumption list and
with the names of constants. Normally pi’ is just pi, in which case PSPEC_ALL simply
removes all universal quantifiers.

A |- !p1...pn. t

--------------------------- PSPEC_ALL

A |- t[p1’/x1]...[pn’/xn]

Failure
Never fails.

See also
Drule.SPEC ALL, PairRules.PGEN, PairRules.PGENL, PairRules.PGEN TAC,

PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC TAC.

PSPEC_PAIR (PairRules)

PSPEC_PAIR : thm -> term * thm

Synopsis
Specializes the conclusion of a theorem, returning the chosen variant.

Description
When applied to a theorem A |- !p. t, the inference rule PSPEC_PAIR returns the term
q’ and the theorem A |- t[q’/p], where q’ is a variant of p chosen to avoid free variable
capture.

PSPEC TAC 749

A |- !p. t

-------------- PSPEC_PAIR

A |- t[q’/q]

Failure
Fails unless the theorem’s conclusion is a paired universal quantification.

Comments
This rule is very similar to plain PSPEC, except that it returns the variant chosen, which
may be useful information under some circumstances.

See also
Drule.SPEC VAR, PairRules.PGEN, PairRules.PGENL, PairRules.PGEN TAC,

PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL.

PSPEC_TAC (PairRules)

PSPEC_TAC : term * term -> tactic

Synopsis
Generalizes a goal.

Description
When applied to a pair of terms (q,p), where p is a paired structure of variables and
a goal A ?- t, the tactic PSPEC_TAC generalizes the goal to A ?- !p. t[p/q], that is, all
components of q are turned into the corresponding components of p.

A ?- t

================= PSPEC_TAC (q,p)

A ?- !x. t[p/q]

Failure
Fails unless p is a paired structure of variables with the same type as q.

Example

750 CHAPTER 1. ENTRIES

- g ‘1 + 2 = 2 + 1‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

1 + 2 = 2 + 1

- e (PSPEC_TAC (Term‘(1,2)‘, Term‘(x:num,y:num)‘));

OK..

1 subgoal:

> val it =

!(x,y). x + y = y + x

: proof

Uses
Removing unnecessary speciality in a goal, particularly as a prelude to an inductive
proof.

See also
PairRules.PGEN, PairRules.PGENL, PairRules.PGEN TAC, PairRules.PSPEC,

PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSTRIP TAC.

PSPECL (PairRules)

PSPECL : (term list -> thm -> thm)

Synopsis
Specializes zero or more pairs in the conclusion of a theorem.

Description
When applied to a term list [q1;...;qn] and a theorem A |- !p1...pn. t, the inference
rule SPECL returns the theorem A |- t[q1/p1]...[qn/pn], where the substitutions are
made sequentially left-to-right in the same way as for PSPEC.

A |- !p1...pn. t

-------------------------- SPECL "[q1;...;qn]"

A |- t[q1/p1]...[qn/pn]

PSTRIP ASSUME TAC 751

It is permissible for the term-list to be empty, in which case the application of PSPECL

has no effect.

Failure
Fails unless each of the terms is of the same type as that of the appropriate quantified
variable in the original theorem. Fails if the list of terms is longer than the number of
quantified pairs in the theorem.

See also
Drule.SPECL, PairRules.PGEN, PairRules.PGENL, PairRules.PGEN TAC,

PairRules.PSPEC, PairRules.PSPEC ALL, PairRules.PSPEC TAC.

PSTRIP_ASSUME_TAC (PairRules)

PSTRIP_ASSUME_TAC : thm_tactic

Synopsis
Splits a theorem into a list of theorems and then adds them to the assumptions.

Description
Given a theorem th and a goal (A,t), PSTRIP_ASSUME_TAC th splits th into a list of
theorems. This is done by recursively breaking conjunctions into separate conjuncts,
cases-splitting disjunctions, and eliminating paired existential quantifiers by choosing
arbitrary variables. Schematically, the following rules are applied:

A ?- t

====================== PSTRIP_ASSUME_TAC (A’ |- v1 /\ ... /\ vn)

A u {v1,...,vn} ?- t

A ?- t

================================= PSTRIP_ASSUME_TAC (A’ |- v1 \/ ... \/ vn)

A u {v1} ?- t ... A u {vn} ?- t

A ?- t

==================== PSTRIP_ASSUME_TAC (A’ |- ?p. v)

A u {v[p’/p]} ?- t

where p’ is a variant of the pair p.
If the conclusion of th is not a conjunction, a disjunction or a paired existentially

quantified term, the whole theorem th is added to the assumptions.

752 CHAPTER 1. ENTRIES

As assumptions are generated, they are examined to see if they solve the goal (either
by being alpha-equivalent to the conclusion of the goal or by deriving a contradiction).

The assumptions of the theorem being split are not added to the assumptions of the
goal(s), but they are recorded in the proof. This means that if A’ is not a subset of the
assumptions A of the goal (up to alpha-conversion), PSTRIP_ASSUME_TAC (A’|-v) results
in an invalid tactic.

Failure
Never fails.

Uses
PSTRIP_ASSUME_TAC is used when applying a previously proved theorem to solve a goal,
or when enriching its assumptions so that resolution, rewriting with assumptions and
other operations involving assumptions have more to work with.

See also
PairRules.PSTRIP THM THEN, PairRules.PSTRIP ASSUME TAC,

PairRules.PSTRIP GOAL THEN, PairRules.PSTRIP TAC.

PSTRIP_GOAL_THEN (PairRules)

PSTRIP_GOAL_THEN : (thm_tactic -> tactic)

Synopsis
Splits a goal by eliminating one outermost connective, applying the given theorem-tactic
to the antecedents of implications.

Description
Given a theorem-tactic ttac and a goal (A,t), PSTRIP_GOAL_THEN removes one outermost
occurrence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t.
If t is a universally quantified term, then STRIP_GOAL_THEN strips off the quantifier. Note
that PSTRIP_GOAL_THEN will strip off paired universal quantifications.

A ?- !p. u

============== PSTRIP_GOAL_THEN ttac

A ?- u[p’/p]

where p’ is a primed variant that contains no variables that appear free in the assump-
tions A. If t is a conjunction, then PSTRIP_GOAL_THEN simply splits the conjunction into
two subgoals:

PSTRIP TAC 753

A ?- v /\ w

================= PSTRIP_GOAL_THEN ttac

A ?- v A ?- w

If t is an implication "u ==> v" and if:

A ?- v

=============== ttac (u |- u)

A’ ?- v’

then:

A ?- u ==> v

==================== PSTRIP_GOAL_THEN ttac

A’ ?- v’

Finally, a negation ~t is treated as the implication t ==> F.

Failure
PSTRIP_GOAL_THEN ttac (A,t) fails if t is not a paired universally quantified term, an
implication, a negation or a conjunction. Failure also occurs if the application of ttac
fails, after stripping the goal.

Uses
PSTRIP_GOAL_THEN is used when manipulating intermediate results (obtained by strip-
ping outer connectives from a goal) directly, rather than as assumptions.

See also
PairRules.PGEN TAC, Tactic.STRIP GOAL THEN, PairRules.FILTER PSTRIP THEN,

PairRules.PSTRIP TAC, PairRules.FILTER PSTRIP TAC.

PSTRIP_TAC (PairRules)

PSTRIP_TAC : tactic

Synopsis
Splits a goal by eliminating one outermost connective.

Description
Given a goal (A,t), PSTRIP_TAC removes one outermost occurrence of one of the con-
nectives !, ==>, ~ or /\ from the conclusion of the goal t. If t is a universally quantified
term, then STRIP_TAC strips off the quantifier. Note that PSTRIP_TAC will strip off paired
quantifications.

754 CHAPTER 1. ENTRIES

A ?- !p. u

============== PSTRIP_TAC

A ?- u[p’/p]

where p’ is a primed variant of the pair p that does not contain any variables that
appear free in the assumptions A. If t is a conjunction, then PSTRIP_TAC simply splits the
conjunction into two subgoals:

A ?- v /\ w

================= PSTRIP_TAC

A ?- v A ?- w

If t is an implication, PSTRIP_TAC moves the antecedent into the assumptions, stripping
conjunctions, disjunctions and existential quantifiers according to the following rules:

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v

============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- (?p. w) ==> v

=====================

A u {w[p’/p]} ?- v

where p’ is a primed variant of the pair p that does not appear free in A. Finally, a
negation ~t is treated as the implication t ==> F.

Failure
PSTRIP_TAC (A,t) fails if t is not a paired universally quantified term, an implication, a
negation or a conjunction.

Uses
When trying to solve a goal, often the best thing to do first is REPEAT PSTRIP_TAC to split
the goal up into manageable pieces.

See also
PairRules.PGEN TAC, PairRules.PSTRIP GOAL THEN, PairRules.FILTER PSTRIP THEN,

Tactic.STRIP TAC, PairRules.FILTER PSTRIP TAC.

PSTRIP_THM_THEN (PairRules)

PSTRIP_THM_THEN : thm_tactical

PSTRIP THM THEN 755

Synopsis
PSTRIP_THM_THEN applies the given theorem-tactic using the result of stripping off one
outer connective from the given theorem.

Description
Given a theorem-tactic ttac, a theorem th whose conclusion is a conjunction, a disjunc-
tion or a paired existentially quantified term, and a goal (A,t), STRIP_THM_THEN ttac th

first strips apart the conclusion of th, next applies ttac to the theorem(s) resulting from
the stripping and then applies the resulting tactic to the goal.

In particular, when stripping a conjunctive theorem A’|- u /\ v, the tactic

ttac(u|-u) THEN ttac(v|-v)

resulting from applying ttac to the conjuncts, is applied to the goal. When stripping
a disjunctive theorem A’|- u \/ v, the tactics resulting from applying ttac to the dis-
juncts, are applied to split the goal into two cases. That is, if

A ?- t A ?- t

========= ttac (u|-u) and ========= ttac (v|-v)

A ?- t1 A ?- t2

then:

A ?- t

================== PSTRIP_THM_THEN ttac (A’|- u \/ v)

A ?- t1 A ?- t2

When stripping a paired existentially quantified theorem A’|- ?p. u, the tactic resulting
from applying ttac to the body of the paired existential quantification, ttac(u|-u), is
applied to the goal. That is, if:

A ?- t

========= ttac (u|-u)

A ?- t1

then:

A ?- t

============= PSTRIP_THM_THEN ttac (A’|- ?p. u)

A ?- t1

The assumptions of the theorem being split are not added to the assumptions of the
goal(s) but are recorded in the proof. If A’ is not a subset of the assumptions A of the
goal (up to alpha-conversion), PSTRIP_THM_THEN ttac th results in an invalid tactic.

756 CHAPTER 1. ENTRIES

Failure
PSTRIP_THM_THEN ttac th fails if the conclusion of th is not a conjunction, a disjunction
or a paired existentially quantification. Failure also occurs if the application of ttac

fails, after stripping the outer connective from the conclusion of th.

Uses
PSTRIP_THM_THEN is used enrich the assumptions of a goal with a stripped version of a
previously-proved theorem.

See also
Thm cont.STRIP THM THEN, PairRules.PSTRIP ASSUME TAC, PairRules.PSTRIP GOAL THEN,

PairRules.PSTRIP TAC.

PSTRUCT_CASES_TAC (PairRules)

PSTRUCT_CASES_TAC : thm_tactic

Synopsis
Performs very general structural case analysis.

Description
When it is applied to a theorem of the form:

th = A’ |- ?p11...p1m. (x=t1) /\ (B11 /\ ... /\ B1k) \/ ... \/

?pn1...pnp. (x=tn) /\ (Bn1 /\ ... /\ Bnp)

in which there may be no paired existential quantifiers where a ‘vector’ of them is shown
above, PSTRUCT_CASES_TAC th splits a goal A ?- s into n subgoals as follows:

A ?- s

===

A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]

that is, performs a case split over the possible constructions (the ti) of a term, providing
as assumptions the given constraints, having split conjoined constraints into separate
assumptions. Note that unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has the above form, namely a conjunction of (possibly multiply
paired existentially quantified) terms which assert the equality of the same variable x

and the given terms.

PSUB CONV 757

Uses
Generating a case split from the axioms specifying a structure.

See also
Tactic.STRUCT CASES TAC.

PSUB_CONV (PairRules)

PSUB_CONV : (conv -> conv)

Synopsis
Applies a conversion to the top-level subterms of a term.

Description
For any conversion c, the function returned by PSUB_CONV c is a conversion that applies
c to all the top-level subterms of a term. If the conversion c maps t to |- t = t’, then
SUB_CONV c maps a paired abstraction "\p.t" to the theorem:

|- (\p.t) = (\p.t’)

That is, PSUB_CONV c "\p.t" applies c to the body of the paired abstraction "\p.t". If
c is a conversion that maps "t1" to the theorem |- t1 = t1’ and "t2" to the theorem
|- t2 = t2’, then the conversion PSUB_CONV c maps an application "t1 t2" to the theo-
rem:

|- (t1 t2) = (t1’ t2’)

That is, PSUB_CONV c "t1 t2" applies c to the both the operator t1 and the operand
t2 of the application "t1 t2". Finally, for any conversion c, the function returned by
PSUB_CONV c acts as the identity conversion on variables and constants. That is, if "t" is
a variable or constant, then PSUB_CONV c "t" returns |- t = t.

Failure
PSUB_CONV c tm fails if tm is a paired abstraction "\p.t" and the conversion c fails when
applied to t, or if tm is an application "t1 t2" and the conversion c fails when applied
to either t1 or t2. The function returned by PSUB_CONV c may also fail if the ML function
c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t to a theorem
|- t = t’).

See also
Conv.SUB CONV, PairRules.PABS CONV, Conv.RAND CONV, Conv.RATOR CONV.

758 CHAPTER 1. ENTRIES

Psyntax

Psyntax : Psyntax_sig

Synopsis
A structure that provides a tuple-style environment for term manipulation.

Description
Each function in the Psyntax structure has a corresponding “record version” in the
Rsyntax structure, and vice versa. One can flip-flop between the two structures by
opening one and then the other. One can also use long identifiers in order to use both
syntaxes at once.

Failure
Never fails.

Example
The following shows how to open the Psyntax structure and the functions that sub-
sequently become available in the top level environment. Documentation for each of
these functions is available online.

- open Psyntax;

This command results in the following functions entering the top-level name-space.
Term creation functions:

val mk_var = fn : string * hol_type -> term

val mk_const = fn : string * hol_type -> term

val mk_comb = fn : term * term -> term

val mk_abs = fn : term * term -> term

val mk_primed_var = fn : string * hol_type -> term

val mk_eq = fn : term * term -> term

val mk_imp = fn : term * term -> term

val mk_select = fn : term * term -> term

val mk_forall = fn : term * term -> term

val mk_exists = fn : term * term -> term

val mk_conj = fn : term * term -> term

val mk_disj = fn : term * term -> term

val mk_cond = fn : term * term * term -> term

val mk_let = fn : term * term -> term

PTAUT CONV 759

Term “destructor” functions (i.e., those functions that pull a term apart, and reveal some
of its internal structure):

val dest_var = fn : term -> string * hol_type

val dest_const = fn : term -> string * hol_type

val dest_comb = fn : term -> term * term

val dest_abs = fn : term -> term * term

val dest_eq = fn : term -> term * term

val dest_imp = fn : term -> term * term

val dest_select = fn : term -> term * term

val dest_forall = fn : term -> term * term

val dest_exists = fn : term -> term * term

val dest_conj = fn : term -> term * term

val dest_disj = fn : term -> term * term

val dest_cond = fn : term -> term * term * term

val dest_let = fn : term -> term * term

The lambda datatype for taking terms apart, which is the range of the dest_term function.

datatype lambda =

VAR of string * hol_type

| CONST of {Name : string, Thy : string, Ty : hol_type}

| COMB of term * term

| LAMB of term * term

val dest_term : term -> lambda

See also
Rsyntax.

PTAUT_CONV (tautLib)

PTAUT_CONV : conv

Synopsis
Tautology checker. Proves closed propositional formulae true or false.

Description
Given a term of the form "!x1 ... xn. t" where t contains only Boolean constants,
Boolean-valued variables, Boolean equalities, implications, conjunctions, disjunc-
tions, negations and Boolean-valued conditionals, and all the variables in t appear

760 CHAPTER 1. ENTRIES

in x1 ... xn, the conversion PTAUT_CONV proves the term to be either true or false, that
is, one of the following theorems is returned:

|- (!x1 ... xn. t) = T

|- (!x1 ... xn. t) = F

This conversion also accepts propositional terms that are not fully universally quantified.
However, for such a term, the conversion will only succeed if the term is valid.

Failure
Fails if the term is not of the form "!x1 ... xn. f[x1,...,xn]" where f[x1,...,xn] is a
propositional formula (except that the variables do not have to be universally quantified
if the term is valid).

Example

#PTAUT_CONV ‘‘!x y z w. (((x \/ ~y) ==> z) /\ (z ==> ~w) /\ w) ==> y‘‘;

|- (!x y z w. (x \/ ~y ==> z) /\ (z ==> ~w) /\ w ==> y) = T

#PTAUT_CONV ‘‘(((x \/ ~y) ==> z) /\ (z ==> ~w) /\ w) ==> y‘‘;

|- (x \/ ~y ==> z) /\ (z ==> ~w) /\ w ==> y = T

#PTAUT_CONV ‘‘!x. x = T‘‘;

|- (!x. x = T) = F

#PTAUT_CONV ‘‘x = T‘‘;

Uncaught exception:

HOL_ERR

See also
tautLib.PTAUT PROVE, tautLib.PTAUT TAC, tautLib.TAUT CONV.

PTAUT_PROVE (tautLib)

PTAUT_PROVE : term -> thm

Synopsis
Tautology checker. Proves propositional formulae.

PTAUT TAC 761

Description
Given a term that contains only Boolean constants, Boolean-valued variables, Boolean
equalities, implications, conjunctions, disjunctions, negations and Boolean-valued con-
ditionals, PTAUT_PROVE returns the term as a theorem if it is valid. The variables in the
term may be universally quantified.

Failure
Fails if the term is not a valid propositional formula.

Example

#PTAUT_PROVE ‘‘!x y z w. (((x \/ ~y) ==> z) /\ (z ==> ~w) /\ w) ==> y‘‘;

|- !x y z w. (x \/ ~y ==> z) /\ (z ==> ~w) /\ w ==> y

#PTAUT_PROVE ‘‘(((x \/ ~y) ==> z) /\ (z ==> ~w) /\ w) ==> y‘‘;

|- (x \/ ~y ==> z) /\ (z ==> ~w) /\ w ==> y

#PTAUT_PROVE ‘‘!x. x = T‘‘;

Uncaught exception:

HOL_ERR

#PTAUT_PROVE ‘‘x = T‘‘;

Uncaught exception:

HOL_ERR

See also
tautLib.PTAUT CONV, tautLib.PTAUT TAC, tautLib.TAUT PROVE.

PTAUT_TAC (tautLib)

PTAUT_TAC : tactic

Synopsis
Tautology checker. Proves propositional goals.

Description
Given a goal with a conclusion that contains only Boolean constants, Boolean-valued
variables, Boolean equalities, implications, conjunctions, disjunctions, negations and

762 CHAPTER 1. ENTRIES

Boolean-valued conditionals, this tactic will prove the goal if it is valid. If all the vari-
ables in the conclusion are universally quantified, this tactic will also reduce an invalid
goal to false.

Failure
Fails if the conclusion of the goal is not of the form !x1 ... xn. f[x1,...,xn] where
f[x1,...,xn] is a propositional formula (except that the variables do not have to be
universally quantified if the goal is valid).

See also
tautLib.PTAUT CONV, tautLib.PTAUT PROVE, tautLib.TAUT TAC.

PTREE_ADD_CONV (patriciaLib)

PTREE_ADD_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$ADD.

Description
The conversion PTREE_ADD_CONV evaluates terms of the form t |+ (m,n) where t is a
well-formed Patricia tree (correctly constructed using patricia$Empty, patricia$Leaf

and patricia$Branch) and m is a natural number literal.

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$ADD.

Example

- patriciaLib.PTREE_ADD_CONV ‘‘Empty |+ (3, x:num)‘‘;

> val it = |- <{}> |+ (3,x) = Leaf 3 x: thm

- DEPTH_CONV patriciaLib.PTREE_ADD_CONV ‘‘Empty |+ (3, 2) |+ (2,1)‘‘;

> val it = |- <{}> |+ (3,2) |+ (2,1) = Branch 0 0 (Leaf 3 2) (Leaf 2 1): thm

See also
patriciaLib.PTREE CONV.

PTREE CONV 763

PTREE_CONV (patriciaLib)

PTREE_CONV : conv

Synopsis
Conversion for evaluating Patricia tree operations.

Description
The conversion PTREE_CONV evaluates Patricia tree operations such as ADD, ADD_LIST,
REMOVE, SIZE, PEEK and FIND. These evaluations work for constants that are defined us-
ing Define_mk_ptree. When adding to, or removing from, a Patricia tree a new con-
tant will be defined after patriciaLib.ptree_new_defn_depth operations. By default
ptree_new_defn_depth is ~1, which means that new constants are never defined.

Example
Consider the following Patricia tree:

val ptree = Define_mk_ptree "ptree" (int_ptree_of_list [(1,‘‘1‘‘), (2, ‘‘2‘‘)]);

<<HOL message: Saved IS_PTREE theorem for new constant "ptree">>

val ptree = |- ptree = Branch 0 0 (Leaf 1 1) (Leaf 2 2): thm

Adding a list of updates expands into applications of ADD:

> real_time PTREE_CONV ‘‘ptree |++ [(3,3); (4,4); (5,5); (6,6); (7,7)]‘‘;

realtime: 0.000s

val it =

|- ptree |++ [(3,3); (4,4); (5,5); (6,6); (7,7)] =

ptree |+ (3,3) |+ (4,4) |+ (5,5) |+ (6,6) |+ (7,7):

thm

However, setting ptree_new_defn_depth will cause new definitions to be made:

> ptree_new_defn_depth := 2;

val it = (): unit

> real_time PTREE_CONV ‘‘ptree |++ [(3,3); (4,4); (5,5); (6,6); (7,7)]‘‘;

<<HOL message: Defined new ptree: ptree1>>

<<HOL message: Defined new ptree: ptree2>>

realtime: 0.006s

val it = |- ptree |++ [(3,3); (4,4); (5,5); (6,6); (7,7)] = ptree2 |+ (7,7):

thm

764 CHAPTER 1. ENTRIES

New definitions will also be made when removing elements:

> real_time PTREE_CONV ‘‘ptree2 \\ 6 \\ 5‘‘;

<<HOL message: Defined new ptree: ptree3>>

realtime: 0.001s

val it = |- ptree2 \\ 6 \\ 5 = ptree3: thm

Here, the conversion is not smart enough to work out that ptree3 is the same as
ptree1.

> (DEPTH_CONV PTREE_DEFN_CONV THENC EVAL) ‘‘ptree1 = ptree3‘‘;

val it = |- (ptree1 = ptree3) T: thm

Look-up behaves as expected:

> real_time PTREE_CONV ‘‘ptree1 ’ 2‘‘;

realtime: 0.001s

val it = |- ptree1 ’ 2 = SOME 2: thm

> real_time PTREE_CONV ‘‘ptree1 ’ 5‘‘;

realtime: 0.001s

val it = |- ptree1 ’ 5 = NONE: thm

Comments
The conversion PTREE_CONV is automatically added to the standard compset. Thus, EVAL
will have the same behaviour when patriciaLib is loaded.

Run-times should be respectable when working with large Patricia trees. However,
this is predicated on the assumption that relatively small numbers of updates are made
following an initial application of Define_mk_ptree. In this sense, the Patricia tree devel-
opment is best suited to situations where users require fast ”read-only” look-up; where
the work of building the look-up tree can be performed outside of the logic (i.e. in ML).

See also
patriciaLib.Define mk ptree, patriciaLib.PTREE DEFN CONV.

PTREE_DEFN_CONV (patriciaLib)

PTREE_DEFN_CONV : conv

Synopsis
Conversion for evaluating applications of ADD and REMOVE to Patricia tree constants.

PTREE DEPTH CONV 765

Description
Given a constant c defined using Define_mk_ptree, the conversion PTREE_DEFN_CONV will
evaluate term of the form c, c |+ (k,x) and c \\ k where k is a natural number literal.

Example

- val ptree = Define_mk_ptree "ptree" (int_ptree_of_list [(1,‘‘1‘‘), (2, ‘‘2‘‘)]);

<<HOL message: Saved IS_PTREE theorem for new constant "ptree">>

val ptree = |- ptree = Branch 0 0 (Leaf 1 1) (Leaf 2 2): thm

- PTREE_DEFN_CONV ‘‘ptree \\ 1‘‘;

val it = |- ptree \\ 1 = Leaf 2 2: thm

- PTREE_DEFN_CONV ‘‘ptree |+ (3,3)‘‘;

val it =

|- ptree |+ (3,3) =

Branch 0 0 (Branch 1 1 (Leaf 3 3) (Leaf 1 1)) (Leaf 2 2):

thm

Comments
The conversion PTREE_DEFN_CONV has limited uses and is mostly used internally by the
conversion PTREE_CONV.

See also
patriciaLib.Define mk ptree, patriciaLib.PTREE CONV.

PTREE_DEPTH_CONV (patriciaLib)

PTREE_DEPTH_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$DEPTH.

Description
The conversion PTREE_DEPTH_CONV evaluates terms of the form DEPTH t where t is a well-
formed Patricia tree (constructed by patricia$Empty, patricia$Leaf and patricia$Branch).

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$DEPTH.

Example

766 CHAPTER 1. ENTRIES

- patriciaLib.PTREE_DEPTH_CONV ‘‘DEPTH Empty‘‘;

> val it = |- DEPTH <{}> = 0: thm

- patriciaLib.PTREE_DEPTH_CONV ‘‘DEPTH (Branch 0 0 (Leaf 3 2) (Leaf 2 1))‘‘;

> val it = |- DEPTH (Branch 0 0 (Leaf 3 2) (Leaf 2 1)) = 2: thm

See also
patriciaLib.PTREE CONV.

PTREE_EVERY_LEAF_CONV (patriciaLib)

PTREE_EVERY_LEAF_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$EVERY_LEAF.

Description
The conversion PTREE_EVERY_LEAF_CONV evaluates terms of the form EVERY_LEAF P t

where t is a well-formed Patricia tree (constructed by patricia$Empty, patricia$Leaf
and patricia$Branch) and P is predicate.

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$EVERY_LEAF.

Example

- patriciaLib.PTREE_EVERY_LEAF_CONV ‘‘EVERY_LEAF (=) Empty‘‘;

> val it = |- EVERY_LEAF $= <{}> <=> T: thm

- patriciaLib.PTREE_EVERY_LEAF_CONV ‘‘EVERY_LEAF (\x y. (x < 3) ==> (y = 1)) (Branch 0 0 (Leaf 3 2) (Leaf 2 1))‘‘;

> val it =

|- EVERY_LEAF (\x y. x < 3 ==> (y = 1))

(Branch 0 0 (Leaf 3 2) (Leaf 2 1)) <=> T:

thm

- patriciaLib.PTREE_EVERY_LEAF_CONV ‘‘EVERY_LEAF (\x y. x < 2) (Branch 0 0 (Leaf 3 2) (Leaf 2 1))‘‘;

> val it =

|- EVERY_LEAF (\x y. x < 2) (Branch 0 0 (Leaf 3 2) (Leaf 2 1)) <=> F:

thm

PTREE EXISTS LEAF CONV 767

See also
patriciaLib.PTREE CONV.

PTREE_EXISTS_LEAF_CONV (patriciaLib)

PTREE_EXISTS_LEAF_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$EXISTS_LEAF.

Description
The conversion PTREE_EXISTS_LEAF_CONV evaluates terms of the form EXISTS_LEAF P t

where t is a well-formed Patricia tree (constructed by patricia$Empty, patricia$Leaf
and patricia$Branch) and P is predicate.

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$EXISTS_LEAF.

Example
- patriciaLib.PTREE_EXISTS_LEAF_CONV ‘‘EXISTS_LEAF (=) Empty‘‘;

> val it = |- EXISTS_LEAF $= <{}> <=> F: thm

- patriciaLib.PTREE_EXISTS_LEAF_CONV ‘‘EXISTS_LEAF (\x y. y = 2) (Branch 0 0 (Leaf 3 2) (Leaf 2 1))‘‘;

> val it =

|- EXISTS_LEAF (\x y. y = 2) (Branch 0 0 (Leaf 3 2) (Leaf 2 1)) <=> T:

thm

- patriciaLib.PTREE_EXISTS_LEAF_CONV ‘‘EXISTS_LEAF (\x y. y = 3) (Branch 0 0 (Leaf 3 2) (Leaf 2 1))‘‘;

> val it =

|- EXISTS_LEAF (\x y. y = 3) (Branch 0 0 (Leaf 3 2) (Leaf 2 1)) <=> F:

thm

See also
patriciaLib.PTREE CONV.

PTREE_IN_PTREE_CONV (patriciaLib)

PTREE_IN_PTREE_CONV : conv

768 CHAPTER 1. ENTRIES

Synopsis
Conversion for evaluating applications of patricia$IN_PTREE.

Description
The conversion PTREE_IN_PTREE_CONV evaluates terms of the form n IN_PTREE t where t

is a well-formed unit Patricia tree (constructed by patricia$Empty, patricia$Leaf and
patricia$Branch) and n is a natural number literal.

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$IN_PTREE.

Example

- patriciaLib.PTREE_IN_PTREE_CONV ‘‘1 IN_PTREE Empty‘‘;

> val it = |- 1 IN_PTREE <{}> <=> F: thm

- patriciaLib.PTREE_IN_PTREE_CONV ‘‘3 IN_PTREE (Branch 0 0 (Leaf 3 ()) (Leaf 2 ()))‘‘;

> val it = |- 3 IN_PTREE Branch 0 0 (Leaf 3 ()) (Leaf 2 ()) <=> T: thm

See also
patriciaLib.PTREE CONV.

PTREE_INSERT_PTREE_CONV (patriciaLib)

PTREE_INSERT_PTREE_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$INSERT_PTREE.

Description
The conversion PTREE_INSERT_PTREE_CONV evaluates terms of the form m INSERT_PTREE_PTREE t

where t is a well-formed unit Patricia tree (correctly constructed using patricia$Empty,
patricia$Leaf and patricia$Branch) and m is a natural number literal.

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$INSERT_PTREE.

Example

PTREE IS PTREE CONV 769

- patriciaLib.PTREE_INSERT_PTREE_CONV ‘‘2 INSERT_PTREE Empty‘‘;

> val it = |- <{2}> = Leaf 2 (): thm

- DEPTH_CONV patriciaLib.PTREE_INSERT_PTREE_CONV ‘‘3 INSERT_PTREE 2 INSERT_PTREE Empty‘‘;

> val it = |- <{3; 2}> = Branch 0 0 (Leaf 3 ()) (Leaf 2 ()): thm

See also
patriciaLib.PTREE CONV.

PTREE_IS_PTREE_CONV (patriciaLib)

PTREE_IS_PTREE_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$IS_PTREE.

Description
The conversion PTREE_IS_PTREE_CONV evaluates terms of the form IS_PTREE t where t

is any tree constructed by patricia$Empty, patricia$Leaf and patricia$Branch. Well-
formed trees correspond with those that can be constructed by patricia$ADD.

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$IS_PTREE.

Example

- patriciaLib.PTREE_IS_PTREE_CONV ‘‘IS_PTREE Empty‘‘;

> val it = |- IS_PTREE $= <{}> <=> T: thm

- patriciaLib.PTREE_IS_PTREE_CONV ‘‘IS_PTREE (Branch 0 0 (Leaf 3 2) (Leaf 2 1))‘‘;

> val it = |- IS_PTREE (Branch 0 0 (Leaf 3 2) (Leaf 2 1)) <=> T: thm

- patriciaLib.PTREE_IS_PTREE_CONV ‘‘IS_PTREE (Branch 0 0 (Leaf 3 2) (Leaf 1 1))‘‘;

> val it = |- IS_PTREE (Branch 0 0 (Leaf 3 2) (Leaf 1 1)) <=> F: thm

See also
patriciaLib.PTREE CONV.

770 CHAPTER 1. ENTRIES

PTREE_PEEK_CONV (patriciaLib)

PTREE_PEEK_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$PEEK.

Description
The conversion PTREE_PEEK_CONV evaluates terms of the form t ’ m where t is a well-
formed Patricia tree (constructed by patricia$Empty, patricia$Leaf and patricia$Branch)
and m is a natural number literal.

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$PEEK.

Example

- patriciaLib.PTREE_PEEK_CONV ‘‘Empty ’ 3‘‘;

> val it = |- <{}> ’ 3 = NONE: thm

- patriciaLib.PTREE_PEEK_CONV ‘‘Branch 0 0 (Leaf 3 2) (Leaf 2 1) ’ 3‘‘;

> val it = |- Branch 0 0 (Leaf 3 2) (Leaf 2 1) ’ 3 = SOME 2: thm

See also
patriciaLib.PTREE CONV.

PTREE_REMOVE_CONV (patriciaLib)

PTREE_REMOVE_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$REMOVE.

Description
The conversion PTREE_REMOVE_CONV evaluates terms of the form t \\ m where t is a well-
formed Patricia tree (constructed by patricia$Empty, patricia$Leaf and patricia$Branch)
and m is a natural number literal.

PTREE SIZE CONV 771

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$REMOVE.

Example

- patriciaLib.PTREE_REMOVE_CONV ‘‘Empty \\ 3‘‘;

> val it = |- <{}> \\ 3 = <{}>: thm

- patriciaLib.PTREE_REMOVE_CONV ‘‘Branch 0 0 (Leaf 3 2) (Leaf 2 1) \\ 3‘‘;

> val it = |- Branch 0 0 (Leaf 3 2) (Leaf 2 1) \\ 3 = Leaf 2 1: thm

See also
patriciaLib.PTREE CONV.

PTREE_SIZE_CONV (patriciaLib)

PTREE_SIZE_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$SIZE.

Description
The conversion PTREE_SIZE_CONV evaluates terms of the form SIZE t where t is a well-
formed Patricia tree (constructed by patricia$Empty, patricia$Leaf and patricia$Branch).

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$SIZE.

Example

- patriciaLib.PTREE_SIZE_CONV ‘‘SIZE Empty‘‘;

> val it = |- SIZE <{}> = 0: thm

- patriciaLib.PTREE_SIZE_CONV ‘‘SIZE (Branch 0 0 (Leaf 3 2) (Leaf 2 1))‘‘;

> val it = |- SIZE (Branch 0 0 (Leaf 3 2) (Leaf 2 1)) = 2: thm

See also
patriciaLib.PTREE CONV.

772 CHAPTER 1. ENTRIES

PTREE_TRANSFORM_CONV (patriciaLib)

PTREE_TRANSFORM_CONV : conv

Synopsis
Conversion for evaluating applications of patricia$TRANSFORM.

Description
The conversion PTREE_TRANSFORM_CONV evaluates terms of the form TRANSFORM f t where
t is a well-formed Patricia tree (constructed by patricia$Empty, patricia$Leaf and
patricia$Branch) and f is map.

Failure
The conversion will fail if the supplied term is not a suitable application of patricia$TRANSFORM.

Example

- patriciaLib.PTREE_TRANSFORM_CONV ‘‘TRANSFORM ODD Empty‘‘;

> val it = |- TRANSFORM ODD <{}> = <{}>: thm

- patriciaLib.PTREE_TRANSFORM_CONV ‘‘TRANSFORM ODD (Branch 0 0 (Leaf 3 2) (Leaf 2 1))‘‘;

> val it =

|- TRANSFORM ODD (Branch 0 0 (Leaf 3 2) (Leaf 2 1)) =

Branch 0 0 (Leaf 3 F) (Leaf 2 T):

thm

See also
patriciaLib.PTREE CONV.

PURE_ASM_REWRITE_RULE (Rewrite)

PURE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem including the theorem’s assumptions as rewrites.

PURE ASM REWRITE TAC 773

Description
The list of theorems supplied by the user and the assumptions of the object theorem
are used to generate a set of rewrites, without adding implicitly the basic tautologies
stored under basic_rewrites. The rule searches for matching subterms in a top-down
recursive fashion, stopping only when no more rewrites apply. For a general description
of rewriting strategies see GEN_REWRITE_RULE.

Failure
Rewriting with PURE_ASM_REWRITE_RULE does not result in failure. It may diverge, in
which case PURE_ONCE_ASM_REWRITE_RULE may be used.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE,

Rewrite.PURE REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE.

PURE_ASM_REWRITE_TAC (Rewrite)

PURE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal including the goal’s assumptions as rewrites.

Description
PURE_ASM_REWRITE_TAC generates a set of rewrites from the supplied theorems and the
assumptions of the goal, and applies these in a top-down recursive manner until no
match is found. See GEN_REWRITE_TAC for more information on the group of rewriting
tactics.

Failure
PURE_ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For limited
depth rewriting, see PURE_ONCE_ASM_REWRITE_TAC. It can also result in an invalid tactic.

Uses
To advance or solve a goal when the current assumptions are expected to be useful in
reducing the goal.

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,

Rewrite.ONCE REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,

774 CHAPTER 1. ENTRIES

Rewrite.PURE ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,

Tactic.SUBST TAC.

PURE_CASE_TAC (BasicProvers)

PURE_CASE_TAC : tactic

Synopsis
Case splits on a term t that features in the goal as case t of ...

Description
BasicProvers.PURE_CASE_TAC searches the goal for an instance of case t of ..., and
performs a BasicProvers.Cases_on ‘t‘.

Failure
BasicProvers.PURE_CASE_TAC fails if there is no instance of case t of ... in the goal,
where the case term is a case constant in the typebase and all the free variables of t are
free in the goal.

See also
BasicProvers.CASE TAC.

PURE_LIST_CONV (listLib)

PURE_LIST_CONV : {{Aux_thms: thm list, Fold_thms: thm list}} -> conv

Synopsis
Proves theorems about list constants applied to NIL, CONS, SNOC, APPEND, FLAT and
REVERSE.

Description
PURE_LIST_CONV takes a term of the form:

CONST1 ... (CONST2 ...) ...

PURE LIST CONV 775

where CONST1 and CONST2 are operators on lists and CONST2 returns a list result. It can be
one of NIL, CONS, SNOC, APPEND, FLAT or REVERSE. The form of the resulting theorem de-
pends on CONST1 and CONST2. Some auxiliary theorems must be provided about CONST1.
PURE_LIST_CONV. These are passed as a record argument. The Fold_thms field of the
record should hold a theorem defining the constant in terms of FOLDR or FOLDL. The
definition should have the form:

|- CONST1 ...l... = fold f e l

where fold is either FOLDR or FOLDL, f is a function, e a base element and l a list variable.
For example, a suitable theorem for SUM is

|- SUM l = FOLDR $+ 0 l

Given this theorem, no auxiliary theorems and the term --‘SUM (CONS x l)‘--, a call to
PURE_LIST_CONV returns the theorem:

|- SUM (CONS x l) = x + (SUM l)

The Aux_thms field of the record argument to PURE_LIST_CONV provides auxiliary theo-
rems concerning the terms f and e found in the definition with respect to FOLDR or FOLDL.
For example, given the theorem:

|- MONOID $+ 0

and given the term --‘SUM (APPEND l1 l2)‘--, a call to PURE_LIST_CONV returns the the-
orem

|- SUM (APPEND l1 l2) = (SUM l1) + (SUM l2)

The following table shows the form of the theorem returned and the auxiliary theorems
needed if CONST1 is defined in terms of FOLDR.

CONST2 | side conditions | tm2 in result |- tm1 = tm2

==============|================================|===========================

[] | NONE | e

[x] | NONE | f x e

CONS x l | NONE | f x (CONST1 l)

SNOC x l | e is a list variable | CONST1 (f x e) l

APPEND l1 l2 | e is a list variable | CONST1 (CONST1 l1) l2

APPEND l1 l2 | |- FCOMM g f, |- LEFT_ID g e | g (CONST1 l1) (CONST2 l2)

FLAT l1 | |- FCOMM g f, |- LEFT_ID g e, |

| |- CONST3 l = FOLDR g e l | CONST3 (MAP CONST1 l)

REVERSE l | |- COMM f, |- ASSOC f | CONST1 l

REVERSE l | f == (\x l. h (g x) l) |

| |- COMM h, |- ASSOC h | CONST1 l

776 CHAPTER 1. ENTRIES

The following table shows the form of the theorem returned and the auxiliary theorems
needed if CONST1 is defined in terms of FOLDL.

CONST2 | side conditions | tm2 in result |- tm1 = tm2

==============|================================|===========================

[] | NONE | e

[x] | NONE | f x e

SNOC x l | NONE | f x (CONST1 l)

CONS x l | e is a list variable | CONST1 (f x e) l

APPEND l1 l2 | e is a list variable | CONST1 (CONST1 l1) l2

APPEND l1 l2 | |- FCOMM f g, |- RIGHT_ID g e | g (CONST1 l1) (CONST2 l2)

FLAT l1 | |- FCOMM f g, |- RIGHT_ID g e, |

| |- CONST3 l = FOLDR g e l | CONST3 (MAP CONST1 l)

REVERSE l | |- COMM f, |- ASSOC f | CONST1 l

REVERSE l | f == (\l x. h l (g x)) |

| |- COMM h, |- ASSOC h | CONST1 l

|- MONOID f e can be used instead of |- FCOMM f f, |- LEFT_ID f or |- RIGHT_ID f.
|- ASSOC f can also be used in place of |- FCOMM f f.

Example

- val SUM_FOLDR = theorem "list" "SUM_FOLDR";

val SUM_FOLDR = |- !l. SUM l = FOLDR $+ 0 l

- PURE_LIST_CONV

= {{Fold_thms = [SUM_FOLDR], Aux_thms = []}} (--‘SUM (CONS h t)‘--);

|- SUM (CONS h t) = h + SUM t

- val SUM_FOLDL = theorem "list" "SUM_FOLDL";

val SUM_FOLDL = |- !l. SUM l = FOLDL $+ 0 l

- PURE_LIST_CONV

= {{Fold_thms = [SUM_FOLDL], Aux_thms = []}} (--‘SUM (SNOC h t)‘--);

|- SUM (SNOC h t) = SUM t + h

- val MONOID_ADD_0 = theorem "arithmetic" "MONOID_ADD_0";

val MONOID_ADD_0 = |- MONOID $+ 0

- PURE_LIST_CONV

= {{Fold_thms = [SUM_FOLDR], Aux_thms = [MONOID_ADD_0]}}

= (--‘SUM (APPEND l1 l2)‘--);

|- SUM (APPEND l1 l2) = SUM l1 + SUM l2

- PURE_LIST_CONV

= {{Fold_thms = [SUM_FOLDR], Aux_thms = [MONOID_ADD_0]}} (--‘SUM (FLAT l)‘--);

|- SUM (FLAT l) = SUM (MAP SUM l)

PURE ONCE ASM REWRITE RULE 777

Failure
PURE_LIST_CONV tm fails if tm is not of the form described above. It also fails if no suitable
fold definition for CONST1 is supplied, or if the required auxiliary theorems as described
above are not supplied.

See also
listLib.LIST CONV, listLib.X LIST CONV.

PURE_ONCE_ASM_REWRITE_RULE (Rewrite)

PURE_ONCE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem once, including the theorem’s assumptions as rewrites.

Description
PURE_ONCE_ASM_REWRITE_RULE excludes the basic tautologies in basic_rewrites from the
theorems used for rewriting. It searches for matching subterms once only, without
recursing over already rewritten subterms. For a general introduction to rewriting tools
see GEN_REWRITE_RULE.

Failure
PURE_ONCE_ASM_REWRITE_RULE does not fail and does not diverge.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE,

Rewrite.ONCE ASM REWRITE RULE, Rewrite.ONCE REWRITE RULE,

Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

PURE_ONCE_ASM_REWRITE_TAC (Rewrite)

PURE_ONCE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal once, including the goal’s assumptions as rewrites.

778 CHAPTER 1. ENTRIES

Description
A set of rewrites generated from the assumptions of the goal and the supplied theorems
is used to rewrite the term part of the goal, making only one pass over the goal. The
basic tautologies are not included as rewrite theorems. The order in which the given
theorems are applied is an implementation matter and the user should not depend on
any ordering. See GEN_REWRITE_TAC for more information on rewriting tactics in general.

Failure
PURE_ONCE_ASM_REWRITE_TAC does not fail and does not diverge.

Uses
Manipulation of the goal by rewriting with its assumptions, in instances where rewriting
with tautologies and recursive rewriting is undesirable.

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,

Rewrite.ONCE REWRITE TAC, Rewrite.PURE ASM REWRITE TAC,

Rewrite.PURE ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,

Tactic.SUBST TAC.

PURE_ONCE_REWRITE_CONV (Rewrite)

PURE_ONCE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term once with only the given list of rewrites.

Description
PURE_ONCE_REWRITE_CONV generates rewrites from the list of theorems supplied by the
user, without including the tautologies given in basic_rewrites. The applicable rewrites
are employeded once, without entailing in a recursive search for matches over the term.
See GEN_REWRITE_CONV for more details about rewriting strategies in HOL.

Failure
This rule does not fail, and it does not diverge.

See also
Rewrite.GEN REWRITE CONV, Conv.ONCE DEPTH CONV, Rewrite.ONCE REWRITE CONV,

Rewrite.PURE REWRITE CONV, Rewrite.REWRITE CONV.

PURE ONCE REWRITE RULE 779

PURE_ONCE_REWRITE_RULE (Rewrite)

PURE_ONCE_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem once with only the given list of rewrites.

Description
PURE_ONCE_REWRITE_RULE generates rewrites from the list of theorems supplied by the
user, without including the tautologies given in basic_rewrites. The applicable rewrites
are employeded once, without entailing in a recursive search for matches over the the-
orem. See GEN_REWRITE_RULE for more details about rewriting strategies in HOL.

Failure
This rule does not fail, and it does not diverge.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE, Conv.ONCE DEPTH CONV,

Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

PURE_ONCE_REWRITE_TAC (Rewrite)

PURE_ONCE_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal using a supplied list of theorems, making one rewriting pass over the
goal.

Description
PURE_ONCE_REWRITE_TAC generates a set of rewrites from the given list of theorems, and
applies them at every match found through searching once over the term part of the
goal, without recursing. It does not include the basic tautologies as rewrite theorems.
The order in which the rewrites are applied is unspecified. For more information on
rewriting tactics see GEN_REWRITE_TAC.

Failure
PURE_ONCE_REWRITE_TAC does not fail and does not diverge.

780 CHAPTER 1. ENTRIES

Uses
This tactic is useful when the built-in tautologies are not required as rewrite equations
and recursive rewriting is not desired.

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,

Rewrite.ONCE REWRITE TAC, Rewrite.PURE ASM REWRITE TAC,

Rewrite.PURE ONCE ASM REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,

Tactic.SUBST TAC.

PURE_REWRITE_CONV (Rewrite)

PURE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term with only the given list of rewrites.

Description
This conversion provides a method for rewriting a term with the theorems given, and
excluding simplification with tautologies in basic_rewrites. Matching subterms are
found recursively, until no more matches are found. For more details on rewriting see
GEN_REWRITE_CONV.

Uses
PURE_REWRITE_CONV is useful when the simplifications that arise by rewriting a theorem
with basic_rewrites are not wanted.

Failure
Does not fail. May result in divergence, in which case PURE_ONCE_REWRITE_CONV can be
used.

See also
Rewrite.GEN REWRITE CONV, Rewrite.ONCE REWRITE CONV,

Rewrite.PURE ONCE REWRITE CONV, Rewrite.REWRITE CONV.

PURE_REWRITE_RULE (Rewrite)

PURE_REWRITE_RULE : (thm list -> thm -> thm)

PURE REWRITE TAC 781

Synopsis
Rewrites a theorem with only the given list of rewrites.

Description
This rule provides a method for rewriting a theorem with the theorems given, and
excluding simplification with tautologies in basic_rewrites. Matching subterms are
found recursively starting from the term in the conclusion part of the theorem, until no
more matches are found. For more details on rewriting see GEN_REWRITE_RULE.

Uses
PURE_REWRITE_RULE is useful when the simplifications that arise by rewriting a theorem
with basic_rewrites are not wanted.

Failure
Does not fail. May result in divergence, in which case PURE_ONCE_REWRITE_RULE can be
used.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE,

Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE,

Rewrite.PURE ONCE REWRITE RULE, Rewrite.REWRITE RULE.

PURE_REWRITE_TAC (Rewrite)

PURE_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal with only the given list of rewrites.

Description
PURE_REWRITE_TAC behaves in the same way as REWRITE_TAC, but without the effects of the
built-in tautologies. The order in which the given theorems are applied is an implemen-
tation matter and the user should not depend on any ordering. For more information
on rewriting strategies see GEN_REWRITE_TAC.

Failure
PURE_REWRITE_TAC does not fail, but it can diverge in certain situations; in such cases
PURE_ONCE_REWRITE_TAC may be used.

782 CHAPTER 1. ENTRIES

Uses
This tactic is useful when the built-in tautologies are not required as rewrite equations.
It is sometimes useful in making more time-efficient replacements according to equa-
tions for which it is clear that no extra reduction via tautology will be needed. (The
difference in efficiency is only apparent, however, in quite large examples.)
PURE_REWRITE_TAC advances goals but solves them less frequently than REWRITE_TAC;

to be precise, PURE_REWRITE_TAC only solves goals which are rewritten to "T" (i.e. TRUTH)
without recourse to any other tautologies.

Example
It might be necessary, say for subsequent application of an induction hypothesis, to
resist reducing a term b = T to b.

- PURE_REWRITE_TAC [] ([], Term ‘b = T‘);

> val it = ([([], ‘b = T‘)], fn)

: (term list * term) list * (thm list -> thm)

- REWRITE_TAC [] ([], Term ‘b = T‘);

> val it = ([([], ‘b‘)], fn)

: (term list * term) list * (thm list -> thm)

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.GEN REWRITE TAC,

Rewrite.ONCE ASM REWRITE TAC, Rewrite.ONCE REWRITE TAC,

Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,

Rewrite.PURE ONCE REWRITE TAC, Rewrite.REWRITE TAC, Tactic.SUBST TAC.

pure_ss (pureSimps)

pureSimps.pure_ss : simpset

Synopsis
A simpset containing only the conditional rewrite generator and no additional rewrites.

Description
This simpset sits at the root of the simpset hierarchy. It contains no rewrites, con-
gruences, conversions or decision procedures. Instead it contains just the code which
converts theorems passed to it as context into (possibly conditional) rewrites.

pure ss 783

Simplification with pure_ss is analogous to rewriting with PURE_REWRITE_TAC and oth-
ers. The only difference is that the theorems passed to SIMP_TAC pure_ss are interpreted
as conditional rewrite rules. Though the pure_ss can’t take advantage of extra contex-
tual information garnered through congruences, it can still discharge side conditions.
(This is demonstrated in the examples below.)

Failure
Can’t fail, as it is not a functional value.

Example
The theorem ADD_EQ_SUB from arithmeticTheory states that

|- !m n p. n <= p ==> ((m + n = p) = m = p - n)

We can use this result to make progress with the following goal in conjunction with
pure_ss in a way that no form of REWRITE_TAC could:

- ASM_SIMP_TAC pure_ss [ADD_EQ_SUB] ([--‘x <= y‘--], --‘z + x = y‘--);

> val it = ([([‘x <= y‘], ‘z = y - x‘)], fn) : tactic_result

This example illustrates the way in which the simplifier can do conditional rewriting.
However, the lack of the congruence for implications means that using pure_ss will not
be able to discharge the side condition in the goal below:

- SIMP_TAC pure_ss [ADD_EQ_SUB] ([], --‘x <= y ==> (z + x = y)‘--);

> val it = ([([], ‘x <= y ==> (z + x = y)‘)], fn) : tactic_result

As bool_ss has the relevant congruence included, it does make progress in the same
situation:

- SIMP_TAC bool_ss [ADD_EQ_SUB] ([], --‘x <= y ==> (z + x = y)‘--);

> val it = ([([], ‘x <= y ==> (z = y - x)‘)], fn) : tactic_result

Uses
The pure_ss simpset might be used in the most delicate simplification situations, or,
mimicking the way it is used within the distribution itself, as a basis for the construction
of other simpsets.

Comments
There is also a pureSimps.PURE_ss ssfrag value. Its usefulness is questionable.

See also
boolSimps.bool ss, Rewrite.PURE REWRITE TAC, simpLib.SIMP CONV,

simpLib.SIMP TAC.

784 CHAPTER 1. ENTRIES

pvariant (pairSyntax)

pvariant : (term list -> term -> term)

Synopsis
Modifies variable and constant names in a paired structure to avoid clashes.

Description
When applied to a list of (possibly paired structures of) variables to avoid clashing with,
and a pair to modify, pvariant returns a variant of the pair. That is, it changes the
names of variables and constants in the pair as intuitively as possible to make them
distinct from any variables in the list, or any (non-hidden) constants. This is normally
done by adding primes to the names.

The exact form of the altered names should not be relied on, except that the original
variables will be unmodified unless they are in the list to avoid clashing with. Also note
that if the same variable occurs more that one in the pair, then each instance of the
variable will be modified in the same way.

Failure
pvariant l p fails if any term in the list l is not a paired structure of variables, or if p is
not a paired structure of variables and constants.

Example
The following shows a case that exhibits most possible behaviours:

- pvariant [Term ‘b:’a‘, Term ‘(c:’a,c’:’a)‘]

(Term ‘((a:’a,b:’a),(c:’a,b’:’a,T,b:’a))‘);

val it = ‘(a,b’’),c’’,b’,T’,b’’‘ : term

Uses
The function pvariant is extremely useful for complicated derived rules which need to
rename pairs variable to avoid free variable capture while still making the role of the
pair obvious to the user.

See also
Term.variant, Term.genvar.

Q TAC 785

Q_TAC (Tactical)

Q_TAC : (term -> tactic) -> term quotation -> tactic

Synopsis
A tactical that parses in the context of a goal, a la the Q library.

Description
When applied to a term tactic T and a quotation q, the tactic Q_TAC T q first parses the
quotation q in the context of the goal to yield the term tm, and then applies the tactic
T tm to the goal.

Failure
The application of Q_TAC to a term tactic T and a quotation q never fails. The resulting
composite tactic Q_TAC T q fails when applied to a goal if either q cannot be parsed, or
T tm fails when applied to the goal.

Comments
Useful for avoiding decorating terms with type abbreviations.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.ORELSE, Tactical.THEN, Tactical.THEN1,

Tactical.THENL.

QCHANGED_CONSEQ_CONV (ConseqConv)

QCHANGED_CONSEQ_CONV : conseq_conv -> conseq_conv

Synopsis
Makes a consequence conversion fail if applying it raises the UNCHANGED exception.

See also
Conv.QCHANGED CONV, ConseqConv.CHANGED CONSEQ CONV.

QCHANGED_CONV (Conv)

QCHANGED_CONV : conv -> conv

786 CHAPTER 1. ENTRIES

Synopsis
Makes a conversion fail if applying it raises the UNCHANGED exception.

Description
If c is a conversion that maps a term t to a theorem |- t = t’, then so too is
QCHANGED_CONV c. If c applied to t raises the special UNCHANGED exception used by
conversions to indicate that they haven’t changed an input, then QCHANGED_CONV c will
fail when applied to t.

This behaviour is similar to that of CHANGED_CONV, except that that conversion also
fails if the conversion c returns a theorem when applied to t, and if that theorem has
alpha-convertible left and right hand sides.

Failure
QCHANGED_CONV c t fails if c applied t raises the UNCHANGED exception, or if c fails when
applied to t.

Uses
QCHANGED_CONV can be used in places where CHANGED_CONV is appropriate, and where one
knows that the conversion argument will not return an instance of reflexivity, or if one
does not mind this occurring and not being trapped. Because it is no more than an
exception handler, QCHANGED_CONV is very efficient.

See also
Conv.CHANGED CONV.

QCONV (Conv)

QCONV : conv -> conv

Synopsis
Stops a conversion raising the UNCHANGED exception

Description
If conversion c applied to term t raises the UNCHANGED exception, then QCONV c t instead
returns the theorem |- t = t.

Failure
QCONV c t fails if the application of c to t fails.

quadruple 787

See also
Conv.CHANGED CONV, Conv.QCHANGED CONV.

quadruple (Lib)

quadruple : ’a -> ’b -> ’c -> ’d -> ’a * ’b * ’c * ’d

Synopsis
Makes four values into a quadruple.

Description
quadruple x1 x2 x3 x4 returns (x1, x2, x3, x4).

Failure
Never fails.

See also
Lib.quadruple of list, Lib.pair, Lib.triple.

quadruple_of_list (Lib)

quadruple_of_list : ’a list -> ’a * ’a * ’a * ’a

Synopsis
Turns a four-element list into a quadruple.

Description
quadruple_of_list [x1, x2, x3, x4] returns (x1, x2, x3, x4).

Failure
Fails if applied to a list that is not of length 4.

See also
Lib.singleton of list, Lib.pair of list, Lib.triple of list.

788 CHAPTER 1. ENTRIES

QUANT_CONSEQ_CONV (ConseqConv)

QUANT_CONSEQ_CONV : (conseq_conv -> conseq_conv)

Synopsis
Applies a consequence conversion to the body of a existentially or universally quantified
term.

See also
Conv.QUANT CONV, ConseqConv.FORALL CONSEQ CONV, ConseqConv.EXISTS CONSEQ CONV.

QUANT_CONV (Conv)

QUANT_CONV : conv -> conv

Synopsis
Applies a conversion underneath a quantifier.

Description
If conv N returns A |- N = P, then QUANT_CONV conv (M (\v.N)) returns A |- M (\v.N) = M (\v.P).

Failure
If conv N fails, or if v is free in A.

Example

- QUANT_CONV SYM_CONV (Term ‘!x. x + 0 = x‘);

> val it = |- (!x. x + 0 = x) = !x. x = x + 0 : thm

Comments
For deeply nested quantifiers, STRIP_QUANT_CONV and STRIP_BINDER_CONV are more effi-
cient than iterated application of QUANT_CONV, BINDER_CONV, or ABS_CONV.

See also
Conv.BINDER CONV, Conv.STRIP QUANT CONV, Conv.STRIP BINDER CONV, Conv.ABS CONV.

quote 789

quote (Lib)

quote : string -> string

Synopsis
Put quotation marks around a string.

Description
An application quote s is equal to "\"" ^ s ^ "\"". This is often useful when printing
messages.

Failure
Never fails

Example

- print "foo\n";

foo

> val it = () : unit

- print (quote "foo" ^ "\n");

"foo"

> val it = () : unit

See also
Lib.mlquote.

r (proofManagerLib)

r : int -> unit

Synopsis
Reorders the subgoals on top of the subgoal package goal stack.

Description
The function r is part of the subgoal package. The name rotate may also be used
to access the same function. For a general description of the subgoal package, see
set_goal.

790 CHAPTER 1. ENTRIES

The r function’s basic step of operation is to take the first element of the current list
of sub-goals and move it to the end of the same list. The numeric argument passed to r

specifies how many times this operation is to be performed.

Failure
Raises the NO_PROOFS exception if there is no current proof manipulated by the subgoal
package. Raises a HOL_ERR if the current goal state only has one sub-goal, or if the
argument passed to r is negative.

Uses
Interactively attacking subgoals in a different order to that generated by the subgoal
package.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

Raise (Feedback)

Raise : exn -> ’a

Synopsis
Print an exception before re-raising it

Description
The Raise function prints out information about its argument exception before re-raising
it. It uses the value of ERR_to_string to format the message, and prints the information
on the outstream held in ERR_outstream.

Failure
Never fails, since it always succeeds in raising the supplied exception.

Example

- Raise (mk_HOL_ERR "Foo" "bar" "incomprehensible input");

Exception raised at Foo.bar:

incomprehensible input

! Uncaught exception:

! HOL_ERR

rand 791

See also
Feedback, Feedback.ERR to string, Feedback.ERR outstream, Lib.try, Lib.trye.

rand (Term)

rand : term -> term

Synopsis
Returns the operand from a combination (function application).

Description
If M is a combination, i.e., has the form (t1 t2), then rand M returns t2.

Failure
Fails if M is not a combination.

See also
Term.rator, Term.dest comb.

RAND_CONV (Conv)

RAND_CONV : (conv -> conv)

Synopsis
Applies a conversion to the operand of an application.

Description
If c is a conversion that maps a term "t2" to the theorem |- t2 = t2’, then the conver-
sion RAND_CONV c maps applications of the form "t1 t2" to theorems of the form:

|- (t1 t2) = (t1 t2’)

That is, RAND_CONV c "t1 t2" applies c to the operand of the application "t1 t2".

Failure
RAND_CONV c tm fails if tm is not an application or if tm has the form "t1 t2" but the
conversion c fails when applied to the term t2. The function returned by RAND_CONV c

may also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function
that maps a term t to a theorem |- t = t’).

Example

792 CHAPTER 1. ENTRIES

- RAND_CONV numLib.num_CONV (Term ‘SUC 2‘);

> val it = |- SUC 2 = SUC(SUC 1) : thm

See also
Conv.ABS CONV, Conv.BINOP CONV, Conv.LAND CONV, Conv.RATOR CONV, Conv.SUB CONV.

rator (Term)

rator : term -> term

Synopsis
Returns the operator from a combination (function application).

Description
If M is a combination, i.e., has the form (t1 t2), then rator M returns t1.

Failure
Fails if M is not a combination.

See also
Term.rand, Term.dest comb.

RATOR_CONV (Conv)

RATOR_CONV : (conv -> conv)

Synopsis
Applies a conversion to the operator of an application.

Description
If c is a conversion that maps a term "t1" to the theorem |- t1 = t1’, then the conver-
sion RATOR_CONV c maps applications of the form "t1 t2" to theorems of the form:

|- (t1 t2) = (t1’ t2)

raw match 793

That is, RATOR_CONV c "t1 t2" applies c to the operand of the application "t1 t2".

Failure
RATOR_CONV c tm fails if tm is not an application or if tm has the form "t1 t2" but the
conversion c fails when applied to the term t1. The function returned by RATOR_CONV c

may also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function
that maps a term t to a theorem |- t = t’).

Example

- RATOR_CONV BETA_CONV (Term ‘(\x y. x + y) 1 2‘);

> val it = |- (\x y. x + y)1 2 = (\y. 1 + y) 2 : thm

See also
Conv.ABS CONV, Conv.RAND CONV, Conv.SUB CONV.

raw_match (Term)

raw_match : hol_type list -> term set

-> term -> term

-> (term,term) subst *

((hol_type,hol_type) subst * hol_type list)

-> (term,term) subst *

((hol_type,hol_type) subst * hol_type list)

Synopsis
Primitive term matcher.

Description
The most primitive matching algorithm for HOL terms is raw_match. An invocation
raw_match avoid_tys avoid_tms pat ob (tmS,tyS), if it succeeds, returns a substitution
pair (S,T) such that

aconv (subst S’ (inst T pat)) ob.

where S’ is S instantiated by T. The arguments avoid_tys and avoid_tms specify type
and term variables in pat that are not allowed to become redexes in S and T.

The pair (tmS,tyS) is an accumulator argument. This allows raw_match to be folded
through lists of terms to be matched. (S,T) must agree with (tmS,tyS). This means that

794 CHAPTER 1. ENTRIES

if there is a {redex,residue} in S and also a {redex,residue} in tmS so that both redex

fields are equal, then the residue fields must be alpha-convertible. Similarly for types:
if there is a {redex,residue} in T and also a {redex,residue} in tyS so that both redex

fields are equal, then the residue fields must also be equal. If these conditions hold,
then the result (S,T) includes (tmS,tyS).

Failure
raw_match will fail if no S and T meeting the above requirements can be found. If a
match (S,T) between pat and ob can be found, but elements of avoid_tys would appear
as redexes in T or elements of avoid_tms would appear as redexes in S, then raw_match

will also fail.

Example
We first perform a match that requires type instantitations, and also alpha-convertibility.

- val (S,T) = raw_match [] empty_varset

(Term ‘\x:’a. x = f (y:’b)‘)

(Term ‘\a. a = ~p‘) ([],([],[]));

> val S =

[{redex = ‘(f :’b -> ’a)‘, residue = ‘$~‘},

{redex = ‘(y :’b)‘, residue = ‘(p :bool)‘}] : ...

val T =

([{redex = ‘:’b‘, residue = ‘:bool‘},

{redex = ‘:’a‘, residue = ‘:bool‘}], []) : ...

One of the main differences between raw_match and more refined derivatives of it, is
that the returned substitutions are un-normalized by raw_match. If one naively applied
(S,T) to \x:’a. x = f (y:’b), type instantiation with T would be applied first, yielding
\x:bool. x = f (y:bool). Then substitution with S would be applied, unsuccessfully,
since both f and y in the pattern term have been type instantiated, but the correspond-
ing elements of the substitution haven’t. Thus, higher level operations building on
raw_match typically instantiate S by T to get S’ before applying (S’,T) to the pattern
term. This can be achieved by using norm_subst. However, raw_match exposes this level
of detail to the programmer.

The returned type substitution T has two components (T1,T2). T1 is a substitution,
and T2 is a list of type variables, encountered in the matching process, which have
matched to themselves. These identity matches are held in the separate list T2 for
obscure reasons. Once matching is finished, they can be ignored (which is why they are
held on a separate list).

raw match type 795

Comments
Higher level matchers are generally preferable, but raw_match is occasionally useful
when programming inference rules.

See also
Term.match term, Term.match terml, Term.norm subst, Term.subst, Term.inst,

Type.raw match type, Type.match type, Type.match typel, Type.type subst.

raw_match_type (Type)

raw_match_type

: hol_type list

-> hol_type -> hol_type

-> (hol_type,hol_type) subst * hol_type list

-> (hol_type,hol_type) subst * hol_type list

Synopsis
Primitive type matching algorithm.

Description
An invocation raw_match_type away pat ty (S,Id) performs matching, just as match_tyl,
except that it takes an extra accumulating parameter (S,Id), which represents a ’raw’
substitution that the match (theta,id) of pat and ty must be compatible with. If
matching is successful, (theta,id) is merged with (S,Id) to yield the result.

Failure
A call to raw_match_type away pat ty (S,Id) will fail when match_typel away pat ty

would. It will also fail when a {redex,residue} calculated in the course of matching pat

and ty is such that there is a {redex_i,residue_i} in S and redex equals redex_i but
residue does not equal residue_i.

Example

- val res1 = raw_match_type [] alpha (alpha --> bool) ([],[]);

> val it = ([{redex = ‘:’a‘, residue = ‘:’a -> bool‘}], []) : ...

- raw_match_type [] (alpha --> beta --> gamma)

((alpha --> bool) --> beta --> ind) res1;

> val it =([{redex = ‘:’c‘, residue = ‘:ind‘},

{redex = ‘:’a‘, residue = ‘:’a -> bool‘}], [‘:’b‘]) :

796 CHAPTER 1. ENTRIES

Comments
Probably exposes too much internal state of the matching algorithm.

See also
Type.match type, Type.match typel.

read (Tag)

read : string -> tag

Synopsis
Make a tag suitable for use by mk_oracle_thm.

Description
In order to construct a tag usable by mk_oracle_thm, one uses read, which takes a string
and makes it into a tag.

Failure
The string must be an alphanumeric, i.e., start with an alphabetic character and there-
after consist only of alphabetic or numeric characters.

Example

- Tag.read "Shamboozled";

> val it = Kerneltypes.TAG(["Shamboozled"], []) : tag

See also
Thm.mk oracle thm, Thm.tag.

recInduct (BasicProvers)

recInduct : thm -> tactic

Synopsis
Induct with supplied recursion induction scheme.

recInduct 797

Description
bossLib.recInduct is identical to Induction.recInduct.

See also
bossLib.recInduct.

recInduct (bossLib)

recInduct : thm -> tactic

Synopsis
Performs recursion induction.

Description
An invocation recInduct thm on a goal g, where thm is typically an induction scheme
returned from an invocation of Define or Hol_defn, attempts to match the consequent
of thm to g and, if successful, then replaces g by the instantiated antecedents of thm. The
order of quantification of the goal should correspond with the order of quantification in
the conclusion of thm.

Failure
recInduct fails if the goal is not universally quantified in a way corresponding with the
quantification of the conclusion of thm.

Example
Suppose we had introduced a function for incrementing a number until it no longer can
be found in a given list:

variant x L = if MEM x L then variant (x + 1) L else x

Typically Hol_defn would be used to make such a definition, and some subsequent proof
would be required to establish termination. Once that work was done, the specified re-
cursion equations would be available as a theorem and, as well, a corresponding induc-
tion theorem would also be generated. In the case of variant, the induction theorem
variant_ind is

|- !P. (!x L. (MEM x L ==> P (x + 1) L) ==> P x L) ==> !v v1. P v v1

Suppose now that we wish to prove that the variant with respect to a list is not in the
list:

798 CHAPTER 1. ENTRIES

?- !x L. ~MEM (variant x L) L‘,

One could try mathematical induction, but that won’t work well, since x gets incre-
mented in recursive calls. Instead, induction with ‘variant-induction’ works much bet-
ter. recInduct can be used to apply such theorems in tactic proof. For our example,
recInduct variant_ind yields the goal

?- !x L. (MEM x L ==> ~MEM (variant (x + 1) L) L) ==> ~MEM (variant x L) L

A few simple tactic applications then prove this goal.

See also
bossLib.Induct, bossLib.Induct on, bossLib.completeInduct on,

bossLib.measureInduct on, Prim rec.INDUCT THEN, bossLib.Cases,

bossLib.Hol datatype, proofManagerLib.g, proofManagerLib.e.

RED_CONV (reduceLib)

RED_CONV : conv

Synopsis
Performs arithmetic or boolean reduction at top level if possible.

Description
The conversion RED_CONV attempts to apply, at the top level only, one of the following
conversions from the reduce library (only one can succeed):

ADD_CONV AND_CONV BEQ_CONV COND_CONV

DIV_CONV EXP_CONV GE_CONV GT_CONV

IMP_CONV LE_CONV LT_CONV MOD_CONV

MUL_CONV NEQ_CONV NOT_CONV OR_CONV

PRE_CONV SBC_CONV SUC_CONV

Failure
Fails if none of the above conversions are applicable at top level.

Example

REDEPTH CONSEQ CONV 799

#RED_CONV "(2=3) = F";;

|- ((2 = 3) = F) = ~(2 = 3)

#RED_CONV "15 DIV 13";;

|- 15 DIV 13 = 1

#RED_CONV "100 + 100";;

|- 100 + 100 = 200

#RED_CONV "0 + x";;

evaluation failed RED_CONV

See also
reduceLib.REDUCE CONV, reduceLib.REDUCE RULE, reduceLib.REDUCE TAC.

REDEPTH_CONSEQ_CONV (ConseqConv)

REDEPTH_CONSEQ_CONV : directed_conseq_conv -> directed_conseq_conv

Synopsis
Similar to DEPTH_CONSEQ_CONV, but revisits modified subterms.

See also
ConseqConv.DEPTH CONSEQ CONV.

REDEPTH_CONV (Conv)

REDEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion bottom-up to all subterms, retraversing changed ones.

Description
REDEPTH_CONV c tm applies the conversion c repeatedly to all subterms of the term tm

and recursively applies REDEPTH_CONV c to each subterm at which c succeeds, until there
is no subterm remaining for which application of c succeeds.

800 CHAPTER 1. ENTRIES

More precisely, REDEPTH_CONV c tm repeatedly applies the conversion c to all the sub-
terms of the term tm, including the term tm itself. The supplied conversion c is applied
to the subterms of tm in bottom-up order and is applied repeatedly (zero or more times,
as is done by REPEATC) to each subterm until it fails. If c is successfully applied at least
once to a subterm, t say, then the term into which t is transformed is retraversed by
applying REDEPTH_CONV c to it.

Failure
REDEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeat-
edly to some subterm of tm without failing.

Example
The following example shows how REDEPTH_CONV retraverses subterms:

- REDEPTH_CONV BETA_CONV (Term ‘(\f x. (f x) + 1) (\y.y) 2‘);

val it = |- (\f x. (f x) + 1)(\y. y)2 = 2 + 1 : thm

Here, BETA_CONV is first applied successfully to the (beta-redex) subterm:

(\f x. (f x) + 1) (\y.y)

This application reduces this subterm to:

(\x. ((\y.y) x) + 1)

REDEPTH_CONV BETA_CONV is then recursively applied to this transformed subterm, even-
tually reducing it to (\x. x + 1). Finally, a beta-reduction of the top-level term, now
the simplified beta-redex (\x. x + 1) 2, produces 2 + 1.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the exception QConv.UNCHANGED may be generated
and later trapped. The behaviour of the function is dependent on this use of failure. So,
if the conversion given as an argument happens to generate the same exception, the
operation of REDEPTH_CONV will be unpredictable.

See also
Conv.DEPTH CONV, Conv.ONCE DEPTH CONV, Conv.TOP DEPTH CONV.

REDUCE_CONV (numLib)

REDUCE_CONV : conv

REDUCE CONV 801

Synopsis
Evaluate ground expressions involving arithemetic and boolean operations.

Description
An invocation REDUCE_CONV M, where M is a ground term made up of the standard boolean
and numerical operators, uses deductive steps to perform any possible reductions, yield-
ing the result N. The theorem |- M = N is returned.

Failure
Never fails.

Example

- REDUCE_CONV (Term ‘!x:num. x = x‘);

> val it = |- (!x. x = x) = !x. T : thm

- REDUCE_CONV

(Term‘(y = (((2 + 4 - 1) * 5) ** 3) DIV 2) /\ (p \/ T ==> q)‘);

> val it =

|- (y = ((2 + 4 - 1) * 5) ** 3 DIV 2) /\ (p \/ T ==> q) =

(y = 7812) /\ q : thm

See also
bossLib.EVAL.

REDUCE_CONV (reduceLib)

REDUCE_CONV : conv

Synopsis
Performs arithmetic or boolean reduction at all levels possible.

Description
The conversion REDUCE_CONV attempts to apply, in bottom-up order to all suitable re-
dexes, one of the following conversions from the reduce library (only one can succeed):

ADD_CONV AND_CONV BEQ_CONV COND_CONV

DIV_CONV EXP_CONV GE_CONV GT_CONV

IMP_CONV LE_CONV LT_CONV MOD_CONV

MUL_CONV NEQ_CONV NOT_CONV OR_CONV

PRE_CONV SBC_CONV SUC_CONV

802 CHAPTER 1. ENTRIES

In particular, it will prove the appropriate reduction for an arbitrarily complicated ex-
pression constructed from numerals and the boolean constants T and F.

Failure
Never fails, but may give a reflexive equation.

Example

#REDUCE_CONV "(2=3) = F";;

|- ((2 = 3) = F) = T

#REDUCE_CONV "(100 < 200) => (2 EXP (8 DIV 2)) | (3 EXP ((26 EXP 0) * 3))";;

|- (100 < 200 => 2 EXP (8 DIV 2) | 3 EXP ((26 EXP 0) * 3)) = 16

#REDUCE_CONV "(15 = 16) \/ (15 < 16)";;

|- (15 = 16) \/ 15 < 16 = T

#REDUCE_CONV "0 + x";;

|- 0 + x = 0 + x

See also
reduceLib.RED CONV, reduceLib.REDUCE RULE, reduceLib.REDUCE TAC.

REDUCE_RULE (reduceLib)

REDUCE_RULE : (thm -> thm)

Synopsis
Performs arithmetic or boolean reduction on a theorem at all levels possible.

Description
REDUCE_RULE attempts to transform a theorem by applying REDUCE_CONV.

Failure
Never fails, but may just return the original theorem.

Example

REDUCE TAC 803

#REDUCE_RULE (ASSUME "x = (100 + (60 - 17))");;

. |- x = 143

#REDUCE_RULE (REFL "100 + 12 DIV 6");;

|- T

See also
reduceLib.RED CONV, reduceLib.REDUCE CONV, reduceLib.REDUCE TAC.

REDUCE_TAC (reduceLib)

REDUCE_TAC : tactic

Synopsis
Performs arithmetic or boolean reduction on a goal at all levels possible.

Description
REDUCE_TAC attempts to transform a goal by applying REDUCE_CONV. It will prove any true
goal which is constructed from numerals and the boolean constants T and F.

Failure
Never fails, but may not advance the goal.

Example
The following example takes a couple of minutes’ CPU time:

#g "((1 EXP 3) + (12 EXP 3) = 1729) /\ ((9 EXP 3) + (10 EXP 3) = 1729)";;

"((1 EXP 3) + (12 EXP 3) = 1729) /\ ((9 EXP 3) + (10 EXP 3) = 1729)"

() : void

#e REDUCE_TAC;;

OK..

goal proved

|- ((1 EXP 3) + (12 EXP 3) = 1729) /\ ((9 EXP 3) + (10 EXP 3) = 1729)

Previous subproof:

goal proved

() : void

804 CHAPTER 1. ENTRIES

See also
reduceLib.RED CONV, reduceLib.REDUCE CONV, reduceLib.REDUCE RULE.

REFINE_EXISTS_TAC (Q)

Q.REFINE_EXISTS_TAC : term quotation -> tactic

Synopsis
Attacks existential goals, making the existential variable more concrete.

Description
The tactic Q.REFINE_EXISTS_TAC q parses the quotation q in the context of the (necessar-
ily existential) goal to which it is applied, and uses the resulting term as the witness for
the goal. However, if the witness has any variables not already present in the goal, then
these are treated as new existentially quantified variables. If there are no such “free”
variables, then the behaviour is the same as EXISTS_TAC.

Failure
Fails if the goal is not existential, or if the quotation can not parse to a term of the same
type as the existentially quantified variable.

Example
If the quotation doesn’t mention any new variables:

- Q.REFINE_EXISTS_TAC ‘n‘ ([‘‘n > x‘‘], ‘‘?m. m > x‘‘);

> val it =

([([‘‘n > x‘‘], ‘‘n > x‘‘)], fn)

: (term list * term) list * (thm list -> thm)

If the quotation does mention any new variables, they are existentially quantified in the
new goal:

- Q.REFINE_EXISTS_TAC ‘n + 2‘ ([‘‘~P 0‘‘], ‘‘?p. P (p - 1)‘‘);

> val it =

([([‘‘~P 0‘‘], ‘‘?n. P (n + 2 - 1)‘‘)], fn)

: (term list * term) list * (thm list -> thm)

Uses
Q.REFINE_EXISTS_TAC is useful if it is clear that a existential goal will be solved by a term
of particular form, while it is not yet clear precisely what term this will be. Further

REFL 805

proof activity should be able to exploit the additional structure that has appeared in the
place of the existential variable.

See also
Tactic.EXISTS TAC.

REFL (Thm)

REFL : conv

Synopsis
Returns theorem expressing reflexivity of equality.

Description
REFL maps any term t to the corresponding theorem |- t = t.

Failure
Never fails.

See also
Conv.ALL CONV, Tactic.REFL TAC.

REFL_CONSEQ_CONV (ConseqConv)

REFL_CONSEQ_CONV : conseq_conv

Synopsis
Given a term t of type bool this consequence conversion returns the theorem |- t ==> t.

See also
ConseqConv.TRUE CONSEQ CONV, ConseqConv.FALSE CONSEQ CONV,

ConseqConv.TRUE FALSE REFL CONSEQ CONV.

REFL_TAC (Tactic)

REFL_TAC : tactic

806 CHAPTER 1. ENTRIES

Synopsis
Solves a goal which is an equation between alpha-equivalent terms.

Description
When applied to a goal A ?- t = t’, where t and t’ are alpha-equivalent, REFL_TAC

completely solves it.

A ?- t = t’

============= REFL_TAC

Failure
Fails unless the goal is an equation between alpha-equivalent terms.

See also
Tactic.ACCEPT TAC, Tactic.MATCH ACCEPT TAC, Rewrite.REWRITE TAC.

register_btrace (Feedback)

Feedback.register_btrace : string * bool ref -> unit

Synopsis
Registers a trace variable for a boolean reference.

Description
A call to register_btrace(nm, bref) registers a trace variable called nm that can take on
two different values (0 and 1), which correspond to the state of the boolean variable
bref.

Failure
Fails if the given name is already in use as a trace variable.

Comments
This function uses register_ftrace to make a boolean variable appear as an integer
value.

See also
Feedback, Feedback.current trace, Feedback.register trace,

Feedback.register ftrace, Feedback.set trace, Feedback.trace, Feedback.traces.

register ftrace 807

register_ftrace (Feedback)

register_ftrace :

(string * ((unit -> int) * (int -> unit)) * int) -> unit

Synopsis
Registers a trace that is accessed by a set/get pair of functions.

Description
A call to register_ftrace(nm, (g,s), m) registers an integer-valued trace variable that
is updated with the s function and whose value is read with the g function. The variable
is given the name nm and the variable’s maximum allowed value is m. The trace’s default
is the value of g(), which is called just once as part of the registration procedure.

Failure
Fails if the given name is already in use as a trace variable, or if the maximum or the
default value (returned by g()) is less than zero.

Comments
The two functions provide a more general way of accessing something that may not be
actually be an integer reference, even though this is the interface that the various trace
functions present.

See also
Feedback, Feedback.current trace, Feedback.register trace,

Feedback.register btrace, Feedback.set trace, Feedback.trace, Feedback.traces.

register_trace (Feedback)

register_trace : (string * int ref * int) -> unit

Synopsis
Registers a new tracing variable.

Description
A call to register_trace(n, r, m) registers the integer reference variable r as a tracing
variable associated with name n. The integer m is its maximum value. Its value at the

808 CHAPTER 1. ENTRIES

time of registration is considered its default value, which will be restored by a call to
reset_trace n or reset_traces.

Failure
Fails if there is already a tracing variable registered under the name given, or if either
the maximum value or the value in the reference is less than zero.

See also
Feedback, Feedback.register btrace, Feedback.register ftrace,

Feedback.reset trace, Feedback.reset traces, Feedback.trace, Feedback.traces.

release (Globals)

release : string

Synopsis
The name of the release series of the HOL system being run.

Example

- Globals.release;

> val it = "Kananaskis" : string

See also
Globals.version.

remove_ovl_mapping (Parse)

remove_ovl_mapping: string -> {Name:string,Thy:string} -> unit

Synopsis
Removes an overloading mapping between the string and constant specified.

Description
Each grammar maintains two maps internally. One is from strings to non-empty lists of
terms, and the other is from terms to strings. The first map is used to resolve overloading

remove rules for term 809

when parsing. A string will eventually be turned into one of the terms in the list that it
maps to. When printing a constant, the map in the opposite direction is used to turn a
term into a string.

A call to remove_ovl_mapping s {Name,Thy}, maps the Name-Thy record to a constant c,
and removes the c-s pair from both maps.

Failure
Never fails. If the given pair is not in either map, the function silently does nothing.

Uses
To prune the overloading maps of unwanted possibilities.

Comments
Note that removing a print-mapping for a constant will result in that constant always
printing fully qualified as thy$name. This situation will persist until that constant is given
a name to map to (either with overload_on or update_overload_maps).

As with other parsing functions, there is a sister function, temp_remove_ovl_mapping
that does the same thing, but whose effect is not saved to a theory file.

See also
Parse.clear overloads on, Parse.overload on, Parse.update overload maps.

remove_rules_for_term (Parse)

Parse.remove_rules_for_term : string -> unit

Synopsis
Removes parsing/pretty-printing rules from the global grammar.

Description
Calling remove_rules_for_term s removes all those rules (if any) in the global grammar
that are for the term s. The string specifies the name of the term that the rule is for, not
a token that may happen to be used in concrete syntax for the term.

Failure
Never fails.

Example
The universal quantifier can have its special binder status removed using this function:

810 CHAPTER 1. ENTRIES

- val t = Term‘!x. P x /\ ~Q x‘;

<<HOL message: inventing new type variable names: ’a.>>

> val t = ‘!x. P x /\ ~Q x‘ : term

- remove_rules_for_term "!";

> val it = () : unit

- t;

> val it = ‘! (\x. P x /\ ~Q x)‘ : term

Similarly, one can remove the two rules for conditional expressions and see the raw
syntax as follows:

- val t = Term‘if p then q else r‘;

<<HOL message: inventing new type variable names: ’a.>>

> val t = ‘if p then q else r‘ : term

- remove_rules_for_term "COND";

> val it = () : unit

- t;

> val it = ‘COND p q r‘ : term

Comments
There is a companion temp_remove_rules_for_term function, which has the same effect
on the global grammar, but which does not cause this effect to persist when the current
theory is exported.

See also
Parse.remove termtok.

remove_ssfrags (simpLib)

remove_ssfrags : simpset -> string list -> simpset

Synopsis
Removes named simpset fragments from a simpset.

Description
A call to remove_ssfrags simpset fragnames returns a simpset that is the same as
simpset except that the simpset fragments with names in the list fragnames are no
longer included.

remove termtok 811

Failure
Never fails. If a name in the list of fragment names does not occur as a name amongst
the simpset fragments in the input simpset, no error is reported.

Example

- SIMP_CONV (srw_ss()) [] ‘‘MAP ($+ 1) [3;4;5]‘‘;

<<HOL message: Initialising SRW simpset ... done>>

> val it = |- MAP ($+ 1) [3; 4; 5] = [4; 5; 6] : thm

- val myss = simpLib.remove_ssfrags (srw_ss()) ["REDUCE"]

> val myss = ...output elided...

- SIMP_CONV myss [] ‘‘MAP ($+ 1) [3;4;5]‘‘

> val it = |- MAP ($+ 1) [3; 4; 5] = [1 + 3; 1 + 4; 1 + 5] : thm

See also
BasicProvers.diminish srw ss.

remove_termtok (Parse)

remove_termtok : {term_name : string, tok : string} -> unit

Synopsis
Removes a rule from the global grammar.

Description
The remove_termtok removes parsing/printing rules from the global grammar. Rules to
be removed are those that are for the term with the given name (term_name) and which
include the string tok as part of their concrete representation. If multiple rules satisfy
this criterion, they are all removed. If none match, the grammar is not changed.

Failure
Never fails.

Example
If one wished to revert to the traditional HOL syntax for conditional expressions, this
would be achievable as follows:

812 CHAPTER 1. ENTRIES

- remove_termtok {term_name = "COND", tok = "if"};

> val it = () : unit

- Term‘if p then q else r‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c, ’d, ’e, ’f.>>

> val it = ‘if p then q else r‘ : term

- Term‘p => q | r‘;

<<HOL message: inventing new type variable names: ’a.>>

> val it = ‘COND p q r‘ : term

The first invocation of the parser above demonstrates that once the rule for the
if-then-else syntax has been removed, a string that used to parse as a conditional
expression then parses as a big function application (the function if applied to five
arguments).

The fact that the pretty-printer does not print the term using the old-style syntax, even
after the if-then-else rule has been removed, is due to the fact that the corresponding
rule in the grammar does not have its preferred flag set. This can be accomplished with
prefer_form_with_tok as follows:

- prefer_form_with_tok {term_name = "COND", tok = "=>"};

> val it = () : unit

- Term‘p => q | r‘;

<<HOL message: inventing new type variable names: ’a.>>

> val it = ‘p => q | r‘ : term

Uses
Used to modify the global parsing/pretty-printing grammar by removing a rule, possibly
as a prelude to adding another rule which would otherwise clash.

Comments
As with other functions in the Parse structure, there is a companion temp_remove_termtok

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

The specification of a rule by term_name and one of its tokens is not perfect, but seems
adequate in practice.

See also
Parse.remove rules for term, Parse.prefer form with tok.

remove user printer 813

remove_user_printer (Parse)

remove_user_printer :

string -> (term * term_grammar.userprinter) option

Synopsis
Removes a user-defined pretty-printing function associated with a particular name.

Description
This removes the user-defined pretty-printing function that has been associated with a
particular name (the name of the code for the function). If there is such a printer in the
global grammar for the specified type, this is returned in the option type. If there is no
printer, then NONE is returned.

Failure
Never fails.

Comments
As always, there is an accompanying function temp_remove_user_printer, which does
not affect the grammar exported to disk.

See also
Parse.add user printer.

remove_word_printer (wordsLib)

remove_word_printer : unit -> unit

Synopsis
Turns off custom pretty-printing for word literals.

Description
The function remove_word_printer calls Parse.remove_user_printer to remove pretty-
printing for ground instances of “n2w n“. This will normally mean that words output in
decimal format.

Example

814 CHAPTER 1. ENTRIES

- load "wordsLib";

...

- ‘‘0x10000000w‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘0x10000000w‘‘ : term

- wordsLib.remove_word_printer();

- ‘‘0x10000000w‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘268435456w‘‘ : term

See also
Parse.remove user printer, wordsLib.output words as,

wordsLib.output words as dec, wordsLib.output words as bin,

wordsLib.output words as oct, wordsLib.output words as hex.

rename_bvar (Term)

rename_bvar : string -> term -> term

Synopsis
Performs one step of alpha conversion.

Description
If M is a lambda abstraction, i.e., has the form \v.N, an invocation rename_bvar s M

performs one step of alpha conversion to obtain \s. N[s/v].

Failure
If M is not a lambda abstraction.

Example

- rename_bvar "x" (Term ‘\v. v ==> w‘);

> val it = ‘\x. x ==> w‘ : term

- rename_bvar "x" (Term ‘\y. y /\ x‘);

> val it = ‘\x’. x’ /\ x‘ : term

RENAME VARS CONV 815

Comments
rename_bvar takes constant time in the current implementation.

See also
Term.aconv, Drule.ALPHA CONV.

RENAME_VARS_CONV (Conv)

Conv.RENAME_VARS_CONV : string list -> term -> thm

Synopsis
Renames variables underneath a binder.

Description
RENAME_VARS_CONV takes a list of strings specifying new names for variables under a
binder. More precisely, it will rename variables in abstractions, or bound by universal,
existential, unique existence or the select (or Hilbert-choice) “quantifier”.

More than one variable can be renamed at once. If variables occur past the first, then
the renaming continues on the appropriate sub-term of the first. (That is, if the term is
an abstraction, then renaming will continue on the body of the abstraction. If it is one
of the supported quantifiers, then renaming will continue on the body of the abstraction
that is the argument of the “binder constant”.)

If RENAME_VARS_CONV is passed the empty list, it is equivalent to ALL_CONV. The binders
do not need to be of the same type all the way into the term.

Failure
Fails if an attempt is made to rename a variable in a term that is not an abstraction, or
is not one of the accepted quantifiers. Also fails if all of the names in the list are not
distinct.

Example

- RENAME_VARS_CONV ["a", "b"] ‘‘\x y. x /\ y‘‘;

> val it = |- (\x y. x /\ y) = (\a b. a /\ b) : thm

- RENAME_VARS_CONV ["a", "b"] ‘‘!x:’a y. P x /\ P y‘‘;

> val it = |- (!x y. P x /\ P y) = !a b. P a /\ P b : thm

- RENAME_VARS_CONV ["a", "b"] ‘‘!x:’a. ?y. P x /\ P y‘‘;

> val it = |- (!x. ?y. P x /\ P y) = !a. ?b. P a /\ P b : thm

816 CHAPTER 1. ENTRIES

Uses
Post-processing mangling of names in code implementing derived logical procedures to
make names look more appropriate. Changing names can only affect the presentation
of terms, not their semantics.

See also
Term.aconv, Thm.ALPHA.

repeat (Lib)

repeat : (’a -> ’a) -> ’a -> ’a

Synopsis
Iteratively apply a function until it fails.

Description
An invocation repeat f x expands to repeat f (f x). Thus it unrolls to f(...(f x)...),
returning the most recent argument to f before application fails.

Failure
The evaluation of repeat f x fails only if interrupted, or machine resources are ex-
hausted.

Example
The following gives a simple-minded way of calculating the largest integer on the ma-
chine.

- fun incr x = x+1;

> val incr = fn : int -> int

val maxint = repeat incr 0; (* takes some time *)

> val maxint = 1073741823 : int

(Caution: in some ML implementations, the type int is not implemented by machine
words, but by ‘bignum’ techniques that allow numbers of arbitrary size, in which case
the example above will not return for a very long time.)

See also
Lib.funpow.

REPEAT 817

REPEAT (Tactical)

REPEAT : (tactic -> tactic)

Synopsis
Repeatedly applies a tactic until it fails.

Description
The tactic REPEAT T is a tactic which applies T to a goal, and while it succeeds, continues
applying it to all subgoals generated.

Failure
The application of REPEAT to a tactic never fails, and neither does the composite tactic,
even if the basic tactic fails immediately.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.ORELSE, Tactical.THEN, Tactical.THENL.

REPEAT_GTCL (Thm_cont)

REPEAT_GTCL : (thm_tactical -> thm_tactical)

Synopsis
Applies a theorem-tactical until it fails when applied to a goal.

Description
When applied to a theorem-tactical, a theorem-tactic, a theorem and a goal:

REPEAT_GTCL ttl ttac th goal

REPEAT_GTCL repeatedly modifies the theorem according to ttl till the result of handing
it to ttac and applying it to the goal fails (this may be no times at all).

Failure
Fails iff the theorem-tactic fails immediately when applied to the theorem and the goal.

Example
The following tactic matches th’s antecedents against the assumptions of the goal until
it can do so no longer, then puts the resolvents onto the assumption list:

818 CHAPTER 1. ENTRIES

REPEAT_GTCL (IMP_RES_THEN ASSUME_TAC) th

See also
Thm cont.REPEAT TCL, Thm cont.THEN TCL.

REPEAT_TCL (Thm_cont)

REPEAT_TCL : (thm_tactical -> thm_tactical)

Synopsis
Repeatedly applies a theorem-tactical until it fails when applied to the theorem.

Description
When applied to a theorem-tactical, a theorem-tactic and a theorem:

REPEAT_TCL ttl ttac th

REPEAT_TCL repeatedly modifies the theorem according to ttl until it fails when given
to the theorem-tactic ttac.

Failure
Fails iff the theorem-tactic fails immediately when applied to the theorem.

Example
It is often desirable to repeat the action of basic theorem-tactics. For example
CHOOSE_THEN strips off a single existential quantification, so one might use REPEAT_TCL CHOOSE_THEN

to get rid of them all.
Alternatively, one might want to repeatedly break apart a theorem which is a nested

conjunction and apply the same theorem-tactic to each conjunct. For example the fol-
lowing goal:

?- ((0 = w) /\ (0 = x)) /\ (0 = y) /\ (0 = z) ==> (w + x + y + z = 0)

might be solved by

DISCH_THEN (REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN

REWRITE_TAC[ADD_CLAUSES]

REPEATC 819

See also
Thm cont.REPEAT GTCL, Thm cont.THEN TCL.

REPEATC (Conv)

REPEATC : conv -> conv

Synopsis
Repeatedly apply a conversion (zero or more times) until it fails.

Description
If c is a conversion effects a transformation of a term t to a term t’, that is if c maps t to
the theorem |- t = t‘, then REPEATC c is the conversion that repeats this transforma-
tion as often as possible. More exactly, if c maps the term ‘‘ti‘‘ to |- ti=t(i+1) for i

from 1 to n, but fails when applied to the n+1th term ‘‘t(n+1)‘‘, then REPEATC c ‘‘t1‘‘

returns |- t1 = t(n+1). And if c ‘‘t‘‘ fails, them REPEATC c ‘‘t‘‘ returns |- t = t.
Further, if c ‘‘t‘‘ raises the UNCHANGED exception, then REPEATC c ‘‘t‘‘ also raises

the same exception (rather than go into an infinite loop).

Failure
Never fails, but can diverge if the supplied conversion never fails.

REPLICATE_CONV (listLib)

REPLICATE_CONV : conv

Synopsis
Computes by inference the result of replicating an element a given number of times to
form a list.

Description
For an arbitrary expression x and numeral constant n, the result of evaluating

REPLICATE_CONV (--‘REPLICATE n x‘--)

is the theorem

820 CHAPTER 1. ENTRIES

|- REPLICATE n x = [x;x;...;x]

where the list[x;x;...;x] is of length n.

Example
Evaluating REPLICATE_CONV (--‘REPLICATE 3 [0;1;2;3]‘--) will return the following
theorem:

|- REPLICATE 3 [0;1;2;3] = [[0;1;2;3]; [0;1;2;3]; [0;1;2;3]]

Failure
REPLICATE_CONV tm fails if tm is not of the form described above.

REPLICATE_CONV (listLib)

REPLICATE_CONV : conv

Synopsis
Computes by inference the result of replicating an element a given number of times to
form a list.

Description
For an arbitrary expression x and numeral constant n, the result of evaluating

REPLICATE_CONV (--‘REPLICATE n x‘--)

is the theorem

|- REPLICATE n x = [x;x;...;x]

where the list[x;x;...;x] is of length n.

Example
Evaluating REPLICATE_CONV (--‘REPLICATE 3 [0;1;2;3]‘--) will return the following
theorem:

|- REPLICATE 3 [0;1;2;3] = [[0;1;2;3]; [0;1;2;3]; [0;1;2;3]]

RES CANON 821

Failure
REPLICATE_CONV tm fails if tm is not of the form described above.

RES_CANON (Drule)

RES_CANON : (thm -> thm list)

Synopsis
Put an implication into canonical form for resolution.

Description
All the HOL resolution tactics (e.g. IMP_RES_TAC) work by using modus ponens to draw
consequences from an implicative theorem and the assumptions of the goal. Some
of these tactics derive this implication from a theorem supplied explicitly the user (or
otherwise from ‘outside’ the goal) and some obtain it from the assumptions of the goal
itself. But in either case, the supplied theorem or assumption is first transformed into a
list of implications in ‘canonical’ form by the function RES_CANON.

The theorem argument to RES_CANON should be either be an implication (which can
be universally quantified) or a theorem from which an implication can be derived using
the transformation rules discussed below. Given such a theorem, RES_CANON returns a
list of implications in canonical form. It is the implications in this resulting list that are
used by the various resolution tactics to infer consequences from the assumptions of a
goal.

The transformations done by RES_CANON th to the theorem th are as follows. First, if th
is a negation A |- ~t, this is converted to the implication A |- t ==> F. The following
inference rules are then applied repeatedly, until no further rule applies. Conjunctions
are split into their components and equivalence (boolean equality) is split into implica-
tion in both directions:

A |- t1 /\ t2 A |- t1 = t2

-------------------- ----------------------------------

A |- t1 A |- t2 A |- t1 ==> t2 A |- t2 ==> t1

Conjunctive antecedents are transformed by:

A |- (t1 /\ t2) ==> t

A |- t1 ==> (t2 ==> t) A |- t2 ==> (t1 ==> t)

822 CHAPTER 1. ENTRIES

and disjunctive antecedents by:

A |- (t1 \/ t2) ==> t

A |- t1 ==> t A |- t2 ==> t

The scope of universal quantifiers is restricted, if possible:

A |- !x. t1 ==> t2

-------------------- [if x is not free in t1]

A |- t1 ==> !x. t2

and existentially-quantified antecedents are eliminated by:

A |- (?x. t1) ==> t2

--------------------------- [x’ chosen so as not to be free in t2]

A |- !x’. t1[x’/x] ==> t2

Finally, when no further applications of the above rules are possible, and the theorem is
an implication:

A |- !x1...xn. t1 ==> t2

then the theorem A u {t1} |- t2 is transformed by a recursive application of RES_CANON
to get a list of theorems:

[A u {t1} |- t21 , ... , A u {t1} |- t2n]

and the result of discharging t1 from these theorems:

[A |- !x1...xn. t1 ==> t21 , ... , A |- !x1...xn. t1 ==> t2n]

is returned. That is, the transformation rules are recursively applied to the conclusions
of all implications.

Failure
RES_CANON th fails if no implication(s) can be derived from th using the transformation
rules shown above.

Example
The uniqueness of the remainder k MOD n is expressed in HOL by the built-in theorem
MOD_UNIQUE:

|- !n k r. (?q. (k = (q * n) + r) /\ r < n) ==> (k MOD n = r)

For this theorem, the canonical list of implications returned by RES_CANON is as follows:

RES EXISTS CONV 823

- RES_CANON MOD_UNIQUE;

> val it =

[|- !r n q k. (k = q * n + r) ==> r < n ==> (k MOD n = r),

|- !n r. r < n ==> !q k. (k = q * n + r) ==> (k MOD n = r)] : thm list

The existentially-quantified, conjunctive, antecedent has given rise to two implications,
and the scope of universal quantifiers has been restricted to the conclusions of the re-
sulting implications wherever possible.

Uses
The primary use of RES_CANON is for the (internal) pre-processing phase of the built-in
resolution tactics IMP_RES_TAC, IMP_RES_THEN, RES_TAC, and RES_THEN. But the function
RES_CANON is also made available at top-level so that users can call it to see the actual
form of the implications used for resolution in any particular case.

See also
Tactic.IMP RES TAC, Thm cont.IMP RES THEN, Tactic.RES TAC, Thm cont.RES THEN.

RES_EXISTS_CONV (res_quanLib)

RES_EXISTS_CONV : conv

Synopsis
Converts a restricted existential quantification to a conjunction.

Description
When applied to a term of the form ?x::P. Q[x], the conversion RES_EXISTS_CONV re-
turns the theorem:

|- ?x::P. Q[x] = (?x. x IN P /\ Q[x])

which is the underlying semantic representation of the restricted existential quantifica-
tion.

Failure
Fails if applied to a term not of the form ?x::P. Q.

See also
res quanLib.RES FORALL CONV, res quanLib.RESQ EXISTS TAC.

824 CHAPTER 1. ENTRIES

RES_EXISTS_CONV (res_quanTools)

RES_EXISTS_CONV : conv

Synopsis
Converts a restricted existential quantification to a conjunction.

Description
When applied to a term of the form ?x::P. Q[x], the conversion RES_EXISTS_CONV re-
turns the theorem:

|- ?x::P. Q[x] = (?x. P x /\ Q[x])

which is the underlying semantic representation of the restricted existential quantifica-
tion.

Failure
Fails if applied to a term not of the form ?x::P. Q.

See also
res quanTools.RES FORALL CONV, res quanTools.RESQ EXISTS TAC.

RES_EXISTS_UNIQUE_CONV (res_quanLib)

RES_EXISTS_UNIQUE_CONV : conv

Synopsis
Converts a restricted unique existential quantification to a conjunction.

Description
When applied to a term of the form ?!x::P. Q[x], the conversion RES_EXISTS_UNIQUE_CONV

returns the theorem:

|- ?!x::P. Q[x] = (?x::P. Q[x]) /\ (!x y::P. Q[x] /\ Q[y] ==> (x = y))

RES FORALL AND CONV 825

which is the underlying semantic representation of the restricted unique existential
quantification.

Failure
Fails if applied to a term not of the form ?x!::P. Q.

See also
res quanLib.RES FORALL CONV, res quanLib.RES EXISTS CONV.

RES_FORALL_AND_CONV (res_quanLib)

RES_FORALL_AND_CONV : conv

Synopsis
Splits a restricted universal quantification across a conjunction.

Description
When applied to a term of the form !x::P. Q /\ R, the conversion RES_FORALL_AND_CONV

returns the theorem:

|- (!x::P. Q /\ R) = ((!x::P. Q) /\ (!x::P. R))

Failure
Fails if applied to a term not of the form !x::P. Q /\ R.

RES_FORALL_AND_CONV (res_quanTools)

RES_FORALL_AND_CONV : conv

Synopsis
Splits a restricted universal quantification across a conjunction.

Description
When applied to a term of the form !x::P. Q /\ R, the conversion RES_FORALL_AND_CONV

returns the theorem:

826 CHAPTER 1. ENTRIES

|- (!x::P. Q /\ R) = ((!x::P. Q) /\ (!x::P. R))

Failure
Fails if applied to a term not of the form !x::P. Q /\ R.

RES_FORALL_CONV (res_quanLib)

RES_FORALL_CONV : conv

Synopsis
Converts a restricted universal quantification to an implication.

Description
When applied to a term of the form !x::P. Q, the conversion RES_FORALL_CONV returns
the theorem:

|- !x::P. Q = (!x. x IN P ==> Q)

which is the underlying semantic representation of the restricted universal quantifica-
tion.

Failure
Fails if applied to a term not of the form !x::P. Q.

See also
res quanLib.IMP RES FORALL CONV.

RES_FORALL_CONV (res_quanTools)

RES_FORALL_CONV : conv

Synopsis
Converts a restricted universal quantification to an implication.

Description
When applied to a term of the form !x::P. Q, the conversion RES_FORALL_CONV returns
the theorem:

RES FORALL SWAP CONV 827

|- !x::P. Q = (!x. P x ==> Q)

which is the underlying semantic representation of the restricted universal quantifica-
tion.

Failure
Fails if applied to a term not of the form !x::P. Q.

See also
res quanTools.IMP RES FORALL CONV.

RES_FORALL_SWAP_CONV (res_quanLib)

RES_FORALL_SWAP_CONV : conv

Synopsis
Changes the order of two restricted universal quantifications.

Description
When applied to a term of the form !x::P. !y::Q. R, the conversion RES_FORALL_SWAP_CONV

returns the theorem:

|- (!x::P. !y::Q. R) = !y::Q. !x::P. R

providing that x does not occur free in Q and y does not occur free in P.

Failure
Fails if applied to a term not of the correct form.

See also
res quanLib.RES FORALL CONV.

RES_FORALL_SWAP_CONV (res_quanTools)

RES_FORALL_SWAP_CONV : conv

Synopsis
Changes the order of two restricted universal quantifications.

828 CHAPTER 1. ENTRIES

Description
When applied to a term of the form !x::P. !y::Q. R, the conversion RES_FORALL_SWAP_CONV

returns the theorem:

|- (!x::P. !y::Q. R) = !y::Q. !x::P. R

providing that x does not occur free in Q and y does not occur free in P.

Failure
Fails if applied to a term not of the correct form.

See also
res quanTools.RES FORALL CONV.

RES_SELECT_CONV (res_quanLib)

RES_SELECT_CONV : conv

Synopsis
Converts a restricted choice quantification to a conjunction.

Description
When applied to a term of the form @x::P. Q[x], the conversion RES_SELECT_CONV re-
turns the theorem:

|- @x::P. Q[x] = (@x. x IN P /\ Q[x])

which is the underlying semantic representation of the restricted choice quantification.

Failure
Fails if applied to a term not of the form @x::P. Q.

See also
res quanLib.RES FORALL CONV, res quanLib.RES EXISTS CONV.

RES_TAC (Tactic)

RES_TAC : tactic

RES TAC 829

Synopsis
Enriches assumptions by repeatedly resolving them against each other.

Description
RES_TAC searches for pairs of assumed assumptions of a goal (that is, for a candidate im-
plication and a candidate antecedent, respectively) which can be ‘resolved’ to yield new
results. The conclusions of all the new results are returned as additional assumptions
of the subgoal(s). The effect of RES_TAC on a goal is to enrich the assumptions set with
some of its collective consequences.

When applied to a goal A ?- g, the tactic RES_TAC uses RES_CANON to obtain a set of
implicative theorems in canonical form from the assumptions A of the goal. Each of the
resulting theorems (if there are any) will have the form:

A |- u1 ==> u2 ==> ... ==> un ==> v

RES_TAC then tries to repeatedly ‘resolve’ these theorems against the assumptions of
a goal by attempting to match the antecedents u1, u2, ..., un (in that order) to some
assumption of the goal (i.e. to some candidate antecedents among the assumptions). If
all the antecedents can be matched to assumptions of the goal, then an instance of the
theorem

A u {a1,...,an} |- v

called a ‘final resolvent’ is obtained by repeated specialization of the variables in the im-
plicative theorem, type instantiation, and applications of modus ponens. If only the first
i antecedents u1, ..., ui can be matched to assumptions and then no further matching is
possible, then the final resolvent is an instance of the theorem:

A u {a1,...,ai} |- u(i+1) ==> ... ==> v

All the final resolvents obtained in this way (there may be several, since an antecedent
ui may match several assumptions) are added to the assumptions of the goal, in the
stripped form produced by using STRIP_ASSUME_TAC. If the conclusion of any final re-
solvent is a contradiction ‘F’ or is alpha-equivalent to the conclusion of the goal, then
RES_TAC solves the goal.

Failure
RES_TAC cannot fail and so should not be unconditionally REPEATed. However, since
the final resolvents added to the original assumptions are never used as ‘candidate
antecedents’ it is sometimes necessary to apply RES_TAC more than once to derive the
desired result.

See also
Tactic.IMP RES TAC, Thm cont.IMP RES THEN, Drule.RES CANON, Thm cont.RES THEN.

830 CHAPTER 1. ENTRIES

RES_THEN (Thm_cont)

RES_THEN : (thm_tactic -> tactic)

Synopsis
Resolves all implicative assumptions against the rest.

Description
Like the basic resolution function IMP_RES_THEN, the resolution tactic RES_THEN performs
a single-step resolution of an implication and the assumptions of a goal. RES_THEN differs
from IMP_RES_THEN only in that the implications used for resolution are taken from the
assumptions of the goal itself, rather than supplied as an argument.

When applied to a goal A ?- g, the tactic RES_THEN ttac uses RES_CANON to obtain a
set of implicative theorems in canonical form from the assumptions A of the goal. Each
of the resulting theorems (if there are any) will have the form:

ai |- !x1...xn. ui ==> vi

where ai is one of the assumptions of the goal. Having obtained these implications,
RES_THEN then attempts to match each antecedent ui to each assumption aj |- aj in
the assumptions A. If the antecedent ui of any implication matches the conclusion aj of
any assumption, then an instance of the theorem ai, aj |- vi, called a ‘resolvent’, is
obtained by specialization of the variables x1, ..., xn and type instantiation, followed by
an application of modus ponens. There may be more than one canonical implication
derivable from the assumptions of the goal and each such implication is tried against
every assumption, so there may be several resolvents (or, indeed, none).

Tactics are produced using the theorem-tactic ttac from all these resolvents (failures
of ttac at this stage are filtered out) and these tactics are then applied in an unspecified
sequence to the goal. That is,

RES_THEN ttac (A ?- g)

has the effect of:

MAP_EVERY (mapfilter ttac [... ; (ai,aj |- vi) ; ...]) (A ?- g)

where the theorems ai,aj |- vi are all the consequences that can be drawn by a (sin-
gle) matching modus-ponens inference from the assumptions A and the implications
derived using RES_CANON from the assumptions. The sequence in which the theorems
ai,aj |- vi are generated and the corresponding tactics applied is unspecified.

reset 831

Failure
Evaluating RES_THEN ttac th fails with ‘no implication’ if no implication(s) can be de-
rived from the assumptions of the goal by the transformation process described under
the entry for RES_CANON. Evaluating RES_THEN ttac (A ?- g) fails with ‘no resolvents’ if
no assumption of the goal A ?- g can be resolved with the derived implication or im-
plications. Evaluation also fails, with ‘no tactics’, if there are resolvents, but for every
resolvent ai,aj |- vi evaluating the application ttac (ai,aj |- vi) fails—that is, if
for every resolvent ttac fails to produce a tactic. Finally, failure is propagated if any of
the tactics that are produced from the resolvents by ttac fails when applied in sequence
to the goal.

See also
Tactic.IMP RES TAC, Thm cont.IMP RES THEN, Drule.MATCH MP, Drule.RES CANON,

Tactic.RES TAC.

reset (Lib)

reset : (’a,’b) istream -> (’a,’b) istream

Synopsis
Restart an istream.

Description
An application reset istrm replaces the current state of istrm with the value supplied
when istrm was constructed.

Failure
Never fails.

Example

- reset(next(next

(mk_istream (fn x => x+1) 0 (concat "gsym" o int_to_string))));

> val it = <istream> : (int, string) istream

- state it;

> val it = "gsym0" : string

832 CHAPTER 1. ENTRIES

Comments
Perhaps the type of reset should be (’a,’b) istream -> unit.

See also
Lib.mk istream, Lib.next, Lib.state.

reset_trace (Feedback)

reset_trace : string -> unit

Synopsis
Resets a tracing variable to its default value.

Description
A call to reset_trace n resets the tracing variable associated with the name n to
its default value, i.e., the value of the expression !r when n was registered with
register_trace n r.

Failure
Fails if the name given is not associated with a registered tracing variable, or if a set

function associated with a ”functional” trace (see register_ftrace) fails.

See also
Feedback, Feedback.register trace, Feedback.set trace, Feedback.reset traces,

Feedback.trace, Feedback.traces.

reset_traces (Feedback)

reset_traces : unit -> unit

Synopsis
Resets all registered tracing variables to their default values.

Failure
Fails if a set function associated with a ”functional” trace (see register_ftrace) fails.

RESQ EXISTS TAC 833

See also
Feedback, Feedback.set trace, Feedback.register trace, Feedback.reset trace,

Feedback.trace, Feedback.traces.

RESQ_EXISTS_TAC (res_quanTools)

RESQ_EXISTS_TAC : term -> tactic

Synopsis
Strips the outermost restricted existential quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- ?x::P. t, the tactic RESQ_EXISTS_TAC reduces it to a new
subgoal A ?- P x’ /\ t[x’/x] where x’ is a variant of x chosen to avoid clashing with
any variables free in the goal’s assumption list. Normally x’ is just x.

A ?- ?x::P. t

====================== RESQ_EXISTS_TAC

A ?- P x’ /\ t[x’/x]

Failure
Fails unless the goal’s conclusion is a restricted extistential quantification.

RESQ_GEN_TAC (res_quanTools)

RESQ_GEN_TAC : tactic

Synopsis
Strips the outermost restricted universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !x::P. t, the tactic RESQ_GEN_TAC reduces it to a new goal
A,P x’ ?- t[x’/x] where x’ is a variant of x chosen to avoid clashing with any variables
free in the goal’s assumption list. Normally x’ is just x.

834 CHAPTER 1. ENTRIES

A ?- !x::P. t

=================== RESQ_GEN_TAC

A,P x’ ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is a restricted universal quantification.

Uses
The tactic REPEAT RESQ_GEN_TAC strips away a series of restricted universal quantifiers,
and is commonly used before tactics relying on the underlying term structure.

See also
res quanTools.RESQ SPEC, res quanTools.RESQ SPECL, Tactic.STRIP TAC,

Tactic.GEN TAC, Tactic.X GEN TAC.

RESQ_HALF_SPEC (res_quanLib)

RESQ_HALF_SPEC : thm -> thm

Synopsis
Strip a restricted universal quantification in the conclusion of a theorem.

Description
When applied to a theorem A |- !x::P. t, the derived inference rule RESQ_HALF_SPEC

returns the theorem A |- !x. x IN P ==> t, i.e., it transforms the restricted universal
quantification to its underlying semantic representation.

A |- !x::P. t

-------------------- RESQ_HALF_SPEC

A |- !x. x IN P ==> t

Failure
Fails if the theorem’s conclusion is not a restricted universal quantification.

See also
res quanLib.RESQ SPEC.

RESQ HALF SPEC 835

RESQ_HALF_SPEC (res_quanTools)

RESQ_HALF_SPEC : (thm -> thm)

Synopsis
Strip a restricted universal quantification in the conclusion of a theorem.

Description
When applied to a theorem A |- !x::P. t, the derived inference rule RESQ_HALF_SPEC

returns the theorem A |- !x. P x ==> t, i.e., it transforms the restricted universal
quantification to its underlying semantic representation.

A |- !x::P. t

-------------------- RESQ_HALF_SPEC

A |- !x. P x ==> t

Failure
Fails if the theorem’s conclusion is not a restricted universal quantification.

See also
res quanTools.RESQ SPEC, res quanTools.RESQ SPECL.

RESQ_IMP_RES_TAC (res_quanTools)

RESQ_IMP_RES_TAC : thm_tactic

Synopsis
Repeatedly resolves a restricted universally quantified theorem with the assumptions of
a goal.

Description
The function RESQ_IMP_RES_TAC performs repeatedly resolution using a restricted quan-
tified theorem. It takes a restricted quantified theorem and transforms it into an impli-
cation. This resulting theorem is used in the resolution.

Given a theorem th, the theorem-tactic RESQ_IMP_RES_TAC applies RESQ_IMP_RES_THEN

repeatedly to resolve the theorem with the assumptions.

836 CHAPTER 1. ENTRIES

Failure
Never fails

See also
res quanTools.RESQ IMP RES THEN, res quanTools.RESQ RES THEN,

res quanTools.RESQ RES TAC, Thm cont.IMP RES THEN, Tactic.IMP RES TAC,

Drule.MATCH MP, Drule.RES CANON, Tactic.RES TAC, Thm cont.RES THEN.

RESQ_IMP_RES_THEN (res_quanTools)

RESQ_IMP_RES_THEN : thm_tactical

Synopsis
Resolves a restricted universally quantified theorem with the assumptions of a goal.

Description
The function RESQ_IMP_RES_THEN is the basic building block for resolution using a re-
stricted quantified theorem. It takes a restricted quantified theorem and transforms it
into an implication. This resulting theorem is used in the resolution.

Given a theorem-tactic ttac and a theorem th, the theorem-tactical RESQ_IMP_RES_THEN
transforms the theorem into an implication th’. It then passes th’ together with ttac

to IMP_RES_THEN to carry out the resolution.

Failure
Evaluating RESQ_IMP_RES_THEN ttac th fails if the supplied theorem th is not restricted
universally quantified, or if the call to IMP_RES_THEN fails.

See also
res quanTools.RESQ IMP RES TAC, res quanTools.RESQ RES THEN,

res quanTools.RESQ RES TAC, Thm cont.IMP RES THEN, Tactic.IMP RES TAC,

Drule.MATCH MP, Drule.RES CANON, Tactic.RES TAC, Thm cont.RES THEN.

RESQ_MATCH_MP (res_quanTools)

RESQ_MATCH_MP : (thm -> thm -> thm)

RESQ RES TAC 837

Synopsis
Eliminating a restricted universal quantification with automatic matching.

Description
When applied to theorems A1 |- !x::P. Q[x] and A2 |- P x’, the derived inference
rule RESQ_MATCH_MP matches x’ to x by instantiating free or universally quantified vari-
ables in the first theorem (only), and returns a theorem A1 u A2 |- Q[x’/x]. Polymor-
phic types are also instantiated if necessary.

A1 |- !x::P.Q[x] A2 |- P x’

-------------------------------------- RESQ_MATCH_MP

A1 u A2 |- Q[x’/x]

Failure
Fails unless the first theorem is a (possibly repeatedly) restricted universal quantification
whose quantified variable can be instantiated to match the conclusion of the second
theorem, without instantiating any variables which are free in A1, the first theorem’s
assumption list.

See also
Drule.MATCH MP, res quanTools.RESQ HALF SPEC.

RESQ_RES_TAC (res_quanTools)

RESQ_RES_TAC : tactic

Synopsis
Enriches assumptions by repeatedly resolving restricted universal quantifications in
them against the others.

Description
RESQ_RES_TAC uses those assumptions which are restricted universal quantifications in
resolution in a way similar to RES_TAC. It calls RESQ_RES_THEN repeatedly until there is
no more resolution can be done. The conclusions of all the new results are returned
as additional assumptions of the subgoal(s). The effect of RESQ_RES_TAC on a goal is to
enrich the assumption set with some of its collective consequences.

Failure
RESQ_RES_TAC cannot fail and so should not be unconditionally REPEATed.

838 CHAPTER 1. ENTRIES

See also
res quanTools.RESQ IMP RES TAC, res quanTools.RESQ IMP RES THEN,

res quanTools.RESQ RES THEN, Tactic.IMP RES TAC, Thm cont.IMP RES THEN,

Drule.RES CANON, Thm cont.RES THEN, Tactic.RES TAC.

RESQ_RES_THEN (res_quanTools)

RESQ_RES_THEN : thm_tactic -> tactic

Synopsis
Resolves all restricted universally quantified assumptions against other assumptions of
a goal.

Description
Like the function RESQ_IMP_RES_THEN, the function RESQ_RES_THEN performs a single step
resolution. The difference is that the restricted universal quantification used in the
resolution is taken from the assumptions.

Given a theorem-tactic ttac, applying the tactic RESQ_RES_THEN ttac to a goal
(asml,gl) has the effect of:

MAP_EVERY (mapfilter ttac [... ; (ai,aj |- vi) ; ...]) (amsl ?- g)

where the theorems ai,aj |- vi are all the consequences that can be drawn by a (sin-
gle) matching modus-ponens inference from the assumptions amsl and the implications
derived from the restricted universal quantifications in the assumptions.

Failure
Evaluating RESQ_RES_TAC ttac th fails if there are no restricted universal quantifications
in the assumptions, or if the theorem-tactic ttac applied to all the consequences fails.

See also
res quanTools.RESQ IMP RES TAC, res quanTools.RESQ IMP RES THEN,

res quanTools.RESQ RES TAC, Thm cont.IMP RES THEN, Tactic.IMP RES TAC,

Drule.MATCH MP, Drule.RES CANON, Tactic.RES TAC, Thm cont.RES THEN.

RESQ_REWR_CANON (res_quanLib)

RESQ_REWR_CANON : thm -> thm

RESQ REWR CANON 839

Synopsis
Transform a theorem into a form accepted for rewriting.

Description
RESQ_REWR_CANON transforms a theorem into a form accepted by COND_REWR_TAC. The in-
put theorem should be headed by a series of restricted universal quantifications in the
following form

!x1::P1. ... !xn::Pn. u[xi] = v[xi])

Other variables occurring in u and v may be universally quantified. The output theo-
rem will have all ordinary universal quantifications moved to the outer most level with
possible renaming to prevent variable capture, and have all restricted universal quan-
tifications converted to implications. The output theorem will be in the form accepted
by COND_REWR_TAC.

Failure
This function fails is the input theorem is not in the correct form.

See also
res quanLib.RESQ REWRITE1 TAC, res quanLib.RESQ REWRITE1 CONV.

RESQ_REWR_CANON (res_quanTools)

RESQ_REWR_CANON : thm -> thm

Synopsis
Transform a theorem into a form accepted for rewriting.

Description
RESQ_REWR_CANON transforms a theorem into a form accepted by COND_REWR_TAC. The in-
put theorem should be headed by a series of restricted universal quantifications in the
following form

!x1::P1. ... !xn::Pn. u[xi] = v[xi])

Other variables occurring in u and v may be universally quantified. The output theo-
rem will have all ordinary universal quantifications moved to the outer most level with
possible renaming to prevent variable capture, and have all restricted universal quan-
tifications converted to implications. The output theorem will be in the form accepted
by COND_REWR_TAC.

840 CHAPTER 1. ENTRIES

Failure
This function fails is the input theorem is not in the correct form.

See also
res quanTools.RESQ REWRITE1 TAC, res quanTools.RESQ REWRITE1 CONV,

Cond rewrite.COND REWR CANON, Cond rewrite.COND REWR TAC,

Cond rewrite.COND REWR CONV.

RESQ_REWRITE1_CONV (res_quanLib)

RESQ_REWRITE1_CONV : thm list -> thm -> conv

Synopsis
Rewriting conversion using a restricted universally quantified theorem.

Description
RESQ_REWRITE1_CONV is a rewriting conversion similar to COND_REWRITE1_CONV. The only
difference is the rewriting theorem it takes. This should be an equation with restricted
universal quantification at the outer level. It is converted to a theorem in the form
accepted by the conditional rewriting conversion.

Suppose that th is the following theorem

A |- !x::P. Q[x] = R[x])

evaluating RESQ_REWRITE1_CONV thms th "t[x’]" will return a theorem

A, P x’ |- t[x’] = t’[x’]

where t’ is the result of substituting instances of R[x’/x] for corresponding instances
of Q[x’/x] in the original term t[x]. All instances of P x’ which do not appear in the
original assumption asml are added to the assumption. The theorems in the list thms are
used to eliminate the instances P x’ if it is possible.

Failure
RESQ_REWRITE1_CONV fails if th cannot be transformed into the required form by the
function RESQ_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

See also
res quanLib.RESQ REWRITE1 TAC, res quanLib.RESQ REWR CONV.

RESQ REWRITE1 CONV 841

RESQ_REWRITE1_CONV (res_quanTools)

RESQ_REWRITE1_CONV : thm list -> thm -> conv

Synopsis
Rewriting conversion using a restricted universally quantified theorem.

Description
RESQ_REWRITE1_CONV is a rewriting conversion similar to COND_REWRITE1_CONV. The only
difference is the rewriting theorem it takes. This should be an equation with restricted
universal quantification at the outer level. It is converted to a theorem in the form
accepted by the conditional rewriting conversion.

Suppose that th is the following theorem

A |- !x::P. Q[x] = R[x])

evaluating RESQ_REWRITE1_CONV thms th "t[x’]" will return a theorem

A, P x’ |- t[x’] = t’[x’]

where t’ is the result of substituting instances of R[x’/x] for corresponding instances
of Q[x’/x] in the original term t[x]. All instances of P x’ which do not appear in the
original assumption asml are added to the assumption. The theorems in the list thms are
used to eliminate the instances P x’ if it is possible.

Failure
RESQ_REWRITE1_CONV fails if th cannot be transformed into the required form by the
function RESQ_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

See also
res quanTools.RESQ REWRITE1 TAC, res quanTools.RESQ REWR CANON,

Cond rewrite.COND REWR TAC, Cond rewrite.COND REWRITE1 CONV,

Cond rewrite.COND REWR CONV, Cond rewrite.COND REWR CANON,

Cond rewrite.search top down.

RESQ_REWRITE1_TAC (res_quanLib)

RESQ_REWRITE1_TAC : thm_tactic

842 CHAPTER 1. ENTRIES

Synopsis
Rewriting with a restricted universally quantified theorem.

Description
RESQ_REWRITE1_TAC takes an equational theorem which is restricted universally quan-
tified at the outer level. It calls RESQ_REWR_CANON to convert the theorem to the form
accepted by COND_REWR_TAC and passes the resulting theorem to this tactic which carries
out conditional rewriting.

Suppose that th is the following theorem

A |- !x::P. Q[x] = R[x])

Applying the tactic RESQ_REWRITE1_TAC th to a goal (asml,gl) will return a main subgoal
(asml’,gl’) where gl’ is obtained by substituting instances of R[x’/x] for correspond-
ing instances of Q[x’/x] in the original goal gl. All instances of P x’ which do not
appear in the original assumption asml are added to it to form asml’, and they also
become new subgoals (asml,P x’).

Failure
RESQ_REWRITE1_TAC th fails if th cannot be transformed into the required form by the
function RESQ_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

See also
res quanLib.RESQ REWRITE1 CONV, res quanLib.RESQ REWR CONV.

RESQ_REWRITE1_TAC (res_quanTools)

RESQ_REWRITE1_TAC : thm_tactic

Synopsis
Rewriting with a restricted universally quantified theorem.

Description
RESQ_REWRITE1_TAC takes an equational theorem which is restricted universally quan-
tified at the outer level. It calls RESQ_REWR_CANON to convert the theorem to the form
accepted by COND_REWR_TAC and passes the resulting theorem to this tactic which carries
out conditional rewriting.

Suppose that th is the following theorem

RESQ SPEC 843

A |- !x::P. Q[x] = R[x])

Applying the tactic RESQ_REWRITE1_TAC th to a goal (asml,gl) will return a main subgoal
(asml’,gl’) where gl’ is obtained by substituting instances of R[x’/x] for correspond-
ing instances of Q[x’/x] in the original goal gl. All instances of P x’ which do not
appear in the original assumption asml are added to it to form asml’, and they also
become new subgoals (asml,P x’).

Failure
RESQ_REWRITE1_TAC th fails if th cannot be transformed into the required form by the
function RESQ_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

See also
res quanTools.RESQ REWRITE1 CONV, res quanTools.RESQ REWR CANON,

Cond rewrite.COND REWR TAC, Cond rewrite.COND REWRITE1 CONV,

Cond rewrite.COND REWR CONV, Cond rewrite.COND REWR CANON,

Cond rewrite.search top down.

RESQ_SPEC (res_quanLib)

RESQ_SPEC : term -> thm -> thm

Synopsis
Specializes the conclusion of a possibly-restricted universally quantified theorem.

Description
When applied to a term u and a theorem A |- !x::P. t, RESQ_SPEC returns the theorem
A, u IN P |- t[u/x]. If necessary, variables will be renamed prior to the specialization
to ensure that u is free for x in t, that is, no variables free in u become bound after
substitution.

A |- !x::P. t

--------------------- RESQ_SPEC "u"

A, u IN P |- t[u/x]

Additionally, if the input theorem is a standard universal quantification, then RESQ SPEC
behaves like SPEC.

844 CHAPTER 1. ENTRIES

Failure
Fails if the theorem’s conclusion is not restricted universally quantified, or if type in-
stantiation fails.

See also
res quanLib.RESQ HALF SPECL.

RESQ_SPEC (res_quanTools)

RESQ_SPEC : (term -> thm -> thm)

Synopsis
Specializes the conclusion of a restricted universally quantified theorem.

Description
When applied to a term u and a theorem A |- !x::P. t, RESQ_SPEC returns the theorem
A, P u |- t[u/x]. If necessary, variables will be renamed prior to the specialization
to ensure that u is free for x in t, that is, no variables free in u become bound after
substitution.

A |- !x::P. t

------------------ RESQ_SPEC "u"

A, P u |- t[u/x]

Failure
Fails if the theorem’s conclusion is not restricted universally quantified, or if type in-
stantiation fails.

Example
The following example shows how RESQ_SPEC renames bound variables if necessary,
prior to substitution: a straightforward substitution would result in the clearly invalid
theorem (\y. 0 < y)y |- y = y.

#let th = RESQ_GEN "x:num" "\y.0<y" (REFL "x:num");;

th = |- !x :: \y. 0 < y. x = x

#RESQ_SPEC "y:num" th;;

(\y’. 0 < y’)y |- y = y

RESQ SPECL 845

See also
res quanTools.RESQ SPECL.

RESQ_SPECL (res_quanTools)

RESQ_SPECL : (term list -> thm -> thm)

Synopsis
Specializes zero or more variables in the conclusion of a restricted universally quantified
theorem.

Description
When applied to a term list [u1;...;un] and a theorem A |- !x1::P1. ... !xn::Pn. t,
the inference rule RESQ_SPECL returns the theorem

A,P1 u1,...,Pn un |- t[u1/x1]...[un/xn]

where the substitutions are made sequentially left-to-right in the same way as for
RESQ_SPEC, with the same sort of alpha-conversions applied to t if necessary to ensure
that no variables which are free in ui become bound after substitution.

A |- !x1::P1. ... !xn::Pn. t

-- RESQ_SPECL "[u1;...;un]"

A,P1 u1, ..., Pn un |- t[u1/x1]...[un/xn]

It is permissible for the term-list to be empty, in which case the application of RESQ_SPECL
has no effect.

Failure
Fails if one of the specialization of the restricted universally quantified variable in the
original theorem fails.

See also
res quanTools.RESQ GEN TAC, res quanTools.RESQ SPEC.

restart (proofManagerLib)

restart : unit -> proof

846 CHAPTER 1. ENTRIES

Synopsis
Returns the proof state to the initial goal.

Description
The function restart is part of the subgoal package. A call to restart clears the proof
history and returns to the initial goal. After a call to restart, the proof state is the same
as it was after the inital call to set_goal (or g). For a description of the subgoal package,
see set_goal.

Failure
The function restart only fails if no goalstack is being managed.

Uses
Restarting an interactive proof.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

Backup (proofManagerLib)

Backup : unit -> proof

Synopsis
Restores the proof state of the last save point, undoing the effects of expansions after
the save point.

Description
The function Backup is part of the subgoal package. A call to Backup restores the proof
state to the last save point (a proof state saved by save). If the current state is a save
point then Backup clears the current save point and returns to the last save point. If
there are no save points in the history, then Backup returns to the initial goal and is
equivalent to restart. For a description of the subgoal package, see set_goal.

Failure
The function Backup will fail only if no goalstack is being managed.

RESTR EVAL CONV 847

Uses
Back tracking in a goal-directed proof to a user-defined save point.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

RESTR_EVAL_CONV (computeLib)

RESTR_EVAL_CONV : term list -> conv

Synopsis
Symbolically evaluate a term, except for specified constants.

Description
An application RESTR_EVAL_CONV [c1, ..., cn] M evaluates the term M in the call-by-
value style of EVAL. When a type instance c of any element in c1,...,cn is encountered,
c is not expanded by RESTR_EVAL_CONV. The effect is that evaluation stops at c (even
though any arguments to c may be evaluated). This facility can be used to control
EVAL_CONV to some extent.

Failure
Never fails, but may diverge.

Example
In the following, we first attempt to map the factorial function FACT over a list of vari-
ables. This attempt goes into a loop, because the conditional statement in the evaluation
rule for FACT is never determine when the argument is equal to zero. However, if we
suppress the evaluation of FACT, then we can return a useful answer.

- EVAL (Term ‘MAP FACT [x; y; z]‘); (* loops! *)

> Interrupted.

- val [FACT] = decls "FACT"; (* find FACT constant *)

> val FACT = ‘FACT‘ : term

- RESTR_EVAL_CONV [FACT] (Term ‘MAP FACT [x; y; z]‘);

> val it = |- MAP FACT [x; y; z] = [FACT x; FACT y; FACT z] : thm

848 CHAPTER 1. ENTRIES

Uses
Controlling symbolic evaluation when it loops or becomes exponential.

See also
bossLib.EVAL, computeLib.RESTR EVAL TAC, computeLib.RESTR EVAL RULE, Term.decls.

RESTR_EVAL_RULE (computeLib)

RESTR_EVAL_RULE : term list -> thm -> thm

Synopsis
Symbolically evaluate a theorem, except for specified constants.

Description
This is a version of RESTR_EVAL_CONV that works on theorems.

Failure
As for RESTR_EVAL_CONV.

Uses
Controlling symbolic evaluation when it loops or becomes exponential.

See also
bossLib.EVAL, bossLib.EVAL RULE, computeLib.RESTR EVAL CONV,

computeLib.RESTR EVAL TAC.

RESTR_EVAL_TAC (computeLib)

RESTR_EVAL_TAC : term list -> tactic

Synopsis
Symbolically evaluate a theorem, except for specified constants.

Description
This is a tactic version of RESTR_EVAL_CONV.

rev assoc 849

Failure
As for RESTR_EVAL_CONV.

Uses
Controlling symbolic evaluation when it loops or becomes exponential.

See also
bossLib.EVAL, bossLib.EVAL RULE, bossLib.EVAL TAC, computeLib.RESTR EVAL CONV,

computeLib.RESTR EVAL RULE.

rev_assoc (hol88Lib)

rev_assoc : ’’a -> (’b * ’’a) list -> ’b * ’’a

Synopsis
Searches a list of pairs for a pair whose second component equals a specified value.

Description
rev_assoc y [(x1,y1),...,(xn,yn)] returns the first (xi,yi) in the list such that yi

equals y. The lookup is done on an eqtype, i.e., the SML implementation must be able
to decide equality for the type of y.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

- rev_assoc 2 [(1,4),(3,2),(2,5),(2,6)];

(3, 2) : (int * int)

Comments
Superseded by Lib.rev_assoc and Lib.assoc2.

See also
hol88Lib.assoc, Lib.rev assoc, Lib.assoc2.

rev_assoc (Lib)

rev_assoc : ’’a -> (’b * ’’a) list -> ’b

850 CHAPTER 1. ENTRIES

Synopsis
Searches a list of pairs for a pair whose second component equals a specified value.

Description
An invocation rev_assoc y [(x1,y1),...,(xn,yn)] locates the first (xi,yi) in a left-to-
right scan of the list such that yi equals y. Then xi is returned. The lookup is done on
an eqtype, i.e., the SML implementation must be able to decide equality for the type of
y.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

- rev_assoc 2 [(1,4),(3,2),(2,5),(2,6)];

> val it = 3 : int

See also
Lib.assoc, Lib.assoc1, Lib.assoc2, Lib.mem, Lib.tryfind, Lib.exists, Lib.all.

rev_itlist (Lib)

rev_itlist : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Synopsis
Applies a binary function between adjacent elements of the reverse of a list.

Description
rev_itlist f [x1,...,xn] b returns f xn (... (f x2 (f x1 y))...). It returns b if
the second argument is an empty list.

Failure
Fails if some application of f fails.

Example

- rev_itlist (curry op *) [1,2,3,4] 1;

> val it = 24 : int

rev itlist2 851

See also
Lib.itlist, Lib.itlist2, Lib.rev itlist2, Lib.end itlist.

rev_itlist2 (Lib)

rev_itlist2 : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

Synopsis
Applies a function to corresponding elements of 2 lists.

Description
rev_itlist2 f [x1,...,xn] [y1,...,yn] z returns

f xn yn (f xn-1 yn-1 ... (f x1 y1 z)...)

It returns z if both lists are empty.

Failure
Fails if the two lists are of different lengths, or if an application of f raises an exception.

Example

- rev_itlist2 (fn x => fn y => cons (x,y)) [1,2] [3,4] [];

> val it = [(2, 4), (1, 3)] : (int * int) list

See also
Lib.itlist, Lib.rev itlist, Lib.itlist2, Lib.end itlist.

reveal (Parse)

reveal : string -> unit

Synopsis
Restores recognition of a constant by the quotation parser.

Description
A call reveal c, where c the name of a (perhaps) hidden constant, will ‘unhide‘ the
constant, that is, will make the quotation parser map the identifier c to all current

852 CHAPTER 1. ENTRIES

constants with the same name (there may be more than one such as different theories
may re-use the same name).

Failure
Never fails, but prints a warning message if the string does not correspond to an actual
constant.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in a
theory. If the parameter c is already overloaded so as to map to other constants, these
overloadings are not altered.

See also
Parse.hide, Parse.hidden, Parse.remove ovl mapping, Parse.update overload maps.

REVERSE (Tactical)

REVERSE : (tactic -> tactic)

Synopsis
Reverses the order of the generated subgoals.

Description
The tactic REVERSE T is a tactic which applies T to a goal, and reverses the order of the
subgoals generated by T.

Failure
The application of REVERSE to a tactic T never fails. The resulting composite tactic
REVERSE T fails when applied to a goal if and only if T fails.

Comments
Intended for use with THEN1 to pick the ‘easy’ subgoal.

Example
Given a goal

G1 /\ G2

use

REVERSE CONV 853

CONJ_TAC THEN1 T0

THEN ...

if the first conjunct is easily dispatched with T0, and

REVERSE CONJ_TAC THEN1 T0

THEN ...

if it is the second conjunct that yields.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.ORELSE, Tactical.THEN, Tactical.THEN1,

Tactical.THENL.

REVERSE_CONV (listLib)

REVERSE_CONV : conv

Synopsis
Computes by inference the result of reversing a list.

Description
REVERSE_CONV takes a term tm in the following form:

REVERSE [x0;...xn]

It returns the theorem

|- REVERSE [x0;...xn] = [xn;...x0]

where the right-hand side is the list in the reverse order.

Failure
REVERSE_CONV tm fails if tm is not of the form described above.

Example
Evaluating

REVERSE_CONV (--‘REVERSE [0;1;2;3;4]‘--);

returns the following theorem:

|- REVERSE [0;1;2;3;4] = [4;3;2;1;0]

854 CHAPTER 1. ENTRIES

See also
listLib.FOLDL CONV, listLib.FOLDR CONV, listLib.list FOLD CONV.

REWR_CONV (Conv)

REWR_CONV : (thm -> conv)

Synopsis
Uses an instance of a given equation to rewrite a term.

Description
REWR_CONV is one of the basic building blocks for the implementation of rewriting in the
HOL system. In particular, the term replacement or rewriting done by all the built-in
rewriting rules and tactics is ultimately done by applications of REWR_CONV to appropri-
ate subterms. The description given here for REWR_CONV may therefore be taken as a
specification of the atomic action of replacing equals by equals that is used in all these
higher level rewriting tools.

The first argument to REWR_CONV is expected to be an equational theorem which is to
be used as a left-to-right rewrite rule. The general form of this theorem is:

A |- t[x1,...,xn] = u[x1,...,xn]

where x1, ..., xn are all the variables that occur free in the left-hand side of the conclu-
sion of the theorem but do not occur free in the assumptions. Any of these variables
may also be universally quantified at the outermost level of the equation, as for example
in:

A |- !x1...xn. t[x1,...,xn] = u[x1,...,xn]

Note that REWR_CONV will also work, but will give a generally undesirable result (see
below), if the right-hand side of the equation contains free variables that do not also
occur free on the left-hand side, as for example in:

A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]

where the variables y1, ..., ym do not occur free in t[x1,...,xn].
If th is an equational theorem of the kind shown above, then REWR_CONV th returns a

conversion that maps terms of the form t[e1,...,en/x1,...,xn], in which the terms e1,
..., en are free for x1, ..., xn in t, to theorems of the form:

A |- t[e1,...,en/x1,...,xn] = u[e1,...,en/x1,...,xn]

REWR CONV 855

That is, REWR_CONV th tm attempts to match the left-hand side of the rewrite rule th

to the term tm. If such a match is possible, then REWR_CONV returns the corresponding
substitution instance of th.

If REWR_CONV is given a theorem th:

A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]

where the variables y1, ..., ym do not occur free in the left-hand side, then the result of
applying the conversion REWR_CONV th to a term t[e1,...,en/x1,...,xn] will be:

A |- t[e1,...,en/x1,...,xn] = u[e1,...,en,v1,...,vm/x1,...,xn,y1,...,ym]

where v1, ..., vm are variables chosen so as to be free nowhere in th or in the input term.
The user has no control over the choice of the variables v1, ..., vm, and the variables
actually chosen may well be inconvenient for other purposes. This situation is, however,
relatively rare; in most equations the free variables on the right-hand side are a subset
of the free variables on the left-hand side.

In addition to doing substitution for free variables in the supplied equational theorem
(or ‘rewrite rule’), REWR_CONV th tm also does type instantiation, if this is necessary in
order to match the left-hand side of the given rewrite rule th to the term argument tm.
If, for example, th is the theorem:

A |- t[x1,...,xn] = u[x1,...,xn]

and the input term tm is (a substitution instance of) an instance of t[x1,...,xn] in
which the types ty1, ..., tyi are substituted for the type variables vty1, ..., vtyi, that is
if:

tm = t[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]

then REWR_CONV th tm returns:

A |- (t = u)[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]

Note that, in this case, the type variables vty1, ..., vtyi must not occur anywhere in the
hypotheses A. Otherwise, the conversion will fail.

Failure
REWR_CONV th fails if th is not an equation or an equation universally quantified at the
outermost level. If th is such an equation:

th = A |- !v1....vi. t[x1,...,xn] = u[x1,...,xn,y1,...,yn]

856 CHAPTER 1. ENTRIES

then REWR_CONV th tm fails unless the term tm is alpha-equivalent to an instance of the
left-hand side t[x1,...,xn] which can be obtained by instantiation of free type variables
(i.e. type variables not occurring in the assumptions A) and substitution for the free
variables x1, ..., xn.

Example
The following example illustrates a straightforward use of REWR_CONV. The supplied
rewrite rule is polymorphic, and both substitution for free variables and type instan-
tiation may take place. EQ_SYM_EQ is the theorem:

|- !x:’a. !y. (x = y) = (y = x)

and REWR_CONV EQ_SYM_EQ behaves as follows:

- REWR_CONV EQ_SYM_EQ (Term ‘1 = 2‘);

> val it = |- (1 = 2) = (2 = 1) : thm

- REWR_CONV EQ_SYM_EQ (Term ‘1 < 2‘);

! Uncaught exception:

! HOL_ERR

The second application fails because the left-hand side x = y of the rewrite rule does
not match the term to be rewritten, namely 1 < 2.

In the following example, one might expect the result to be the theorem A |- f 2 = 2,
where A is the assumption of the supplied rewrite rule:

- REWR_CONV (ASSUME (Term ‘!x:’a. f x = x‘)) (Term ‘f 2:num‘);

! Uncaught exception:

! HOL_ERR

The application fails, however, because the type variable ’a appears in the assumption
of the theorem returned by ASSUME (Term ‘!x:’a. f x = x‘).

Failure will also occur in situations like:

- REWR_CONV (ASSUME (Term ‘f (n:num) = n‘)) (Term ‘f 2:num‘);

! Uncaught exception:

! HOL_ERR

where the left-hand side of the supplied equation contains a free variable (in this case n)
which is also free in the assumptions, but which must be instantiated in order to match
the input term.

See also
Rewrite.REWRITE CONV.

REWRITE CONV 857

REWRITE_CONV (Rewrite)

REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term including built-in tautologies in the list of rewrites.

Description
Rewriting a term using REWRITE_CONV utilizes as rewrites two sets of theorems: the tau-
tologies in the ML list basic_rewrites and the ones supplied by the user. The rule
searches top-down and recursively for subterms which match the left-hand side of any
of the possible rewrites, until none of the transformations are applicable. There is no
ordering specified among the set of rewrites.

Variants of this conversion allow changes in the set of equations used: PURE_REWRITE_CONV
and others in its family do not rewrite with the theorems in basic_rewrites.

The top-down recursive search for matches may not be desirable, as this may increase
the number of inferences being made or may result in divergence. In this case other
rewriting tools such as ONCE_REWRITE_CONV and GEN_REWRITE_CONV can be used, or the set
of theorems given may be reduced.

See GEN_REWRITE_CONV for the general strategy for simplifying theorems in HOL using
equational theorems.

Failure
Does not fail, but may diverge if the sequence of rewrites is non-terminating.

Uses
Used to manipulate terms by rewriting them with theorems. While resulting in high
degree of automation, REWRITE_CONV can spawn a large number of inference steps. Thus,
variants such as PURE_REWRITE_CONV, or other rules such as SUBST_CONV, may be used
instead to improve efficiency.

See also
Rewrite.GEN REWRITE CONV, Rewrite.ONCE REWRITE CONV, Rewrite.PURE REWRITE CONV,

Conv.REWR CONV, Drule.SUBST CONV.

REWRITE_RULE (Rewrite)

REWRITE_RULE : (thm list -> thm -> thm)

858 CHAPTER 1. ENTRIES

Synopsis
Rewrites a theorem including built-in tautologies in the list of rewrites.

Description
Rewriting a theorem using REWRITE_RULE utilizes as rewrites two sets of theorems: the
tautologies in the ML list basic_rewrites and the ones supplied by the user. The rule
searches top-down and recursively for subterms which match the left-hand side of any
of the possible rewrites, until none of the transformations are applicable. There is no
ordering specified among the set of rewrites.

Variants of this rule allow changes in the set of equations used: PURE_REWRITE_RULE

and others in its family do not rewrite with the theorems in basic_rewrites. Rules such
as ASM_REWRITE_RULE add the assumptions of the object theorem (or a specified subset
of these assumptions) to the set of possible rewrites.

The top-down recursive search for matches may not be desirable, as this may increase
the number of inferences being made or may result in divergence. In this case other
rewriting tools such as ONCE_REWRITE_RULE and GEN_REWRITE_RULE can be used, or the set
of theorems given may be reduced.

See GEN_REWRITE_RULE for the general strategy for simplifying theorems in HOL using
equational theorems.

Failure
Does not fail, but may diverge if the sequence of rewrites is non-terminating.

Uses
Used to manipulate theorems by rewriting them with other theorems. While resulting in
high degree of automation, REWRITE_RULE can spawn a large number of inference steps.
Thus, variants such as PURE_REWRITE_RULE, or other rules such as SUBST, may be used
instead to improve efficiency.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE,

Rewrite.PURE REWRITE RULE, Conv.REWR CONV, Rewrite.REWRITE CONV, Thm.SUBST.

REWRITE_TAC (Rewrite)

REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal including built-in tautologies in the list of rewrites.

REWRITE TAC 859

Description
Rewriting tactics in HOL provide a recursive left-to-right matching and rewriting facil-
ity that automatically decomposes subgoals and justifies segments of proof in which
equational theorems are used, singly or collectively. These include the unfolding of def-
initions, and the substitution of equals for equals. Rewriting is used either to advance
or to complete the decomposition of subgoals.
REWRITE_TAC transforms (or solves) a goal by using as rewrite rules (i.e. as left-to-right

replacement rules) the conclusions of the given list of (equational) theorems, as well as
a set of built-in theorems (common tautologies) held in the ML variable basic_rewrites.
Recognition of a tautology often terminates the subgoaling process (i.e. solves the goal).

The equational rewrites generated are applied recursively and to arbitrary depth, with
matching and instantiation of variables and type variables. A list of rewrites can set off
an infinite rewriting process, and it is not, of course, decidable in general whether a
rewrite set has that property. The order in which the rewrite theorems are applied is
unspecified, and the user should not depend on any ordering.

See GEN_REWRITE_TAC for more details on the rewriting process. Variants of REWRITE_TAC
allow the use of a different set of rewrites. Some of them, such as PURE_REWRITE_TAC,
exclude the basic tautologies from the possible transformations. ASM_REWRITE_TAC and
others include the assumptions at the goal in the set of possible rewrites.

Still other tactics allow greater control over the search for rewritable subterms. Sev-
eral of them such as ONCE_REWRITE_TAC do not apply rewrites recursively. GEN_REWRITE_TAC
allows a rewrite to be applied at a particular subterm.

Failure
REWRITE_TAC does not fail. Certain sets of rewriting theorems on certain goals may cause
a non-terminating sequence of rewrites. Divergent rewriting behaviour results from a
term t being immediately or eventually rewritten to a term containing t as a sub-term.
The exact behaviour depends on the HOL implementation.

Example
The arithmetic theorem GREATER_DEF, |- !m n. m > n = n < m, is used below to advance
a goal:

- REWRITE_TAC [GREATER_DEF] ([],‘‘5 > 4‘‘);

> ([([], ‘‘4 < 5‘‘)], -) : subgoals

It is used below with the theorem LESS_0, |- !n. 0 < (SUC n), to solve a goal:

- val (gl,p) =

REWRITE_TAC [GREATER_DEF, LESS_0] ([],‘‘(SUC n) > 0‘‘);

> val gl = [] : goal list

> val p = fn : proof

860 CHAPTER 1. ENTRIES

- p[];

> val it = |- (SUC n) > 0 : thm

Uses
Rewriting is a powerful and general mechanism in HOL, and an important part of many
proofs. It relieves the user of the burden of directing and justifying a large number of
minor proof steps. REWRITE_TAC fits a forward proof sequence smoothly into the general
goal-oriented framework. That is, (within one subgoaling step) it produces and justifies
certain forward inferences, none of which are necessarily on a direct path to the desired
goal.
REWRITE_TAC may be more powerful a tactic than is needed in certain situations; if ef-

ficiency is at stake, alternatives might be considered. On the other hand, if more power
is required, the simplification functions (SIMP_TAC and others) may be appropriate.

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,

Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,

Rewrite.ONCE REWRITE TAC, Rewrite.PURE ASM REWRITE TAC,

Rewrite.PURE ONCE ASM REWRITE TAC, Rewrite.PURE ONCE REWRITE TAC,

Rewrite.PURE REWRITE TAC, Conv.REWR CONV, Rewrite.REWRITE CONV,

simpLib.SIMP TAC, Tactic.SUBST TAC.

rewrites (bossLib)

rewrites : thm list -> ssfrag

Synopsis
Creates an ssfrag value consisting of the given theorems as rewrites.

Failure
Never fails.

Example
Instead of writing the simpler SIMP_CONV std_ss thmlist, one could write

SIMP_CONV (std_ss ++ rewrites thmlist) []

rewrites 861

More plausibly, rewrites can be used to create commonly used ssfrag values containing
a great number of rewrites. This is how the basic system’s various ssfrag values are
constructed where those values consist only of rewrite theorems.

See also
bossLib.++, simpLib.mk simpset, simpLib.SSFRAG, bossLib.SIMP CONV.

rewrites (simpLib)

rewrites : thm list -> ssfrag

Synopsis
Create an ssfrag value consisting of the given theorems as rewrites.

Description
bossLib.rewrites is identical to simpLib.rewrites.

See also
bossLib.rewrites.

rhs (boolSyntax)

rhs : term -> term

Synopsis
Returns the right-hand side of an equation.

Description
If M has the form t1 = t2 then rhs M returns t2.

Failure
Fails if term is not an equality.

See also
boolSyntax.lhs, boolSyntax.dest eq.

862 CHAPTER 1. ENTRIES

RIGHT_AND_EXISTS_CONV (Conv)

RIGHT_AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the right conjunct outwards through a conjunc-
tion.

Description
When applied to a term of the form P /\ (?x.Q), the conversion RIGHT_AND_EXISTS_CONV

returns the theorem:

|- P /\ (?x.Q) = (?x’. P /\ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P /\ (?x.Q).

See also
Conv.AND EXISTS CONV, Conv.EXISTS AND CONV, Conv.LEFT AND EXISTS CONV.

RIGHT_AND_FORALL_CONV (Conv)

RIGHT_AND_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the right conjunct outwards through a conjunction.

Description
When applied to a term of the form P /\ (!x.Q), the conversion RIGHT_AND_FORALL_CONV

returns the theorem:

|- P /\ (!x.Q) = (!x’. P /\ (Q[x’/x]))

RIGHT AND PEXISTS CONV 863

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P /\ (!x.Q).

See also
Conv.AND FORALL CONV, Conv.FORALL AND CONV, Conv.LEFT AND FORALL CONV.

RIGHT_AND_PEXISTS_CONV (PairRules)

RIGHT_AND_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the right conjunct outwards through a con-
junction.

Description
When applied to a term of the form t /\ (?p. t), the conversion RIGHT_AND_PEXISTS_CONV

returns the theorem:

|- t /\ (?p. u) = (?p’. t /\ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t /\ (?p. u).

See also
Conv.RIGHT AND EXISTS CONV, PairRules.AND PEXISTS CONV,

PairRules.PEXISTS AND CONV, PairRules.LEFT AND PEXISTS CONV.

RIGHT_AND_PFORALL_CONV (PairRules)

RIGHT_AND_PFORALL_CONV : conv

864 CHAPTER 1. ENTRIES

Synopsis
Moves a paired universal quantification of the right conjunct outwards through a con-
junction.

Description
When applied to a term of the form t /\ (!p. u), the conversion RIGHT_AND_PFORALL_CONV

returns the theorem:

|- t /\ (!p. u) = (!p’. t /\ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t /\ (!p. u).

See also
Conv.RIGHT AND FORALL CONV, PairRules.AND PFORALL CONV,

PairRules.PFORALL AND CONV, PairRules.LEFT AND PFORALL CONV.

RIGHT_BETA (Drule)

RIGHT_BETA : (thm -> thm)

Synopsis
Beta-reduces a top-level beta-redex on the right-hand side of an equation.

Description
When applied to an equational theorem, RIGHT_BETA applies beta-reduction at top level
to the right-hand side (only). Variables are renamed if necessary to avoid free variable
capture.

A |- s = (\x. t1) t2

---------------------- RIGHT_BETA

A |- s = t1[t2/x]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level beta-
redex.

RIGHT CONV RULE 865

See also
Thm.BETA CONV, Conv.BETA RULE, Tactic.BETA TAC, Drule.RIGHT LIST BETA.

RIGHT_CONV_RULE (Conv)

RIGHT_CONV_RULE : (conv -> thm -> thm)

Synopsis
Applies a conversion to the right-hand side of an equational theorem.

Description
If c is a conversion that maps a term "t2" to the theorem |- t2 = t2’, then the rule
RIGHT_CONV_RULE c infers |- t1 = t2’ from the theorem |- t1 = t2. That is, if c "t2"

returns A’ |- t2 = t2’, then:

A |- t1 = t2

--------------------- RIGHT_CONV_RULE c

A u A’ |- t1 = t2’

Note that if the conversion c returns a theorem with assumptions, then the resulting
inference rule adds these to the assumptions of the theorem it returns.

Failure
RIGHT_CONV_RULE c th fails if the conclusion of the theorem th is not an equation, or if
th is an equation but c fails when applied its right-hand side. The function returned
by RIGHT_CONV_RULE c will also fail if the ML function c:term->thm is not, in fact, a
conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
Conv.CONV RULE.

RIGHT_ETA (Drule)

RIGHT_ETA : thm -> thm

Synopsis
Perform one step of eta-reduction on the right hand side of an equational theorem.

Description

866 CHAPTER 1. ENTRIES

A |- M = (\x. (N x))

--------------------- x not free in N

A |- M = N

Failure
If the right hand side of the equation is not an eta-redex, or if the theorem is not an
equation.

Example

- val INC_DEF = new_definition ("INC_DEF", Term‘INC = \x. 1 + x‘);

> val INC_DEF = |- INC = (\x. 1 + x) : thm

- RIGHT_ETA INC_DEF;

> val it = |- INC = $+ 1 : thm

See also
Drule.ETA CONV, Term.eta conv.

RIGHT_IMP_EXISTS_CONV (Conv)

RIGHT_IMP_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the consequent outwards through an implication.

Description
When applied to a term of the form P ==> (?x.Q), the conversion RIGHT_IMP_EXISTS_CONV

returns the theorem:

|- P ==> (?x.Q) = (?x’. P ==> (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P ==> (?x.Q).

See also
Conv.EXISTS IMP CONV, Conv.LEFT IMP FORALL CONV.

RIGHT IMP FORALL CONV 867

RIGHT_IMP_FORALL_CONV (Conv)

RIGHT_IMP_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the consequent outwards through an implication.

Description
When applied to a term of the form P ==> (!x.Q), the conversion RIGHT_IMP_FORALL_CONV

returns the theorem:

|- P ==> (!x.Q) = (!x’. P ==> (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P ==> (!x.Q).

See also
Conv.FORALL IMP CONV, Conv.LEFT IMP EXISTS CONV.

RIGHT_IMP_PEXISTS_CONV (PairRules)

RIGHT_IMP_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the consequent outwards through an impli-
cation.

Description
When applied to a term of the form t ==> (?p. u), RIGHT_IMP_PEXISTS_CONV returns the
theorem:

|- t ==> (?p. u) = (?p’. t ==> (u[p’/p]))

868 CHAPTER 1. ENTRIES

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form t ==> (?p. u).

See also
Conv.RIGHT IMP EXISTS CONV, PairRules.PEXISTS IMP CONV,

PairRules.LEFT IMP PFORALL CONV.

RIGHT_IMP_PFORALL_CONV (PairRules)

RIGHT_IMP_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the consequent outwards through an impli-
cation.

Description
When applied to a term of the form t ==> (!p. u), the conversion RIGHT_IMP_FORALL_CONV

returns the theorem:

|- t ==> (!p. u) = (!p’. t ==> (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form t ==> (!p. u).

See also
Conv.RIGHT IMP FORALL CONV, PairRules.PFORALL IMP CONV,

PairRules.LEFT IMP PEXISTS CONV.

RIGHT_LIST_BETA (Drule)

RIGHT_LIST_BETA : (thm -> thm)

RIGHT LIST PBETA 869

Synopsis
Iteratively beta-reduces a top-level beta-redex on the right-hand side of an equation.

Description
When applied to an equational theorem, RIGHT_LIST_BETA applies beta-reduction over a
top-level chain of beta-redexes to the right hand side (only). Variables are renamed if
necessary to avoid free variable capture.

A |- s = (\x1...xn. t) t1 ... tn

---------------------------------- RIGHT_LIST_BETA

A |- s = t[t1/x1]...[tn/xn]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level beta-
redex.

See also
Thm.BETA CONV, Conv.BETA RULE, Tactic.BETA TAC, Drule.LIST BETA CONV,

Drule.RIGHT BETA.

RIGHT_LIST_PBETA (PairRules)

RIGHT_LIST_PBETA : (thm -> thm)

Synopsis
Iteratively beta-reduces a top-level paired beta-redex on the right-hand side of an equa-
tion.

Description
When applied to an equational theorem, RIGHT_LIST_PBETA applies paired beta-reduction
over a top-level chain of beta-redexes to the right-hand side (only). Variables are re-
named if necessary to avoid free variable capture.

A |- s = (\p1...pn. t) q1 ... qn

---------------------------------- RIGHT_LIST_BETA

A |- s = t[q1/p1]...[qn/pn]

870 CHAPTER 1. ENTRIES

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level paired
beta-redex.

See also
Drule.RIGHT LIST BETA, PairRules.PBETA CONV, PairRules.PBETA RULE,

PairRules.PBETA TAC, PairRules.LIST PBETA CONV, PairRules.RIGHT PBETA,

PairRules.LEFT PBETA, PairRules.LEFT LIST PBETA.

RIGHT_OR_EXISTS_CONV (Conv)

RIGHT_OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the right disjunct outwards through a disjunction.

Description
When applied to a term of the form P \/ (?x.Q), the conversion RIGHT_OR_EXISTS_CONV

returns the theorem:

|- P \/ (?x.Q) = (?x’. P \/ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P \/ (?x.Q).

See also
Conv.OR EXISTS CONV, Conv.EXISTS OR CONV, Conv.LEFT OR EXISTS CONV.

RIGHT_OR_FORALL_CONV (Conv)

RIGHT_OR_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the right disjunct outwards through a disjunction.

Description
When applied to a term of the form P \/ (!x.Q), the conversion RIGHT_OR_FORALL_CONV

returns the theorem:

RIGHT OR PEXISTS CONV 871

|- P \/ (!x.Q) = (!x’. P \/ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P \/ (!x.Q).

See also
Conv.OR FORALL CONV, Conv.FORALL OR CONV, Conv.LEFT OR FORALL CONV.

RIGHT_OR_PEXISTS_CONV (PairRules)

RIGHT_OR_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the right disjunct outwards through a dis-
junction.

Description
When applied to a term of the form t \/ (?p. u), the conversion RIGHT_OR_PEXISTS_CONV

returns the theorem:

|- t \/ (?p. u) = (?p’. t \/ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t \/ (?p. u).

See also
Conv.RIGHT OR EXISTS CONV, PairRules.OR PEXISTS CONV, PairRules.PEXISTS OR CONV,

PairRules.LEFT OR PEXISTS CONV.

RIGHT_OR_PFORALL_CONV (PairRules)

RIGHT_OR_PFORALL_CONV : conv

872 CHAPTER 1. ENTRIES

Synopsis
Moves a paired universal quantification of the right disjunct outwards through a dis-
junction.

Description
When applied to a term of the form t \/ (!p. u), the conversion RIGHT_OR_FORALL_CONV

returns the theorem:

|- t \/ (!p. u) = (!p’. t \/ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form t \/ (!p. u).

See also
Conv.RIGHT OR FORALL CONV, PairRules.OR PFORALL CONV, PairRules.PFORALL OR CONV,

PairRules.LEFT OR PFORALL CONV.

RIGHT_PBETA (PairRules)

RIGHT_PBETA : (thm -> thm)

Synopsis
Beta-reduces a top-level paired beta-redex on the right-hand side of an equation.

Description
When applied to an equational theorem, RIGHT_PBETA applies paired beta-reduction at
top level to the right-hand side (only). Variables are renamed if necessary to avoid free
variable capture.

A |- s = (\p. t1) t2

---------------------- RIGHT_PBETA

A |- s = t1[t2/p]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level paired
beta-redex.

rpair 873

See also
Drule.RIGHT BETA, PairRules.PBETA CONV, PairRules.PBETA RULE,

PairRules.PBETA TAC, PairRules.RIGHT LIST PBETA, PairRules.LEFT PBETA,

PairRules.LEFT LIST PBETA.

rpair (Lib)

rpair : ’a -> ’b -> ’b * ’a

Synopsis
Makes two values into a pair, in reverse order.

Description
rpair x y returns (y,x).

Failure
Never fails.

See also
Lib.pair, Lib.swap, Lib.fst, Lib.snd, Lib.curry, Lib.uncurry.

Rsyntax

Rsyntax

Synopsis
A structure that restores a record-style environment for term manipulation.

Description
If one has opened the Psyntax structure, one can open the Rsyntax structure to get
record-style functions back.

Each function in the Rsyntax structure has a corresponding function in the Psyntax
structure, and vice versa. One can flip-flop between the two structures by opening one
and then the other. One can also use long identifiers in order to use both syntaxes at
once.

874 CHAPTER 1. ENTRIES

Failure
Never fails.

Example
The following shows how to open the Rsyntax structure and the functions that sub-
sequently become available in the top level environment. Documentation for each of
these functions is available online.

- open Rsyntax;

open Rsyntax

val INST = fn : term subst -> thm -> thm

val INST_TYPE = fn : hol_type subst -> thm -> thm

val INST_TY_TERM = fn : term subst * hol_type subst -> thm -> thm

val SUBST = fn : {thm:thm, var:term} list -> term -> thm -> thm

val SUBST_CONV = fn : {thm:thm, var:term} list -> term -> term -> thm

val define_new_type_bijections = fn

: {ABS:string, REP:string, name:string, tyax:thm} -> thm

val dest_abs = fn : term -> {Body:term, Bvar:term}

val dest_comb = fn : term -> {Rand:term, Rator:term}

val dest_cond = fn : term -> {cond:term, larm:term, rarm:term}

val dest_conj = fn : term -> {conj1:term, conj2:term}

val dest_cons = fn : term -> {hd:term, tl:term}

val dest_const = fn : term -> {Name:string, Ty:hol_type}

val dest_disj = fn : term -> {disj1:term, disj2:term}

val dest_eq = fn : term -> {lhs:term, rhs:term}

val dest_exists = fn : term -> {Body:term, Bvar:term}

val dest_forall = fn : term -> {Body:term, Bvar:term}

val dest_imp = fn : term -> {ant:term, conseq:term}

val dest_let = fn : term -> {arg:term, func:term}

val dest_list = fn : term -> {els:term list, ty:hol_type}

val dest_pabs = fn : term -> {body:term, varstruct:term}

val dest_pair = fn : term -> {fst:term, snd:term}

val dest_select = fn : term -> {Body:term, Bvar:term}

val dest_type = fn : hol_type -> {Args:hol_type list, Tyop:string}

val dest_var = fn : term -> {Name:string, Ty:hol_type}

val inst = fn : hol_type subst -> term -> term

val match_term = fn : term -> term -> term subst * hol_type subst

val match_type = fn : hol_type -> hol_type -> hol_type subst

val mk_abs = fn : {Body:term, Bvar:term} -> term

val mk_comb = fn : {Rand:term, Rator:term} -> term

val mk_cond = fn : {cond:term, larm:term, rarm:term} -> term

RULE ASSUM TAC 875

val mk_conj = fn : {conj1:term, conj2:term} -> term

val mk_cons = fn : {hd:term, tl:term} -> term

val mk_const = fn : {Name:string, Ty:hol_type} -> term

val mk_disj = fn : {disj1:term, disj2:term} -> term

val mk_eq = fn : {lhs:term, rhs:term} -> term

val mk_exists = fn : {Body:term, Bvar:term} -> term

val mk_forall = fn : {Body:term, Bvar:term} -> term

val mk_imp = fn : {ant:term, conseq:term} -> term

val mk_let = fn : {arg:term, func:term} -> term

val mk_list = fn : {els:term list, ty:hol_type} -> term

val mk_pabs = fn : {body:term, varstruct:term} -> term

val mk_pair = fn : {fst:term, snd:term} -> term

val mk_primed_var = fn : {Name:string, Ty:hol_type} -> term

val mk_select = fn : {Body:term, Bvar:term} -> term

val mk_type = fn : {Args:hol_type list, Tyop:string} -> hol_type

val mk_var = fn : {Name:string, Ty:hol_type} -> term

val new_binder = fn : {Name:string, Ty:hol_type} -> unit

val new_constant = fn : {Name:string, Ty:hol_type} -> unit

val new_infix = fn : {Name:string, Prec:int, Ty:hol_type} -> unit

val new_recursive_definition = fn

: {def:term, fixity:fixity, name:string, rec_axiom:thm} -> thm

val new_specification = fn

: {consts:{const_name:string, fixity:fixity} list,

name:string, sat_thm:thm}

-> thm

val new_type = fn : {Arity:int, Name:string} -> unit

val new_type_definition = fn

: {inhab_thm:thm, name:string, pred:term} -> thm

val subst = fn : term subst -> term -> term

val subst_occs = fn : int list list -> term subst -> term -> term

val type_subst = fn : hol_type subst -> hol_type -> hol_type

See also
Psyntax.

RULE_ASSUM_TAC (Tactic)

RULE_ASSUM_TAC : ((thm -> thm) -> tactic)

876 CHAPTER 1. ENTRIES

Synopsis
Maps an inference rule over the assumptions of a goal.

Description
When applied to an inference rule f and a goal ({A1,...,An} ?- t), the RULE_ASSUM_TAC

tactical applies the inference rule to each of the ASSUMEd assumptions to give a new goal.

{A1,...,An} ?- t

==================================== RULE_ASSUM_TAC f

{f(A1 |- A1),...,f(An |- An)} ?- t

Failure
The application of RULE_ASSUM_TAC f to a goal fails iff f fails when applied to any of the
assumptions of the goal.

Comments
It does not matter if the goal has no assumptions, but in this case RULE_ASSUM_TAC has
no effect.

See also
Tactical.ASSUM LIST, Tactical.MAP EVERY, Tactical.MAP FIRST,

Tactical.POP ASSUM LIST.

RW_TAC (BasicProvers)

RW_TAC : simpset -> thm list -> tactic

Synopsis
Simplification with case-splitting and built-in knowledge of declared datatypes.

Description
bossLib.RW_TAC is identical to BasicProvers.RW_TAC.

See also
bossLib.RW TAC.

RW_TAC (bossLib)

RW_TAC : simpset -> thm list -> tactic

S 877

Synopsis
Simplification with case-splitting and built-in knowledge of declared datatypes.

Description
RW_TAC is a simplification tactic that provides conditional and contextual rewriting, and
automatic invocation of conversions and decision procedures in the course of simplifi-
cation. An application RW_TAC ss thl adds the theorems in thl to the simpset ss and
proceeds to simplify the goal.

The process is based upon the simplification procedures in simpLib, but is more persis-
tent in attempting to apply rewrite rules. It automatically incorporates relevant results
from datatype declarations (the most important of these are injectivity and distinctness
of constructors). It uses the current hypotheses when rewriting the goal. It automat-
ically performs case-splitting on conditional expressions in the goal. It simplifies any
equation between constructors occurring in the goal or the hypotheses. It automatically
substitutes through the goal any assumption that is an equality v = M or M = v, if v is a
variable not occurring in M. It eliminates any boolean variable or negated boolean vari-
able occurring as a hypothesis. It breaks down any conjunctions, disjunctions, double
negations, or existentials occurring as hypotheses. It keeps the goal in ”stripped” format
so that the resulting goal will not be an implication or universally quantified.

Failure
Never fails, but may diverge.

Comments
The case splits arising from conditionals and disjunctions can result in many unforeseen
subgoals. In that case, SIMP_TAC or even REWRITE_TAC should be used.

The automatic incorporation of datatype facts can be slow when operating in a con-
text with many datatypes (or a few large datatypes). In such cases, SRW_TAC is preferable
to RW_TAC.

See also
bossLib.SRW TAC, bossLib.SIMP TAC, Rewrite.REWRITE TAC, bossLib.Hol datatype.

S (Lib)

S : (’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c

Synopsis
Generalized function composition: S f g x equals f x (g x).

878 CHAPTER 1. ENTRIES

Failure
S f never fails and S f g never fails, but S f g x fails if g x fails or f x (g x) fails.

See also
Lib, Lib.##, Lib.A, Lib.B, Lib.C, Lib.I, Lib.K, Lib.W.

same_const (Term)

same_const : term -> term -> bool

Synopsis
Constant time equality check for constants.

Description
In many cases, one needs to check that a constant is an instance of the generic constant
originally introduced into the signature, or that two constants are both type instantia-
tions of another. This can be achieved by taking the constants apart with dest_thy_const

and comparing their name and theory. However, this is relatively inefficient. Instead,
one can invoke same_const, which takes constant time.

Failure
Never fails.

Example

- same_const boolSyntax.universal (rator (concl BOOL_CASES_AX));

> val it = true : bool

See also
Term.aconv, Term.dest thy const, Term.match term.

SAT_PROVE (HolSatLib)

val SAT_PROVE : Term.term -> Thm.thm

save 879

Synopsis
Proves that the supplied term is a tautology, or provides a counterexample.

Description
The supplied term should be purely propositional, i.e., atoms must be Boolean variables
or constants, and conditionals must be Boolean-valued. SAT_PROVE uses the MiniSat
SAT solver’s proof logging feature to construct and verify a resolution refutation for the
negation of the supplied term.

Failure
Fails if the supplied term is not a tautology. In this case, a theorem providing a satisfying
assignment for the negation of the input term is returned, wrapped in an exception.

Example

- load "HolSatLib"; open HolSatLib;

(* output omitted *)

> val it = () : unit

- SAT_PROVE ‘‘(a ==> b) /\ (b ==> a) ==> (a=b)‘‘;

> val it = |- (a ==> b) /\ (b ==> a) ==> (a = b) : thm

- SAT_PROVE ‘‘~((a ==> b) /\ (b ==> a) ==> (a=b))‘‘

handle HolSatLib.SAT_cex th => th;

> val it = |- ~b /\ a ==> ~~((a ==> b) /\ (b ==> a) ==> (a = b)) : thm

Comments
If MiniSat terminates abnormally, or if the MiniSat binary cannot be located or executed,
SAT PROVE falls back to a slower propositional tautology prover implemented in SML.
For low-level use of SAT solver facilities and other details, see the section on the HolSat
library in the HOL Description.

save (proofManagerLib)

save : unit -> proof

Synopsis
Marks the current proof state as a save point, and clears the automatic undo history.

Description
The function save is part of the subgoal package. A call to save clears the automatic
proof history and marks the current state as a save point. A call to backup at a save

880 CHAPTER 1. ENTRIES

point will fail. In contrast to forget_history, however, save does not clear the initial
goal or any previous save points. Therefore a call to restore or restart at a save point
will succeed. For a description of the subgoal package, see set_goal.

Failure
The function save will fail only if no goalstack is being managed.

Uses
Creating save points in an interactive proof, to allow user-directed back tracking. This
is in contrast to the automatic back tracking facilitated by backup.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

save_thm (Theory)

save_thm : string * thm -> thm

Synopsis
Stores a theorem in the current theory segment.

Description
The call save_thm(name, th) adds the theorem th to the current theory segment under
the name name. The theorem is also the return value of the call. When the current
segment thy is exported, things are arranged in such a way that, if thyTheory is loaded
into a later session, the ML variable thyTheory.name will have th as its value.

Failure
If th is out-of-date, then save_thm will fail. If name is not a valid ML alphanumeric
identifier, save_thm will not fail, but export_theory will (printing an informative error
message first).

Example

- val foo = save_thm("foo", REFL (Term ‘x:bool‘));

> val foo = |- x = x : thm

- current_theorems();

> val it = [("foo", |- x = x)] : (string * thm) list

say 881

Comments
If a theorem is already saved under name in the current theory segment, it will be over-
written.

The results of new_axiom, and definition principle (such as new_definition, new_type_definition,
and new_specification) are automatically stored in the current theory: one does not
have to call save_thm on them.

Uses
Saving important theorems for eventual export. Binding the result of save_thm to an ML
variable makes it easy to access the theorem in the remainder of the current session.

See also
Theory.new theory, Tactical.store thm, DB.fetch, DB.thy,

Theory.current definitions, Theory.current theorems, Theory.uptodate thm,

Theory.new axiom, Definition.new type definition, Definition.new definition,

Definition.new specification.

say (Lib)

say : string -> unit

Synopsis
Print a string.

Description
An application say s prints the string s on the standard output.

Failure
Never fails.

Comments
The Standard ML Basis Library structure TextIO offers related functions.

SBC_CONV (reduceLib)

SBC_CONV : conv

882 CHAPTER 1. ENTRIES

Synopsis
Calculates by inference the difference of two numerals.

Description
If m and n are numerals (e.g. 0, 1, 2, 3,...), then SBC_CONV "m - n" returns the theorem:

|- m - n = s

where s is the numeral that denotes the difference of the natural numbers denoted by m

and n.

Failure
SBC_CONV tm fails unless tm is of the form "m - n", where m and n are numerals.

Example

#SBC_CONV "25 - 30";;

|- 25 - 30 = 0

#SBC_CONV "200 - 200";;

|- 200 - 200 = 0

#SBC_CONV "60 - 17";;

|- 60 - 17 = 43

SCANL_CONV (listLib)

SCANL_CONV : conv -> conv

Synopsis
Computes by inference the result of applying a function to the elements of a list.

Description
SCANL_CONV takes a conversion conv and a term tm in the following form:

SCANL f e0 [x1;...xn]

It returns the theorem

|- SCANL f e0 [x1;...xn] = [e0; e1; ...;en]

SCANR CONV 883

where ei is the result of applying the function f to the result of the previous iteration
and the current element, i.e., ei = f e(i-1) xi. The iteration starts from the left-hand
side (the head) of the list. The user supplied conversion conv is used to derive a theorem

|- f e(i-1) xi = ei

which is used in the next iteration.

Failure
SCANL_CONV conv tm fails if tm is not of the form described above, or failure occurs when
evaluating conv (--‘f e(i-1) xi‘--).

Example
To sum the elements of a list and save the result at each step, one can use SCANL_CONV

with ADD_CONV from the library num_lib.

- load_library_in_place num_lib;

- SCANL_CONV Num_lib.ADD_CONV (--‘SCANL $+ 0 [1;2;3]‘--);

|- SCANL $+ 0[1;2;3] = [0;1;3;6]

In general, if the function f is an explicit lambda abstraction (\x x’. t[x,x’]), the
conversion should be in the form

((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv’))

where conv’ applied to t[x,x’] returns the theorem

|-t[x,x’] = e’’.

See also
listLib.SCANR CONV, listLib.FOLDL CONV, listLib.FOLDR CONV,

listLib.list FOLD CONV.

SCANR_CONV (listLib)

SCANR_CONV : conv -> conv

Synopsis
Computes by inference the result of applying a function to the elements of a list.

Description
SCANR_CONV takes a conversion conv and a term tm in the following form:

884 CHAPTER 1. ENTRIES

SCANR f e0 [xn;...;x1]

It returns the theorem

|- SCANR f e0 [xn;...;x1] = [en; ...;e1;e0]

where ei is the result of applying the function f to the result of the previous iteration
and the current element, i.e., ei = f e(i-1) xi. The iteration starts from the right-hand
side (the tail) of the list. The user supplied conversion conv is used to derive a theorem

|- f e(i-1) xi = ei

which is used in the next iteration.

Failure
SCANR_CONV conv tm fails if tm is not of the form described above, or failure occurs when
evaluating conv (--‘f e(i-1) xi‘--).

Example
To sum the elements of a list and save the result at each step, one can use SCANR_CONV

with ADD_CONV from the library num_lib.

- load_library_in_place num_lib;

- SCANR_CONV Num_lib.ADD_CONV (--‘SCANR $+ 0 [1;2;3]‘--);

|- SCANR $+ 0[1;2;3] = [6;5;3;0]

In general, if the function f is an explicit lambda abstraction (\x x’. t[x,x’]), the
conversion should be in the form

((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv’))

where conv’ applied to t[x,x’] returns the theorem

|-t[x,x’] = e’’.

See also
listLib.SCANL CONV, listLib.FOLDL CONV, listLib.FOLDR CONV,

listLib.list FOLD CONV.

scrub (Theory)

scrub : unit -> unit

scrub 885

Synopsis
Remove all out-of-date elements from the current theory segment.

Description
An invocation scrub() goes through the current theory segment and removes all out-of-
date elements.

Failure
Never fails.

Example
In the following, we define a concrete type and examine the current theory segment to
see what consequences of this definition have been stored there. Then we delete the
type, which turns all those consequences into garbage. An query, like current_theorems,
shows that this garbage is not collected automatically. A manual invocation of scrub is
necessary to show the true state of play.

- Hol_datatype ‘foo = A | B of ’a‘;

<<HOL message: Defined type: "foo">>

> val it = () : unit

- current_theorems();

> val it =

[("foo_induction", |- !P. P A /\ (!a. P (B a)) ==> !f. P f),

("foo_Axiom", |- !f0 f1. ?fn. (fn A = f0) /\ !a. fn (B a) = f1 a),

("foo_nchotomy", |- !f. (f = A) \/ ?a. f = B a),

("foo_case_cong",

|- !M M’ v f.

(M = M’) /\ ((M’ = A) ==> (v = v’)) /\

(!a. (M’ = B a) ==> (f a = f’ a)) ==>

(case v f M = case v’ f’ M’)),

("foo_distinct", |- !a. ~(A = B a)),

("foo_11", |- !a a’. (B a = B a’) = (a = a’))] : (string * thm) list

- delete_type "foo";

> val it = () : unit

- current_theorems();

> val it =

[("foo_induction", |- !P. P A /\ (!a. P (B a)) ==> !f. P f),

("foo_Axiom", |- !f0 f1. ?fn. (fn A = f0) /\ !a. fn (B a) = f1 a),

886 CHAPTER 1. ENTRIES

("foo_nchotomy", |- !f. (f = A) \/ ?a. f = B a),

("foo_case_cong",

|- !M M’ v f.

(M = M’) /\ ((M’ = A) ==> (v = v’)) /\

(!a. (M’ = B a) ==> (f a = f’ a)) ==>

(case v f M = case v’ f’ M’)),

("foo_distinct", |- !a. ~(A = B a)),

("foo_11", |- !a a’. (B a = B a’) = (a = a’))] : (string * thm) list

- scrub();

> val it = () : unit

- current_theorems();

> val it = [] : (string * thm) list

Uses
When export_theory is called, it uses scrub to prepare the current segment for export.
Users can also call scrub to find out what setting they are really working in.

See also
Theory.uptodate type, Theory.uptodate term, Theory.uptodate thm,

Theory.delete type, Theory.delete const.

search_top_down (Cond_rewrite)

search_top_down

: (term -> term -> ((term # term) list # (type # type) list) list)

Synopsis
Search a term in a top-down fashion to find matches to another term.

Description
search_top_down tm1 tm2 returns a list of instantiations which make the whole or part
of tm2 match tm1. The first term should not have a quantifier at the outer most level.
search_top_down first attempts to match the whole second term to tm1. If this fails, it
recursively descend into the subterms of tm2 to find all matches.

SEG CONV 887

The length of the returned list indicates the number of matches found. An empty
list means no match can be found between tm1 and tm2 or any subterms of tm2. The
instantiations returned in the list are in the same format as for the function match. Each
instantiation is a pair of lists: the first is a list of term pairs and the second is a list of type
pairs. Either of these lists may be empty. The situation in which both lists are empty
indicates that there is an exact match between the two terms, i.e., no instantiation is
required to make the entire tm2 or a part of tm2 the same as tm1.

Failure
Never fails.

Example

#search_top_down "x = y:*" "3 = 5";;

[([("5", "y"); ("3", "x")], [(":num", ":*")])]

: ((term # term) list # (type # type) list) list

#search_top_down "x = y:*" "x =y:*";;

[([], [])] : ((term # term) list # (type # type) list) list

#search_top_down "x = y:*" "0 < p ==> (x <= p = y <= p)";;

[([("y <= p", "y"); ("x <= p", "x")], [(":bool", ":*")])]

: ((term # term) list # (type # type) list) list

The first example above shows the entire tm2 matching tm1. The second example shows
the two terms match exactly. No instantiation is required. The last example shows that
a subterm of tm2 can be instantiated to match tm1.

See also
Db.match.

SEG_CONV (listLib)

SEG_CONV : conv

Synopsis
Computes by inference the result of taking a segment of a list.

Description
For any object language list of the form --‘[x0;...x(n-1)]‘-- , the result of evaluating

888 CHAPTER 1. ENTRIES

SEG_CONV (--‘SEG m k [x0;...;x(n-1)]‘--)

is the theorem

|- SEG m k [x0;...;x(n-1)] = [xk;...;x(m+k-1)]

Failure
SEG_CONV tm fails if tm is not in the form described above or the indexes m and k are not
in the correct range, i.e., m + k <= n.

Example
Evaluating the expression

SEG_CONV (--‘SEG 2 3[0;1;2;3;4;5]‘--);

returns the following theorem

|- SEG 2 3[0;1;2;3;4;5] = [3;4]

See also
listLib.FIRSTN CONV, listLib.LASTN CONV, listLib.BUTFIRSTN CONV,

listLib.BUTLASTN CONV, listLib.LAST CONV, listLib.BUTLAST CONV.

select (boolSyntax)

select : term

Synopsis
Constant denoting Hilbert’s choice operator.

Description
The ML variable boolSyntax.select is bound to the term min$@.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.T, boolSyntax.F,

boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,

boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,

boolSyntax.arb.

SELECT CONV 889

SELECT_CONV (Conv)

SELECT_CONV : conv

Synopsis
Eliminates an epsilon term by introducing an existential quantifier.

Description
The conversion SELECT_CONV expects a boolean term of the form P[@x.P[x]/x], which
asserts that the epsilon term @x.P[x] denotes a value, x say, for which P[x] holds. This
assertion is equivalent to saying that there exists such a value, and SELECT_CONV applied
to a term of this form returns the theorem |- P[@x.P[x]/x] = ?x. P[x].

Failure
Fails if applied to a term that is not of the form P[@x.P[x]/x].

Example

SELECT_CONV (Term ‘(@n. n < m) < m‘);

val it = |- (@n. n < m) < m = (?n. n < m) : thm

Uses
Particularly useful in conjunction with CONV_TAC for proving properties of values denoted
by epsilon terms. For example, suppose that one wishes to prove the goal

([0 < m], (@n. n < m) < SUC m)

Using the built-in arithmetic theorem

LESS_SUC |- !m n. m < n ==> m < (SUC n)

this goal may be reduced by the tactic MATCH_MP_TAC LESS_SUC to the subgoal

([0 < m], (@n. n < m) < m)

This is now in the correct form for using CONV_TAC SELECT_CONV to eliminate the epsilon
term, resulting in the existentially quantified goal

([0 < m], ?n. n < m)

890 CHAPTER 1. ENTRIES

which is then straightforward to prove.

See also
Drule.SELECT ELIM, Drule.SELECT INTRO, Drule.SELECT RULE.

SELECT_ELIM (Drule)

SELECT_ELIM : thm -> term * thm -> thm

Synopsis
Eliminates an epsilon term, using deduction from a particular instance.

Description
SELECT_ELIM expects two arguments, a theorem th1, and a pair (v,th2): term * thm.
The conclusion of th1 should have the form P($@ P), which asserts that the epsilon term
$@ P denotes some value at which P holds. In th2, the variable v appears only in the
assumption P v. The conclusion of the resulting theorem matches that of th2, and the
hypotheses include the union of all hypotheses of the premises excepting P v.

A1 |- P($@ P) A2 u {P v} |- t

----------------------------------- SELECT_ELIM th1 (v,th2)

A1 u A2 |- t

where v is not free in A2. The argument to P in the conclusion of th1 may actually be
any term x. If v appears in the conclusion of th2, this argument x (usually the epsilon
term) will NOT be eliminated, and the conclusion will be t[x/v].

Failure
Fails if the first theorem is not of the form A1 |- P x, or if the variable v occurs free in
any other assumption of th2.

Example
If a property of functions is defined by:

INCR = |- !f. INCR f = (!t1 t2. t1 < t2 ==> (f t1) < (f t2))

The following theorem can be proved.

th1 = |- INCR(@f. INCR f)

Additionally, if such a function is assumed to exist, then one can prove that there also
exists a function which is injective (one-to-one) but not surjective (onto).

SELECT ELIM TAC 891

th2 = [INCR g] |- ?h. ONE_ONE h /\ ~ONTO h

These two results may be combined using SELECT_ELIM to give a new theorem:

- SELECT_ELIM th1 (‘‘g:num->num‘‘, th2);

val it = |- ?h. ONE_ONE h /\ ~ONTO h : thm

Uses
This rule is rarely used. The equivalence of P($@ P) and $? P makes this rule funda-
mentally similar to the ?-elimination rule CHOOSE.

See also
Thm.CHOOSE, Conv.SELECT CONV, Tactic.SELECT ELIM TAC, Drule.SELECT INTRO,

Drule.SELECT RULE.

SELECT_ELIM_TAC (Tactic)

SELECT_ELIM_TAC : tactic

Synopsis
Eliminates a Hilbert-choice (”selection”) term from the goal.

Description
SELECT_ELIM_TAC searches the goal it is applied to for terms involving the Hilbert-choice
operator, of the form @x. If such a term is found, then the tactic will produce a
new goal, where the choice term has disappeared. The resulting goal will require the
proof of the non-emptiness of the choice term’s predicate, and that any possible choice
of value from that predicate will satisfy the original goal.

Thus, SELECT_ELIM_TAC can be seen as a higher-order match against the theorem

|- !P Q. (?x. P x) /\ (!x. P x ==> Q x) ==> Q ($@ P)

where the new goal is the antecedent of the implication. (This theorem is SELECT_ELIM_THM,
from theory bool.)

Example
When applied to this goal,

- SELECT_ELIM_TAC ([], ‘‘(@x. x < 4) < 5‘‘);

> val it = ([([], ‘‘(?x. x < 4) /\ !x. x < 4 ==> x < 5‘‘)], fn) :

(term list * term) list * (thm list -> thm)

892 CHAPTER 1. ENTRIES

the resulting goal requires the proof of the existence of a number less than 4, and also
that any such number is also less than 5.

Failure
Fails if there are no choice terms in the goal.

Comments
If the choice-term’s predicate is everywhere false, goals involving such terms will be true
only if the choice of term makes no difference at all. Such situations can be handled
with the use of SPEC_TAC. Note also that the choice of select term to eliminate is made
in an unspecified manner.

See also
Drule.SELECT ELIM, Drule.SELECT INTRO, Drule.SELECT RULE, Tactic.SPEC TAC.

SELECT_EQ (Drule)

SELECT_EQ : (term -> thm -> thm)

Synopsis
Applies epsilon abstraction to both terms of an equation.

Description
Effects the extensionality of the epsilon operator @.

A |- t1 = t2

------------------------ SELECT_EQ "x" [where x is not free in A]

A |- (@x.t1) = (@x.t2)

Failure
Fails if the conclusion of the theorem is not an equation, or if the variable x is free in A.

Example
Given a theorem which shows the equivalence of two distinct forms of defining the
property of being an even number:

th = |- (x MOD 2 = 0) = (?y. x = 2 * y)

A theorem giving the equivalence of the epsilon abstraction of each form is obtained:

SELECT INTRO 893

- SELECT_EQ (Term ‘x:num‘) th;

> val it = |- (@x. x MOD 2 = 0) = (@x. ?y. x = 2 * y) : thm

See also
Thm.ABS, Thm.AP TERM, Drule.EXISTS EQ, Drule.FORALL EQ, Conv.SELECT CONV,

Drule.SELECT ELIM, Drule.SELECT INTRO.

SELECT_INTRO (Drule)

SELECT_INTRO : (thm -> thm)

Synopsis
Introduces an epsilon term.

Description
SELECT_INTRO takes a theorem with an applicative conclusion, say P x, and returns a
theorem with the epsilon term $@ P in place of the original operand x.

A |- P x

-------------- SELECT_INTRO

A |- P($@ P)

The returned theorem asserts that $@ P denotes some value at which P holds.

Failure
Fails if the conclusion of the theorem is not an application.

Example
Given the theorem

th1 = |- (\n. m = n)m

applying SELECT_INTRO replaces the second occurrence of m with the epsilon abstraction
of the operator:

- val th2 = SELECT_INTRO th1;

val th2 = |- (\n. m = n)(@n. m = n) : thm

This theorem could now be used to derive a further result:

- EQ_MP (BETA_CONV(concl th2)) th2;

val it = |- m = (@n. m = n) : thm

894 CHAPTER 1. ENTRIES

See also
Thm.EXISTS, Conv.SELECT CONV, Drule.SELECT ELIM, Drule.SELECT RULE.

SELECT_RULE (Drule)

SELECT_RULE : thm -> thm

Synopsis
Introduces an epsilon term in place of an existential quantifier.

Description
The inference rule SELECT_RULE expects a theorem asserting the existence of a value x

such that P holds. The equivalent assertion that the epsilon term @x.P denotes a value
of x for which P holds is returned as a theorem.

A |- ?x. P

------------------ SELECT_RULE

A |- P[(@x.P)/x]

Failure
Fails if applied to a theorem the conclusion of which is not existentially quantified.

Example
The axiom INFINITY_AX in the theory ind is of the form:

|- ?f. ONE_ONE f /\ ~ONTO f

Applying SELECT_RULE to this theorem returns the following.

- SELECT_RULE INFINITY_AX;

> val it =

|- ONE_ONE (@f. ONE_ONE f /\ ~ONTO f) /\ ~ONTO @f. ONE_ONE f /\ ~ONTO f

: thm

Uses
May be used to introduce an epsilon term to permit rewriting with a constant defined
using the epsilon operator.

set backup 895

See also
Thm.CHOOSE, Conv.SELECT CONV, Drule.SELECT ELIM, Drule.SELECT INTRO.

set_backup (proofManagerLib)

proofManagerLib.set_backup : int -> unit

Synopsis
Limits the number of proof states saved on the subgoal package backup list.

Description
The assignable variable set_backup is initially set to 12. Its value is one less than the
maximum number of proof states that may be saved on the backup list. Adding a new
proof state (by, for example, a call to expand) after the maximum is reached causes the
earliest proof state on the list to be discarded. For a description of the subgoal package,
see set_goal.

Example

- set_backup 0;

() unit

- g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proofs

- e CONJ_TAC;

OK..

2 subgoals:

> val it =

TL [1; 2; 3] = [2; 3]

896 CHAPTER 1. ENTRIES

HD [1; 2; 3] = 1

:proof

- e (REWRITE_TAC[listTheory.HD]);

OK..

Goal proved.

|- HD [1; 2; 3] = 1

Remaining subgoals:

> val it =

TL [1; 2; 3] = [2; 3]

: proof

- b();

> val it =

TL [1; 2; 3] = [2; 3]

HD [1; 2; 3] = 1

: proof

- b();

! Uncaught exception:

! CANT_BACKUP_ANYMORE

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

set_diff (Lib)

set_diff : ’’a list -> ’’a list -> ’’a list

set eq 897

Synopsis
Computes the set-theoretic difference of two ‘sets’.

Description
set_diff l1 l2 returns a list consisting of those elements of l1 that do not appear in
l2. It is identical to Lib.subtract.

Failure
Never fails.

Example

- set_diff [] [1,2];

> val it = [] : int list

- set_diff [1,2,3] [2,1];

> val it = [3] : int list

Comments
The order in which the elements occur in the resulting list should not be depended
upon.

A high-performance implementation of finite sets may be found in structure HOLset.
ML equality types are used in the implementation of union and its kin. This limits its

applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op set diff, Lib.subtract, Lib.mk set, Lib.set eq, Lib.union, Lib.intersect.

set_eq (Lib)

set_eq : ’’a list -> ’’a list -> bool

Synopsis
Tells whether two lists have the same elements.

Description
An application set_eq l1 l2 returns true just in case l1 and l2 are permutations of each
other when duplicate elements within each list are ignored.

898 CHAPTER 1. ENTRIES

Failure
Never fails.

Example

- set_eq [1,2,1] [1,2,2,1];

> val it = true : bool

- set_eq [1,2,1] [2,1];

> val it = true : bool

Comments
A high-performance implementation of finite sets may be found in structure HOLset.

ML equality types are used in the implementation of set_eq and its kin. This limits
its applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.intersect, Lib.union, Lib.U, Lib.mk set, Lib.mem, Lib.insert, Lib.set diff.

set_fixity (Parse)

set_fixity : string -> fixity -> unit

Synopsis
Allows the fixity of tokens to be updated.

Description
The set_fixity function is used to change the fixity of single tokens. It implements this
functionality rather crudely. When called on to set the fixity of t to f, it removes all
rules mentioning t from the global (term) grammar, and then adds a new rule to the
grammar. The new rule maps occurrences of t with the given fixity to terms of the same
name.

Failure
This function fails if the new fixity causes a clash with existing rules, as happens if
the precedence level of the specified fixity is already taken by rules using a fixity of a
different type. Even if the application of set_fixity succeeds, it may cause the next sub-
sequent application of the Term parsing function to complain about precedence conflicts

set fixity 899

in the operator precedence matrix. These problems may cause the parser to behave
oddly on terms involving the token whose fixity was set. Excessive parentheses will
usually cure even these problems.

Example
After a new constant is defined, set_fixity can be used to give it an appropriate parse
status:

- val thm = Psyntax.new_recursive_definition

prim_recTheory.num_Axiom "f"

(Term‘(f 0 n = n) /\ (f (SUC n) m = SUC (SUC (f n m)))‘);

> val thm =

|- (!n. f 0 n = n) /\ !n m. f (SUC n) m = SUC (SUC (f n m))

: thm

- set_fixity "f" (Infixl 500);

> val it = () : unit

- thm;

> val it =

|- (!n. 0 f n = n) /\ !n m. SUC n f m = SUC (SUC (n f m)) : thm

The same function can be used to alter the fixities of existing constants:

- val t = Term‘2 + 3 + 4 - 6‘;

> val t = ‘2 + 3 + 4 - 6‘ : term

- set_fixity "+" (Infixr 501);

> val it = () : unit

- t;

> val it = ‘(2 + 3) + 4 - 6‘ : term

- dest_comb (Term‘3 - 1 + 2‘);

> val it = (‘$- 3‘, ‘1 + 2‘) : term * term

Comments
This function is of no use if multiple-token rules (such as those for conditional expres-
sions) are desired, or if the token does not correspond to the name of the constant or
variable that is to be produced.

As with other functions in the Parse structure, there is a companion temp_set_fixity

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

See also
Parse.add rule, Parse.add infix, Parse.remove rules for term,

Parse.remove termtok.

900 CHAPTER 1. ENTRIES

set_flag_abs (holCheckLib)

set_flag_abs : bool -> model -> model

Synopsis
Sets a flag telling HolCheck whether to attempt abstraction.

Description
HolCheck uses a simple heuristic analysis of the model to determine whether it would
be worthwhile to do abstraction. This flag can be used to override the default.

Comments
This information is optional when constructing HolCheck models. The default is true.

See also
holCheckLib.holCheck, holCheckLib.empty model, holCheckLib.get flag abs.

set_flag_ric (holCheckLib)

set_flag_ric : bool -> model -> model

Synopsis
Sets a HolCheck model to be synchronous if the first argument is true, asynchronous
otherwise.

Description
ric stands for ”relation is conjunctive”. This information is used by HolCheck to de-
cide if the transitions of the model occur simultaneously (conjunctive, synchronous) or
interleaved (disjunctive, asynchronous).

Comments
This information must be set for a HolCheck model.

See also
holCheckLib.holCheck, holCheckLib.empty model, holCheckLib.get flag ric.

set goal 901

set_goal (proofManagerLib)

set_goal : term list * term -> unit

Synopsis
Initializes the subgoal package with a new goal.

Description
The function set_goal initializes the subgoal management package. A proof state of the
package consists of either a goal stack and a justification stack if a proof is in progress, or
a theorem if a proof has just been completed. set_goal sets a new proof state consisting
of an empty justification stack and a goal stack with the given goal as its sole goal. The
goal is printed.

Failure
Fails unless all terms in the goal are of type bool.

Example

- set_goal([], Term ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘);

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proofs

Uses
Starting an interactive proof session with the subgoal package.

The subgoal package implements a simple framework for interactive goal-directed
proof. When conducting a proof that involves many subgoals and tactics, the user must
keep track of all the justifications and compose them in the correct order. While this
is feasible even in large proofs, it is tedious. The subgoal package provides a way of
building and traversing the tree of subgoals top-down, stacking the justifications and
applying them properly.

The package maintains a proof state consisting of either a goal stack of outstanding
goals and a justification stack, or a theorem. Tactics are used to expand the current
goal (the one on the top of the goal stack) into subgoals and justifications. These are

902 CHAPTER 1. ENTRIES

pushed onto the goal stack and justification stack, respectively, to form a new proof
state. Several preceding proof states are saved and can be returned to if a mistake is
made in the proof. The goal stack is divided into levels, a new level being created each
time a tactic is successfully applied to give new subgoals. The subgoals of the current
level may be considered in any order.

If a tactic solves the current goal (returns an empty subgoal list), then its justification
is used to prove a corresponding theorem. This theorem is then incorporated into the
justification of the parent goal. If the subgoal was the last subgoal of the level, the level
is removed and the parent goal is proved using its (new) justification. This process is
repeated until a level with unproven subgoals is reached. The next goal on the goal
stack then becomes the current goal. If all the subgoals are proved, the resulting proof
state consists of the theorem proved by the justifications. This theorem may be accessed
and saved.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

set_implicit_rewrites (Rewrite)

set_implicit_rewrites: rewrites -> unit

Synopsis
Allows the user to control the built-in database of simplifications used in rewriting.

Failure
Never fails.

See also
Rewrite.empty rewrites, Rewrite.add rewrites.

SET_INDUCT_TAC (pred_setLib)

SET_INDUCT_TAC : tactic

set init 903

Synopsis
Tactic for induction on finite sets.

Description
SET_INDUCT_TAC is an induction tacic for proving properties of finite sets. When applied
to a goal of the form

!s. FINITE s ==> P[s]

SET_INDUCT_TAC reduces this goal to proving that the property \s.P[s] holds of the
empty set and is preserved by insertion of an element into an arbitrary finite set. Since
every finite set can be built up from the empty set {} by repeated insertion of values,
these subgoals imply that the property \s.P[s] holds of all finite sets.

The tactic specification of SET_INDUCT_TAC is:

A ?- !s. FINITE s ==> P

== SET_INDUCT_TAC

A |- P[{{}}/s]

A u {FINITE s’, P[s’/s], ~e IN s’} ?- P[e INSERT s’/s]

where e is a variable chosen so as not to appear free in the assumptions A, and s’ is a
primed variant of s that does not appear free in A (usually, s’ is just s).

Failure
SET_INDUCT_TAC (A,g) fails unless g has the form !s. FINITE s ==> P, where the vari-
able s has type ty->bool for some type ty.

set_init (holCheckLib)

set_init : term -> model -> model

Synopsis
Sets the initial set of states of a HolCheck model.

Description
The supplied term should be a term of propositional logic over the state variables, with
no primed variables.

Failure
Fails if the supplied term is not a quantified boolean formula (QBF).

904 CHAPTER 1. ENTRIES

Example
For a mod-8 counter, we need three boolean variables to encode the state. If the counter
starts at 0, the set of initial states of the model would be set as follows (assuming
holCheckLib has been loaded):

- val m = holCheckLib.set_init ‘‘~v0 /\ ~v1 /\ ~v2‘‘ holCheckLib.empty_model;

> val m = <model> : model

where empty model can be replaced by whatever model the user is building.

Comments
This information must be set for a HolCheck model.

See also
holCheckLib.holCheck, holCheckLib.empty model, holCheckLib.get init.

set_known_constants (Parse)

Parse.set_known_constants : string list -> unit

Synopsis
Specifies the list of names that should be parsed as constants.

Description
One of the final phases of parsing is the resolution of free names in putative terms as ei-
ther variables, constants or overloaded constants. If such a free name is not overloaded,
then the list of known constants is consulted to determine whether or not to treat it as a
constant. If the name is not present in the list, then it will be treated as a free variable.

Failure
Never fails. If a name is specified in the list of constants that is not in fact a constant, a
warning message is printed, and that name is ignored.

Example

- known_constants();

> val it =

["bool_case", "ARB", "TYPE_DEFINITION", "ONTO", "ONE_ONE", "COND",

"LET", "?!", "~", "F", "\\/", "/\\", "!", "T", "?", "@",

"==>", "="]

set list thm database 905

: string list

- Term‘p /\ q‘;

> val it = ‘p /\ q‘ : term

- set_known_constants (Lib.subtract (known_constants()) ["/\\"]);

> val it = () : unit

- Term‘p /\ q‘;

<<HOL message: inventing new type variable names: ’a, ’b, ’c.>>

> val it = ‘p /\ q‘ : term

- strip_comb it;

> val it = (‘$/\‘, [‘p‘, ‘q‘]) : term * term list

- dest_var (#1 it);

> val it = ("/\\", ‘:’a -> ’b -> ’c‘) : string * hol_type

Uses
When writing library code that calls the parser, it can be useful to know exactly what
constants the parser will ”recognise”.

Comments
This function does not affect the contents of a theory. A constant made invisible using
this call is still really present in the theory; it is just harder to find.

See also
Parse.hidden, Parse.hide, Parse.known constants, Parse.reveal.

set_list_thm_database (listLib)

set_list_thm_database: {{Aux_thms: thm list, Fold_thms: thm list}} -> unit

Synopsis
Modifies the database of theorems known by LIST_CONV and X_LIST_CONV.

Description
The conversions LIST_CONV and X_LIST_CONV use a database of theorems relating to
system list constants. These theorems fall into two categories: definitions of list
operators in terms of FOLDR and FOLDL; and auxiliary theorems about the base ele-
ments and step functions in those definitions. The database can be modified using
set_list_thm_database.

906 CHAPTER 1. ENTRIES

A call set_list_thm_database{{Fold_thms=fold_thms,Aux_thms=aux_thms}} replaces
the existing database with the theorems given as the arguments. The Fold_thms field
of the record contains the new fold definitions. The Aux_thms field contains the new
auxiliary theorems. Theorems which do not have an appropriate form will be ignored.

The following is an example of a fold definition in the database:

|- !l. SUM l = FOLDR $+ 0 l

Here $+ is the step function and 0 is the base element of the definition. Definitions are
initially held for the following system operators: APPEND, FLAT, LENGTH, NULL, REVERSE,
MAP, FILTER, ALL_EL, SUM, SOME_EL, IS_EL, AND_EL, OR_EL, PREFIX, SUFFIX, SNOC and FLAT

combined with REVERSE.
The following is an example of an auxiliary theorem:

|- MONOID $+ 0

Auxiliary theorems stored include monoid, commutativity, associativity, binary function
commutativity, left identity and right identity theorems.

Uses
The conversion LIST_CONV uses the theorems in the database to prove theorems about
list operators. Users are encouraged to define list operators in terms of either FOLDR or
FOLDL rather than recursively. Then if the definition is passed to LIST_CONV, it will be
able to prove the recursive clauses for the definition. If auxilary properties are proved
about the step function and base element, and they are passed to LIST_CONV then it may
be able to prove other useful theorems. Theorems can be passed either as arguments to
LIST_CONV or they can be added to the database using set_list_thm_database.

Example
After the following call, LIST_CONV will only be able to prove a few theorems about SUM.

set_list_thm_database

{{Fold_thms = [theorem "list" "SUM_FOLDR"],

Aux_thms = [theorem "arithmetic" "MONOID_ADD_0"]}};

The following shows a new definition being added which multiplies the elements of a
list. LIST_CONV is then called to prove the recursive clause.

- val MULTL = new_definition("MULTL",(--‘MULTL l = FOLDR $* 1 l‘--));

val MULTL = |- !l. MULTL l = FOLDR $* 1 l : thm

- let val {{Fold_thms = fold_thms, Aux_thms = aux_thms}} = list_thm_database()

= in

= set_list_thm_database{{Fold_thms = MULTL::fold_thms,Aux_thms = aux_thms}}

set mapped fixity 907

= end;

val it = () : unit

- LIST_CONV (--‘MULTL (CONS x l)‘--);

|- MULTL (CONS x l) = x * MULTL l

Failure
Never fails.

See also
listLib.LIST CONV, listLib.list thm database, listLib.X LIST CONV.

set_mapped_fixity (Parse)

Parse.set_mapped_fixity :

{tok : string, term_name : string, fixity : fixity} -> unit

Synopsis
Allows the fixity of tokens to be updated.

Description
The set_mapped_fixity function is used to change the fixity of a single token, simul-
taneously mapping forms using that token name to a different name. Apart from the
additional term_name field, the behaviour is similar to that of set_fixity.

Failure
This function fails if the new fixity causes a clash with existing rules, as happens if
the precedence level of the specified fixity is already taken by rules using a fixity of a
different type. Even if the application of set_mapped_fixity succeeds, it may cause the
next subsequent application of the Term parsing function to complain about precedence
conflicts in the operator precedence matrix. These problems may cause the parser to
behave oddly on terms involving the token whose fixity was set. Excessive parentheses
will usually cure even these problems.

Comments
This function is of no use if multiple-token rules (such as those for conditional expres-
sions) are desired.

908 CHAPTER 1. ENTRIES

As with other functions in the Parse structure, there is a companion temp_set_mapped_fixity

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

See also
Parse.add rule, Parse.set fixity.

set_MLname (Theory)

set_MLname : string -> string -> unit

Synopsis
Change the name attached to an element of the current theory.

Description
It can happen that an axiom, definition, or theorem gets stored in the current theory
segment under a name that wouldn’t be a suitable ML identifier. For example, some
advanced definition mechanisms in HOL automatically construct names to bind the
results of making a definition. In some cases, particularly when symbolic identifiers
are involved, a binding name can be generated that is not a valid ML identifier.

In such cases, we don’t want to fail and lose the work done by the definition mech-
anism. Instead, when export_theory is invoked, all names binding axioms, definitions,
and theorems are examined to see if they are valid ML identifiers. If not, an informative
error message is generated, and it is up to the user to change the names in the offending
bindings. The function set_MLname s1 s2 will replace a binding with name s1 by one
with name s2.

Failure
Never fails, although will give a warning if s1 is not the name of a binding in the current
theory segment.

Example
We inductively define a predicate telling if a number is odd in the following. The name
is admittedly obscure, however it illustrates our point.

- Hol_reln ‘(%% 1) /\ (!n. %% n ==> %% (n+2))‘;

> val it =

(|- %% 1 /\ !n. %% n ==> %% (n + 2),

|- !%%’. %%’ 1 /\ (!n. %%’ n ==> %%’ (n + 2)) ==> !a0. %% a0 ==> %%’ a0,

set name 909

|- !a0. %% a0 = (a0 = 1) \/ ?n. (a0 = n + 2) /\ %% n) : thm * thm * thm

- export_theory();

<<HOL message: The following ML binding names in the theory to be exported:

"%%_rules", "%%_ind", "%%_cases"

are not acceptable ML identifiers.

Use ‘set_MLname <bad> <good>’ to change each name.>>

! Uncaught exception:

! HOL_ERR

- (set_MLname "%%_rules" "odd_rules"; (* OK, do what it says *)

set_MLname "%%_ind" "odd_ind";

set_MLname "%%_cases" "odd_cases");

> val it = () : unit

- export_theory();

Exporting theory "scratch" ... done.

> val it = () : unit

Comments
The definition principles that currently have the potential to make problematic bindings
are Hol_datatype and Hol_reln.

It is slightly awkward to have to repair the names in a post-hoc fashion. It is probably
simpler to proceed by using alphanumeric names when defining constants, and to use
overloading to get the desired name.

See also
bossLib.Hol reln, bossLib.Hol datatype, Theory.export theory,

Theory.current definitions, Theory.current theorems, Theory.current axioms,

DB.thy, DB.dest theory.

set_name (holCheckLib)

set_name : string -> model -> model

Synopsis
Sets the name given to the formal model HolCheck constructs internally.

910 CHAPTER 1. ENTRIES

Failure
Fails if the first argument does not follow the naming rules for constants.

Comments
This information is optional when constructing HolCheck models. It should be set if
more than one model is being used in the same session, to avoid name clashes.

See also
holCheckLib.holCheck, holCheckLib.empty model, holCheckLib.get name.

set_props (holCheckLib)

set_props : (string * term) list -> model -> model

Synopsis
Sets the properties to be checked for the supplied HolCheck model.

Description
The first argument is a list of (property name, property) pair, where the name is a
string and the property is a well-formed CTL or mu-calculus property. The list must not
be empty. Names must be unique.

In the properties, care must be taken to model atomic propositions as functions on
the state. At the moment, only boolean variables are allowed as atomic propositions.

Failure
Fails if the property list is empty, or the names violate HOL constant naming rules, or
names are unique. Also fails if any atomic proposition is not a paired abstraction of the
form \state. boolvar.

Example
Specifing a CTL property for a mod-8 counter assuming holCheckLib has been loaded
(there exists a future in which the most significant bit will go high) :

- val m = holCheckLib.set_props [("ef_msb_high",‘‘C_EF (C_BOOL (B_PROP (\(v0,v1,v2). v2))‘‘)] holCheckLib.empty_model

> val m = <model> : model

Comments
This information must be set for a HolCheck model. For more details on how to specify
properties, see the examples in the src/HolCheck/examples directory; the mod8 and
amba apb examples are good starting points.

SET SPEC CONV 911

See also
holCheckLib.holCheck, holCheckLib.empty model, holCheckLib.get props,

holCheckLib.get results, holCheckLib.set state, holCheckLib.prove model.

SET_SPEC_CONV (pred_setLib)

SET_SPEC_CONV : conv

Synopsis
Axiom-scheme of specification for set abstractions.

Description
The conversion SET_SPEC_CONV expects its term argument to be an assertion of the form
t IN {E | P}. Given such a term, the conversion returns a theorem that defines the
condition under which this membership assertion holds. When E is just a variable v, the
conversion returns:

|- t IN {v | P} = P[t/v]

and when E is not a variable but some other expression, the theorem returned is:

|- t IN {E | P} = ?x1...xn. (t = E) /\ P

where x1, ..., xn are the variables that occur free both in the expression E and in the
proposition P.

Example

- SET_SPEC_CONV ‘‘12 IN {n | n > N}‘‘;

|- 12 IN {n | n > N} = 12 > N

- SET_SPEC_CONV ‘‘p IN {(n,m) | n < m}‘‘;

|- p IN {(n,m) | n < m} = (?n m. (p = n,m) /\ n < m)

Failure
Fails if applied to a term that is not of the form t IN {E | P}.

set_state (holCheckLib)

set_state : term -> model -> model

912 CHAPTER 1. ENTRIES

Synopsis
Sets the state tuple used internally by the formal model contructed by HolCheck.

Comments
This information is optional when constructing HolCheck models. By default, HolCheck
will construct the state tuple itself. In practice however, a user nearly always needs to
supply the state tuple, since it is almost always required when specifying properties.

See also
holCheckLib.holCheck, holCheckLib.mk state, holCheckLib.get state.

set_trace (Feedback)

set_trace : string -> int -> unit

Synopsis
Set a tracing level for a registered trace.

Description
Invoking set_trace n i sets the level of the tracing mechanism registered under n to be
i. These settings control the verboseness of various tools within the system. This can
be useful both when debugging proofs (with the simplifier for example), and also as a
guide to how an automatic proof is proceeding (with mesonLib for example).

There is no single interpretation of what activity a tracing level should evoke: each
tool registered for tracing can treat its trace level in its own way.

Failure
A call to set_trace n i fails if n has not previously been registered via register_trace.
It also fails if i is less than zero, or if it is greater than the trace’s specified maximum
value.

Example

- set_trace "Rewrite" 1;

- PURE_REWRITE_CONV [AND_CLAUSES] (Term ‘x /\ T /\ y‘);

<<HOL message: Rewrite:

|- T /\ y = y.>>

> val it = |- x /\ T /\ y = x /\ y : thm

set trans 913

See also
Feedback, Feedback.register trace, Feedback.reset trace, Feedback.reset traces,

Feedback.trace, Feedback.traces.

set_trans (holCheckLib)

set_trans : (string * Term.term) list -> model -> model

Synopsis
Sets the transition system for a HolCheck model.

Description
The transition system is supplied as list of (transition label, transition relation) pairs.
Each label must be a unique string. Each relation must be a propositional term, in which
primed variables represent values in the next state. The transition label ”.” is internally
used as a wildcard that is expected to match all transitions, and is thus not allowed as
a transition label, unless there is only one transition.

Failure
Fails if the transition labels are not unique, or the transition list is empty, or the wildcard
label is used with a non-singleton transition list, or any of the relation terms is not a
quantified boolean formula (QBF).

Example
For a mod-8 counter, we need three boolean variables to encode the state. The single
transition relation can then be set as follows (assuming holCheckLib has been loaded):

- val m = holCheckLib.set_trans [("v0", ‘‘v0’ = ~v0‘‘), ("v1", ‘‘v1’ = (v0 \/ v1) /\ ~(v0 = v1)‘‘),

("v2", ‘‘v2’ = (v0 /\ v1 \/ v2) /\ ~(v0 /\ v1 = v2)‘‘)] holCheckLib.empty_model;

> val m = <model> : model

where empty model can be replaced by whatever model the user is building.

Comments
This information must be set for a HolCheck model.

See also
holCheckLib.holCheck, holCheckLib.empty model, holCheckLib.get trans,

holCheckLib.set flag ric.

914 CHAPTER 1. ENTRIES

set_vord (holCheckLib)

set_vord : string list -> model -> model

Synopsis
Sets the BDD variable ordering used by HolCheck for the given model.

Description
The first argument specifies the ordering of variables. This ordering must contain all
current- and next-state variables specified by set init and set trans. In particular, if
either set init or set trans use a variable v, then v’ must be mentioned in the ordering.
Likewise for unprimed versions of primed variables.

Comments
This information is optional when constructing HolCheck models. By default, HolCheck
constructs its own heuristic-based variable ordering. The heuristic used is a rather
primitive one, at the moment. It just interleaves next- and current-state variables.

See also
holCheckLib.holCheck, holCheckLib.empty model, holCheckLib.get vord.

show_numeral_types (Parse)

Globals.show_numeral_types : bool ref

Synopsis
A flag which causes numerals to be printed with suffix annotation when true.

Description
This flag controls the pretty-printing of numeral forms that have been added to the
global grammar with the function add_numeral_form. If the flag is true, then all numeric
values are printed with the single-letter suffixes that identify which type the value is.

Failure
Never fails, as it is just an SML value.

Example

show tags 915

- load "integerTheory";

> val it = () : unit

- Term‘~3‘;

> val it = ‘~3‘ : term

- show_numeral_types := true;

> val it = () : unit

- Term‘~3‘;

> val it = ‘~3i‘ : term

Uses
Can help to disambiguate terms involving numerals.

See also
Parse.add numeral form, Globals.show types.

show_tags (Globals)

show_tags : bool ref

Synopsis
Flag for controlling display of tags in theorem prettyprinter.

Description
The flag show_tags controls the display of values of type thm. When set to true, the tag
attached to a theorem will be printed when the theorem is printed. When set to false,
no indication of the presence or absence of a tag will be displayed.

Example

- show_tags := false;

> val it = () : unit

- pairTheory.PAIR_MAP_THM;

> val it = |- !f g x y. (f ## g) (x,y) = (f x,g y) : thm

916 CHAPTER 1. ENTRIES

- mk_thm ([],F);

> val it = |- F : thm

- show_tags := true;

> val it = () : unit

- pairTheory.PAIR_MAP_THM;

> val it = [oracles:] [axioms:] [] |- !f g x y. (f ## g) (x,y) = (f x,g y)

: thm

- mk_thm ([],F);

> val it = [oracles: MK_THM] [axioms:] [] |- F : thm

Comments
The initial value of show_tags is false.

See also
Thm.tag, Thm.mk oracle thm, Thm.mk thm.

show_types (Globals)

Globals.show_types : bool ref

Synopsis
Flag controlling printing of HOL types (in terms).

Description
Normally HOL types in terms are not printed, since this makes terms hard to read.
Type printing is enabled by show_types := true, and disabled by show_types := false.
When printing of types is enabled, not all variables and constants are annotated with a
type. The intention is to provide sufficient type information to remove any ambiguities
without swamping the term with type information.

Failure
Never fails.

Example

SIMP CONV 917

- BOOL_CASES_AX;;

> val it = |- !t. (t = T) \/ (t = F) : thm

- show_types := true;

> val it = () : unit

- BOOL_CASES_AX;;

> val it = |- !(t :bool). (t = T) \/ (t = F) : thm

Comments
It is possible to construct an abstraction in which the bound variable has the same name
but a different type to a variable in the body. In such a case the two variables are
considered to be distinct. Without type information such a term can be very misleading,
so it might be a good idea to provide type information for the free variable whether or
not printing of types is enabled.

See also
Parse.print term.

SIMP_CONV (bossLib)

SIMP_CONV : simpset -> thm list -> conv

Synopsis
Applies a simpset and a list of rewrite rules to simplify a term.

Description
SIMP_CONV is the fundamental engine of the HOL simplification library. It repeatedly
applies the transformations included in the provided simpset (which is augmented with
the given rewrite rules) to a term, ultimately yielding a theorem equating the original
term to another.

Values of the simpset type embody a suite of different transformations that might be
applicable to given terms. These “transformational components” are rewrites, conver-
sions, AC-rules, congruences, decision procedures and a filter, which is used to modify
the way in which rewrite rules are added to the simpset. The exact types for these
components, known as simpset fragments, and the way they can be combined to create
simpsets is given in the reference entry for SSFRAG.

918 CHAPTER 1. ENTRIES

Rewrite rules are used similarly to the way in they are used in the rewriting
system (REWRITE_TAC et al.). These are equational theorems oriented to rewrite
from left-hand-side to right-hand-side. Further, SIMP_CONV handles obvious prob-
lems. If a rewrite rule is of the general form [...] |- x = f x, then it will be
discarded, and a message is printed to this effect. On the other hand, if the right-
hand-side is a permutation of the pattern on the left, as in |- x + y = y + x and
|- x INSERT (y INSERT s) = y INSERT (x INSERT s), then such rules will only be ap-
plied if the term to which they are being applied is strictly reduced according to some
term ordering.

Rewriting is done using a form of higher-order matching, and also uses conditional
rewriting. This latter means that theorems of the form |- P ==> (x = y) can be used
as rewrites. If a term matching x is found, the simplifier will attempt to satisfy the
side-condition P. If it is able to do so, then the rewriting will be performed. In the
process of attempting to rewrite P to true, further side conditions may be generated.
The simplifier limits the size of the stack of side conditions to be solved (the reference
variable Cond_rewr.stack_limit holds this limit), so this will not introduce an infinite
loop.

Rewrite rules can always be added “on the fly” as all of the simplification functions
take a thm list argument where these rules can be specified. If a set of rewrite rules
is frequently used, then these should probably be made into a ssfrag value with the
rewrites function and then added to an existing simpset with ++.

The conversions which are part of simpsets are useful for situations where simple
rewriting is not enough to transform certain terms. For example, the BETA_CONV conver-
sion is not expressible as a standard first order rewrite, but is part of the bool_ss simpset
and the application of this simpset will thus simplify all occurrences of (\x. e1) e2.

In fact, conversions in simpsets are not typically applied indiscriminately to all sub-
terms. (If a conversion is applied to an inappropriate sub-term and fails, this failure is
caught by the simplifier and ignored.) Instead, conversions in simpsets are accompanied
by a term-pattern which specifies the sort of situations in which they should be applied.
This facility is used in the definition of bool_ss to include ETA_CONV, but stop it from
transforming !x. P x into $! P.

AC-rules allow simpsets to be constructed that automatically normalise terms involv-
ing associative and commutative operators, again according to some arbitrary term or-
dering metric.

Congruence rules allow SIMP_CONV to assume additional context as a term is rewritten.
In a term such as P ==> Q /\ f x the truth of term P may be assumed as an additional
piece of context in the rewriting of Q /\ f x. The congruence theorem that states this
is valid is (IMP_CONG):

|- (P = P’) ==> (P’ ==> (Q = Q’)) ==> ((P ==> Q) = (P’ ==> Q’))

SIMP CONV 919

Other congruence theorems can be part of simpsets. The system provides IMP_CONG

above and COND_CONG as part of the CONG_ss ssfrag value. (These simpset fragments can
be incorporated into simpsets with the ++ function.) Other congruence theorems are
already proved for operators such as conjunction and disjunction, but use of these in
standard simpsets is not recommended as the computation of all the additional contexts
for a simple chain of conjuncts or disjuncts can be very computationally intensive.

Decision procedures in simpsets are similar to conversions. They are arbitrary pieces
of code that are applied to sub-terms at low priority. They are given access to the wider
context through a list of relevant theorems. The arith_ss simpset includes an arithmetic
decision procedure implemented in this way.

Failure
SIMP_CONV never fails, but may diverge.

Example

- SIMP_CONV arith_ss [] ‘‘(\x. x + 3) 4‘‘;

> val it = |- (\x. x + 3) 4 = 7 : thm

Uses
SIMP_CONV is a powerful way of manipulating terms. Other functions in the simplification
library provide the same facilities when in the contexts of goals and tactics (SIMP_TAC,
ASM_SIMP_TAC etc.), and theorems (SIMP_RULE), but SIMP_CONV provides the underlying
functionality, and is useful in its own right, just as conversions are generally.

See also
bossLib.++, bossLib.ASM SIMP TAC, bossLib.FULL SIMP TAC, simpLib.mk simpset,

bossLib.rewrites, bossLib.SIMP RULE, bossLib.SIMP TAC, simpLib.SSFRAG,

bossLib.EVAL.

SIMP_CONV (simpLib)

SIMP_CONV : simpset -> thm list -> conv

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.SIMP_CONV is identical to simpLib.SIMP_CONV.

920 CHAPTER 1. ENTRIES

See also
bossLib.SIMP CONV.

SIMP_PROVE (simpLib)

simpLib.SIMP_PROVE : simpset -> thm list -> term -> thm

Synopsis
Like SIMP_CONV, but converts boolean terms to theorem with same conclusion.

Description
SIMP_PROVE ss thml is equivalent to EQT_ELIM o SIMP_CONV ss thml.

Failure
Fails if the term can not be shown to be equivalent to true. May diverge.

Example
Applying the tactic

ASSUME_TAC (SIMP_PROVE arith_ss [] ‘‘x < y ==> x < y + 6‘‘)

to the goal ?- x + y = 10 yields the new goal

x < y ==> x < y + 6 ?- x + y = 10

Using SIMP_PROVE here allows ASSUME_TAC to add a new fact, where the equality with
truth that SIMP_CONV would produce would be less useful.

Uses
SIMP_PROVE is useful when constructing theorems to be passed to other tools, where
those other tools would prefer not to have theorems of the form |- P = T.

See also
simpLib.SIMP CONV, simpLib.SIMP RULE, simpLib.SIMP TAC.

SIMP_RULE (bossLib)

SIMP_RULE : simpset -> thm list -> thm -> thm

SIMP RULE 921

Synopsis
Simplifies the conclusion of a theorem according to the given simpset and theorem
rewrites.

Description
SIMP_RULE simplifies the conclusion of a theorem, adding the given theorems to the
simpset parameter as rewrites. The way in which terms are transformed as a part of
simplification is described in the entry for SIMP_CONV.

Failure
Never fails, but may diverge.

Example
The following also demonstrates the higher order rewriting possible with simplification
(FORALL_AND_THM states |- (!x. P x /\ Q x) = (!x. P x) /\ (!x. Q x)):

- SIMP_RULE bool_ss [boolTheory.FORALL_AND_THM]

(ASSUME (Term‘!x. P (x + 1) /\ R x /\ x < y‘));

> val it = [.] |- (!x. P (x + 1)) /\ (!x. R x) /\ (!x. x < y) : thm

Comments
SIMP_RULE ss thmlist is equivalent to CONV_RULE (SIMP_CONV ss thmlist).

See also
simpLib.ASM SIMP RULE, bossLib.SIMP CONV, bossLib.SIMP TAC, bossLib.bool ss.

SIMP_RULE (simpLib)

SIMP_RULE : simpset -> thm list -> thm -> thm

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.SIMP_RULE is identical to simpLib.SIMP_RULE.

See also
bossLib.SIMP RULE.

922 CHAPTER 1. ENTRIES

SIMP_TAC (bossLib)

SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplifies the goal, using the given simpset and the additional theorems listed.

Description
SIMP_TAC adds the theorems of the second argument to the simpset argument as rewrites
and then applies the resulting simpset to the conclusion of the goal. The exact behaviour
of a simpset when applied to a term is described further in the entry for SIMP_CONV.

With simple simpsets, SIMP_TAC is similar in effect to REWRITE_TAC; it transforms the
conclusion of a goal by using the (equational) theorems given and those already in the
simpset as rewrite rules over the structure of the conclusion of the goal.

Just as ASM_REWRITE_TAC includes the assumptions of a goal in the rewrite rules that
REWRITE_TAC uses, ASM_SIMP_TAC adds the assumptions of a goal to the rewrites and then
performs simplification.

Failure
SIMP_TAC never fails, though it may diverge.

Example
SIMP_TAC and the arith_ss simpset combine to prove quite difficult seeming goals:

- val (_, p) = SIMP_TAC arith_ss []

([], Term‘P x /\ (x = y + 3) ==> P x /\ y < x‘);

> val p = fn : thm list -> thm

- p [];

> val it = |- P x /\ (x = y + 3) ==> P x /\ y < x : thm

SIMP_TAC is similar to REWRITE_TAC if used with just the bool_ss simpset. Here it is used
in conjunction with the arithmetic theorem GREATER_DEF, |- !m n. m > n = n < m, to
advance a goal:

- SIMP_TAC bool_ss [GREATER_DEF] ([], Term‘T /\ 5 > 4 \/ F‘);

> val it = ([([], ‘4 < 5‘)], fn) : subgoals

SIMP TAC 923

Comments
The simplification library is described further in other documentation, but its full capa-
bilities are still rather opaque.

Uses
Simplification is one of the most powerful tactics available to the HOL user. It can be
used both to solve goals entirely or to make progress with them. However, poor simpsets
or a poor choice of rewrites can still result in divergence, or poor performance.

See also
bossLib.++, bossLib.ASM SIMP TAC, bossLib.std ss, bossLib.bool ss,

bossLib.arith ss, bossLib.list ss, bossLib.FULL SIMP TAC, simpLib.mk simpset,

Rewrite.REWRITE TAC, bossLib.SIMP CONV, simpLib.SIMP PROVE, bossLib.SIMP RULE.

SIMP_TAC (simpLib)

SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.SIMP_TAC is identical to simpLib.SIMP_TAC.

See also
bossLib.SIMP TAC.

single (Lib)

single : ’a -> ’a list

Synopsis
Turns a value into a single-element list.

Description
single x returns [x].

924 CHAPTER 1. ENTRIES

Failure
Never fails.

See also
Lib.singleton of list.

singleton_of_list (Lib)

singleton_of_list : ’a list -> ’a

Synopsis
Turns a single-element list into a singleton.

Description
singleton_of_list [x] returns x.

Failure
Fails if applied to a list that is not of length 1.

See also
Lib.single, Lib.pair of list, Lib.triple of list, Lib.quadruple of list.

SIZES_CONV (wordsLib)

SIZES_CONV : conv

Synopsis
Evaluates dimindex, dimword and INT_MIN.

Example

- SIZES_CONV ‘‘dimword(:32)‘‘

> val it = |- dimword (:32) = 4294967296 : thm

SIZES ss 925

Comments
Evaluations are stored and so will be slightly faster when repeated.

See also
wordsLib.SIZES ss.

SIZES_ss (wordsLib)

SIZES_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment SIZES_ss evaluates terms ‘‘dimindex(:’a)‘‘, ‘‘dimword(:’a)‘‘, ‘‘INT_MIN(:’a)‘‘,
and ‘‘FINITE (UNIV : ’a set)‘‘ for numeric types.

Example
- SIMP_CONV (pure_ss++SIZES_ss) [] ‘‘dimindex(:32) + INT_MIN(:32) + dimword(:32)‘‘

> val it =

|- dimindex (:32) + INT_MIN (:32) + dimword (:32) =

32 + 2147483648 + 4294967296 : thm

See also
wordsLib.SIZES CONV, wordsLib.WORD CONV, fcpLib.FCP ss, wordsLib.BIT ss,

wordsLib.WORD ARITH ss, wordsLib.WORD LOGIC ss, wordsLib.WORD SHIFT ss,

wordsLib.WORD ARITH EQ ss, wordsLib.WORD BIT EQ ss, wordsLib.WORD EXTRACT ss,

wordsLib.WORD MUL LSL ss, wordsLib.WORD ss.

SKOLEM_CONV (Conv)

SKOLEM_CONV : conv

Synopsis
Proves the existence of a Skolem function.

Description
When applied to an argument of the form !x1...xn. ?y. P, the conversion SKOLEM_CONV

returns the theorem:

926 CHAPTER 1. ENTRIES

|- (!x1...xn. ?y. P) = (?y’. !x1...xn. P[y’ x1 ... xn/y])

where y’ is a primed variant of y not free in the input term.

Failure
SKOLEM_CONV tm fails if tm is not a term of the form !x1...xn. ?y. P.

See also
Conv.X SKOLEM CONV.

snd (Lib)

snd : (’a * ’b) -> ’b

Synopsis
Extracts the second component of a pair.

Description
snd (x,y) returns y.

Failure
Never fails. However, notice that snd (x,y,z) fails to typecheck, since (x,y,z) is not a
pair.

Example

- snd (1, "foo");

> val it = "foo" : string

- snd (1, "foo", []);

! Toplevel input:

! snd (1, "foo", []);

! ^^^^^^^^^^^^^^

! Type clash: expression of type

! ’g * ’h * ’i

! cannot have type

! ’j * ’k

! because the tuple has the wrong number of components

- snd (1, ("foo", ()));

> val it = ("foo", ()) : string * unit

SNOC CONV 927

See also
Lib, Lib.fst.

SNOC_CONV (listLib)

SNOC_CONV : conv

Synopsis
Computes by inference the result of adding an element to the tail end of a list.

Description
SNOC_CONV takes a term tm in the following form:

SNOC x [x0;...xn]

It returns the theorem

|- SNOC x [x0;...xn] = [x0;...xn;x]

where the right-hand side is the list in the canonical form, i.e., constructed with only
the constructor CONS.

Failure
SNOC_CONV tm fails if tm is not of the form described above.

Example
Evaluating

SNOC_CONV (--‘SNOC 5[0;1;2;3;4]‘--);

returns the following theorem:

|- SNOC 5[0;1;2;3;4] = [0;1;2;3;4;5]

See also
listLib.FOLDL CONV, listLib.FOLDR CONV, listLib.list FOLD CONV.

SNOC_INDUCT_TAC (listLib)

SNOC_INDUCT_TAC : tactic

928 CHAPTER 1. ENTRIES

Synopsis
Performs tactical proof by structural induction on lists.

Description
SNOC_INDUCT_TAC reduces a goal !l.P[l], where l ranges over lists, to two subgoals
corresponding to the base and step cases in a proof by structural induction on l from
the tail end. The induction hypothesis appears among the assumptions of the subgoal
for the step case. The specification of SNOC_INDUCT_TAC is:

A ?- !l. P

=== SNOC_INDUCT_TAC

A |- P[NIL/l] A u {{P[l’/l]}} ?- !x. P[SNOC x l’/l]

where l’ is a primed variant of l that does not appear free in the assumptions A (usually,
l’ is just l). When SNOC_INDUCT_TAC is applied to a goal of the form !l.P, where l does
not appear free in P, the subgoals are just A ?- P and A u {{P}} ?- !h.P.

Failure
SNOC_INDUCT_TAC g fails unless the conclusion of the goal g has the form !l.t, where the
variable l has type (ty)list for some type ty.

See also
listLib.EQ LENGTH INDUCT TAC, listLib.EQ LENGTH SNOC INDUCT TAC,

listLib.LIST INDUCT TAC.

SOME_EL_CONV (listLib)

SOME_EL_CONV : conv -> conv

Synopsis
Computes by inference the result of applying a predicate to the elements of a list.

Description
SOME_EL_CONV takes a conversion conv and a term tm of the following form:

SOME_EL P [x0;...xn]

It returns the theorem

|- SOME_EL P [x0;...xn] = F

sort 929

if for every xi occurred in the list, conv (--‘P xi‘--) returns a theorem |- P xi = F,
otherwise, if for at least one xi, evaluating conv (--‘P xi‘--) returns the theorem
|- P xi = T, then it returns the theorem

|- SOME_EL P [x0;...xn] = T

Failure
SOME_EL_CONV conv tm fails if tm is not of the form described above, or failure occurs
when evaluating conv (--‘P xi‘--) for some xi.

Example
Evaluating

SOME_EL_CONV bool_EQ_CONV (--‘SOME_EL ($= T) [T;F;T]‘--);

returns the following theorem:

|- SOME_EL($= T)[T;F;T] = T

In general, if the predicate P is an explicit lambda abstraction (\x. P x), the conversion
should be in the form

(BETA_CONV THENC conv’)

See also
listLib.ALL EL CONV, listLib.IS EL CONV, listLib.FOLDL CONV, listLib.FOLDR CONV,

listLib.list FOLD CONV.

sort (Lib)

sort : (’a -> ’a -> bool) -> ’a list -> ’a list

Synopsis
Sorts a list using a given transitive ‘ordering’ relation.

Description
The call sort opr list where opr is a curried transitive relation on the elements of list,
will sort the list, i.e., will permute list such that if x opr y but not y opr x then x will
occur to the left of y in the sorted list. In particular if opr is a total order, the result list
will be sorted in the usual sense of the word.

930 CHAPTER 1. ENTRIES

Failure
Never fails.

Example
A simple example is:

- sort (curry (op<)) [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9];

> val it = [1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 7, 8, 9, 9, 9] : int list

The following example is a little more complicated. Note that the ‘ordering’ is not
antisymmetric.

- sort (curry (op< o (fst ## fst)))

[(1,3), (7,11), (3,2), (3,4), (7,2), (5,1)];

> val it = [(1,3), (3,4), (3,2), (5,1), (7,2), (7,11)] : (int * int) list

Comments
The Standard ML Basis Library also provides implementations of sorting.

See also
Lib.int sort, Lib.topsort.

SPEC (Thm)

SPEC : term -> thm -> thm

Synopsis
Specializes the conclusion of a theorem.

Description
When applied to a term u and a theorem A |- !x. t, then SPEC returns the theorem
A |- t[u/x]. If necessary, variables will be renamed prior to the specialization to ensure
that u is free for x in t, that is, no variables free in u become bound after substitution.

A |- !x. t

-------------- SPEC u

A |- t[u/x]

SPEC ALL 931

Failure
Fails if the theorem’s conclusion is not universally quantified, or if x and u have different
types.

Example
The following example shows how SPEC renames bound variables if necessary, prior to
substitution: a straightforward substitution would result in the clearly invalid theorem
|- ~y ==> (!y. y ==> ~y).

- let val xv = Term ‘x:bool‘

and yv = Term ‘y:bool‘

in

(GEN xv o DISCH xv o GEN yv o DISCH yv) (ASSUME xv)

end;

> val it = |- !x. x ==> !y. y ==> x : thm

- SPEC (Term ‘~y‘) it;

> val it = |- ~y ==> !y’. y’ ==> ~y : thm

See also
Drule.ISPEC, Drule.SPECL, Drule.SPEC ALL, Drule.SPEC VAR, Thm.GEN, Thm.GENL,

Drule.GEN ALL.

SPEC_ALL (Drule)

SPEC_ALL : thm -> thm

Synopsis
Specializes the conclusion of a theorem with its own quantified variables.

Description
When applied to a theorem A |- !x1...xn. t, the inference rule SPEC_ALL returns the
theorem A |- t[x1’/x1]...[xn’/xn] where the xi’ are distinct variants of the corre-
sponding xi, chosen to avoid clashes with any variables free in the assumption list and
with the names of constants. Normally xi’ is just xi, in which case SPEC_ALL simply
removes all universal quantifiers.

A |- !x1...xn. t

--------------------------- SPEC_ALL

A |- t[x1’/x1]...[xn’/xn]

932 CHAPTER 1. ENTRIES

Failure
Never fails.

Example

- SPEC_ALL CONJ_ASSOC;

> val it = |- t1 /\ t2 /\ t3 = (t1 /\ t2) /\ t3 : thm

See also
Thm.GEN, Thm.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL,

Tactic.SPEC TAC.

SPEC_TAC (Tactic)

SPEC_TAC : term * term -> tactic

Synopsis
Generalizes a goal.

Description
When applied to a pair of terms (u,x), where x is just a variable, and a goal A ?- t, the
tactic SPEC_TAC generalizes the goal to A ?- !x. t[x/u], that is, all instances of u are
turned into x.

A ?- t

================= SPEC_TAC (u,x)

A ?- !x. t[x/u]

Failure
Fails unless x is a variable with the same type as u.

Uses
Removing unnecessary speciality in a goal, particularly as a prelude to an inductive
proof.

See also
Thm.GEN, Thm.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL,

Drule.SPEC ALL, Tactic.STRIP TAC.

SPEC VAR 933

SPEC_VAR (Drule)

SPEC_VAR : thm -> term * thm

Synopsis
Specializes the conclusion of a theorem, returning the chosen variant.

Description
When applied to a theorem A |- !x. t, the inference rule SPEC_VAR returns the term x’

and the theorem A |- t[x’/x], where x’ is a variant of x chosen to avoid free variable
capture.

A |- !x. t

-------------- SPEC_VAR

A |- t[x’/x]

Failure
Fails unless the theorem’s conclusion is universally quantified.

Comments
This rule is very similar to plain SPEC, except that it returns the variant chosen, which
may be useful information under some circumstances.

See also
Thm.GEN, Thm.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL,

Drule.SPEC ALL.

Specialize (Thm)

Specialize : term -> thm -> thm

Synopsis
Specializes the conclusion of a universal theorem.

Description
When applied to a term u and a theorem A |- !x. t, Specialize returns the theorem
A |- t[u/x]. Care is taken to ensure that no variables free in u become bound after this
operation.

934 CHAPTER 1. ENTRIES

A |- !x. t

-------------- Specialize u

A |- t[u/x]

Failure
Fails if the theorem’s conclusion is not universally quantified, or if x and u have different
types.

Comments
Specialize behaves identically to SPEC, but is faster.

See also
Thm.SPEC, Drule.ISPEC, Drule.SPECL, Drule.SPEC ALL, Drule.SPEC VAR, Thm.GEN,

Thm.GENL, Drule.GEN ALL.

SPECL (Drule)

SPECL : term list -> thm -> thm

Synopsis
Specializes zero or more variables in the conclusion of a theorem.

Description
When applied to a term list [u1;...;un] and a theorem A |- !x1...xn. t, the inference
rule SPECL returns the theorem A |- t[u1/x1]...[un/xn], where the substitutions are
made sequentially left-to-right in the same way as for SPEC, with the same sort of alpha-
conversions applied to t if necessary to ensure that no variables which are free in ui

become bound after substitution.

A |- !x1...xn. t

-------------------------- SPECL [u1,...,un]

A |- t[u1/x1]...[un/xn]

It is permissible for the term-list to be empty, in which case the application of SPECL has
no effect.

Failure
Fails unless each of the terms is of the same type as that of the appropriate quantified
variable in the original theorem.

Example
The following is a specialization of a theorem from theory arithmetic.

spine pair 935

- arithmeticTheory.LESS_EQ_LESS_EQ_MONO;

> val it = |- !m n p q. m <= p /\ n <= q ==> m + n <= p + q : thm

- SPECL (map Term [‘1‘, ‘2‘, ‘3‘, ‘4‘]) it;

> val it = |- 1 <= 3 /\ 2 <= 4 ==> 1 + 2 <= 3 + 4 : thm

See also
Thm.GEN, Thm.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPEC ALL,

Tactic.SPEC TAC.

spine_pair (pairSyntax)

spine_pair : term -> term list

Synopsis
Breaks a paired structure into its constituent pieces.

Example

- spine_pair (Term ‘((1,2),(3,4))‘);

> val it = [‘(1,2)‘, ‘3‘, ‘4‘] : term list

Comments
Note that spine_pair is similar, but not identical, to strip_pair which works recursively.

Failure
Never fails.

See also
pairSyntax.strip pair.

split (Lib)

split : (’a * ’b) list -> (’a list * ’b list)

936 CHAPTER 1. ENTRIES

Synopsis
Converts a list of pairs into a pair of lists.

Description
split [(x1,y1),...,(xn,yn)] returns ([x1,...,xn],[y1,...,yn]).

Failure
Never fails.

Comments
Identical to the Basis function ListPair.unzip and the function Lib.unzip.

See also
Lib.unzip, Lib.zip, Lib.combine.

split_after (Lib)

split_after : int -> ’a list -> ’a list * ’a list

Synopsis
Breaks a list in two at a specified index.

Description
An invocation split_after k [x1,...,xk,...xn] returns the pair ([x1,...,xk], [xk+1,...,xn]).
If k is 0, then split_after k l returns ([],l). Similarly, split_after (length l) l re-
turns (l,[]).

Failure
If k is negative, or longer than the length of the list.

Example

- split_after 2 [1,2,3,4,5]

> val it = ([1, 2], [3, 4, 5]) : int list * int list

- split_after 0 [1,2,3,4,5];

> val it = ([], [1, 2, 3, 4, 5]) : int list * int list

- split_after 5 [1,2,3,4,5];

> val it = ([1, 2, 3, 4, 5], []) : int list * int list

SPOSE NOT THEN 937

- split_after 6 [1,2,3,4,5];

! Uncaught exception:

! HOL_ERR

- split_after 0 ([]:int list);

> val it = ([], []) : int list * int list

See also
Lib.partition, Lib.pluck.

SPOSE_NOT_THEN (bossLib)

SPOSE_NOT_THEN : (thm -> tactic) -> tactic

Synopsis
Initiate proof by contradiction.

Description
SPOSE_NOT_THEN provides a flexible way to start a proof by contradiction. Simple tactics
for contradiction proofs often simply negate the goal and place it on the assumption list.
However, if the goal is quantified, as is often the case, then more processing is required
in order to get it into a suitable form for subsequent work. SPOSE_NOT_THEN ttac negates
the current goal, pushes the negation inwards, and applies ttac to it.

Failure
Never fails, unless ttac fails.

Example
Suppose we want to prove Euclid’s theorem.

!m. ?n. prime n /\ m < n

The classic proof is by contradiction. However, if we start such a proof with CCONTR_TAC,
we get the goal

{ ~!m. ?n. prime n /\ m < n } ?- F

and one would immediately want to simplify the assumption, which is a bit awkward.
Instead, an invocation SPOSE_NOT_THEN ASSUME_TAC yields

938 CHAPTER 1. ENTRIES

{ ?m. !n. ~prime n \/ ~(m < n) } ?- F

and SPOSE_NOT_THEN STRIP_ASSUME_TAC results in

{ !n. ~prime n \/ ~(m < n) } ?- F

See also
Tactic.CCONTR TAC, Tactic.CONTR TAC, Tactic.ASSUME TAC, Tactic.STRIP ASSUME TAC.

srw_ss (BasicProvers)

srw_ss : unit -> simpset

Synopsis
Implicit simpset.

Description
bossLib.srw_ss is identical to BasicProvers.srw_ss.

See also
bossLib.srw ss.

srw_ss (bossLib)

srw_ss : unit -> simpset

Synopsis
Returns the ”stateful rewriting” system’s underlying simpset.

Description
A call to srw_ss() returns a simpset value that is internally maintained and updated
by the system. Its value changes as new types enter the TypeBase, and as theories are
loaded. For this reason, it can’t be accessed as a simple value, but is instead hidden
behind a function.

The value behind srw_ss() can change in three ways. First, whenever a type enters
the TypeBase, the type’s associated simplification theorems (accessible directly using

SRW TAC 939

the function TypeBase.simpls_of) are all added to the simpset. This ensures that the
”obvious” rewrite theorems for a type (such as the disjointness of constructors) need
never be explicitly specified.

Secondly, users can interactively add simpset fragments to the srw_ss() value by using
the function augment_srw_ss. This function might be used after a definition is made to
ensure that a particular constant always has its definition expanded. (Whether or not
a constant warrants this is something that needs to be determined on a case-by-case
basis.)

Thirdly, theories can augment the srw_ss() value as they load. This is set up in a
theory’s script file with the function export_rewrites. This causes a list of appropriate
theorems to be added when the theory loads. It is up to the author of the theory to
ensure that the theorems added to the simpset are sensible.

Failure
Never fails.

See also
bossLib.augment srw ss, BasicProvers.export rewrites, bossLib.SRW TAC.

SRW_TAC (BasicProvers)

SRW_TAC : ssfrag list -> thm list -> tactic

Synopsis
A version of RW_TAC with an implicit simpset.

Description
bossLib.SRW_TAC is identical to BasicProvers.SRW_TAC.

See also
bossLib.SRW TAC.

SRW_TAC (bossLib)

SRW_TAC : ssfrag list -> thm list -> tactic

940 CHAPTER 1. ENTRIES

Synopsis
A version of RW_TAC with an implicit simpset.

Description
A call to SRW_TAC [d1,...,dn] thlist produces the same result as

RW_TAC (srw_ss() ++ d1 ++ ... ++ dn) thlist

Failure
When applied to a goal, the tactic resulting from an application of SRW_TAC may diverge.

Comments
There are two reasons why one might prefer SRW_TAC to RW_TAC. Firstly, when a large
number of datatypes are present in the TypeBase, the implementation of RW_TAC has
to merge the attendant simplifications for each type onto its simpset argument each
time it is called. This can be rather time-consuming. Secondly, the simpset returned
by srw_ss() can be augmented with fragments from other sources than the TypeBase,
using the functions augment_srw_ss and export_rewrites. This can make for a tool that
is simple to use, and powerful because of all its accumulated simpset fragments.

Naturally, the latter advantage can also be a disadvantage: if SRW_TAC does too much
because there is too much in the simpset underneath srw_ss(), then there is no way to
get around this using SRW_TAC.

Typical invocations of SRW_TAC will be of the form

SRW_TAC [][th1, th2,..]

The first argument, for lists of simpset fragments is for the inclusion of fragments that
are not always appropriate. An example of such a fragment is numSimps.ARITH_ss, which
embodies an arithmetic decision procedure for the natural numbers.

See also
bossLib.srw ss, bossLib.augment srw ss, BasicProvers.export rewrites,

simpLib.SSFRAG.

SSFRAG 941

SSFRAG (simpLib)

SSFRAG : { ac : (thm * thm) list,

congs : thm list,

convs : {conv : (term list -> conv) -> term list -> conv,

key : (term list * term) option,

name : string,

trace : int} list,

dprocs : Traverse.reducer list,

filter : (controlled_thm -> controlled_thm list) option,

name : string option,

rewrs : thm list } -> ssfrag

Synopsis
Constructs ssfrag values.

Description
The ssfrag type is the way in which simplification components are packaged up
and made available to the simplifier (though ssfrag values must first be turned into
simpsets, either by addition to an existing simpset, or with the mk_simpset function).

The big record type passed to SSFRAG as an argument has seven fields. Here we
describe each in turn.

The ac field is a list of “AC theorem” pairs. Each such pair is the pair of theorems
stating that a given binary function is associative and commutative. The theorems can
be given in either order, can present the associativity theorem in either direction, and
can be generalised to any extent.

The congs field is a list of congruence theorems justifying the addition of theorems to
simplification contexts. For example, the congruence theorem for implication is

|- (P = P’) ==> (P’ ==> (Q = Q’)) ==> (P ==> Q = P’ ==> Q’)

This theorem encodes a rewriting strategy. The consequent of the chain of implications
is the form of term in question, where the appropriate components have been rewritten.
Then, in left-to-right order, the various antecedents of the implication specify the rewrit-
ing strategy which gives rise to the consequent. In this example, P is first simplified to
P’ without any additional context, then, using P’ as additional context, simplification
of Q proceeds, producing Q’. Another example is a rule for conjunction:

|- (P ==> (Q = Q’)) ==> (Q’ ==> (P = P’)) ==> ((P /\ Q) = (P’ /\ Q’))

942 CHAPTER 1. ENTRIES

Here P is assumed while Q is simplified to Q’. Then, Q’ is assumed while P is simplified
to P’. If a antecedent doesn’t involve the relation in question (here, equality) then it
is treated as a side-condition, and the simplifier will be recursively invoked to try and
solve it.

Higher-order congruence rules are also possible. These provide a method for dealing
with bound variables. The following is a rule for the restricted universal quantifier, for
example:

|- (P = Q) ==> (!v. v IN Q ==> (f v = g v)) ==>

(RES_FORALL P f = RES_FORALL Q g)

(If f is an abstraction, \x. t, then RES_FORALL P f is pretty-printed as !x::P. t) Terms
in the conclusions of higher-order congruence rules that might be abstractions (such as
f above) should be kept as variables, rather than written out as abstractions. In other
words, the conclusion of the congruence rule above should not be written as

RES_FORALL P (\v. f v) = RES_FORALL Q (\v. g v)

The convs field is a list of conversions that the simplifier will apply. Each conversion
added to an ssfrag value is done so in a record consisting of four fields.

The conv field of this subsidiary record type includes the value of the conversion itself.
When the simplifier applies the conversion it is actually passed two extra arguments
(as the type indicates). The first is a solver function that can be used to recursively
do side-condition solving, and the second is a stack of side-conditions that have been
accumulated to date. Many conversions will typically ignore these arguments (as in the
example below).

The key field of the subsidiary record type is an optional pattern, specifying the places
where the conversion should be applied. If the value is NONE, then the conversion will
be applied to all sub-terms. If the value is SOME(lcs, t), then the term t is used as a
pattern specifying those terms to which the conversion should be applied. Further, the
list lcs (which must be a list of variables), specifies those variables in t which shouldn’t
be generalised against; they are effectively local constants. Note, however, that the
types in the pattern term t will not be used to eliminate possible matches, so that if
a match is desired with a particular type instantiation of a term, then the conversion
will need to reject the input itself. The name and trace fields are only relevant to the
debugging facilities of the simplifier.

The dprocs field of the record passed to SSFRAG is where decision procedures can be
specified. Documentation describing the construction and use of values of type reducer

is available in the DESCRIPTION.
The filter field of the record is an optional function, which, if present, is composed

with the standard simplifier’s function for generating rewrites from theorems, and re-
places that function. The version of this present in bool_ss and its descendents will, for

SSFRAG 943

example, turn |- P /\ Q into |- P and |- Q, and |- ~(t1 = t2) into |- (t1 = t2) = F

and |- (t2 = t1) = F.
The controlled_thm type is defined in the module BoundedRewrites, and pairs a the-

orem with a bound, which is either the value UNBOUNDED or the constructor BOUNDED

applied to an integer reference. The reference is used to limit the number of times a
rewrite may be applied. The filter gets information as to whether and how a rewrite is
bounded as this can affect its decision on whether or not to include a rewrite at all (if
it looks as if it will loop, and the bound is UNBOUNDED, it should be dropped, but it may
choose to keep it if there is bound present).

The rewrs field of the record is a list of rewrite theorems that are to be applied.
The name field of the record is an optional name for the simpset fragment that is used

when it, and simpsets that it becomes part of are pretty-printed.

Failure
Never fails. Failure to provide theorems of just the right form may cause later applica-
tion of simplification functions to fail, documentation to the contrary notwithstanding.

Example
Given a conversion MUL_CONV to calculate multiplications, the following illustrates how
this can be added to a simpset:

- val ssd = SSFRAG {ac = [], congs = [],

convs = [{conv = K (K MUL_CONV),

key= SOME ([], Term‘x * y‘),

name = "MUL_CONV",

trace = 2}],

dprocs = [], filter = NONE, rewrs = []};

> val ssd =

SSFRAG{ac = [], congs = [],

convs =

[{conv = fn, key = SOME([], ‘x * y‘), name = "MUL_CONV",

trace = 2}], dprocs = [], filter = NONE, rewrs = []}

: ssfrag

- SIMP_CONV bool_ss [] (Term‘3 * 4‘);

> val it = |- 3 * 4 = 3 * 4 : thm

- SIMP_CONV (bool_ss ++ ssd) [] (Term‘3 * 4‘);

> val it = |- 3 * 4 = 12 : thm

Given the theorems ADD_SYM and ADD_ASSOC from arithmeticTheory, we can construct a
normaliser for additive terms.

- val ssd2 = SSFRAG {ac = [(SPEC_ALL ADD_ASSOC, SPEC_ALL ADD_SYM)],

congs = [], convs = [], dprocs = [],

944 CHAPTER 1. ENTRIES

filter = NONE, rewrs = []};

> val ssd2 =

SSFRAG{ac = [(|- m + n + p = (m + n) + p, |- m + n = n + m)],

congs = [], convs = [], dprocs = [], filter = NONE,

rewrs = []}

: ssfrag

- SIMP_CONV (bool_ss ++ ssd2) [] (Term‘(y + 3) + x + 4‘);

(* note that the printing of + in this example is that of a

right associative operator.*)

> val it = |- (y + 3) + x + 4 = 3 + 4 + x + y : thm

See also
simpLib.++, boolSimps.bool ss, simpLib.Cong, simpLib.mk simpset,

simpLib.rewrites, simpLib.SIMP CONV.

start_time (Lib)

start_time : unit -> Timer.cpu_timer

Synopsis
Set a timer running.

Description
An application start_time () creates a timer and starts it. A later invocation end_time t,
where t is a timer, will need to be called to get the elapsed time between the two func-
tion calls.

Failure
Never fails.

Example

- val clock = start_time ();

> val clock = <cpu_timer> : cpu_timer

Comments
Multiple timers may be started without any interfering with the others.

Further operations associated with the type cpu_timer may be found in the Standard
ML Basis Library structures Timer and Time.

state 945

See also
Lib.end time, Lib.time.

state (Lib)

state : (’a,’b) istream -> ’b

Synopsis
Project the state of an istream.

Description
An application state istrm yields the value of the current state of istrm.

Failure
If the projection function supplied when building the stream fails on the current element
of the state.

Example

- val istrm = mk_istream (fn x => x+1) 0 (concat "gsym" o int_to_string);

> val it = <istream> : (int, string) istream

- state istrm;

> val it = "gsym0" : string

- next (next istrm);

> val it = <istream> : (int, string) istream

- state istrm;

> val it = "gsym2" : string

See also
Lib.mk istream, Lib.next, Lib.reset.

std_ss (bossLib)

std_ss : simpset

946 CHAPTER 1. ENTRIES

Synopsis
Basic simplification set.

Description
The simplification set std_ss extends bool_ss with a useful set of rewrite rules for terms
involving options, pairs, and sums. It also performs beta and eta reduction. It applies
some standard rewrites to evaluate expressions involving only numerals.

The following rewrites from pairTheory are included in std_ss:

|- !x. (FST x,SND x) = x

|- !x y. FST (x,y) = x

|- !x y. SND (x,y) = y

|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b)

|- !f. CURRY (UNCURRY f) = f

|- !f. UNCURRY (CURRY f) = f

|- (CURRY f = CURRY g) = (f = g)

|- (UNCURRY f = UNCURRY g) = (f = g)

|- !f x y. CURRY f x y = f (x,y)

|- !f x y. UNCURRY f (x,y) = f x y

|- !f g x y. (f ## g) (x,y) = (f x,g y)

The following rewrites from sumTheory are included in std_ss:

|- !x. ISL x ==> (INL (OUTL x) = x)

|- !x. ISR x ==> (INR (OUTR x) = x)

|- (!x. ISL (INL x)) /\ !y. ~ISL (INR y)

|- (!x. ISR (INR x)) /\ !y. ~ISR (INL y)

|- !x. OUTL (INL x) = x

|- !x. OUTR (INR x) = x

|- !x y. ~(INL x = INR y)

|- !x y. ~(INR y = INL x)

|- (!y x. (INL x = INL y) = (x = y)) /\

(!y x. (INR x = INR y) = (x = y))

|- (!f g x. case f g (INL x) = f x) /\

(!f g y. case f g (INR y) = g y)

The following rewrites from optionTheory are included in std_ss:

|- (!x y. (SOME x = SOME y) = (x = y))

|- (!x. ~(NONE = SOME x))

|- (!x. ~(SOME x = NONE))

|- (!x. THE (SOME x) = x)

store thm 947

|- (!x. IS_SOME (SOME x) = T)

|- (IS_SOME NONE = F)

|- (!x. IS_NONE x = (x = NONE))

|- (!x. ~IS_SOME x = (x = NONE))

|- (!x. IS_SOME x ==> (SOME (THE x) = x))

|- (!x. case NONE SOME x = x)

|- (!x. case x SOME x = x)

|- (!x. IS_NONE x ==> (case e f x = e))

|- (!x. IS_SOME x ==> (case e f x = f (THE x)))

|- (!x. IS_SOME x ==> (case e SOME x = x))

|- (!u f. case u f NONE = u)

|- (!u f x. case u f (SOME x) = f x)

|- (!f x. OPTION_MAP f (SOME x) = SOME (f x))

|- (!f. OPTION_MAP f NONE = NONE)

|- (OPTION_JOIN NONE = NONE)

|- (!x. OPTION_JOIN (SOME x) = x)

|- !f x y. (OPTION_MAP f x = SOME y) = ?z. (x = SOME z) /\ (y = f z)

|- !f x. (OPTION_MAP f x = NONE) = (x = NONE)

Uses
For performing obvious simplification steps on terms, formulas, and goals. Also, some-
times simplification with more powerful simpsets, like arith_ss, becomes too slow, in
which case one can use std_ss supplemented with whatever theorems are needed.

Comments
The simplification sets provided in BasicProvers and bossLib (currently bool_ss, std_ss,
arith_ss, and list_ss) do not include useful rewrites stemming from HOL datatype
declarations, such as injectivity and distinctness of constructors. However, the simplifi-
cation routines RW_TAC and SRW_TAC automatically load these rewrites.

See also
BasicProvers.RW TAC, BasicProvers.SRW TAC, simpLib.SIMP TAC, simpLib.SIMP CONV,

simpLib.SIMP RULE, BasicProvers.bool ss, bossLib.arith ss, bossLib.list ss.

store_thm (Tactical)

store_thm : string * term * tactic -> thm

948 CHAPTER 1. ENTRIES

Synopsis
Proves and then stores a theorem in the current theory segment.

Description
The call store_thm(name, t, tac) is equivalent to save_thm(name, prove(t, tac)).

Failure
Whenever prove fails to prove the given term.

Uses
Saving theorems for retrieval in later sessions. Binding the result of store_thm to an ML
variable makes it easy to access the theorem in the current terminal session.

See also
Tactical.prove, Theory.save thm.

strcat (Lib)

strcat : string -> string -> string

Synopsis
Concatenates two ML strings.

Failure
Never fails.

Example

- strcat "1" "";

> val it = "1" : string

- strcat "hello" "world";

> val it = "helloworld" : string

- strcat "hello" (strcat " " "world");

> val it = "hello world" : string

STRENGTHEN CONSEQ CONV RULE 949

STRENGTHEN_CONSEQ_CONV_RULE (ConseqConv)

STRENGTHEN_CONSEQ_CONV_RULE : directed_conseq_conv -> thm -> thm

Synopsis
Tries to strengthen the antecedent of a theorem consisting of an implication.

Description
Given a theorem of the form |- A ==> C and a directed consequence conversion c a call
of STRENGTHEN_CONSEQ_CONV_RULE c thm tries to strengthen A to a predicate sA using c. If
it succeeds it returns the theorem |- sA ==> C.

See also
ConseqConv.WEAKEN CONSEQ CONV RULE.

string_to_int (Lib)

string_to_int : string -> int

Synopsis
Translates from a string to an integer.

Description
An application string_to_int s returns the integer denoted by s, if such exists.

Failure
If the string cannot be translated to an integer.

Example

- string_to_int "123";

> val it = 123 : int

- string_to_int "~123";

> val it = ~123 : int

- string_to_int "foo";

! Uncaught exception:

! HOL_ERR

950 CHAPTER 1. ENTRIES

Comments
Similar functionality can be obtained from the Standard ML Basis Library function
Int.fromString.

See also
Lib.int to string.

strip_abs (boolSyntax)

strip_abs : term -> term list * term

Synopsis
Iteratively breaks apart abstractions.

Description
If M has the form \x1 ... xn.t then strip_abs M returns ([x1,...,xn],t). Note that

strip_abs(list_mk_abs([x1,...,xn],t))

will not return ([x1,...,xn],t) if t is an abstraction.

Failure
Never fails.

See also
boolSyntax.list mk abs, Term.dest abs.

strip_abs (Term)

strip_abs : term -> term list * term

Synopsis
Break apart consecutive lambda abstractions.

Description
If M is a term of the form \v1...vn.N, where N is not a lambda abstraction, then
strip_abs M equals ([v1,...,vn],N). Otherwise, the result is ([],M).

strip anylet 951

Failure
Never fails.

Example

- strip_abs (Term ‘\x y z. x ==> y ==> z‘);

> val it = ([‘x‘, ‘y‘, ‘z‘], ‘x ==> y ==> z‘) : term list * term

- strip_abs T;

> val it = ([], ‘T‘) : term list * term

Comments
In the current implementation of HOL, strip_abs is far faster than iterating dest_abs

for terms with many consecutive binders.

See also
Term.strip binder, Term.dest abs, boolSyntax.strip forall,

boolSyntax.strip exists.

strip_anylet (pairSyntax)

strip_anylet : term -> (term * term) list list * term

Synopsis
Repeatedly destructs arbitrary let terms.

Description
The invocation strip_anylet M where M has the form of a let-abstraction, i.e., LET P Q,
returns a pair ([[(a1,b1),...,(an,bn)], ... [(u1,v1),...,(uk,vk)]],body), where
the first element of the pair is a list of lists of bindings, and the second is the body of
the let. The binding lists are required since let terms can, in general, be of the form
(using surface syntax) let a1 = b1 and ... and an = bn in body.

Failure
Never fails.

Example

952 CHAPTER 1. ENTRIES

- strip_anylet ‘‘let g x = A in

let v = g x y in

let f x y (a,b) = g a

and foo = M

in

f x foo v‘‘;

> val it =

([[(‘g x‘, ‘A‘)],

[(‘v‘, ‘g x y‘)],

[(‘f x y (a,b)‘, ‘g a‘), (‘foo‘, ‘M‘)]], ‘f x foo v‘)

Uses
Programming that involves manipulation of term syntax.

See also
boolSyntax.dest let, pairSyntax.mk anylet, pairSyntax.list mk anylet,

pairSyntax.dest anylet.

STRIP_ASSUME_TAC (Tactic)

STRIP_ASSUME_TAC : thm_tactic

Synopsis
Splits a theorem into a list of theorems and then adds them to the assumptions.

Description
Given a theorem th and a goal (A,t), STRIP_ASSUME_TAC th splits th into a list of theo-
rems. This is done by recursively breaking conjunctions into separate conjuncts, cases-
splitting disjunctions, and eliminating existential quantifiers by choosing arbitrary vari-
ables. Schematically, the following rules are applied:

A ?- t

====================== STRIP_ASSUME_TAC (A’ |- v1 /\ ... /\ vn)

A u {v1,...,vn} ?- t

A ?- t

================================= STRIP_ASSUME_TAC (A’ |- v1 \/ ... \/ vn)

A u {v1} ?- t ... A u {vn} ?- t

strip binder 953

A ?- t

==================== STRIP_ASSUME_TAC (A’ |- ?x.v)

A u {v[x’/x]} ?- t

where x’ is a variant of x.
If the conclusion of th is not a conjunction, a disjunction or an existentially quantified

term, the whole theorem th is added to the assumptions.
As assumptions are generated, they are examined to see if they solve the goal (either

by being alpha-equivalent to the conclusion of the goal or by deriving a contradiction).
The assumptions of the theorem being split are not added to the assumptions of the

goal(s), but they are recorded in the proof. This means that if A’ is not a subset of the
assumptions A of the goal (up to alpha-conversion), STRIP_ASSUME_TAC (A’|-v) results
in an invalid tactic.

Failure
Never fails.

Example
When solving the goal

?- m = 0 + m

assuming the clauses for addition with STRIP_ASSUME_TAC ADD_CLAUSES results in the goal

{m + (SUC n) = SUC(m + n), (SUC m) + n = SUC(m + n),

m + 0 = m, 0 + m = m, m = 0 + m} ?- m = 0 + m

while the same tactic directly solves the goal

?- 0 + m = m

Uses
STRIP_ASSUME_TAC is used when applying a previously proved theorem to solve a goal,
or when enriching its assumptions so that resolution, rewriting with assumptions and
other operations involving assumptions have more to work with.

See also
Tactic.ASSUME TAC, Tactic.CHOOSE TAC, Thm cont.CHOOSE THEN,

Thm cont.CONJUNCTS THEN, Tactic.DISJ CASES TAC, Thm cont.DISJ CASES THEN.

strip_binder (Term)

strip_binder : term option -> term -> term list * term

954 CHAPTER 1. ENTRIES

Synopsis
Break apart consecutive binders.

Description
An application strip_binder (SOME c) (c(\v1. ... (c(\vn.M))...)) returns ([v1,...,vn],M).
The constant c should represent a term binding operation.

An application strip_binder NONE (\v1...vn. M) returns ([v1,...,vn],M).

Failure
Never fails.

Example
strip_abs could be defined as follows.

- val strip_abs = strip_binder NONE;

> val strip_abs = fn : term -> term list * term

- strip_abs (Term ‘\x y z. x /\ y ==> z‘);

> val it = ([‘x‘, ‘y‘, ‘z‘], ‘x /\ y ==> z‘) : term list * term

Defining strip_forall is similar.

strip_binder (SOME boolSyntax.universal)

Comments
Terms with many consecutive binders should be taken apart using strip_binder and its
instantiations strip_abs, strip_forall, and strip_exists. In the current implementa-
tion of HOL, iterating dest_abs, dest_forall, or dest_exists is far slower for terms with
many consecutive binders.

See also
Term.list mk binder, Term.strip abs, boolSyntax.strip forall,

boolSyntax.strip exists.

STRIP_BINDER_CONV (Conv)

STRIP_BINDER_CONV : term option -> conv -> conv

Synopsis
Applies a conversion underneath a binder prefix.

strip comb 955

Description
If the application of conv to M yields |- M = N, then STRIP_BINDER_CONV (SOME c) conv (c(\v1. ... (c(\vn.M))...))

returns |- c(\v1. ... (c(\vn.M))...) = c(\v1. ... (c(\vn.N))...) and STRIP_BINDER_CONV NONE conv (\v1 ... vn.M)

returns |- (\v1 ... vn.M) = (\v1 ... vn.N).

Failure
If conv M fails. Also fails if some of [v1,...,vn] are free in the hypotheses of conv M.

Example

- STRIP_BINDER_CONV NONE BETA_CONV (Term ‘\u v w. (\a. a + v * w) u‘);

> val it = |- (\u v w. (\a. a + v * w) u) = (\u v w. u + v * w) : thm

- STRIP_BINDER_CONV (SOME existential) SYM_CONV

(Term ‘?u v w x y. u + v = w + x + y‘);

> val it = |- (?u v w x y. u + v = w + x + y) =

?u v w x y. w + x + y = u + v : thm

Comments
STRIP_BINDER_CONV is more efficient than iterated application of BINDER_CONV or ABS_CONV
or QUANT_CONV.

See also
Conv.BINDER CONV, Conv.ABS CONV, Conv.QUANT CONV, Conv.STRIP BINDER CONV,

Conv.STRIP QUANT CONV.

strip_comb (boolSyntax)

strip_comb : term -> term * term list

Synopsis
Iteratively breaks apart combinations (function applications).

Description
If M has the form t t1 ... tn then strip_comb M returns (t,[t1,...,tn]). Note that

strip_comb(list_mk_comb(t,[t1,...,tn]))

956 CHAPTER 1. ENTRIES

will not be (t,[t1,...,tn]) if t is a combination.

Failure
Never fails.

Example

- strip_comb (Term ‘x /\ y‘);

> val it = (‘$/\‘, [‘x‘, ‘y‘]) : term * term list

- strip_comb T;

> val it = (‘T‘, []) : term * term list

See also
Term.list mk comb, Term.dest comb.

strip_conj (boolSyntax)

strip_conj : term -> term list

Synopsis
Recursively breaks apart conjunctions.

Description
If M is of the form t1 /\ ... /\ tn, where no ti is a conjunction, then strip_conj M

returns [t1,...,tn]. Any ti that is a conjunction is broken down by strip_conj, hence

strip_conj(list_mk_conj [t1,...,tn])

will not return [t1,...,tn] if any ti is a conjunction.

Failure
Never fails.

Example

- strip_conj (Term ‘(a /\ b) /\ c /\ d‘);

> val it = [‘a‘, ‘b‘, ‘c‘, ‘d‘] : term list

strip disj 957

See also
boolSyntax.dest conj, boolSyntax.mk conj, boolSyntax.list mk conj.

strip_disj (boolSyntax)

strip_disj : term -> term list

Synopsis
Recursively breaks apart disjunctions.

Description
If M is of the form t1 \/ ... \/ tn, where no ti is a disjunction, then strip_disj M

returns [t1,...,tn]. Any ti that is a disjunction is broken down by strip_disj, hence

strip_disj(list_mk_disj [t1,...,tn])

will not return [t1,...,tn] if any ti is a disjunction.

Failure
Never fails.

Example

- strip_disj (Term ‘(a \/ b) \/ c \/ d‘);

> val it = [‘a‘, ‘b‘, ‘c‘, ‘d‘] : term list

See also
boolSyntax.dest disj, boolSyntax.mk disj, boolSyntax.list mk disj.

strip_exists (boolSyntax)

strip_exists : term -> term list * term

Synopsis
Iteratively breaks apart existential quantifications.

Description
If M has the structure ?x1 ... xn. t then strip_exists M returns ([x1,...,xn],t). Note
that

958 CHAPTER 1. ENTRIES

strip_exists(list_mk_exists(["x1";...;"xn"],"t"))

will not return ([x1,...,xn],t) if t is an existential quantification.

Failure
Never fails.

See also
boolSyntax.list mk exists, boolSyntax.dest exists.

strip_forall (boolSyntax)

strip_forall : term -> term list * term

Synopsis
Iteratively breaks apart universal quantifications.

Description
If M has the form !x1 ... xn. t then strip_forall M returns ([x1,...,xn],t). Note
that

strip_forall(list_mk_forall([x1,...,xn],t,))

will not return ([x1,...,xn],t) if t is a universal quantification.

Failure
Never fails.

See also
boolSyntax.list mk forall, boolSyntax.dest forall.

strip_fun (boolSyntax)

strip_fun : hol_type -> hol_type list * hol_type

Synopsis
Iteratively breaks apart function types.

Description
If fty is of the form ty1 -> (... (tyn -> ty) ...), then strip_fun fty returns
([ty1,...,tyn],ty). Note that

STRIP GOAL THEN 959

strip_fun(list_mk_fun([ty1,...,tyn],ty))

will not return ([ty1,...,tyn],ty) if ty is a function type.

Failure
Never fails.

Example

- strip_fun (Type ‘:(a -> ’bool) -> (’b -> ’c)‘);

> val it = ([‘:a -> ’bool‘, ‘:’b‘], ‘:’c‘) : hol_type list * hol_type

See also
boolSyntax.list mk fun, Type.dom rng, Type.dest type.

STRIP_GOAL_THEN (Tactic)

STRIP_GOAL_THEN : thm_tactic -> tactic

Synopsis
Splits a goal by eliminating one outermost connective, applying the given theorem-tactic
to the antecedents of implications.

Description
Given a theorem-tactic ttac and a goal (A,t), STRIP_GOAL_THEN removes one outermost
occurrence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t. If
t is a universally quantified term, then STRIP_GOAL_THEN strips off the quantifier:

A ?- !x.u

============== STRIP_GOAL_THEN ttac

A ?- u[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a
conjunction, then STRIP_GOAL_THEN simply splits the conjunction into two subgoals:

A ?- v /\ w

================= STRIP_GOAL_THEN ttac

A ?- v A ?- w

If t is an implication u ==> v and if:

960 CHAPTER 1. ENTRIES

A ?- v

=============== ttac (u |- u)

A’ ?- v’

then:

A ?- u ==> v

==================== STRIP_GOAL_THEN ttac

A’ ?- v’

Finally, a negation ~t is treated as the implication t ==> F.

Failure
STRIP_GOAL_THEN ttac (A,t) fails if t is not a universally quantified term, an implica-
tion, a negation or a conjunction. Failure also occurs if the application of ttac fails,
after stripping the goal.

Example
When solving the goal

?- (n = 1) ==> (n * n = n)

a possible initial step is to apply

STRIP_GOAL_THEN SUBST1_TAC

thus obtaining the goal

?- 1 * 1 = 1

Uses
STRIP_GOAL_THEN is used when manipulating intermediate results (obtained by stripping
outer connectives from a goal) directly, rather than as assumptions.

See also
Tactic.CONJ TAC, Thm cont.DISCH THEN, Thm cont.FILTER STRIP THEN, Tactic.GEN TAC,

Tactic.STRIP ASSUME TAC, Tactic.STRIP TAC.

strip_imp (boolSyntax)

strip_imp : term -> term list * term

strip imp only 961

Synopsis
Iteratively breaks apart implications.

Description
If M is of the form t1 ==> (... (tn ==> t) ...), then strip_imp M returns ([t1,...,tn],t).
Note that

strip_imp(list_mk_imp([t1,...,tn],t))

will not return ([t1,...,tn],t) if t is an implication.

Failure
Never fails.

Example

- strip_imp "(T ==> F) ==> (T ==> F)";;

> val it = (["T ==> F"; "T"], "F") : term list * term

- strip_imp (Term ‘t1 ==> t2 ==> t3 ==> ~t‘);

> val it = ([‘t1‘, ‘t2‘, ‘t3‘, ‘t‘], ‘F‘) : term list * term

See also
boolSyntax.list mk imp, boolSyntax.dest imp.

strip_imp_only (boolSyntax)

strip_imp_only : term -> term list * term

Synopsis
Iteratively breaks apart implications.

Description
If M is of the form t1 ==> (... (tn ==> t) ...), then strip_imp_only M returns
([t1,...,tn],t). Note that

strip_imp_only(list_mk_imp([t1,...,tn],t))

962 CHAPTER 1. ENTRIES

will not return ([t1,...,tn],t) if t is an implication.

Failure
Never fails.

Example

- strip_imp_only (Term ‘(T ==> F) ==> (T ==> F)‘);

> val it = ([‘T ==> F‘, ‘T‘], ‘F‘) : term list * term

- strip_imp_only (Term ‘t1 ==> t2 ==> t3 ==> ~t‘);

> val it = ([‘t1‘, ‘t2‘, ‘t3‘], ‘~t‘) : term list * term

See also
boolSyntax.list mk imp, boolSyntax.dest imp.

strip_neg (boolSyntax)

strip_neg : term -> term * int

Synopsis
Breaks iterated negations down to an unnegated core.

Description
If M is of the form ~...~t, then strip_neg M returns (t,n), where n is the number of
consecutive negations being applied to t.

Failure
Never fails.

Example

- strip_neg (Term ‘~~~~t‘);

> val it = (‘t‘, 4) : term * int

- strip_neg (Term ‘x‘);

<<HOL message: inventing new type variable names: ’a>>

> val it = (‘x‘, 0) : term * int

strip pabs 963

Comments
There is no corresponding entrypoint for building iterated negations. If such function-
ality is desired, funpow may be used:

- funpow 3 mk_neg T;

> val it = ‘~~~T‘ : term

See also
boolSyntax.dest neg, boolSyntax.mk neg, Lib.funpow.

strip_pabs (pairSyntax)

strip_pabs : term -> term list * term

Synopsis
Iteratively breaks apart paired abstractions.

Description
strip_pabs "\p1 ... pn. t" returns ([p1,...,pn],t). Note that

strip_pabs(list_mk_abs([p1,...,pn],t))

will not return ([p1,...,pn],t) if t is a paired abstraction.

Failure
Never fails.

See also
boolSyntax.strip abs, pairSyntax.list mk pabs, pairSyntax.dest pabs.

strip_pair (pairSyntax)

strip_pair : term -> term list

Synopsis
Recursively breaks a paired structure into its constituent pieces.

Example

964 CHAPTER 1. ENTRIES

- strip_pair (Term ‘((1,2),(3,4))‘);

> val it = [‘1‘, ‘2‘, ‘3‘, ‘4‘] : term list

Comments
Note that strip_pair is similar, but not identical, to spine_pair which does not work
recursively.

Failure
Never fails.

See also
pairSyntax.spine pair.

strip_pexists (pairSyntax)

strip_pexists : term -> term list * term

Synopsis
Iteratively breaks apart paired existential quantifications.

Description
strip_pexists "?p1 ... pn. t" returns ([p1,...,pn],t). Note that

strip_pexists(list_mk_pexists([[p1,...,pn],t))

will not return ([p1,...,pn],t) if t is a paired existential quantification.

Failure
Never fails.

See also
boolSyntax.strip exists, pairSyntax.dest pexists.

strip_pforall (pairSyntax)

strip_pforall : term -> term list * term

STRIP QUANT CONV 965

Synopsis
Iteratively breaks apart paired universal quantifications.

Description
strip_pforall "!p1 ... pn. t" returns ([p1,...,pn],t). Note that

strip_pforall(list_mk_pforall([p1,...,pn],t))

will not return ([p1,...,pn],t) if t is a paired universal quantification.

Failure
Never fails.

See also
boolSyntax.strip forall, pairSyntax.dest pforall.

STRIP_QUANT_CONV (Conv)

STRIP_QUANT_CONV : conv -> conv

Synopsis
Applies a conversion underneath a quantifier prefix.

Description
If tm has the form Q(\v1. ... (Q(\vn.M))...) and the application of conv to M yields
|- M = N, then STRIP_QUANT_CONV conv tm returns |- Q(\v1. ... (Q(\vn.M))...) = Q(\v1. ... (Q(\vn.N))...),
provided Q is Hilbert’s choice operator or a universal, existential, or unique-existence
quantifer.

Otherwise, STRIP_QUANT_CONV conv tm returns conv tm.

Failure
If conv M fails. Or if conv tm fails when tm is not a quantified term. Also fails if some of
[v1,...,vn] are free in the hypotheses of conv M.

Example

- STRIP_QUANT_CONV (STRIP_QUANT_CONV SYM_CONV)

(Term ‘!x y z. ?!p q r. x + y*z = p*q + r‘);

> val it =

|- (!x y z. ?!p q r. x + y * z = p * q + r) =

!x y z. ?!p q r. p * q + r = x + y * z : thm

966 CHAPTER 1. ENTRIES

Comments
To deal with binders not in the above list, e.g., newly introduced ones, use STRIP_BINDER_CONV.

For deeply nested quantifiers, STRIP_QUANT_CONV and STRIP_BINDER_CONV are more ef-
ficient than iterated application of QUANT_CONV, BINDER_CONV, or ABS_CONV.

See also
Conv.STRIP BINDER CONV, Conv.QUANT CONV, Conv.BINDER CONV, Conv.ABS CONV.

strip_res_exists (res_quanLib)

strip_res_exists : (term -> ((term # term) list # term))

Synopsis
Iteratively breaks apart a restricted existentially quantified term.

Description
strip_res_exists is an iterative term destructor for restricted existential quantifications.
It iteratively breaks apart a restricted existentially quantified term into a list of pairs
which are the restricted quantified variables and predicates and the body.

strip_res_exists "?x1::P1. ... ?xn::Pn. t"

returns ([("x1","P1");...;("xn","Pn")],"t").

Failure
Never fails.

See also
res quanLib.list mk res exists, res quanLib.is res exists,

res quanLib.dest res exists.

strip_res_exists (res_quanTools)

strip_res_exists : (term -> ((term # term) list # term))

Synopsis
Iteratively breaks apart a restricted existentially quantified term.

strip res forall 967

Description
strip_res_exists is an iterative term destructor for restricted existential quantifications.
It iteratively breaks apart a restricted existentially quantified term into a list of pairs
which are the restricted quantified variables and predicates and the body.

strip_res_exists "?x1::P1. ... ?xn::Pn. t"

returns ([("x1","P1");...;("xn","Pn")],"t").

Failure
Never fails.

See also
res quanTools.list mk res exists, res quanTools.is res exists,

res quanTools.dest res exists.

strip_res_forall (res_quanLib)

strip_res_forall : term -> ((term # term) list # term)

Synopsis
Iteratively breaks apart a restricted universally quantified term.

Description
strip_res_forall is an iterative term destructor for restricted universal quantifications.
It iteratively breaks apart a restricted universally quantified term into a list of pairs
which are the restricted quantified variables and predicates and the body.

strip_res_forall "!x1::P1. ... !xn::Pn. t"

returns ([("x1","P1");...;("xn","Pn")],"t").

Failure
Never fails.

See also
res quanLib.list mk res forall, res quanLib.is res forall,

res quanLib.dest res forall.

968 CHAPTER 1. ENTRIES

strip_res_forall (res_quanTools)

strip_res_forall : (term -> ((term # term) list # term))

Synopsis
Iteratively breaks apart a restricted universally quantified term.

Description
strip_res_forall is an iterative term destructor for restricted universal quantifications.
It iteratively breaks apart a restricted universally quantified term into a list of pairs
which are the restricted quantified variables and predicates and the body.

strip_res_forall "!x1::P1. ... !xn::Pn. t"

returns ([("x1","P1");...;("xn","Pn")],"t").

Failure
Never fails.

See also
res quanTools.list mk res forall, res quanTools.is res forall,

res quanTools.dest res forall.

STRIP_TAC (Tactic)

STRIP_TAC : tactic

Synopsis
Splits a goal by eliminating one outermost connective.

Description
Given a goal (A,t), STRIP_TAC removes one outermost occurrence of one of the connec-
tives !, ==>, ~ or /\ from the conclusion of the goal t. If t is a universally quantified
term, then STRIP_TAC strips off the quantifier:

A ?- !x.u

============== STRIP_TAC

A ?- u[x’/x]

STRIP TAC 969

where x’ is a primed variant that does not appear free in the assumptions A. If t is a
conjunction, then STRIP_TAC simply splits the conjunction into two subgoals:

A ?- v /\ w

================= STRIP_TAC

A ?- v A ?- w

If t is an implication, STRIP_TAC moves the antecedent into the assumptions, stripping
conjunctions, disjunctions and existential quantifiers according to the following rules:

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v

============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- ?x.w ==> v

====================

A u {w[x’/x]} ?- v

where x’ is a primed variant of x that does not appear free in A. Finally, a negation ~t is
treated as the implication t ==> F.

Failure
STRIP_TAC (A,t) fails if t is not a universally quantified term, an implication, a negation
or a conjunction.

Example
Applying STRIP_TAC twice to the goal:

?- !n. m <= n /\ n <= m ==> (m = n)

results in the subgoal:

{n <= m, m <= n} ?- m = n

Uses
When trying to solve a goal, often the best thing to do first is REPEAT STRIP_TAC to split
the goal up into manageable pieces.

See also
Tactic.CONJ TAC, Tactic.DISCH TAC, Thm cont.DISCH THEN, Tactic.GEN TAC,

Tactic.STRIP ASSUME TAC, Tactic.STRIP GOAL THEN.

970 CHAPTER 1. ENTRIES

STRIP_THM_THEN (Thm_cont)

STRIP_THM_THEN : thm_tactical

Synopsis
STRIP_THM_THEN applies the given theorem-tactic using the result of stripping off one
outer connective from the given theorem.

Description
Given a theorem-tactic ttac, a theorem th whose conclusion is a conjunction, a disjunc-
tion or an existentially quantified term, and a goal (A,t), STRIP_THM_THEN ttac th first
strips apart the conclusion of th, next applies ttac to the theorem(s) resulting from the
stripping and then applies the resulting tactic to the goal.

In particular, when stripping a conjunctive theorem A’|- u /\ v, the tactic

ttac(u|-u) THEN ttac(v|-v)

resulting from applying ttac to the conjuncts, is applied to the goal. When stripping
a disjunctive theorem A’|- u \/ v, the tactics resulting from applying ttac to the dis-
juncts, are applied to split the goal into two cases. That is, if

A ?- t A ?- t

========= ttac (u|-u) and ========= ttac (v|-v)

A ?- t1 A ?- t2

then:

A ?- t

================== STRIP_THM_THEN ttac (A’|- u \/ v)

A ?- t1 A ?- t2

When stripping an existentially quantified theorem A’|- ?x.u, the tactic ttac(u|-u),
resulting from applying ttac to the body of the existential quantification, is applied to
the goal. That is, if:

A ?- t

========= ttac (u|-u)

A ?- t1

then:

STRUCT CASES TAC 971

A ?- t

============= STRIP_THM_THEN ttac (A’|- ?x. u)

A ?- t1

The assumptions of the theorem being split are not added to the assumptions of the
goal(s) but are recorded in the proof. If A’ is not a subset of the assumptions A of the
goal (up to alpha-conversion), STRIP_THM_THEN ttac th results in an invalid tactic.

Failure
STRIP_THM_THEN ttac th fails if the conclusion of th is not a conjunction, a disjunction
or an existentially quantified term. Failure also occurs if the application of ttac fails,
after stripping the outer connective from the conclusion of th.

Uses
STRIP_THM_THEN is used enrich the assumptions of a goal with a stripped version of a
previously-proved theorem.

See also
Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN, Thm cont.DISJ CASES THEN,

Tactic.STRIP ASSUME TAC.

STRUCT_CASES_TAC (Tactic)

STRUCT_CASES_TAC : thm_tactic

Synopsis
Performs very general structural case analysis.

Description
When it is applied to a theorem of the form:

th = A’ |- ?y11...y1m. (x=t1) /\ (B11 /\ ... /\ B1k) \/ ... \/

?yn1...ynp. (x=tn) /\ (Bn1 /\ ... /\ Bnp)

in which there may be no existential quantifiers where a ‘vector’ of them is shown above,
STRUCT_CASES_TAC th splits a goal A ?- s into n subgoals as follows:

A ?- s

===

A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]

972 CHAPTER 1. ENTRIES

that is, performs a case split over the possible constructions (the ti) of a term, providing
as assumptions the given constraints, having split conjoined constraints into separate
assumptions. Note that unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has the above form, namely a conjunction of (possibly multiply
existentially quantified) terms which assert the equality of the same variable x and the
given terms.

Example
Suppose we have the goal:

?- ~(l:(*)list = []) ==> (LENGTH l) > 0

then we can get rid of the universal quantifier from the inbuilt list theorem list_CASES:

list_CASES = !l. (l = []) \/ (?t h. l = CONS h t)

and then use STRUCT_CASES_TAC. This amounts to applying the following tactic:

STRUCT_CASES_TAC (SPEC_ALL list_CASES)

which results in the following two subgoals:

?- ~(CONS h t = []) ==> (LENGTH(CONS h t)) > 0

?- ~([] = []) ==> (LENGTH[]) > 0

Note that this is a rather simple case, since there are no constraints, and therefore the
resulting subgoals have no assumptions.

Uses
Generating a case split from the axioms specifying a structure.

See also
Tactic.ASM CASES TAC, Tactic.BOOL CASES TAC, Tactic.COND CASES TAC,

Tactic.DISJ CASES TAC.

SUB_AND_COND_ELIM_CONV (Arith)

SUB_AND_COND_ELIM_CONV : conv

SUB AND COND ELIM CONV 973

Synopsis
Eliminates natural number subtraction, PRE, and conditional statements from a for-
mula.

Description
This function eliminates natural number subtraction and the predecessor function, PRE,
from a formula, but in doing so may generate conditional statements, so these are
eliminated too. The conditional statements are moved up through the term and if at
any point the branches of the conditional become Boolean-valued the conditional is
eliminated. Subtraction operators are moved up until a relation (such as less-than)
is reached. The subtraction can then be transformed into an addition. Provided the
argument term is a formula, only an abstraction can prevent a conditional being moved
up far enough to be eliminated. If the term is not a formula it may not be possible
to eliminate the subtraction. The function is also incapable of eliminating subtractions
that appear in arguments to functions other than the standard operators of arithmetic.

The function is not as delicate as it could be; it tries to eliminate all conditionals in a
formula when it need only eliminate those that have to be removed in order to eliminate
subtraction.

Failure
Never fails.

Example

#SUB_AND_COND_ELIM_CONV

"((p + 3) <= n) ==> (!m. ((m = 0) => (n - 1) | (n - 2)) > p)";;

|- (p + 3) <= n ==> (!m. ((m = 0) => n - 1 | n - 2) > p) =

(p + 3) <= n ==>

(!m. (~(m = 0) \/ n > (1 + p)) /\ ((m = 0) \/ n > (2 + p)))

#SUB_AND_COND_ELIM_CONV

"!f n. f ((SUC n = 0) => 0 | (SUC n - 1)) < (f n) + 1";;

|- (!f n. (f((SUC n = 0) => 0 | (SUC n) - 1)) < ((f n) + 1)) =

(!f n.

(~(SUC n = 0) \/ (f 0) < ((f n) + 1)) /\

((SUC n = 0) \/ (f((SUC n) - 1)) < ((f n) + 1)))

#SUB_AND_COND_ELIM_CONV

"!f n. (\m. f ((m = 0) => 0 | (m - 1))) (SUC n) < (f n) + 1";;

|- (!f n. ((\m. f((m = 0) => 0 | m - 1))(SUC n)) < ((f n) + 1)) =

(!f n. ((\m. ((m = 0) => f 0 | f(m - 1)))(SUC n)) < ((f n) + 1))

974 CHAPTER 1. ENTRIES

Uses
Useful as a preprocessor to decision procedures which do not allow natural number
subtraction in their argument formula.

See also
Arith.COND ELIM CONV.

SUB_CONV (Conv)

SUB_CONV : conv -> conv

Synopsis
Applies a conversion to the top-level subterms of a term.

Description
For any conversion c, the function returned by SUB_CONV c is a conversion that applies c
to all the top-level subterms of a term. Its implementation is

fun SUB_CONV c = TRY_CONV (COMB_CONV c ORELSEC ABS_CONV c)

Example
If the conversion c maps t to |- t = t’, then SUB_CONV c maps an abstraction "\x.t" to
the theorem:

|- (\x.t) = (\x.t’)

That is, SUB_CONV c "\x.t" applies c to the body of the abstraction "\x.t". If c is
a conversion that maps "t1" to the theorem |- t1 = t1’ and "t2" to the theorem
|- t2 = t2’, then the conversion SUB_CONV c maps an application "t1 t2" to the the-
orem:

|- (t1 t2) = (t1’ t2’)

That is, SUB_CONV c "t1 t2" applies c to the both the operator t1 and the operand
t2 of the application "t1 t2". Finally, for any conversion c, the function returned by
SUB_CONV c acts as the identity conversion on variables and constants. That is, if "t" is
a variable or constant, then SUB_CONV c "t" returns |- t = t.

Failure
SUB_CONV c tm fails if tm is an abstraction "\x.t" and the conversion c fails when applied
to t, or if tm is an application "t1 t2" and the conversion c fails when applied to either t1

SUBGOAL THEN 975

or t2. The function returned by SUB_CONV c may also fail if the ML function c:term->thm

is not, in fact, a conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
Conv.ABS CONV, Conv.COMB CONV, Conv.RAND CONV, Conv.RATOR CONV.

SUBGOAL_THEN (Tactical)

SUBGOAL_THEN : term -> thm_tactic -> tactic

Synopsis
Allows the user to introduce a lemma.

Description
The user proposes a lemma and is then invited to prove it under the current assump-
tions. The lemma is then used with the thm_tactic to simplify the goal. That is, if

A1 ?- t1

========== f (u |- u)

A2 ?- t2

then

A1 ?- t1

==================== SUBGOAL_THEN u f

A1 ?- u A2 ?- t2

Typically f (u |- u) will be an invalid tactic because it would return a validation
function which generated the theorem A1,u |- t1 from the theorem A2 |- t2. Nonethe-
less, the tactic SUBGOAL_THEN u f is valid because of the extra sub-goal where u must be
proved.

Failure
SUBGOAL_THEN will fail if an attempt is made to use a nonboolean term as a lemma.

Uses
When combined with rotate, SUBGOAL_THEN allows the user to defer some part of a
proof and to continue with another part. SUBGOAL_THEN is most convenient when the
tactic solves the original goal, leaving only the subgoal. For example, suppose the user
wishes to prove the goal

976 CHAPTER 1. ENTRIES

{n = SUC m} ?- (0 = n) ==> t

Using SUBGOAL_THEN to focus on the case in which ~(n = 0), rewriting establishes it truth,
leaving only the proof that ~(n = 0). That is,

SUBGOAL_THEN (Term ‘~(0 = n)‘) (fn th => REWRITE_TAC [th])

generates the following subgoals:

{n = SUC m} ?- ~(0 = n)

?- T

Comments
Some users may expect the generated tactic to be f (A1 |- u), rather than f (u |- u).

SUBS (Drule)

SUBS : (thm list -> thm -> thm)

Synopsis
Makes simple term substitutions in a theorem using a given list of theorems.

Description
Term substitution in HOL is performed by replacing free subterms according to the
transformations specified by a list of equational theorems. Given a list of theorems
A1|-t1=v1,...,An|-tn=vn and a theorem A|-t, SUBS simultaneously replaces each free
occurrence of ti in t with vi:

A1|-t1=v1 ... An|-tn=vn A|-t

--- SUBS[A1|-t1=v1;...;An|-tn=vn]

A1 u ... u An u A |- t[v1,...,vn/t1,...,tn] (A|-t)

No matching is involved; the occurrence of each ti being substituted for must be a free
in t (see SUBST_MATCH). An occurrence which is not free can be substituted by using
rewriting rules such as REWRITE_RULE, PURE_REWRITE_RULE and ONCE_REWRITE_RULE.

Failure
SUBS [th1,...,thn] (A|-t) fails if the conclusion of each theorem in the list is not an
equation. No change is made to the theorem A |- t if no occurrence of any left-hand
side of the supplied equations appears in t.

Example
Substitutions are made with the theorems

SUBS OCCS 977

- val thm1 = SPECL [Term‘m:num‘, Term‘n:num‘] arithmeticTheory.ADD_SYM

val thm2 = CONJUNCT1 arithmeticTheory.ADD_CLAUSES;

> val thm1 = |- m + n = n + m : thm

val thm2 = |- 0 + m = m : thm

depending on the occurrence of free subterms

- SUBS [thm1, thm2] (ASSUME (Term ‘(n + 0) + (0 + m) = m + n‘));

> val it = [.] |- n + 0 + m = n + m : thm

- SUBS [thm1, thm2] (ASSUME (Term ‘!n. (n + 0) + (0 + m) = m + n‘));

> val it = [.] |- !n. n + 0 + m = m + n : thm

Uses
SUBS can sometimes be used when rewriting (for example, with REWRITE_RULE) would
diverge and term instantiation is not needed. Moreover, applying the substitution rules
is often much faster than using the rewriting rules.

See also
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE,

Thm.SUBST, Rewrite.SUBST MATCH, Drule.SUBS OCCS.

SUBS_OCCS (Drule)

SUBS_OCCS : (int list * thm) list -> thm -> thm

Synopsis
Makes substitutions in a theorem at specific occurrences of a term, using a list of equa-
tional theorems.

Description
Given a list (l1,A1|-t1=v1),...,(ln,An|-tn=vn) and a theorem (A|-t), SUBS_OCCS si-
multaneously replaces each ti in t with vi, at the occurrences specified by the integers
in the list li = [o1,...,ok] for each theorem Ai|-ti=vi.

(l1,A1|-t1=v1) ... (ln,An|-tn=vn) A|-t

--- SUBS_OCCS[(l1,A1|-t1=v1),...,

A1 u ... An u A |- t[v1,...,vn/t1,...,tn] (ln,An|-tn=vn)] (A|-t)

978 CHAPTER 1. ENTRIES

Failure
SUBS_OCCS [(l1,th1),...,(ln,thn)] (A|-t) fails if the conclusion of any theorem in the
list is not an equation. No change is made to the theorem if the supplied occurrences li
of the left-hand side of the conclusion of thi do not appear in t.

Example
The commutative law for addition

- val thm = SPECL [Term ‘m:num‘, Term‘n:num‘] arithmeticTheory.ADD_SYM;

> val thm = |- m + n = n + m : thm

can be used for substituting only the second occurrence of the subterm m + n

- SUBS_OCCS [([2],thm)]

(ASSUME (Term ‘(n + m) + (m + n) = (m + n) + (m + n)‘));

> val it = [.] |- n + m + (m + n) = n + m + (m + n) : thm

Uses
SUBS_OCCS is used when rewriting at specific occurrences of a term, and rules such
as REWRITE_RULE, PURE_REWRITE_RULE, ONCE_REWRITE_RULE, and SUBS are too extensive or
would diverge.

See also
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE,

Drule.SUBS, Thm.SUBST, Rewrite.SUBST MATCH.

subst (Lib)

type (’a,’b) subst

Synopsis
Type abbreviation for substitutions.

Description
The type (’a,’b) subst abbreviates the type {redex,residue} list, in which redex has
type ’a and residue has type ’b. Usually, a {redex,residue} pair in a substition is
interpreted as ‘replace occurrences of redex by residue’.

Comments
The different types of redex and residue components allows flexibility, as in the rule of
inference SUBST, which takes a (term,thm) subst argument.

subst 979

See also
Lib.|->, Term.subst, Term.inst, Thm.SUBST.

subst (Term)

subst : (term,term) subst -> term -> term

Synopsis
Substitutes terms in a term.

Description
Given a ”(term,term) subst” (a list of {redex, residue} records) and a term tm, subst
attempts to replace each free occurrence of a redex in tm by its associated residue. The
substitution is done in parallel, i.e., once a redex has been replaced by its residue, at
some place in the term, that residue at that place will not itself be replaced in the current
call. When necessary, renaming of bound variables in tm is done to avoid capturing the
free variables of an incoming residue.

Failure
Failure occurs if there exists a {redex, residue} record in the substitution such that the
types of the redex and residue are not equal.

Example

- load "arithmeticTheory";

- subst [Term‘SUC 0‘ |-> Term‘1‘]

(Term‘SUC(SUC 0)‘);

> val it = ‘SUC 1‘ : term

- subst [Term‘SUC 0‘ |-> Term‘1‘,

Term‘SUC 1‘ |-> Term‘2‘]

(Term‘SUC(SUC 0)‘);

> val it = ‘SUC 1‘ : term

- subst [Term‘SUC 0‘ |-> Term‘1‘,

Term‘SUC 1‘ |-> Term‘2‘]

(Term‘SUC(SUC 0) = SUC 1‘);

> val it = ‘SUC 1 = 2‘ : term

980 CHAPTER 1. ENTRIES

- subst [Term‘b:num‘ |-> Term‘a:num‘]

(Term‘\a:num. b:num‘);

> val it = ‘\a’. a‘ : term

- subst [Term‘flip:’a‘ |-> Term‘foo:’a‘]

(Term‘waddle:’a‘);

> val it = ‘waddle‘ : term

See also
Term.inst, Thm.SUBST, Drule.SUBS, Lib.|->.

SUBST (Thm)

SUBST : (term,thm) subst -> term -> thm -> thm

Synopsis
Makes a set of parallel substitutions in a theorem.

Description
Implements the following rule of simultaneous substitution

A1 |- t1 = u1 , ... , An |- tn = un , A |- t[t1,...,tn]

A u A1 u ... u An |- t[u1,...,un]

Evaluating

SUBST [x1 |-> (A1 |- t1=u1) ,..., xn |-> (An |- tn=un)]

t[x1,...,xn]

(A |- t[t1,...,tn])

returns the theorem A1 u ... An |- t[u1,...,un]. The term argument t[x1,...,xn] is
a template which should match the conclusion of the theorem being substituted into,
with the variables x1, ... , xn marking those places where occurrences of t1, ... , tn

are to be replaced by the terms u1, ... , un, respectively. The occurrence of ti at the
places marked by xi must be free (i.e. ti must not contain any bound variables). SUBST
automatically renames bound variables to prevent free variables in ui becoming bound
after substitution.

SUBST 981

Failure
If the template does not match the conclusion of the hypothesis, or the terms in the
conclusion marked by the variables x1, ... , xn in the template are not identical to the
left hand sides of the supplied equations (i.e. the terms t1, ... , tn).

Example

- val x = --‘x:num‘--

and y = --‘y:num‘--

and th0 = SPEC (--‘0‘--) arithmeticTheory.ADD1

and th1 = SPEC (--‘1‘--) arithmeticTheory.ADD1;

(* x = ‘x‘

y = ‘y‘

th0 = |- SUC 0 = 0 + 1

th1 = |- SUC 1 = 1 + 1 *)

- SUBST [x |-> th0, y |-> th1]

(--‘(x+y) > SUC 0‘--)

(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

> val it = [.] |- (0 + 1) + 1 + 1 > SUC 0 : thm

- SUBST [x |-> th0, y |-> th1]

(--‘(SUC 0 + y) > SUC 0‘--)

(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

> val it = [.] |- SUC 0 + 1 + 1 > SUC 0 : thm

- SUBST [x |-> th0, y |-> th1]

(--‘(x+y) > x‘--)

(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

> val it = [.] |- (0 + 1) + 1 + 1 > 0 + 1 : thm

Comments
SUBST is perhaps overly complex for a primitive rule of inference.

982 CHAPTER 1. ENTRIES

Uses
For substituting at selected occurrences. Often useful for writing special purpose derived
inference rules.

See also
Drule.SUBS, Drule.SUBST CONV, Lib.|->.

SUBST1_TAC (Tactic)

SUBST1_TAC : thm_tactic

Synopsis
Makes a simple term substitution in a goal using a single equational theorem.

Description
Given a theorem A’|-u=v and a goal (A,t), the tactic SUBST1_TAC (A’|-u=v) rewrites the
term t into t[v/u], by substituting v for each free occurrence of u in t:

A ?- t

============= SUBST1_TAC (A’|-u=v)

A ?- t[v/u]

The assumptions of the theorem used to substitute with are not added to the assump-
tions of the goal but are recorded in the proof. If A’ is not a subset of the assumptions
A of the goal (up to alpha-conversion), then SUBST1_TAC (A’|-u=v) results in an invalid
tactic.
SUBST1_TAC automatically renames bound variables to prevent free variables in v be-

coming bound after substitution.

Failure
SUBST1_TAC th (A,t) fails if the conclusion of th is not an equation. No change is made
to the goal if no free occurrence of the left-hand side of th appears in t.

Example
When trying to solve the goal

?- m * n = (n * (m - 1)) + n

substituting with the commutative law for multiplication

SUBST1_TAC (SPECL ["m:num"; "n:num"] MULT_SYM)

SUBST ALL TAC 983

results in the goal

?- n * m = (n * (m - 1)) + n

Uses
SUBST1_TAC is used when rewriting with a single theorem using tactics such as REWRITE_TAC
is too expensive or would diverge. Applying SUBST1_TAC is also much faster than using
rewriting tactics.

See also
Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,

Tactic.SUBST ALL TAC, Tactic.SUBST TAC.

SUBST_ALL_TAC (Tactic)

SUBST_ALL_TAC : thm_tactic

Synopsis
Substitutes using a single equation in both the assumptions and conclusion of a goal.

Description
SUBST_ALL_TAC breaches the style of natural deduction, where the assumptions are kept
fixed. Given a theorem A|-u=v and a goal ([t1;...;tn], t), SUBST_ALL_TAC (A|-u=v)

transforms the assumptions t1,...,tn and the term t into t1[v/u],...,tn[v/u] and t[v/u]

respectively, by substituting v for each free occurrence of u in both the assumptions and
the conclusion of the goal.

{t1,...,tn} ?- t

================================= SUBST_ALL_TAC (A|-u=v)

{t1[v/u],...,tn[v/u]} ?- t[v/u]

The assumptions of the theorem used to substitute with are not added to the assump-
tions of the goal, but they are recorded in the proof. If A is not a subset of the assump-
tions of the goal (up to alpha-conversion), then SUBST_ALL_TAC (A|-u=v) results in an
invalid tactic.
SUBST_ALL_TAC automatically renames bound variables to prevent free variables in v

becoming bound after substitution.

Failure
SUBST_ALL_TAC th (A,t) fails if the conclusion of th is not an equation. No change is
made to the goal if no occurrence of the left-hand side of th appears free in (A,t).

984 CHAPTER 1. ENTRIES

Example
Simplifying both the assumption and the term in the goal

{0 + m = n} ?- 0 + (0 + m) = n

by substituting with the theorem |- 0 + m = m for addition

SUBST_ALL_TAC (CONJUNCT1 ADD_CLAUSES)

results in the goal

{m = n} ?- 0 + m = n

See also
Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,

Tactic.SUBST1 TAC, Tactic.SUBST TAC.

subst_assoc (Lib)

subst_assoc : (’a -> bool) -> (’a,’b)subst -> ’b option

Synopsis
Treats a substitution as an association list.

Description
An application subst_assoc P [{redex_1,residue_1},...,{redex_n,residue_n}] re-
turns SOME residue_i if P holds of redex_i, and did not hold (or fail) for {redex_j | 1 <= j < i}.
If P holds for none of the redexes in the substitution, NONE is returned.

Failure
If P redex_i fails for some redex encountered in the left-to-right traversal of the substi-
tution.

Example

- subst_assoc is_abs [T |-> F, Term ‘\x.x‘ |-> Term ‘combin$I‘];

> val it = SOME‘I‘ : term option

SUBST CONV 985

See also
Lib.assoc, Lib.rev assoc, Lib.assoc1, Lib.assoc2, Lib.|->.

SUBST_CONV (Drule)

SUBST_CONV : {redex :term, residue :thm} list -> term -> conv

Synopsis
Makes substitutions in a term at selected occurrences of subterms, using a list of theo-
rems.

Description
SUBST_CONV implements the following rule of simultaneous substitution

A1 |- t1 = v1 ... An |- tn = vn

--

A1 u ... u An |- t[t1,...,tn/x1,...,xn] = t[v1,...,vn/x1,...,xn]

The first argument to SUBST_CONV is a list [{redex=x1, residue = A1|-t1=v1},...,{redex = xn, residue = An|-tn=vn}].
The second argument is a template term t[x1,...,xn], in which the variables x1,...,xn
are used to mark those places where occurrences of t1,...,tn are to be replaced with
the terms v1,...,vn, respectively. Thus, evaluating

SUBST_CONV [{redex = x1, residue = A1|-t1=v1},...,

{redex = xn, residue = An|-tn=vn}]

t[x1,...,xn]

t[t1,...,tn/x1,...,xn]

returns the theorem

A1 u ... u An |- t[t1,...,tn/x1,...,xn] = t[v1,...,vn/x1,...,xn]

The occurrence of ti at the places marked by the variable xi must be free (i.e. ti must
not contain any bound variables). SUBST_CONV automatically renames bound variables
to prevent free variables in vi becoming bound after substitution.

Failure
SUBST_CONV [{redex=x1,residue=th1},...,{redex=xn,residue=thn}] t[x1,...,xn] t’

fails if the conclusion of any theorem thi in the list is not an equation; or if the template
t[x1,...,xn] does not match the term t’; or if and term ti in t’ marked by the variable

986 CHAPTER 1. ENTRIES

xi in the template, is not identical to the left-hand side of the conclusion of the theorem
thi.

Example
The values

- val thm0 = SPEC (Term‘0‘) ADD1

and thm1 = SPEC (Term‘1‘) ADD1

and x = Term‘x:num‘ and y = Term‘y:num‘;

> val thm0 = |- SUC 0 = 0 + 1 : thm

val thm1 = |- SUC 1 = 1 + 1 : thm

val x = ‘x‘ : term

val y = ‘y‘ : term

can be used to substitute selected occurrences of the terms SUC 0 and SUC 1

- SUBST_CONV [{redex=x, residue=thm0},{redex=y,residue=thm1}]

(Term‘(x + y) > SUC 1‘)

(Term‘(SUC 0 + SUC 1) > SUC 1‘);

> val it = |- SUC 0 + SUC 1 > SUC 1 = (0 + 1) + 1 + 1 > SUC 1 : thm

The |-> syntax can also be used:

- SUBST_CONV [x |-> thm0, y |-> thm1]

(Term‘(x + y) > SUC 1‘)

(Term‘(SUC 0 + SUC 1) > SUC 1‘);

Uses
SUBST_CONV is used when substituting at selected occurrences of terms and using rewrit-
ing rules/conversions is too extensive.

See also
Conv.REWR CONV, Drule.SUBS, Thm.SUBST, Drule.SUBS OCCS, Lib.|->.

SUBST_MATCH (Rewrite)

SUBST_MATCH : (thm -> thm -> thm)

SUBST MATCH 987

Synopsis
Substitutes in one theorem using another, equational, theorem.

Description
Given the theorems A|-u=v and A’|-t, SUBST_MATCH (A|-u=v) (A’|-t) searches for one
free instance of u in t, according to a top-down left-to-right search strategy, and then
substitutes the corresponding instance of v.

A |- u=v A’ |- t

-------------------- SUBST_MATCH (A|-u=v) (A’|-t)

A u A’ |- t[v/u]

SUBST_MATCH allows only a free instance of u to be substituted for in t. An instance
which contain bound variables can be substituted for by using rewriting rules such as
REWRITE_RULE, PURE_REWRITE_RULE and ONCE_REWRITE_RULE.

Failure
SUBST_MATCH th1 th2 fails if the conclusion of the theorem th1 is not an equation. More-
over, SUBST_MATCH (A|-u=v) (A’|-t) fails if no instance of u occurs in t, since the match-
ing algorithm fails. No change is made to the theorem (A’|-t) if instances of u occur in
t, but they are not free (see SUBS).

Example
The commutative law for addition

- val thm1 = SPECL [Term ‘m:num‘, Term ‘n:num‘] arithmeticTheory.ADD_SYM;

> val thm1 = |- m + n = n + m : thm

is used to apply substitutions, depending on the occurrence of free instances

- SUBST_MATCH thm1 (ASSUME (Term ‘(n + 1) + (m - 1) = m + n‘));

> val it = [.] |- m - 1 + (n + 1) = m + n : thm

- SUBST_MATCH thm1 (ASSUME (Term ‘!n. (n + 1) + (m - 1) = m + n‘));

> val it = [.] |- !n. n + 1 + (m - 1) = m + n : thm

Uses
SUBST_MATCH is used when rewriting with the rules such as REWRITE_RULE, using a single
theorem is too extensive or would diverge. Moreover, applying SUBST_MATCH can be
much faster than using the rewriting rules.

See also
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE,

Drule.SUBS, Thm.SUBST.

988 CHAPTER 1. ENTRIES

subst_occs (HolKernel)

subst_occs : int list list -> term subst -> term -> term

Synopsis
Substitutes for particular occurrences of subterms of a given term.

Description
For each {redex,residue} in the second argument, there should be a corresponding
integer list l_i in the first argument that specifies which free occurrences of redex_i in
the third argument should be substituted by residue_i.

Failure
Failure occurs if any substitution fails, or if the length of the first argument is not equal
to the length of the substitution. In other words, every substitution pair should be
accompanied by a list specifying when the substitution is applicable.

Example
- subst_occs [[1,3]] [Term ‘SUC 0‘ |-> Term ‘1‘]

(Term ‘SUC 0 + SUC 0 = SUC(SUC 0)‘);

> val it = ‘1 + SUC 0 = SUC 1‘ : term

- subst_occs [[1],[1]] [Term ‘SUC 0‘ |-> Term ‘1‘,

Term ‘SUC 1‘ |-> Term ‘2‘]

(Term ‘SUC(SUC 0) = SUC 1‘);

> val it = ‘SUC 1 = 2‘ : term

- subst_occs [[1],[1]] [Term‘SUC(SUC 0)‘ |-> Term ‘2‘,

Term‘SUC 0‘ |-> Term ‘1‘]

(Term‘SUC(SUC 0) = SUC 0‘);

> val it = ‘2 = 1‘ : term

See also
Term.subst, Lib.|->.

SUBST_OCCS_TAC (Tactic)

SUBST_OCCS_TAC : (int list * thm) list -> tactic

SUBST OCCS TAC 989

Synopsis
Makes substitutions in a goal at specific occurrences of a term, using a list of theorems.

Description
Given a list (l1,A1|-t1=u1),...,(ln,An|-tn=un) and a goal (A,t), SUBST_OCCS_TAC re-
places each ti in t with ui, simultaneously, at the occurrences specified by the integers
in the list li = [o1,...,ok] for each theorem Ai|-ti=ui.

A ?- t

============================= SUBST_OCCS_TAC [(l1,A1|-t1=u1),...,

A ?- t[u1,...,un/t1,...,tn] (ln,An|-tn=un)]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, but they are recorded in the proof. If any Ai is not a subset of A (up
to alpha-conversion), SUBST_OCCS_TAC [(l1,A1|-t1=u1),...,(ln,An|-tn=un)] results in
an invalid tactic.
SUBST_OCCS_TAC automatically renames bound variables to prevent free variables in ui

becoming bound after substitution.

Failure
SUBST_OCCS_TAC [(l1,th1),...,(ln,thn)] (A,t) fails if the conclusion of any theorem
in the list is not an equation. No change is made to the goal if the supplied occurrences
li of the left-hand side of the conclusion of thi do not appear in t.

Example
When trying to solve the goal

?- (m + n) + (n + m) = (m + n) + (m + n)

applying the commutative law for addition on the third occurrence of the subterm m + n

SUBST_OCCS_TAC [([3], SPECL [Term ‘m:num‘, Term ‘n:num‘]

arithmeticTheory.ADD_SYM)]

results in the goal

?- (m + n) + (n + m) = (m + n) + (n + m)

Uses
SUBST_OCCS_TAC is used when rewriting a goal at specific occurrences of a term, and
when rewriting tactics such as REWRITE_TAC, PURE_REWRITE_TAC, ONCE_REWRITE_TAC,
SUBST_TAC, etc. are too extensive or would diverge.

990 CHAPTER 1. ENTRIES

See also
Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,

Tactic.SUBST1 TAC, Tactic.SUBST TAC.

SUBST_TAC (Tactic)

SUBST_TAC : (thm list -> tactic)

Synopsis
Makes term substitutions in a goal using a list of theorems.

Description
Given a list of theorems A1|-u1=v1,...,An|-un=vn and a goal (A,t), SUBST_TAC rewrites
the term t into the term t[v1,...,vn/u1,...,un] by simultaneously substituting vi for
each occurrence of ui in t with vi:

A ?- t

============================= SUBST_TAC [A1|-u1=v1,...,An|-un=vn]

A ?- t[v1,...,vn/u1,...,un]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, while they are recorded in the proof. If any Ai is not a subset of A (up
to alpha-conversion), then SUBST_TAC [A1|-u1=v1,...,An|-un=vn] results in an invalid
tactic.
SUBST_TAC automatically renames bound variables to prevent free variables in vi be-

coming bound after substitution.

Failure
SUBST_TAC [th1,...,thn] (A,t) fails if the conclusion of any theorem in the list is not
an equation. No change is made to the goal if no occurrence of the left-hand side of the
conclusion of thi appears in t.

Example
When trying to solve the goal

?- (n + 0) + (0 + m) = m + n

by substituting with the theorems

subtract 991

- val thm1 = SPEC_ALL arithmeticTheory.ADD_SYM

val thm2 = CONJUNCT1 arithmeticTheory.ADD_CLAUSES;

thm1 = |- m + n = n + m

thm2 = |- 0 + m = m

applying SUBST_TAC [thm1, thm2] results in the goal

?- (n + 0) + m = n + m

Uses
SUBST_TAC is used when rewriting (for example, with REWRITE_TAC) is extensive or would
diverge. Substituting is also much faster than rewriting.

See also
Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,

Tactic.SUBST1 TAC, Tactic.SUBST ALL TAC.

subtract (Lib)

subtract : ’’a list -> ’’a list -> ’’a list

Synopsis
Computes the set-theoretic difference of two ‘sets’.

Description
Behaves exactly like set_diff.

See also
Lib.set diff.

SUC_CONV (reduceLib)

SUC_CONV : conv

Synopsis
Calculates by inference the successor of a numeral.

Description
If n is a numeral (e.g. 0, 1, 2, 3,...), then SUC_CONV "SUC n" returns the theorem:

992 CHAPTER 1. ENTRIES

|- SUC n = s

where s is the numeral that denotes the successor of the natural number denoted by n.

Failure
SUC_CONV tm fails unless tm is of the form "SUC n", where n is a numeral.

Example

#SUC_CONV "SUC 33";;

|- SUC 33 = 34

SUC_TO_NUMERAL_DEFN_CONV (numLib)

SUC_TO_NUMERAL_DEFN_CONV : conv

Synopsis
Translates equations using SUC n to use numeral constructors instead.

Description
This conversion modifies conjunctions of universally quantified equations so that any
argument terms of the form SUC x on the LHS of the equations (with x one of the
equation’s universally quantified variables), are translated to a form appropriate for
rewriting when the argument term is a numeral.

This procedure uses the following theorem:

|- !f g. (!n. f (SUC n) = g n (SUC n)) =

(!n. f (NUMERAL (NUMERAL_BIT1 n)) =

g (NUMERAL (NUMERAL_BIT1 n))

(NUMERAL (NUMERAL_BIT1 n) - 1)) /\

(!n. f (NUMERAL (NUMERAL_BIT2 n)) =

g (NUMERAL (NUMERAL_BIT2 n))

(NUMERAL (NUMERAL_BIT1 n)))

Example

SUM CONV 993

- CONV_RULE SUC_TO_NUMERAL_DEFN_CONV arithmeticTheory.FACT;

> val it =

|- (FACT 0 = 1) /\

(!n.

FACT (NUMERAL (NUMERAL_BIT1 n)) =

NUMERAL (NUMERAL_BIT1 n) *

FACT (NUMERAL (NUMERAL_BIT1 n) - 1)) /\

!n.

FACT (NUMERAL (NUMERAL_BIT2 n)) =

NUMERAL (NUMERAL_BIT2 n) *

FACT (NUMERAL (NUMERAL_BIT1 n)) : thm

Failure
Fails if the input term is not the conjunction of universally quantified equations, where
there may be just one conjunct, and where equations may have no quantification at all.
Those conjuncts which don’t involve terms of the form SUC x are returned unchanged.

Comments
Useful for translating definitions over numbers (which often involve SUC terms), into a
form that can be used to work with numerals easily.

See also
numLib.num CONV.

SUM_CONV (listLib)

SUM_CONV : conv

Synopsis
Computes by inference the result of summing the elements of a list.

Description
For any object language list of the form --‘[x1;x2;...;xn]‘--, where x1, x2, ..., xn are
numeral constants, the result of evaluating

SUM_CONV (--‘SUM [x1;x2;...;xn]‘--)

is the theorem

|- SUM [x1;x2;...;xn] = n

994 CHAPTER 1. ENTRIES

where n is the numeral constant that denotes the sum of the elements of the list.

Example
Evaluating SUM_CONV (--‘SUM [0;1;2;3]‘--) will return the following theorem:

|- SUM [0;1;2;3] = 6

Failure
SUM_CONV tm fails if tm is not of the form described above.

See also
listLib.FOLDL CONV, listLib.FOLDR CONV, listLib.list FOLD CONV.

swap (Lib)

swap : ’a * ’b -> ’b * ’a

Synopsis
Swaps the two components of a pair.

Description
swap (x,y) returns (y,x).

Failure
Never fails.

See also
Lib.fst, Lib.snd, Lib.pair, Lib.rpair.

SWAP_EXISTS_CONV (Conv)

SWAP_EXISTS_CONV : conv

Synopsis
Interchanges the order of two existentially quantified variables.

Description
When applied to a term argument of the form ?x y. P, the conversion SWAP_EXISTS_CONV

returns the theorem:

SWAP PEXISTS CONV 995

|- (?x y. P) = (?y x. P)

Failure
SWAP_EXISTS_CONV fails if applied to a term that is not of the form ?x y. P.

SWAP_PEXISTS_CONV (PairRules)

SWAP_PEXISTS_CONV : conv

Synopsis
Interchanges the order of two existentially quantified pairs.

Description
When applied to a term argument of the form ?p q. t, the conversion SWAP_PEXISTS_CONV

returns the theorem:

|- (?p q. t) = (?q t. t)

Failure
SWAP_PEXISTS_CONV fails if applied to a term that is not of the form ?p q. t.

See also
Conv.SWAP EXISTS CONV, PairRules.SWAP PFORALL CONV.

SWAP_PFORALL_CONV (PairRules)

SWAP_PFORALL_CONV : conv

Synopsis
Interchanges the order of two universally quantified pairs.

Description
When applied to a term argument of the form !p q. t, the conversion SWAP_PFORALL_CONV

returns the theorem:

|- (!p q. t) = (!q p. t)

996 CHAPTER 1. ENTRIES

Failure
SWAP_PFORALL_CONV fails if applied to a term that is not of the form !p q. t.

See also
PairRules.SWAP PEXISTS CONV.

SYM (Thm)

SYM : thm -> thm

Synopsis
Swaps left-hand and right-hand sides of an equation.

Description
When applied to a theorem A |- t1 = t2, the inference rule SYM returns A |- t2 = t1.

A |- t1 = t2

-------------- SYM

A |- t2 = t1

Failure
Fails unless the theorem is equational.

See also
Conv.GSYM, Drule.NOT EQ SYM, Thm.REFL.

SYM_CONV (Conv)

SYM_CONV : conv

Synopsis
Interchanges the left and right-hand sides of an equation.

Description
When applied to an equational term t1 = t2, the conversion SYM_CONV returns the theo-
rem:

T 997

|- (t1 = t2) = (t2 = t1)

Failure
Fails if applied to a term that is not an equation.

See also
Thm.SYM.

T (boolSyntax)

T : term

Synopsis
Constant denoting truth.

Description
The ML variable boolSyntax.T is bound to the term bool$T.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.F,

boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,

boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,

boolSyntax.arb.

TAC_PROOF (Tactical)

TAC_PROOF : goal * tactic -> thm

Synopsis
Attempts to prove a goal using a given tactic.

Description
When applied to a goal-tactic pair (A ?- t,tac), the TAC_PROOF function attempts to
prove the goal A ?- t, using the tactic tac. If it succeeds, it returns the theorem A’ |- t

corresponding to the goal, where the assumption list A’ may be a proper superset of A
unless the tactic is valid; there is no inbuilt validity checking.

998 CHAPTER 1. ENTRIES

Failure
Fails unless the goal has hypotheses and conclusions all of type bool, and the tactic can
solve the goal.

See also
BasicProvers.PROVE, Tactical.VALID.

tag (Tag)

type tag

Synopsis
Abstract type of oracle tags.

Description
The type tag is used to track the use of oracles in HOL. An ‘oracle’ is a source of theorems
that are not proved, but just asserted. In HOL, such unproven ‘theorems’ are used to
incorporate the results of external proof tools. Each theorem coming from an oracle has
a tag attached to it. This tag gets copied to any theorems hereditarily generated from
an oracular theorem by inference.

See also
Tag.read, Thm.mk oracle thm.

tag (Thm)

tag : thm -> tag

Synopsis
Extract the tag from a theorem.

Description
An invocation tag th, where th has type thm, returns the tag of the theorem. If deriva-
tion of the theorem has appealed at some point to an oracle, the tag of that oracle will
be embedded in the result. Otherwise, an empty tag is returned.

TAUT CONV 999

Failure
Never fails.

Example

- Thm.tag (mk_thm([],F));

> val it = Kerneltypes.TAG(["MK_THM"], []) : tag

- Thm.tag NOT_FORALL_THM;

> val it = Kerneltypes.TAG([], []) : tag

See also
Thm.mk oracle thm, Tag.read, Tag.merge, Tag.pp tag.

TAUT_CONV (tautLib)

TAUT_CONV : conv

Synopsis
Tautology checker. Proves instances of propositional formulae.

Description
Given an instance t of a valid propositional formula, TAUT_CONV proves the theorem
|- t = T. A propositional formula is a term containing only Boolean constants, Boolean-
valued variables, Boolean equalities, implications, conjunctions, disjunctions, negations
and Boolean-valued conditionals. An instance of a formula is the formula with one or
more of the variables replaced by terms of the same type. The conversion accepts terms
with or without universal quantifiers for the variables.

Failure
Fails if the term is not an instance of a propositional formula or if the instance is not a
valid formula.

Example

#TAUT_CONV

‘‘!x n y. ((((n = 1) \/ ~x) ==> y) /\ (y ==> ~(n < 0)) /\ (n < 0)) ==> x‘‘;

|- (!x n y. ((n = 1) \/ ~x ==> y) /\ (y ==> ~n < 0) /\ n < 0 ==> x) = T

1000 CHAPTER 1. ENTRIES

#TAUT_CONV ‘‘((((n = 1) \/ ~x) ==> y) /\ (y ==> ~(n < 0)) /\ (n < 0)) ==> x‘‘;

|- ((n = 1) \/ ~x ==> y) /\ (y ==> ~n < 0) /\ n < 0 ==> x = T

#TAUT_CONV ‘‘!n. (n < 0) \/ (n = 0)‘‘;

Uncaught exception:

HOL_ERR

See also
tautLib.TAUT PROVE, tautLib.TAUT TAC, tautLib.PTAUT CONV.

TAUT_PROVE (tautLib)

TAUT_PROVE : term -> thm

Synopsis
Tautology checker. Proves propositional formulae (and instances of them).

Description
Given an instance of a valid propositional formula, TAUT_PROVE returns the instance of
the formula as a theorem. A propositional formula is a term containing only Boolean
constants, Boolean-valued variables, Boolean equalities, implications, conjunctions, dis-
junctions, negations and Boolean-valued conditionals. An instance of a formula is the
formula with one or more of the variables replaced by terms of the same type. The
conversion accepts terms with or without universal quantifiers for the variables.

Failure
Fails if the term is not an instance of a propositional formula or if the instance is not a
valid formula.

Example

#TAUT_PROVE

‘‘!x n y. ((((n = 1) \/ ~x) ==> y) /\ (y ==> ~(n < 0)) /\ (n < 0)) ==> x‘‘;

|- !x n y. ((n = 1) \/ ~x ==> y) /\ (y ==> ~n < 0) /\ n < 0 ==> x

#TAUT_PROVE ‘‘((((n = 1) \/ ~x) ==> y) /\ (y ==> ~(n < 0)) /\ (n < 0)) ==> x‘‘;

|- ((n = 1) \/ ~x ==> y) /\ (y ==> ~n < 0) /\ n < 0 ==> x

TAUT TAC 1001

#TAUT_PROVE ‘‘!n. (n < 0) \/ (n = 0)‘‘;

Uncaught exception:

HOL_ERR

See also
tautLib.TAUT CONV, tautLib.TAUT TAC, tautLib.PTAUT PROVE.

TAUT_TAC (tautLib)

TAUT_TAC : tactic

Synopsis
Tautology checker. Proves propositional goals (and instances of them).

Description
Given a goal that is an instance of a propositional formula, this tactic will prove the goal
provided it is valid. A propositional formula is a term containing only Boolean constants,
Boolean-valued variables, Boolean equalities, implications, conjunctions, disjunctions,
negations and Boolean-valued conditionals. An instance of a formula is the formula
with one or more of the variables replaced by terms of the same type. The tactic accepts
goals with or without universal quantifiers for the variables.

Failure
Fails if the conclusion of the goal is not an instance of a propositional formula or if the
instance is not a valid formula.

See also
tautLib.TAUT CONV, tautLib.TAUT PROVE, tautLib.PTAUT TAC.

tDefine (bossLib)

tDefine : string -> term quotation -> tactic -> thm

Synopsis
General-purpose function definition facility.

1002 CHAPTER 1. ENTRIES

Description
tDefine is a definition package similar to Define except that it has a tactic parameter
which is used to perform the termination proof for the specified function. tDefine

accepts the same syntax used by Define for specifying functions.
If the specification is a simple abbreviation, or is primitive recursive (i.e., it exactly

follows the recursion pattern of a previously declared HOL datatype) then the invoca-
tion of tDefine succeeds and stores the derived equations in the current theory segment.
Otherwise, the function is not an instance of primitive recursion, and the termination
prover may succeed or fail.

When processing the specification of a recursive function, tDefine must perform a
termination proof. It automatically constructs termination conditions for the function,
and invokes the supplied tactic in an attempt to prove the termination conditions. If
that attempt fails, then tDefine fails.

If it succeeds, then tDefine stores the specified equations in the current theory seg-
ment, using the string argument as a stem for the name. An induction theorem cus-
tomized for the defined function is also stored in the current segment. Note, however,
that an induction theorem is not stored for primitive recursive functions, since that the-
orem would be identical to the induction theorem resulting from the declaration of the
datatype.

If the tactic application fails, then tDefine fails.

Failure
tDefine fails if its input fails to parse and typecheck.
tDefine fails if it cannot prove the termination of the specified recursive function. In

that case, one has to embark on the following multi-step process: (1) construct the func-
tion and synthesize its termination conditions with Hol_defn; (2) set up a goal to prove
the termination conditions with tgoal; (3) interactively prove the termination condi-
tions, usually by starting with an invocation of WF_REL_TAC; and (4) package everything
up with an invocation of tDefine.

Example
The following attempt to invoke Define fails because the current default termination
prover for Define is too weak:

Hol_datatype‘foo = c1 | c2 | c3‘;

Define ‘(f c1 x = x) /\

(f c2 x = x + 3) /\

(f c3 x = f c2 (x + 6))‘;

The following invocation of tDefine uses the supplied tactic to prove termination.

temp set grammars 1003

tDefine "f"

‘(f c1 x = x) /\

(f c2 x = x + 3) /\

(f c3 x = f c2 (x + 6))‘

(WF_REL_TAC ‘measure (\p. case FST p of c3 -> 1 || _ -> 0)‘);

Equations stored under "f_def".

Induction stored under "f_ind".

> val it = |- (f c1 x = x) /\ (f c2 x = x + 3) /\ (f c3 x = f c2 (x + 6)) : thm

Comments
tDefine automatically adds the definition it makes into the hidden ‘compset‘ accessed
by EVAL and EVAL_TAC.

See also
bossLib.Define, bossLib.xDefine, TotalDefn.DefineSchema, bossLib.Hol defn,

Defn.tgoal, Defn.tprove, bossLib.WF REL TAC, bossLib.recInduct, bossLib.EVAL,

bossLib.EVAL TAC.

temp_set_grammars (Parse)

temp_set_grammars : type_grammar.grammar * term_grammar.grammar -> unit

Synopsis
Sets the global type and term grammars.

Description
HOL uses two global grammars to control the parsing and printing of term and type
values. These can be adjusted in a controlled way with functions such as add_rule and
overload_on. By using just these standard functions, the system is able to export theories
in such a way that changes to grammars persist from session to session.

Nonetheless it is occasionally useful to set grammar values directly. This change can’t
be made to persist, but will affect the current session.

Failure
Never fails.

See also
Parse.add rule, Parse.overload on, Parse.parse from grammars,

Parse.print from grammars, Parse.Term.

1004 CHAPTER 1. ENTRIES

Term (Parse)

Parse.Term : term quotation -> term

Synopsis
Parses a quotation into a term value.

Description
The parsing process for terms divides into four distinct phases.

The first phase converts the quotation argument into abstract syntax, a relatively
simple parse tree datatype, with the following datatype definition (from Absyn):

datatype vstruct

= VAQ of term

| VIDENT of string

| VPAIR of vstruct * vstruct

| VTYPED of vstruct * pretype

datatype absyn

= AQ of term

| IDENT of string

| APP of absyn * absyn

| LAM of vstruct * absyn

| TYPED of absyn * pretype

This phase of parsing is concerned with the treatment of the rawest concrete syntax. It
has no notion of whether or not a term corresponds to a constant or a variable, so all
preterm leaves are ultimately either IDENTs or AQs (anti-quotations).

This first phase converts infixes, mixfixes and all the other categories of syntactic
rule from the global grammar into simple structures built up using APP. For example,
‘x op y‘ (where op is an infix) will turn into

APP(APP(IDENT "op", IDENT "x"), IDENT "y")

and ‘tok1 x tok2 y‘ (where tok1 _ tok2 has been declared as a TruePrefix form for
the term f) will turn into

APP(APP(IDENT "f", IDENT "x"), IDENT "y")

The special syntaxes for “let” and record expressions are also handled at this stage. For
more details on how this is done see the reference entry for Absyn, which function can
be used in isolation to see what is done at this phase.

term 1005

The second phase of parsing consists of the resolution of names, identifying what
were just VARs as constants or genuine variables (whether free or bound). This phase
also annotates all leaves of the data structure (given in the entry for Preterm) with type
information.

The third phase of parsing works over the Preterm datatype and does type-checking,
though ignoring overloaded values. The datatype being operated over uses reference
variables to allow for efficiency, and the type-checking is done “in place”. If type-
checking is successful, the resulting value has consistent type annotations.

The final phase of parsing resolves overloaded constants. The type-checking done to
this point may completely determine which choice of overloaded constant is appropri-
ate, but if not, the choice may still be completely determined by the interaction of the
possible types for the overloaded possibilities.

Finally, depending on the value of the global flags guessing_tyvars and guessing_overloads,
the parser will make choices about how to resolve any remaining ambiguities.

The parsing process is entirely driven by the global grammar. This value can be
inspected with the term_grammar function.

Failure
All over place, and for all sorts of reasons.

Uses
Turns strings into terms.

See also
Parse.Absyn, Parse.overload on, Parse.term grammar.

term (Term)

eqtype term

Synopsis
ML datatype of HOL terms.

Description
The ML abstract type term represents the set of HOL terms, which is essentially the
simply typed lambda calculus of Church. A term may be a variable, a constant, an
application of one term to another, or a lambda abstraction.

1006 CHAPTER 1. ENTRIES

Comments
Since term is an ML eqtype, any two terms tm1 and tm2 can be tested for equality by
tm1 = tm2. However, the fundamental notion of equality for terms is implemented by
aconv.

Since term is an abstract type, access to its representation is mediated by the interface
presented by the Term structure.

See also
Type.hol type.

term_grammar (Parse)

Parse.term_grammar : unit -> term_grammar.grammar

Synopsis
Returns the current global term grammar.

Failure
Never fails.

Comments
There is a pretty-printer installed in the interactive system so that term grammar values
are presented nicely. The global term grammar is passed as a parameter to the Term

parsing function in the Parse structure, and also drives the installed term and theorem
pretty-printers.

See also
Parse.parse from grammars, Parse.print from grammars, Parse.temp set grammars,

Parse.Term.

term_to_string (Parse)

Parse.term_to_string : term -> string

Synopsis
Converts a term to a string.

term without overloads on to backend string 1007

Description
Uses the global term grammar and pretty-printing flags to turn a term into a string. It
assumes that the string should be broken up as if for display on a screen that is as wide
as the value stored in the Globals.linewidth variable.

Failure
Should never fail.

See also
Parse.print term.

term_without_overloads_on_to_backend_string
(Parse)

Parse.term_without_overloads_on_to_backend_string : string list -> term -> string

Synopsis
Returns a string, suitable for the current backend, that represents a term without using
overload mappings of certain tokens.

Description
The call term_without_overloads_on_to_backend_string ls t returns a current-backend
suitable string representation of t without using any overloads on tokens in ls.

If the current backend is a color-capable terminal, for example, the string will include
escape codes for coloring free and bound variables.

Failure
Should never fail.

See also
Parse.term without overloads on to string,

Parse.term without overloads to backend string,

Parse.pp term without overloads on, Parse.clear overloads on,

Parse.term to backend string.

term_without_overloads_on_to_string
(Parse)

Parse.term_without_overloads_on_to_string : string list -> term -> string

1008 CHAPTER 1. ENTRIES

Synopsis
Returns a string representing a term, without using overload mappings of certain tokens.

Description
The call term_without_overloads_on_to_string ls t returns a string representation of
t without using any overloads on tokens in ls.

Example

> term_without_overloads_on_to_string ["+"] ‘‘x + y‘‘;

val it = "arithmetic$+ x y": string

Failure
Should never fail.

See also
Parse.term without overloads on to backend string,

Parse.term without overloads to string, Parse.pp term without overloads on,

Parse.clear overloads on, Parse.term to string.

tex_theory (EmitTeX)

tex_theory : string -> unit

Synopsis
Emits theory as LaTeX commands and creates a document template.

Description
An invocation of tex_theory thy will export the named theory thy as a collection of
LaTeX commands and it will also generate a document ”thy.tex” that presents the theory.
The string "-" may be used to denote the current theory segment. The theory is exported
with print_theory_as_tex.

Failure
Will fail if there is a system error when trying to write the files. It will not overwite the
file name, however, ”HOLname.tex” may be overwritten.

Example
The invocation

tgoal 1009

- EmitTeX.tex_theory "list";

> val it = () : unit

will generate two files ”HOLlist.tex” and ”list.tex”.

See also
EmitTeX.print term as tex, EmitTeX.print type as tex,

EmitTeX.print theorem as tex, EmitTeX.print theory as tex,

EmitTeX.print theories as tex doc.

tgoal (Defn)

tgoal : defn -> proofs

Synopsis
Set up a termination proof

Description
tgoal defn sets up a termination proof for the function represented by defn. It creates
a new goalstack and makes it the focus of subsequent goalstack operations.

Failure
tgoal defn fails if defn represents a non-recursive or primitive recursive function.

Example

- val qsort_defn =

Hol_defn "qsort"

‘(qsort ___ [] = []) /\

(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))

(x :: qsort ord (FILTER (ord x) rst)))‘;

- tgoal qsort_defn;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

?R. WF R /\

(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)) /\

!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

1010 CHAPTER 1. ENTRIES

See also
TotalDefn.WF REL TAC, Defn.tprove, Defn.Hol defn.

THEN (Tactical)

op THEN : tactic * tactic -> tactic

Synopsis
Applies two tactics in sequence.

Description
If T1 and T2 are tactics, T1 THEN T2 is a tactic which applies T1 to a goal, then applies
the tactic T2 to all the subgoals generated. If T1 solves the goal then T2 is never applied.

Failure
The application of THEN to a pair of tactics never fails. The resulting tactic fails if T1 fails
when applied to the goal, or if T2 does when applied to any of the resulting subgoals.

Comments
Although normally used to sequence tactics which generate a single subgoal, it is worth
remembering that it is sometimes useful to apply the same tactic to multiple subgoals;
sequences like the following:

EQ_TAC THENL [ASM_REWRITE_TAC[], ASM_REWRITE_TAC[]]

can be replaced by the briefer:

EQ_TAC THEN ASM_REWRITE_TAC[]

See also
Tactical.EVERY, Tactical.ORELSE, Tactical.THENL.

THEN1 (Tactical)

op THEN1 : tactic * tactic -> tactic

THEN1 1011

Synopsis
A tactical like THEN that applies the second tactic only to the first subgoal.

Description
If T1 and T2 are tactics, T1 THEN1 T2 is a tactic which applies T1 to a goal, then applies
the tactic T2 to the first subgoal generated. T1 must produce at least one subgoal, and
T2 must completely solve the first subgoal of T1.

Failure
The application of THEN1 to a pair of tactics never fails. The resulting tactic fails if T1 fails
when applied to the goal, if T1 does not produce at least one subgoal (i.e., T1 completely
solves the goal), or if T2 does not completely solve the first subgoal generated by T1.

Comments
THEN1 can be applied to make the proof more linear, avoiding unnecessary THENLs. It is
especially useful when used with REVERSE.

Example
For example, given the goal

simple_goal /\ complicated_goal

the tactic

(CONJ_TAC THEN1 T0)

THEN T1

THEN T2

THEN ...

THEN Tn

avoids the extra indentation of

CONJ_TAC THENL

[T0,

T1

THEN T2

THEN ...

THEN Tn]

See also
Tactical.EVERY, Tactical.ORELSE, Tactical.REVERSE, Tactical.THEN,

Tactical.THENL.

1012 CHAPTER 1. ENTRIES

THEN_CONSEQ_CONV (ConseqConv)

THEN_CONSEQ_CONV : (conseq_conv -> conseq_conv -> conseq_conv)

Synopsis
Applies two consequence conversions in sequence.

Description
THEN_CONSEQ_CONV cc1 cc2 corresponds to c1 THENC c2 for classical conversions. Thus, if
cc1 returns |- t’ ==> t when applied to t, and cc2 returns |- t’’ ==> t’ when applied
to t’, then (THEN_CONSEQ_CONV cc1 cc2) t returns |- t’’ ==> t. THEN_CONSEQ_CONV can
handle weakening as well: If cc1 returns |- t ==> t’ when applied to t, and cc2

returns |- t’ ==> t’’ when applied to t’, then (THEN_CONSEQ_CONV cc1 cc2) t re-
turns |- t ==> t’’. Finally, if cc1 returns |- t = t’ when applied to t, and cc2

returns |- t’ = t’’ when applied to t’, then (THEN_CONSEQ_CONV cc1 cc2) t returns
|- t = t’’. If one of the conversions returns an equation, while the other returns an
implication, the needed implication is automatically deduced.

See also
Conv.THENC, ConseqConv.EVERY CONSEQ CONV.

THEN_TCL (Thm_cont)

$THEN_TCL : (thm_tactical -> thm_tactical -> thm_tactical)

Synopsis
Composes two theorem-tacticals.

Description
If ttl1 and ttl2 are two theorem-tacticals, ttl1 THEN_TCL ttl2 is a theorem-tactical
which composes their effect; that is, if:

ttl1 ttac th1 = ttac th2

and

ttl2 ttac th2 = ttac th3

THENC 1013

then

(ttl1 THEN_TCL ttl2) ttac th1 = ttac th3

Failure
The application of THEN_TCL to a pair of theorem-tacticals never fails.

See also
Thm cont.EVERY TCL, Thm cont.FIRST TCL, Thm cont.ORELSE TCL.

THENC (Conv)

op THENC : (conv -> conv -> conv)

Synopsis
Applies two conversions in sequence.

Description
If the conversion c1 returns |- t = t’ when applied to a term ‘‘t‘‘, and c2 returns
|- t’ = t’’ when applied to ‘‘t’‘‘, then the composite conversion (c1 THENC c2) ‘‘t‘‘

returns |- t = t’’. That is, (c1 THENC c2) ‘‘t‘‘ has the effect of transforming the term
‘‘t‘‘ first with the conversion c1 and then with the conversion c2.
THENC also handles the possibility that either of its arguments might return the

UNCHANGED exception. If the first conversion returns UNCHANGED when applied to its argu-
ment, THENC just returns the result of the second conversion applied to the same initial
term. If the second conversion raises UNCHANGED (and the first did not), then the result
will be the theorem returned by the first conversion. In this way, unnecessary calls to
TRANS can be avoided.

Failure
(c1 THENC c2) ‘‘t‘‘ fails if either the conversion c1 fails when applied to ‘‘t‘‘,
or if c1 ‘‘t‘‘ succeeds and returns |- t = t’ but c2 fails when applied to ‘‘t’‘‘.
(c1 THENC c2) ‘‘t‘‘ may also fail if either of c1 or c2 is not, in fact, a conversion (i.e.
a function that maps a term t to a theorem |- t = t’).

See also
Conv.EVERY CONV.

1014 CHAPTER 1. ENTRIES

THENL (Tactical)

op THENL : tactic -> tactic list -> tactic

Synopsis
Applies a list of tactics to the corresponding subgoals generated by a tactic.

Description
If T,T1,...,Tn are tactics, T THENL [T1,...,Tn] is a tactic which applies T to a goal, and
if it does not fail, applies the tactics T1,...,Tn to the corresponding subgoals, unless T

completely solves the goal.

Failure
The application of THENL to a tactic and tactic list never fails. The resulting tactic fails
if T fails when applied to the goal, or if the goal list is not empty and its length is not
the same as that of the tactic list, or finally if Ti fails when applied to the i’th subgoal
generated by T.

Uses
Applying different tactics to different subgoals.

See also
Tactical.EVERY, Tactical.ORELSE, Tactical.THEN.

theorems (DB)

theorems : string -> (string * thm) list

Synopsis
All the theorems stored in the named theory.

Description
An invocation theorems thy, where thy is the name of a currently loaded theory seg-
ment, will return a list of the theorems stored in that theory. Axioms and definitions are
excluded. Each theorem is paired with its name in the result. The string "-" may be
used to denote the current theory segment.

thm 1015

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- theorems "combin";

> val it =

[("I_o_ID", |- !f. (I o f = f) /\ (f o I = f)), ("I_THM", |- !x. I x = x),

("W_THM", |- !f x. W f x = f x x),

("C_THM", |- !f x y. combin$C f x y = f y x),

("S_THM", |- !f g x. S f g x = f x (g x)), ("K_THM", |- !x y. K x y = x),

("o_ASSOC", |- !f g h. f o g o h = (f o g) o h),

("o_THM", |- !f g x. (f o g) x = f (g x))] : (string * thm) list

See also
DB.thy, DB.fetch, DB.thms, DB.definitions, DB.axioms, DB.listDB.

thm (Thm)

type thm

Synopsis
Type of theorems of the HOL logic.

Description
The abstract type thm represents the theorems derivable by inference in the HOL logic.
The type of theorems can be viewed as the inductive closure of the axioms of the HOL
logic by the primitive inference rules of HOL. Robin Milner had the brilliant insight to
implement this view by encapsulating the primitive rules of inference for a logic as the
constructors for an abstract type of theorems. This implementation technique is adopted
in HOL.

See also
Thm.dest thm, Thm.hyp, Thm.concl, Thm.tag, Thm.ASSUME, Thm.REFL, Thm.BETA CONV,

Thm.ABS, Thm.DISCH, Thm.MP, Thm.SUBST, Thm.INST TYPE.

1016 CHAPTER 1. ENTRIES

thm_count (Count)

thm_count :

unit ->

{ASSUME : int, REFL : int, BETA_CONV : int, SUBST : int,

ABS : int, DISCH : int, MP : int, INST_TYPE : int,

MK_COMB : int, AP_TERM : int, AP_THM : int, ALPHA : int,

ETA_CONV : int, SYM : int, TRANS : int, EQ_MP : int,

EQ_IMP_RULE : int, INST : int, SPEC : int, GEN : int,

EXISTS : int, CHOOSE : int, CONJ : int, CONJUNCT1 : int,

CONJUNCT2 : int, DISJ1 : int, DISJ2 : int, DISJ_CASES : int,

NOT_INTRO : int, NOT_ELIM : int, CCONTR : int, GEN_ABS : int,

definition : int, axiom : int, from_disk : int, oracle :int,

total :int }

Synopsis
Returns the current value of the theorem counter.

Description
If enabled, HOL maintains a counter which is incremented every time a primitive in-
ference is performed (or an axiom or definition set up). A call to thm_count() returns
the current value of this counter. Inference counting needs to be enabled with the call
Count.counting_thms true. Counting can be turned off by calling counting_thms false.

The default is for inference counting not to be enabled.

Failure
Never fails.

See also
Count.apply.

thms (DB)

thms : string -> (string * thm) list

Synopsis
All the theorems, definitions, and axioms stored in the named theory.

thy 1017

Description
An invocation thms thy, where thy is the name of a currently loaded theory segment,
will return a list of the theorems, definitions, and axioms stored in that theory. Each
theorem is paired with its name in the result. The string "-" may be used to denote the
current theory segment.

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- thms "combin";

> val it =

[("C_DEF", |- combin$C = (\f x y. f y x)),

("C_THM", |- !f x y. combin$C f x y = f y x), ("I_DEF", |- I = S K K),

("I_o_ID", |- !f. (I o f = f) /\ (f o I = f)), ("I_THM", |- !x. I x = x),

("K_DEF", |- K = (\x y. x)), ("K_THM", |- !x y. K x y = x),

("o_ASSOC", |- !f g h. f o g o h = (f o g) o h),

("o_DEF", |- !f g. f o g = (\x. f (g x))),

("o_THM", |- !f g x. (f o g) x = f (g x)),

("S_DEF", |- S = (\f g x. f x (g x))),

("S_THM", |- !f g x. S f g x = f x (g x)),

("W_DEF", |- W = (\f x. f x x)), ("W_THM", |- !f x. W f x = f x x)] :

(string * thm) list

See also
DB.thy, DB.theorems, DB.axioms, DB.definitions, DB.fetch, DB.listDB.

thy (DB)

thy : string -> data list

Synopsis
Return the contents of a theory.

Description
An invocation DB.thy s returns the contents of the specified theory segment s in a list
of (thy,name),(thm,class) tuples. In a tuple, (thy,name) designate the theory and the

1018 CHAPTER 1. ENTRIES

name given to the object in the theory. The thm element is the named object, and class

its classification (one of Thm (theorem), Axm (axiom), or Def (definition)).
Case distinctions are ignored when determining the segment. The current segment

may be specified, either by the distinguished literal "-", or by the name given when
creating the segment with new_theory.

Failure
Never fails, but will return an empty list when s does not designate a currently loaded
theory segment.

Example

- DB.thy "pair";

> val it =

[(("pair", "ABS_PAIR_THM"), (|- !x. ?q r. x = (q,r), Db.Thm)),

(("pair", "ABS_REP_prod"),

(|- (!a. ABS_prod (REP_prod a) = a) /\

!r. IS_PAIR r = (REP_prod (ABS_prod r) = r), Db.Def)),

(("pair", "CLOSED_PAIR_EQ"),

(|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b), Db.Thm)),

.

.

.

See also
DB.class, DB.data, DB.listDB, DB.theorems, DB.match, Theory.new theory.

thy_addon (Theory)

type thy_addon

Synopsis
Type of theory additions.

Description
The type abbreviation thy_addon, declared as

type thy_addon = {sig_ps : (ppstream -> unit) option,

struct_ps : (ppstream -> unit) option}

time 1019

packages up the arguments to adjoin_to_theory. The sig_ps argument is an optional
prettyprinter, which will be invoked when the theory signature file is written. The
struct_ps argument is an optional prettyprinter invoked when the theory structure file
is written.

See also
Theory.adjoin to theory.

time (Lib)

time : (’a -> ’b) -> ’a -> ’b

Synopsis
Measure how long a function application takes.

Description
An application time f x starts a clock, applies f to x, and then checks the clock to see
how long that took. It prints out the elapsed runtime, garbage collection time, and
system time before returning the value of f x.

Failure
If f x raises e, then time f x raises e, but still reports elapsed time.

Example

- time (int_sort) (for 0 999 I);

runtime: 0.771s, gctime: 0.121s, systime: 0.771s.

> val it =

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,

57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,

93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,

109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,

124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,

139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,

154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,

169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183,

1020 CHAPTER 1. ENTRIES

184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,

199, ...] : int list

- fun f x = f (x + 1);

> val ’a f = fn : int -> ’a

- time f 0;

runtime: 13.787s, gctime: 0.000s, systime: 0.035s.

! Uncaught exception:

! Overflow

See also
Lib.end time, Lib.start time, Count.thm count.

TOP_DEPTH_CONV (Conv)

TOP_DEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion top-down to all subterms, retraversing changed ones.

Description
TOP_DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term
tm, including the term tm itself. The supplied conversion c is applied to the subterms
of tm in top-down order and is applied repeatedly (zero or more times, as is done
by REPEATC) at each subterm until it fails. If a subterm t is changed (up to alpha-
equivalence) by virtue of the application of c to its own subterms, then then the term
into which t is transformed is retraversed by applying TOP_DEPTH_CONV c to it.

Failure
TOP_DEPTH_CONV c tm never fails but can diverge.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the exception QConv.UNCHANGED may be generated
and later trapped. The behaviour of the function is dependent on this use of failure. So,
if the conversion given as an argument happens to generate the same exception, the
operation of TOP_DEPTH_CONV will be unpredictable.

top goal 1021

See also
Conv.DEPTH CONV, Conv.ONCE DEPTH CONV, Conv.REDEPTH CONV.

top_goal (proofManagerLib)

top_goal : unit -> term list * term

Synopsis
Returns the current goal of the subgoal package.

Description
The function top_goal is part of the subgoal package. It returns the top goal of the goal
stack in the current proof state. For a description of the subgoal package, see set_goal.

Failure
A call to top_goal will fail if there are no unproven goals. This could be because no goal
has been set using set_goal or because the last goal set has been completely proved.

Uses
Examining the proof state after a proof fails.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

top_thm (proofManagerLib)

top_thm : unit -> thm

Synopsis
Returns the theorem just proved using the subgoal package.

Description
The function top_thm is part of the subgoal package. A proof state of the package
consists of either goal and justification stacks if a proof is in progress or a theorem if a

1022 CHAPTER 1. ENTRIES

proof has just been completed. If the proof state consists of a theorem, top_thm returns
that theorem. For a description of the subgoal package, see set_goal.

Failure
top_thm will fail if the proof state does not hold a theorem. This will be so either because
no goal has been set or because a proof is in progress with unproven subgoals.

Uses
Accessing the result of an interactive proof session with the subgoal package.

See also
proofManagerLib.set goal, proofManagerLib.restart, proofManagerLib.backup,

proofManagerLib.restore, proofManagerLib.save, proofManagerLib.set backup,

proofManagerLib.expand, proofManagerLib.expandf, proofManagerLib.p,

proofManagerLib.top thm, proofManagerLib.top goal.

topsort (Lib)

topsort : (’a -> ’a -> bool) -> ’a list -> ’a list

Synopsis
Topologically sorts a list using a given partial order relation.

Description
The call topsort opr list where opr is a curried partial order on the elements of list,
will topologically sort the list, i.e., will permute it such that if x opr y then x will occur
to the left of y in the resulting list.

Failure
If opr fails when applied to x and y in list. Also, topsort will fail if there is a chain of
elements x1,...,xn, all in list, such that opr x_1 x_2, ..., opr xn x1. This displays a
cyclic dependency.

Example
The following call arranges a list of terms in subterm order:

- fun is_subterm x y = Lib.can (find_term (aconv x)) y;

> val is_subterm = fn : term -> term -> bool

- topsort is_subterm

[‘‘x+1‘‘, ‘‘x:num‘‘, ‘‘y + (x + 1)‘‘, ‘‘y + x‘‘, ‘‘y + x + z‘‘, ‘‘y:num‘‘];

> val it = [‘‘y‘‘, ‘‘x‘‘, ‘‘x + 1‘‘, ‘‘y + x‘‘, ‘‘y + x + z‘‘, ‘‘y + (x + 1)‘‘] : term list

total 1023

See also
Lib.sort.

total (Lib)

total : (’a -> ’b) -> ’a -> ’b option

Synopsis
Converts a partial function to a total function.

Description
In ML, there are two main ways for a function to signal that it has been called on an
element outside of its intended domain of application: exceptions and options. The
function total maps a function that may raise an exception to one that returns an el-
ement in the option type. Thus, if f x results in any exception other than Interrupt

being raised, then total f x returns NONE. If f x raises Interrupt, then total f x like-
wise raises Interrupt. If f x returns y, then total f x returns SOME y.

The function total has an inverse partial. Generally speaking, (partial err o total) f

equals f, provided that err is the only exception that f raises. Similarly, (total o partial err) f

is equal to f.

Failure
When application of the first argument to the second argument raises Interrupt.

Example

- 3 div 0;

! Uncaught exception:

! Div

- total (op div) (3,0);

> val it = NONE : int option

- (partial Div o total) (op div) (3,0);

! Uncaught exception:

! Div

See also
Lib.partial.

1024 CHAPTER 1. ENTRIES

tprove (Defn)

tprove : defn * tactic -> thm * thm

Synopsis
Prove termination of a defn.

Description
tprove takes a defn and a tactic, and uses the tactic to prove the termination constraints
of the defn. A pair of theorems (eqns,ind) is returned: eqns is the unconstrained re-
cursion equations of the defn, and ind is the corresponding induction theorem for the
equations, also unconstrained.
tprove and tgoal can be seen as analogues of prove and set_goal in the specialized

domain of proving termination of recursive functions.
It is up to the user to store the results of tprove in the current theory segment.

Failure
tprove (defn,tac) fails if tac fails to prove the termination conditions of defn.
tprove (defn,tac) fails if defn represents a non-recursive or primitive recursive func-

tion.

Example
Suppose that we have defined a version of Quicksort as follows:

- val qsort_defn =

Hol_defn "qsort"

‘(qsort ___ [] = []) /\

(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))

(x :: qsort ord (FILTER (ord x) rst)))‘

Also suppose that a tactic tac proves termination of qsort. (This tactic has probably
been built by interactive proof after starting a goalstack with tgoal qsort_defn.) Then

- val (qsort_eqns, qsort_ind) = tprove(qsort_defn, tac);

> val qsort_eqns =

|- (qsort v0 [] = []) /\

(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))

trace 1025

(x::qsort ord (FILTER (ord x) rst))) : thm

val qsort_ind =

|- !P.

(!v0. P v0 []) /\

(!ord x rst.

P ord (FILTER ($~ o ord x) rst) /\

P ord (FILTER (ord x) rst) ==> P ord (x::rst))

==>

!v v1. P v v1 : thm

Comments
The recursion equations returned by a successful invocation of tprove are automatically
added to the global compset accessed by EVAL.

See also
Defn.tgoal, Defn.Hol defn, bossLib.EVAL.

trace (Feedback)

trace : string * int -> (’a -> ’b) -> ’a -> ’b

Synopsis
Invoke a function with a specified level of tracing.

Description
The trace function is used to set the value of a tracing variable for the duration of one
top-level function call.

A call to trace (nm,i) f x attempts to set the tracing variable associated with the
string nm to value i. Then it evaluates f x and returns the resulting value after restoring
the trace level of nm.

Failure
Fails if the name given is not associated with a registered tracing variable. Also fails if
the function invocation fails.

Example

1026 CHAPTER 1. ENTRIES

- load "mesonLib";

- trace ("meson",2) prove

(concl SKOLEM_THM,mesonLib.MESON_TAC []);

0 inferences so far. Searching with maximum size 0.

0 inferences so far. Searching with maximum size 1.

Internal goal solved with 2 MESON inferences.

0 inferences so far. Searching with maximum size 0.

0 inferences so far. Searching with maximum size 1.

Internal goal solved with 2 MESON inferences.

0 inferences so far. Searching with maximum size 0.

0 inferences so far. Searching with maximum size 1.

Internal goal solved with 2 MESON inferences.

0 inferences so far. Searching with maximum size 0.

0 inferences so far. Searching with maximum size 1.

Internal goal solved with 2 MESON inferences.

solved with 2 MESON inferences.

> val it = |- !P. (!x. ?y. P x y) = ?f. !x. P x (f x) : thm

- traces();

> val it =

[{default = 1, name = "meson", trace_level = 1},

{default = 10, name = "Subgoal number", trace_level = 10},

{default = 0, name = "Rewrite", trace_level = 0},

{default = 0, name = "Ho_Rewrite", trace_level = 0}]

See also

Feedback, Feedback.register trace, Feedback.reset trace, Feedback.reset traces,

Feedback.set trace, Feedback.traces, Lib.with flag.

traces 1027

traces (Feedback)

traces : unit -> {name : string, current_value : int,

default_value : int, maximum : int} list

Synopsis
Returns a list of registered tracing variables.

Description
The function traces is part of the interface to a collection of variables that control
the verboseness of various tools within the system. Tracing can be useful both when
debugging proofs (with the simplifier for example), and also as a guide to how an
automatic proof is proceeding (with mesonLib for example).

Failure
Never fails.

Example

- traces();

> val it =

[{default = 10, name = "Subgoal number", trace_level = 10},

{default = 0, name = "Rewrite", trace_level = 0},

{default = 0, name = "Ho_Rewrite", trace_level = 0}]

See also
Feedback.register trace, Feedback.set trace, Feedback.reset trace,

Feedback.reset traces, Feedback.trace.

TRANS (Thm)

TRANS : (thm -> thm -> thm)

Synopsis
Uses transitivity of equality on two equational theorems.

Description
When applied to a theorem A1 |- t1 = t2 and a theorem A2 |- t2 = t3, the inference
rule TRANS returns the theorem A1 u A2 |- t1 = t3.

1028 CHAPTER 1. ENTRIES

A1 |- t1 = t2 A2 |- t2 = t3

------------------------------- TRANS

A1 u A2 |- t1 = t3

Failure
Fails unless the theorems are equational, with the right side of the first being the same
as the left side of the second.

Example

- val t1 = ASSUME ‘‘a:bool = b‘‘ and t2 = ASSUME ‘‘b:bool = c‘‘;

val t1 = [.] |- a = b : thm

val t2 = [.] |- b = c : thm

- TRANS t1 t2;

val it = [..] |- a = c : thm

See also
Thm.EQ MP, Drule.IMP TRANS, Thm.REFL, Thm.SYM.

triple (Lib)

triple : ’a -> ’b -> ’c -> ’a * ’b * ’c

Synopsis
Makes three values into a triple.

Description
triple x y z returns (x, y, z).

Failure
Never fails.

See also
Lib.triple of list, Lib.pair, Lib.quadruple.

triple of list 1029

triple_of_list (Lib)

triple_of_list : ’a list -> ’a * ’a * ’a

Synopsis
Turns a three-element list into a triple.

Description
triple_of_list [x, y, z] returns (x, y, z).

Failure
Fails if applied to a list that is not of length 3.

See also
Lib.singleton of list, Lib.pair of list, Lib.quadruple of list.

TRUE_CONSEQ_CONV (ConseqConv)

TRUE_CONSEQ_CONV : conseq_conv

Synopsis
Given a term t of type bool this consequence conversion returns the theorem |- t ==> T.

See also
ConseqConv.FALSE CONSEQ CONV, ConseqConv.REFL CONSEQ CONV,

ConseqConv.TRUE FALSE REFL CONSEQ CONV.

TRUE_FALSE_REFL_CONSEQ_CONV (ConseqConv)

TRUE_FALSE_REFL_CONSEQ_CONV : directed_conseq_conv

Synopsis
Given a term t of type bool this directed consequence conversion returns the the-
orem |- F ==> t for CONSEQ_CONV_STRENGTHEN_direction, the theorem |- t ==> T for
CONSEQ_CONV_WEAKEN_direction and |- t = t for CONSEQ_CONV_UNKNOWN_direction.

1030 CHAPTER 1. ENTRIES

See also
ConseqConv.TRUE CONSEQ CONV, ConseqConv.FALSE CONSEQ CONV,

ConseqConv.REFL CONSEQ CONV.

try (Lib)

try : (’a -> ’b) -> ’a -> ’b

Synopsis
Apply a function and print any exceptions

Description
The application try f x evaluates f x; if this evaluation raises an exception e, then e is
examined and some information about it is printed before e is re-raised. If f x evaluates
to y, then y is returned.

Often, a HOL_ERR exception can propagate all the way to the top level. Unfortunately,
the information held in the exception is not then printed. try can often display this
information.

Failure
When application of the first argument to the second raises an exception.

Example

- mk_comb (T,F);

! Uncaught exception:

! HOL_ERR

- try mk_comb (T,F);

Exception raised at Term.mk_comb:

incompatible types

! Uncaught exception:

! HOL_ERR

Evaluation order can be significant. ML evaluates try M N by evaluating M (yielding f

say) and N (yielding x say), and then f is applied to x. Any exceptions raised in the
course of evaluating M or N will not be detected by try. In such cases it is better to use
Raise. In the following example, the erroneous construction of an abstraction is not
detected by try and the exception propagates all the way to the top level; however,
Raise does handle the exception.

TRY 1031

- try mk_comb (T, mk_abs(T,T));

! Uncaught exception:

! HOL_ERR

- mk_comb (T, mk_abs(T,T)) handle e => Raise e;

Exception raised at Term.mk_abs:

Bvar not a variable

! Uncaught exception:

! HOL_ERR

See also
Feedback.Raise, Lib.trye.

TRY (Tactical)

TRY : (tactic -> tactic)

Synopsis
Makes a tactic have no effect rather than fail.

Description
For any tactic T, the application TRY T gives a new tactic which has the same effect as T

if that succeeds, and otherwise has no effect.

Failure
The application of TRY to a tactic never fails. The resulting tactic never fails.

See also
Tactical.CHANGED TAC, Tactical.VALID.

TRY_CONV (Conv)

TRY_CONV : conv -> conv

1032 CHAPTER 1. ENTRIES

Synopsis
Attempts to apply a conversion; applies identity conversion in case of failure.

Description
TRY_CONV c t attempts to apply the conversion c to the term t; if this fails, then the
identity conversion is applied instead. That is, if c is a conversion that maps a term t

to the theorem |- t =t’, then the conversion TRY_CONV c also maps t to |- t = t’. But
if c fails when applied to t, then TRY_CONV c t raises the UNCHANGED exception (which is
understood to mean the instance of reflexivity, |- t = t). If c applied to t raises the
UNCHANGED exception, then so too does TRY_CONV c t.

Failure
Never fails, though the UNCHANGED exception can be raised.

See also
Conv.ALL CONV, Conv.QCONV.

trye (Lib)

trye : (’a -> ’b) -> ’a -> ’b

Synopsis
Maps exceptions into HOL_ERR

Description
The standard exception for HOL applications to raise is HOL_ERR. The use of a single
exception simplifies the writing of exception handlers and facilities for decoding and
printing error messages. However, ML functions that raise exceptions, such as hd and
many others, are often used to implement HOL programs. In such cases, trye may be
used to coerce exceptions into applications of HOL_ERR. Note however, that the Interrupt

exception is not coerced by trye.
The application trye f x evaluates f x; if this evaluates to y, then y is returned.

However, if evaluation raises an exception e, there are three cases: if e is Interrupt,
then it is raised; if e is HOL_ERR, then it is raised; otherwise, e is mapped to an application
of HOL_ERR and then raised.

Failure
Fails if the function application fails.

Example

tryfind 1033

- hd [];

! Uncaught exception:

! Empty

- trye hd [];

! Uncaught exception:

! HOL_ERR

- trye (fn _ => raise Interrupt) 1;

> Interrupted

See also
Lib, Feedback.Raise, Lib.try.

tryfind (Lib)

tryfind : (’a -> ’b) -> ’a list -> ’b

Synopsis
Returns the result of the first successful application of a function to the elements of a
list.

Description
tryfind f [x1,...,xn] returns (f xi) for the first xi in the list for which application
of f does not raise an exception. However, if Interrupt is raised in the course of some
application of f xi, then tryfind f [x1,...,xn] raises Interrupt.

Failure
Fails if the application of f fails for all elements in the list. This will always be the case
if the list is empty.

See also
Lib.first, Lib.mem, Lib.exists, Lib.all, Lib.assoc, Lib.rev assoc, Lib.assoc1,

Lib.assoc2.

trypluck (Lib)

trypluck : (’a -> ’b) -> ’a list -> ’b * ’a list

1034 CHAPTER 1. ENTRIES

Synopsis
Pull an element out of a list.

Description
An invocation trypluck f [x1,...,xk,...,xn] returns a pair

(f(xk),[x1,...,xk-1,xk+1,...xn])

where xk has been lifted out of the list without disturbing the relative positions of
the other elements. For this to happen, f(xk) must hold, and f(xi) must fail for
x1,...,xk-1.

Failure
If the input list is empty. Also fails if f fails on every member of the list.

Example

- val (x,rst) = trypluck BETA_CONV [‘‘1‘‘,‘‘(\x. x+2) 3‘‘, ‘‘p + q‘‘];

> val x = |- (\x. x + 2) 3 = 3 + 2 : thm

val rst = [‘‘1‘‘, ‘‘p + q‘‘] : term list

See also
Lib.first, Lib.filter, Lib.mapfilter, Lib.tryfind.

trypluck’ (Lib)

trypluck’ : (’a -> ’b option) -> ’a list -> (’b option * ’a list)

Synopsis
Pull an element out of a list.

Description
An invocation trypluck’ f [x1,...,xk,...,xn] returns either the pair

(f(xk),[x1,...,xk-1,xk+1,...xn])

where xk has been lifted out of the list without disturbing the relative positions of the
other elements, where f(xk) is SOME(v), and where f(xi) returns NONE for x1,...,xk-1;
or it returns (NONE,[x1,...xn] when f applied to every element of the list returns NONE.

This is an ‘option’ version of the other library function trypluck.

ty antiq 1035

Failure
Never fails.

See also
Lib.first, Lib.filter, Lib.mapfilter, Lib.tryfind, Lib.trypluck.

ty_antiq (Parse)

ty_antiq : hol_type -> term

Synopsis
Make a variable named ty_antiq.

Description
Given a type ty, the ML invocation ty_antiq ty returns the HOL variable ty_antiq : ty.
This provides a way to antiquote types into terms, which is necessary because the HOL
term parser only allows terms to be antiquoted. The use of ty_antiq promotes a type
to a term variable which can be antiquoted. The HOL parser detects occurrences of
ty_antiq ty and inserts ty as a constraint.

Example
Suppose we want to constrain a term to have type num list, which is bound to ML value
ty. Attempting to antiquote ty directly into the term won’t work:

val ty = ‘‘:num list‘‘;

> val ty = ‘:num list‘ : hol_type

- ‘‘x : ^ty‘‘;

! Toplevel input:

! Term ‘x : ^ty‘;

! ^^

! Type clash: expression of type

! hol_type

! cannot have type

! term

Use of ty_antiq solves the problem:

1036 CHAPTER 1. ENTRIES

- ‘‘x : ^(ty_antiq ty)‘‘;

> val it = ‘x‘ : term

- type_of it;

> val it = ‘:num list‘ : hol_type

See also
Parse.Term.

type_abbrev (Parse)

Parse.type_abbrev : string * hol_type -> unit

Synopsis
Establishes a type abbreviation.

Description
A call to type_abbrev(s,ty) sets up a type abbreviation that will cause the parser to treat
the string s as a synonym for the type ty. Moreover, if ty includes any type variables,
then the abbreviation is treated as a type operator taking as many parameters as appear
in ty. The order of the parameters will be the alphabetic ordering of the type variables’
names.

Abbreviations work at the level of the names of type operators. It is thus possible to
link a binary infix to an operator that is in turn an abbreviation.

Failure
Fails if the given type is just a type variable.

Example
This is a simple abbreviation.

- type_abbrev ("set", ‘‘:’a -> bool‘‘);

> val it = () : unit

- ‘‘:num set‘‘;

> val it = ‘‘:num set‘‘ : hol_type

Here, the abbreviation is set up and provided with its own infix symbol.

type of 1037

- type_abbrev ("rfunc", ‘‘:’b -> ’a‘‘);

> val it = () : unit

- add_infix_type {Assoc = RIGHT, Name = "rfunc",

ParseName = SOME "<-", Prec = 50};

> val it = () : unit

- ‘‘:’a <- bool‘‘;

> val it = ‘‘:’a <- bool‘‘ : hol_type

- dest_thy_type it;

> val it = {Args = [‘‘:bool‘‘, ‘‘:’a‘‘], Thy = "min", Tyop = "fun"} :

{Args : hol_type list, Thy : string, Tyop : string}

Comments
As is common with most of the parsing and printing functions, there is a companion
temp_type_abbrev function that does not cause the abbreviation effect to persist when
the theory is exported. As the examples show, type abbreviations also affect the pretty-
printing of types. The pretty-printer can be instructed not to print particular abbrevia-
tions (using Parse.disable_tyabbrev_printing), or to not print any (by setting the trace
variable "print_tyabbrevs").

See also
Parse.add infix type, Parse.disable tyabbrev printing.

type_of (Term)

type_of : term -> hol_type

Synopsis
Returns the type of a term.

Failure
Never fails.

Example

- type_of boolSyntax.universal;

> val it = ‘:(’a -> bool) -> bool‘ : hol_type

1038 CHAPTER 1. ENTRIES

type_rws (bossLib)

type_rws : string -> thm list

Synopsis
List rewrites for a concrete type.

Description
An application type_rws s, where s is the name of a declared datatype, returns a list
of rewrite rules corresponding to the types. The list typically contains theorems about
the distinctness and injectivity of constructors, the definition of the ’case’ constant in-
troduced at the time the type was defined, and any extra rewrites coming from the use
of records.

Failure
If s is not the name of a declared datatype.

Example

- type_rws "list";

> val it =

[|- (!v f. case v f [] = v) /\ !v f a0 a1. case v f (a0::a1) = f a0 a1,

|- !a1 a0. ~([] = a0::a1),

|- !a1 a0. ~(a0::a1 = []),

|- !a0 a1 a0’ a1’. (a0::a1 = a0’::a1’) = (a0 = a0’) /\ (a1 = a1’)]

- Hol_datatype ‘point = <| x:num ; y:num |>‘;

<<HOL message: Defined type: "point">>

- type_rws "point";

> val it =

[|- !f a0 a1. case f (point a0 a1) = f a0 a1,

|- !a0 a1 a0’ a1’.

(point a0 a1 = point a0’ a1’) = (a0 = a0’) /\ (a1 = a1’),

|- !z x p. p with <|y := x; x := z|> = p with <|x := z; y := x|>,

|- (!x p. (p with y := x).x = p.x) /\ (!x p. (p with x := x).y = p.y) /\

(!x p. (p with x := x).x = x) /\ !x p. (p with y := x).y = x,

|- (!n n0. (point n n0).x = n) /\ !n n0. (point n n0).y = n0,

type ssfrag 1039

|- (!n1 n n0. point n n0 with x := n1 = point n1 n0) /\

!n1 n n0. point n n0 with y := n1 = point n n1,

|- (!p. p with x := p.x = p) /\ !p. p with y := p.y = p,

|- (!x2 x1 p. p with <|x := x1; x := x2|> = p with x := x1) /\

!x2 x1 p. p with <|y := x1; y := x2|> = p with y := x1,

|- (!p f. (p with y updated_by f).x = p.x) /\

(!p f. (p with x updated_by f).y = p.y) /\

(!p f. (p with x updated_by f).x = f p.x) /\

!p f. (p with y updated_by f).y = f p.y,

|- !p n0 n. p with <|x := n0; y := n|> = <|x := n0; y := n|>]

Comments
RW_TAC and SRW_TAC automatically include these rewrites.

See also
bossLib.rewrites, bossLib.RW TAC.

type_ssfrag (simpLib)

simpLib.type_ssfrag : string -> ssfrag

Synopsis
Returns a simpset fragment for simplifying types’ constructors.

Description
A call to type_ssfrag(s) function returns a simpset fragment that embodies simplifica-
tion routines for the type named by the string s. The fragment includes rewrites that
express injectivity and disjointness of constructors, and which simplify case expressions
applied to terms that have constructors at the outermost level.

Failure
Fails if the string argument does not correspond to a type stored in the TypeBase.

Example

- val ss = simpLib.type_ssfrag "list";

> val ss =

simpLib.SSFRAG{ac = [], congs = [], convs = [], dprocs = [],

1040 CHAPTER 1. ENTRIES

filter = NONE,

rewrs =

[|- (!v f. case v f [] = v) /\

!v f a0 a1. case v f (a0::a1) = f a0 a1,

|- !a1 a0. ~([] = a0::a1),

|- !a1 a0. ~(a0::a1 = []),

|- !a0 a1 a0’ a1’. (a0::a1 = a0’::a1’) =

(a0 = a0’) /\ (a1 = a1’)]}

: ssfrag

- SIMP_CONV (bool_ss ++ ss) [] ‘‘h::t = []‘‘;

<<HOL message: inventing new type variable names: ’a>>

> val it = |- (h::t = []) = F : thm

Comments
RW_TAC and SRW_TAC automatically include these simpset fragments.

See also
BasicProvers.RW TAC, BasicProvers.srw ss, bossLib.type rws, simpLib.SIMP CONV,

TypeBase.

type_subst (Type)

type_subst : (hol_type,hol_type) subst -> hol_type -> hol_type

Synopsis
Instantiates types in a type.

Description
If theta = [{redex_1,residue_1},...,{redex_n,residue_n}] is a (hol_type,hol_type) subst,
where the redex_i are the types to be substituted for, and the residue_i the replace-
ments, and ty is a type to instantiate, the call type_subst theta ty will replace each
occurrence of a redex_i by the corresponding residue_i throughout ty. The replace-
ments will be performed in parallel. If several of the type instantiations are applicable,
the choice is undefined. Each redex_i ought to be a type variable, but if it isn’t, it
will never be replaced in ty. Also, it is not necessary that any or all of the types
redex_1...redex_n should in fact appear in ty.

type var in 1041

Failure
Never fails.

Example

- type_subst [alpha |-> bool] (Type ‘:’a # ’b‘);

> val it = ‘:bool # ’b‘ : hol_type

- type_subst [Type‘:’a # ’b‘ |-> Type ‘:num‘, alpha |-> bool]

(Type‘:’a # ’b‘);

> val it = ‘:bool # ’b‘ : hol_type

See also
Term.inst, Thm.INST TYPE, Lib.|->, Term.subst.

type_var_in (Type)

type_var_in : hol_type -> hol_type -> bool

Synopsis
Checks if a type variable occurs in a type.

Description
An invocation type_var_in tyv ty returns true if tyv occurs in ty. Otherwise, it returns
false.

Failure
Fails if tyv is not a type variable.

Example

- type_var_in alpha (bool --> alpha);

> val it = true : bool

- type_var_in alpha bool;

> val it = false : bool

1042 CHAPTER 1. ENTRIES

Comments
Can be useful in enforcing side conditions on inference rules.

See also
Type.type vars, Type.type varsl, Type.exists tyvar.

type_vars (Type)

type_vars : hol_type -> hol_type list

Synopsis
Returns the set of type variables in a type.

Description
An invocation type_vars ty returns a list representing the set of type variables occurring
in ty.

Failure
Never fails.

Example

- type_vars ((alpha --> beta) --> bool --> beta);

> val it = [‘:’a‘, ‘:’b‘] : hol_type list

Comments
Code should not depend on how elements are arranged in the result of type_vars.

See also
Type.type varsl, Type.type var in, Type.exists tyvar, Type.polymorphic,

Term.free vars.

type_vars_in_term (Term)

type_vars_in_term : term -> hol_type list

type varsl 1043

Synopsis
Return the type variables occurring in a term.

Description
An invocation type_vars_in_term M returns the set of type variables occurring in M.

Failure
Never fails.

Example

- type_vars_in_term (concl boolTheory.ONE_ONE_DEF);

> val it = [‘:’b‘, ‘:’a‘] : hol_type list

See also
Term.free vars, Type.type vars.

type_varsl (Type)

type_varsl : hol_type list -> hol_type list

Synopsis
Returns the set of type variables in a list of types.

Description
An invocation type_varsl [ty1,...,tyn] returns a list representing the set-theoretic
union of the type variables occurring in ty1,...,tyn.

Failure
Never fails.

Example

- type_varsl [alpha, beta, bool, ((alpha --> beta) --> bool --> beta)];

> val it = [‘:’a‘, ‘:’b‘] : hol_type list

Comments
Code should not depend on how elements are arranged in the result of type_varsl.

1044 CHAPTER 1. ENTRIES

See also
Type.type vars, Type.type var in, Type.exists tyvar, Type.polymorphic,

Term.free vars.

TypeBase

structure TypeBase

Synopsis
A database of facts stemming from datatype declarations

Description
The structure TypeBase provides an interface to a database that is updated when a new
datatype is introduced with Hol_datatype. When a new datatype is declared, a collection
of theorems ”about” the type can be automatically derived. These are indeed proved,
and are stored in the current theory segment. They are also automatically stored in
TypeBase.

The interface to TypeBase is intended to provide support for writers of high-level tools
for reasoning about datatypes.

Example

- Hol_datatype ‘tree = Leaf

| Node of ’a => tree => tree‘;

<<HOL message: Defined type: "tree">>

> val it = () : unit

- TypeBase.read {Thy = current_theory(), Tyop = "tree"};

> val it =

SOME-----------------------

HOL datatype: "tree"

Primitive recursion:

|- !f0 f1.

?fn.

(!a. fn (Leaf a) = f0 a) /\

!a0 a1. fn (Node a0 a1) = f1 a0 a1 (fn a0) (fn a1)

Case analysis:

|- (!f f1 a. case f f1 (Leaf a) = f a) /\

types 1045

!f f1 a0 a1. case f f1 (Node a0 a1) = f1 a0 a1

Size:

|- (!a. tree_size (Leaf a) = 1 + a) /\

!a0 a1. tree_size (Node a0 a1) = 1 + (tree_size a0 + tree_size a1)

Induction:

|- !P.

(!n. P (Leaf n)) /\ (!t t0. P t /\ P t0 ==> P (Node t t0)) ==>

!t. P t

Case completeness: |- !t. (?n. t = Leaf n) \/ ?t’ t0. t = Node t’ t0

One-to-one:

|- (!a a’. (Leaf a = Leaf a’) = (a = a’)) /\

!a0 a1 a0’ a1’.

(Node a0 a1 = Node a0’ a1’) = (a0 = a0’) /\ (a1 = a1’)

Distinctness: |- !a1 a0 a. ~(Leaf a = Node a0 a1) : tyinfo option

See also
bossLib.Hol datatype.

types (Theory)

types : string -> (string * int) list

Synopsis
Lists the types in the named theory.

Description
The function types should be applied to a string which is the name of an ancestor theory
(including the current theory; the special string "-" is always interpreted as the current
theory). It returns a list of all the type constructors declared in the named theory, in the
form of arity-name pairs.

Failure
Fails unless the named theory is an ancestor, or the current theory.

Example

- load "bossLib";

> val it = () : unit

1046 CHAPTER 1. ENTRIES

- itlist union (map types (ancestry "-")) [];

> val it =

[("one", 0), ("option", 1), ("prod", 2), ("sum", 2),

("fun", 2), ("ind", 0), ("bool", 0), ("num", 0),

("recspace", 1), ("list", 1)] : (string * int) list

See also
Theory.constants, Theory.current axioms, Theory.current definitions,

Theory.current theorems, Theory.new type, Definition.new type definition,

Theory.parents, Theory.ancestry.

U (Lib)

U : ’’a list list -> ’’a list

Synopsis
Takes the union of a list of sets.

Description
An application U [l1, ..., ln] is equivalent to union l1 (... (union ln-1, ln)...).
Thus, every element that occurs in one of the lists will appear in the result.

Failure
Never fails.

Example

- U [[1,2,3], [4,5,6], [1,2,5]];

> val it = [3, 6, 4, 1, 2, 5] : int list

Comments
The order in which the elements occur in the resulting list should not be depended
upon.

A high-performance implementation of finite sets may be found in structure HOLset.
ML equality types are used in the implementation of U and its kin. This limits its

applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

UNABBREV TAC 1047

See also
Lib.op U, Lib.union, Lib.mk set, Lib.mem, Lib.insert, Lib.set eq, Lib.intersect,

Lib.set diff.

UNABBREV_TAC (Q)

Q.UNABBREV_TAC : term quotation -> tactic

Synopsis
Removes an abbreviation from a goal’s assumptions by substituting it out.

Description
The argument to UNABBREV_TAC must be a quotation containing the name of a variable
that is abbreviated in the current goal. In other words, when calling UNABBREV_TAC ‘v‘,
there must be an assumption of the form Abbrev(v = e) in the goal’s assumptions. This
assumption is removed, and all occurrences of the variable v in the goal are replaced
by e. If there are two abbreviation assumptions for v in the goal, the more recent is
removed.

Example
The goal

Abbrev(v = 2 * x + 1), v + x < 10 ?- P(v)

is transformed by Q.UNABBREV_TAC ‘v‘ to

2 * x + 1 + x < 10 ?- P(2 * x + 1)

Failure
Fails if there is no abbreviation of the required form in the goal’s assumptions, or if the
quotation doesn’t parse to a variable.

See also
BasicProvers.Abbr, Q.ABBREV TAC.

UNBETA_CONV (Conv)

UNBETA_CONV : term -> conv

1048 CHAPTER 1. ENTRIES

Synopsis
Returns a reversed instance of beta-reduction.

Description
UNBETA_CONV t1 t2 returns a theorem of the form

|- t2 = (\v. t’) t1

The choice of v and the nature of t’ depend on whether or t1 is a variable. If so, then v

will be t1 and t’ will be t2. Otherwise, v will be generated with genvar and t’ will be
the result of substituting v for t1, wherever it occurs.

Failure
Never fails.

Comments
Very useful for setting up a higher-order match by hand. The use of genvar is predicated
on the assumption that it will later be eliminated through the application of the function
term to some other argument.

See also
Thm.BETA CONV.

uncurry (Lib)

uncurry : (’a -> ’b -> ’c) -> (’a * ’b) -> ’c

Synopsis
Converts a function taking two arguments into a function taking a single paired argu-
ment.

Description
The application uncurry f returns fn (x,y) => f x y, so that

uncurry f (x,y) = f x y

Failure
Never fails.

Example

UNCURRY CONV 1049

- fun add x y = x + y

> val add = fn : int -> int -> int

- uncurry add (3,4);

> val it = 7 : int

See also
Lib, Lib.curry.

UNCURRY_CONV (PairRules)

UNCURRY_CONV : conv

Synopsis
Uncurrys an application of an abstraction.

Example

- UNCURRY_CONV (Term ‘(\x y. x + y) 1 2‘);

> val it = |- (\x y. x + y) 1 2 = (\(x,y). x + y) (1,2) : thm

Failure
UNCURRY_CONV tm fails if tm is not double abstraction applied to two arguments

See also
PairRules.CURRY CONV.

UNCURRY_EXISTS_CONV (PairRules)

UNCURRY_EXISTS_CONV : conv

Synopsis
Uncurrys consecutive existential quantifications into a paired existential quantification.

Example

1050 CHAPTER 1. ENTRIES

- UNCURRY_EXISTS_CONV (Term ‘?x y. x + y = y + x‘);

> val it = |- (?x y. x + y = y + x) = ?(x,y). x + y = y + x : thm

- UNCURRY_EXISTS_CONV (Term ‘?(w,x) (y,z). w+x+y+z = z+y+x+w‘);

> val it =

|- (?(w,x) (y,z). w + x + y + z = z + y + x + w) =

?((w,x),y,z). w + x + y + z = z + y + x + w : thm

Failure
UNCURRY_EXISTS_CONV tm fails if tm is not a consecutive existential quantification.

See also
PairRules.CURRY CONV, PairRules.UNCURRY CONV, PairRules.CURRY EXISTS CONV,

PairRules.CURRY FORALL CONV, PairRules.UNCURRY FORALL CONV.

UNCURRY_FORALL_CONV (PairRules)

UNCURRY_FORALL_CONV : conv

Synopsis
Uncurrys consecutive universal quantifications into a paired universal quantification.

Example

- UNCURRY_FORALL_CONV (Term ‘!x y. x + y = y + x‘);

> val it = |- (!x y. x + y = y + x) = !(x,y). x + y = y + x : thm

- UNCURRY_FORALL_CONV (Term ‘!(w,x) (y,z). w+x+y+z = z+y+x+w‘);

> val it =

|- (!(w,x) (y,z). w + x + y + z = z + y + x + w) =

!((w,x),y,z). w + x + y + z = z + y + x + w : thm

Failure
UNCURRY_FORALL_CONV tm fails if tm is not a consecutive universal quantification.

See also
PairRules.CURRY CONV, PairRules.UNCURRY CONV, PairRules.CURRY FORALL CONV,

PairRules.CURRY EXISTS CONV, PairRules.UNCURRY EXISTS CONV.

UNDISCH 1051

UNDISCH (Drule)

UNDISCH : thm -> thm

Synopsis
Undischarges the antecedent of an implicative theorem.

Description

A |- t1 ==> t2

---------------- UNDISCH

A, t1 |- t2

Note that UNDISCH treats "~u" as "u ==> F".

Failure
UNDISCH will fail on theorems which are not implications or negations.

Comments
If the antecedent already appears in (or is alpha-equivalent to one of) the hypotheses,
it will not be duplicated.

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,

Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN, Drule.NEG DISCH,

Tactic.STRIP TAC, Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

UNDISCH_ALL (Drule)

UNDISCH_ALL : thm -> thm

Synopsis
Iteratively undischarges antecedents in a chain of implications.

Description

A |- t1 ==> ... ==> tn ==> t

------------------------------ UNDISCH_ALL

A, t1, ..., tn |- t

1052 CHAPTER 1. ENTRIES

Note that UNDISCH_ALL treats "~u" as "u ==> F".

Failure
UNDISCH_ALL never fails. When called on something other than an implication or nega-
tion, it simply returns its argument unchanged.

Comments
Identical or alpha-equivalent terms which are repeated in A, "t1", ..., "tn" will not
be duplicated in the hypotheses of the resulting theorem.

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,

Drule.NEG DISCH, Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN,

Tactic.STRIP TAC, Drule.UNDISCH, Tactic.UNDISCH TAC.

UNDISCH_TAC (Tactic)

UNDISCH_TAC : term -> tactic

Synopsis
Undischarges an assumption.

Description

A ?- t

==================== UNDISCH_TAC v

A - {v} ?- v ==> t

Failure
UNDISCH_TAC will fail if "v" is not an assumption.

Comments
UNDISCHarging v will remove all assumptions which are identical to v, but those which
are alpha-equivalent will remain.

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,

Drule.NEG DISCH, Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN,

Tactic.STRIP TAC, Drule.UNDISCH, Drule.UNDISCH ALL.

UNDISCH THEN 1053

UNDISCH_THEN (Thm_cont)

Thm_cont.UNDISCH_THEN : term -> thm_tactic -> tactic

Synopsis
Discharges the assumption given and passes it to a theorem-tactic.

Description
UNDISCH_THEN finds the first assumption equal to the term given, removes it from the as-
sumption list, ASSUMEs it, passes it to the theorem-tactic and then applies the consequent
tactic. Thus:

UNDISCH_THEN t f ([a1,... ai, t, aj, ... an], goal) =

f (ASSUME t) ([a1,... ai, aj,... an], goal)

For example, if

A u {t1} ?- t

=============== f (ASSUME t1)

B u {t1} ?- v

then

A u {t1} ?- t

=============== UNDISCH_THEN t1 f

B ?- v

Failure
UNDISCH_THEN will fail on goals where the given term is not in the assumption list.

See also
Tactical.PAT ASSUM, Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC,

Thm cont.DISCH THEN, Drule.NEG DISCH, Tactic.FILTER DISCH TAC,

Thm cont.FILTER DISCH THEN, Tactic.STRIP TAC, Drule.UNDISCH, Drule.UNDISCH ALL,

Tactic.UNDISCH TAC.

UNFOLD_CONV (unwindLib)

UNFOLD_CONV : (thm list -> conv)

1054 CHAPTER 1. ENTRIES

Synopsis
Expands sub-components of a hardware description using their definitions.

Description
UNFOLD_CONV thl "t1 /\ ... /\ tn" returns a theorem of the form:

B |- t1 /\ ... /\ tn = t1’ /\ ... /\ tn’

where each ti’ is the result of rewriting ti with the theorems in thl. The set of assump-
tions B is the union of the instantiated assumptions of the theorems used for rewriting.
If none of the rewrites are applicable to a ti, it is unchanged.

Failure
Never fails.

Example

#UNFOLD_CONV [ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]

"INV (l1,l2) /\ INV (l2,l3) /\ (!(t:num). l1 t = l2 (t-1) \/ l3 (t-1))";;

. |- INV(l1,l2) /\ INV(l2,l3) /\ (!t. l1 t = l2(t - 1) \/ l3(t - 1)) =

(!t. l2 t = ~l1 t) /\

(!t. l3 t = ~l2 t) /\

(!t. l1 t = l2(t - 1) \/ l3(t - 1))

See also
unwindLib.UNFOLD RIGHT RULE.

UNFOLD_RIGHT_RULE (unwindLib)

UNFOLD_RIGHT_RULE : (thm list -> thm -> thm)

Synopsis
Expands sub-components of a hardware description using their definitions.

Description
UNFOLD_RIGHT_RULE thl behaves as follows:

A |- !z1 ... zr. t = ?y1 ... yp. t1 /\ ... /\ tn

--

B u A |- !z1 ... zr. t = ?y1 ... yp. t1’ /\ ... /\ tn’

union 1055

where each ti’ is the result of rewriting ti with the theorems in thl. The set of assump-
tions B is the union of the instantiated assumptions of the theorems used for rewriting.
If none of the rewrites are applicable to a ti, it is unchanged.

Failure
Fails if the second argument is not of the required form, though either or both of r and
p may be zero.

Example

#UNFOLD_RIGHT_RULE [ASSUME "!in out. INV(in,out) = !(t:num). out t = ~(in t)"]

(ASSUME "!(in:num->bool) out. BUF(in,out) = ?l. INV(in,l) /\ INV(l,out)");;

.. |- !in out.

BUF(in,out) = (?l. (!t. l t = ~in t) /\ (!t. out t = ~l t))

See also
unwindLib.UNFOLD CONV.

union (Lib)

union : ’’a list -> ’’a list -> ’’a list

Synopsis
Computes the union of two ‘sets’.

Description
If l1 and l2 are both ‘sets’ (lists with no repeated members), union l1 l2 returns the
set union of l1 and l2. In the case that l1 or l2 is not a set, all the user can depend on
is that union l1 l2 returns a list l3 such that every unique element of l1 and l2 is in l3

and each element of l3 is found in either l1 or l2.

Failure
Never fails.

Example

- union [1,2,3] [1,5,4,3];

val it = [2,1,5,4,3] : int list

1056 CHAPTER 1. ENTRIES

- union [1,1,1] [1,2,3,2];

val it = [1,2,3,2] : int list

- union [1,2,3,2] [1,1,1] ;

val it = [3,2,1,1,1] : int list

Comments
Do not make the assumption that the order of items in the list returned by union is fixed.
Later implementations may use different algorithms, and return a different concrete
result while still meeting the specification.

A high-performance implementation of finite sets may be found in structure HOLset.
ML equality types are used in the implementation of union and its kin. This limits its

applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op union, Lib.U, Lib.mk set, Lib.mem, Lib.insert, Lib.set eq, Lib.intersect,

Lib.set diff, Lib.subtract.

UNION_CONV (pred_setLib)

UNION_CONV : conv -> conv

Synopsis
Reduce {t1;...;tn} UNION s to t1 INSERT (... (tn INSERT s)).

Description
The function UNION_CONV is a parameterized conversion for reducing sets of the form
{t1;...;tn} UNION s, where {t1;...;tn} and s are sets of type ty->bool. The first
argument to UNION_CONV is expected to be a conversion that decides equality between
values of the base type ty. Given an equation e1 = e2, where e1 and e2 are terms of
type ty, this conversion should return the theorem |- (e1 = e2) = T or the theorem
|- (e1 = e2) = F, as appropriate.

Given such a conversion, the function UNION_CONV returns a conversion that maps a
term of the form {t1;...;tn} UNION s to the theorem

|- {t1;...;tn} UNION s = ti INSERT ... (tj INSERT s)

universal 1057

where {ti;...;tj} is the set of all terms t that occur as elements of {t1;...;tn} for
which the conversion IN_CONV conv fails to prove that |- (t IN s) = T (that is, either
by proving |- (t IN s) = F instead, or by failing outright).

Example
In the following example, REDUCE_CONV is supplied as a parameter to UNION_CONV and
used to test for membership of each element of the first finite set {1;2;3} of the union
in the second finite set {SUC 0;3;4}.

- UNION_CONV REDUCE_CONV (Term‘{1;2;3} UNION {SUC 0;3;4}‘);

> val it = |- {1; 2; 3} UNION {SUC 0; 3; 4} = {2; SUC 0; 3; 4} : thm

The result is {2;SUC 0;3;4}, rather than {1;2;SUC 0;3;4}, because UNION_CONV is able by
means of a call to

- IN_CONV REDUCE_CONV (Term‘1 IN {SUC 0;3;4}‘);

to prove that 1 is already an element of the set {SUC 0;3;4}.
The conversion supplied to UNION_CONV need not actually prove equality of elements,

if simplification of the resulting set is not desired. For example:

- UNION_CONV NO_CONV ‘‘{1;2;3} UNION {SUC 0;3;4}‘‘;

> val it = |- {1;2;3} UNION {SUC 0;3;4} = {1;2;SUC 0;3;4} : thm

In this case, the resulting set is just left unsimplified. Moreover, the second set argument
to UNION need not be a finite set:

- UNION_CONV NO_CONV ‘‘{1;2;3} UNION s‘‘;

> val it = |- {1;2;3} UNION s = 1 INSERT (2 INSERT (3 INSERT s)) : thm

And, of course, in this case the conversion argument to UNION_CONV is irrelevant.

Failure
UNION_CONV conv fails if applied to a term not of the form {t1;...;tn} UNION s.

See also
pred setLib.IN CONV, numLib.REDUCE CONV.

universal (boolSyntax)

universal : term

1058 CHAPTER 1. ENTRIES

Synopsis
Constant denoting universal quantification.

Description
The ML variable boolSyntax.universal is bound to the term bool$!.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,

boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,

boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,

boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,

boolSyntax.arb.

UNPBETA_CONV (PairRules)

UNPBETA_CONV : (term -> conv)

Synopsis
Creates an application of a paired abstraction from a term.

Description
The user nominates some pair structure of variables p and a term t, and UNPBETA_CONV

turns t into an abstraction on p applied to p.

------------------ UNPBETA_CONV "p" "t"

|- t = (\p. t) p

Failure
Fails if p is not a paired structure of variables.

See also
PairRules.PBETA CONV, PairedLambda.PAIRED BETA CONV.

UNWIND_ALL_BUT_CONV (unwindLib)

UNWIND_ALL_BUT_CONV : (string list -> conv)

UNWIND ALL BUT RIGHT RULE 1059

Synopsis
Unwinds all lines of a device (except those in the argument list) as much as possible.

Description
UNWIND_ALL_BUT_CONV l when applied to the following term:

"t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn"

returns a theorem of the form:

|- t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn =

t1’ /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn’

where ti’ (for 1 <= i <= n) is ti rewritten with the equations eqni (1 <= i <= m).
These equations are those conjuncts with line name not in l (and which are equations).

Failure
Never fails but may loop indefinitely.

Example

#UNWIND_ALL_BUT_CONV [‘l2‘]

"(!(x:num). l1 x = (l2 x) - 1) /\

(!x. f x = (l2 (x+1)) + (l1 (x+2))) /\

(!x. l2 x = 7)";;

|- (!x. l1 x = (l2 x) - 1) /\

(!x. f x = (l2(x + 1)) + (l1(x + 2))) /\

(!x. l2 x = 7) =

(!x. l1 x = (l2 x) - 1) /\

(!x. f x = (l2(x + 1)) + ((l2(x + 2)) - 1)) /\

(!x. l2 x = 7)

See also
unwindLib.UNWIND ONCE CONV, unwindLib.UNWIND CONV, unwindLib.UNWIND AUTO CONV,

unwindLib.UNWIND ALL BUT RIGHT RULE, unwindLib.UNWIND AUTO RIGHT RULE.

UNWIND_ALL_BUT_RIGHT_RULE (unwindLib)

UNWIND_ALL_BUT_RIGHT_RULE : (string list -> thm -> thm)

1060 CHAPTER 1. ENTRIES

Synopsis
Unwinds all lines of a device (except those in the argument list) as much as possible.

Description
UNWIND_ALL_BUT_RIGHT_RULE l behaves as follows:

A |- !z1 ... zr.

t =

(?l1 ... lp. t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn)

A |- !z1 ... zr.

t =

(?l1 ... lp. t1’ /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn’)

where ti’ (for 1 <= i <= n) is ti rewritten with the equations eqni (1 <= i <= m).
These equations are those conjuncts with line name not in l (and which are equations).

Failure
Fails if the argument theorem is not of the required form, though either or both of p and
r may be zero. May loop indefinitely.

Example

#UNWIND_ALL_BUT_RIGHT_RULE [‘l2‘]

(ASSUME

"!f. IMP(f) =

?l2 l1.

(!(x:num). l1 x = (l2 x) - 1) /\

(!x. f x = (l2 (x+1)) + (l1 (x+2))) /\

(!x. l2 x = 7)");;

. |- !f.

IMP f =

(?l2 l1.

(!x. l1 x = (l2 x) - 1) /\

(!x. f x = (l2(x + 1)) + ((l2(x + 2)) - 1)) /\

(!x. l2 x = 7))

See also
unwindLib.UNWIND AUTO RIGHT RULE, unwindLib.UNWIND ALL BUT CONV,

unwindLib.UNWIND AUTO CONV, unwindLib.UNWIND ONCE CONV, unwindLib.UNWIND CONV.

UNWIND AUTO CONV 1061

UNWIND_AUTO_CONV (unwindLib)

UNWIND_AUTO_CONV : conv

Synopsis
Automatic unwinding of equations defining wire values in a standard device specifica-
tion.

Description
UNWIND_AUTO_CONV "?l1 ... lm. t1 /\ ... /\ tn" returns a theorem of the form:

|- (?l1 ... lm. t1 /\ ... /\ tn) = (?l1 ... lm. t1’ /\ ... /\ tn’)

where tj’ is tj rewritten with equations selected from the ti’s.
The function decides which equations to use for rewriting by performing a loop anal-

ysis on the graph representing the dependencies of the lines. By this means the term
can be unwound as much as possible without the risk of looping. The user is left to deal
with the recursive equations.

Failure
Fails if there is more than one equation for any line variable.

Example

#UNWIND_AUTO_CONV

"(!(x:num). l1 x = (l2 x) - 1) /\

(!x. f x = (l2 (x+1)) + (l1 (x+2))) /\

(!x. l2 x = 7)";;

|- (!x. l1 x = (l2 x) - 1) /\

(!x. f x = (l2(x + 1)) + (l1(x + 2))) /\

(!x. l2 x = 7) =

(!x. l1 x = 7 - 1) /\ (!x. f x = 7 + (7 - 1)) /\ (!x. l2 x = 7)

See also
unwindLib.UNWIND ONCE CONV, unwindLib.UNWIND CONV,

unwindLib.UNWIND ALL BUT CONV, unwindLib.UNWIND ALL BUT RIGHT RULE,

unwindLib.UNWIND AUTO RIGHT RULE.

1062 CHAPTER 1. ENTRIES

UNWIND_AUTO_RIGHT_RULE (unwindLib)

UNWIND_AUTO_RIGHT_RULE : (thm -> thm)

Synopsis
Automatic unwinding of equations defining wire values in a standard device specifica-
tion.

Description
UNWIND_AUTO_RIGHT_RULE behaves as follows:

A |- !z1 ... zr. t = ?l1 ... lm. t1 /\ ... /\ tn

--

A |- !z1 ... zr. t = ?l1 ... lm. t1’ /\ ... /\ tn’

where tj’ is tj rewritten with equations selected from the ti’s.
The function decides which equations to use for rewriting by performing a loop anal-

ysis on the graph representing the dependencies of the lines. By this means the term
can be unwound as much as possible without the risk of looping. The user is left to deal
with the recursive equations.

Failure
Fails if there is more than one equation for any line variable, or if the argument theorem
is not of the required form, though either or both of m and r may be zero.

Example

#UNWIND_AUTO_RIGHT_RULE

(ASSUME

"!f. IMP(f) =

?l2 l1.

(!(x:num). l1 x = (l2 x) - 1) /\

(!x. f x = (l2 (x+1)) + (l1 (x+2))) /\

(!x. l2 x = 7)");;

. |- !f.

IMP f =

(?l2 l1.

(!x. l1 x = 7 - 1) /\ (!x. f x = 7 + (7 - 1)) /\ (!x. l2 x = 7))

UNWIND CONV 1063

See also
unwindLib.UNWIND ALL BUT RIGHT RULE, unwindLib.UNWIND AUTO CONV,

unwindLib.UNWIND ALL BUT CONV, unwindLib.UNWIND ONCE CONV,

unwindLib.UNWIND CONV.

UNWIND_CONV (unwindLib)

UNWIND_CONV : ((term -> bool) -> conv)

Synopsis
Unwinds device behaviour using selected line equations until no change.

Description
UNWIND_CONV p "t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn" returns a theorem
of the form:

|- t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn =

t1’ /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn’

where ti’ (for 1 <= i <= n) is ti rewritten with the equations eqni (1 <= i <= m).
These equations are the conjuncts for which the predicate p is true. The ti terms are
the conjuncts for which p is false. The rewriting is repeated until no changes take place.

Failure
Never fails but may loop indefinitely.

Example

#UNWIND_CONV (\tm. mem (line_name tm) [‘l1‘;‘l2‘])

"(!(x:num). l1 x = (l2 x) - 1) /\

(!x. f x = (l2 (x+1)) + (l1 (x+2))) /\

(!x. l2 x = 7)";;

|- (!x. l1 x = (l2 x) - 1) /\

(!x. f x = (l2(x + 1)) + (l1(x + 2))) /\

(!x. l2 x = 7) =

(!x. l1 x = (l2 x) - 1) /\ (!x. f x = 7 + (7 - 1)) /\ (!x. l2 x = 7)

See also
unwindLib.UNWIND ONCE CONV, unwindLib.UNWIND ALL BUT CONV,

unwindLib.UNWIND AUTO CONV, unwindLib.UNWIND ALL BUT RIGHT RULE,

unwindLib.UNWIND AUTO RIGHT RULE.

1064 CHAPTER 1. ENTRIES

UNWIND_ONCE_CONV (unwindLib)

UNWIND_ONCE_CONV : ((term -> bool) -> conv)

Synopsis
Basic conversion for parallel unwinding of equations defining wire values in a standard
device specification.

Description
UNWIND_ONCE_CONV p tm unwinds the conjunction tm using the equations selected by the
predicate p. tm should be a conjunction, equivalent under associative-commutative re-
ordering to:

t1 /\ t2 /\ ... /\ tn

p is used to partition the terms ti for 1 <= i <= n into two disjoint sets:

REW = {{ti | p ti}}

OBJ = {{ti | ~p ti}}

The terms ti for which p is true are then used as a set of rewrite rules (thus they
should be equations) to do a single top-down parallel rewrite of the remaining terms.
The rewritten terms take the place of the original terms in the input conjunction. For
example, if tm is:

t1 /\ t2 /\ t3 /\ t4

and REW = {{t1,t3}} then the result is:

|- t1 /\ t2 /\ t3 /\ t4 = t1 /\ t2’ /\ t3 /\ t4’

where ti’ is ti rewritten with the equations REW.

Failure
Never fails.

Example

#UNWIND_ONCE_CONV (\tm. mem (line_name tm) [‘l1‘;‘l2‘])

"(!(x:num). l1 x = (l2 x) - 1) /\

(!x. f x = (l2 (x+1)) + (l1 (x+2))) /\

(!x. l2 x = 7)";;

unzip 1065

|- (!x. l1 x = (l2 x) - 1) /\

(!x. f x = (l2(x + 1)) + (l1(x + 2))) /\

(!x. l2 x = 7) =

(!x. l1 x = (l2 x) - 1) /\

(!x. f x = 7 + ((l2(x + 2)) - 1)) /\

(!x. l2 x = 7)

See also
unwindLib.UNWIND CONV, unwindLib.UNWIND ALL BUT CONV,

unwindLib.UNWIND AUTO CONV, unwindLib.UNWIND ALL BUT RIGHT RULE,

unwindLib.UNWIND AUTO RIGHT RULE.

unzip (Lib)

unzip : (’a * ’b) list -> (’a list * ’b list)

Synopsis
Converts a list of pairs into a pair of lists.

Description
unzip [(x1,y1),...,(xn,yn)] returns ([x1,...,xn],[y1,...,yn]).

Failure
Never fails.

Comments
Identical to Lib.split.

See also
Lib.split, Lib.zip, Lib.combine.

update_overload_maps (Parse)

update_overload_maps :

string -> ({Name : string, Thy : string} list *

{Name : string, Thy : string} list) -> unit

Synopsis
Adds to the parser’s overloading maps.

1066 CHAPTER 1. ENTRIES

Description
The parser/pretty-printer for terms maintains two maps between constants and strings.
From strings to terms, the map is from one string to a set of terms. Each term represents
a possible overloading for the string. In the other direction, a term maps to just one
string, its preferred representation.

The function update_overload_maps adds to (potentially overriding old mappings in)
both of these maps. Its first parameter, a string, is the string involved in both directions.
The two lists of Name-Thy records specify terms for the two maps. The first component of
the tuple, specifies terms that the string will be overloaded to. (Note that it is perfectly
reasonable to ”overload” to just one term, and that this is the default situation for newly
defined constants.)

The second component of the tuple sets the given string as the preferred identifier for
the given terms.

Failure
Fails if any of the Name-Thy pairs doesn’t correspond to an actual constant.

See also
Parse.clear overloads on, Parse.hide, Parse.overload on,

Parse.remove ovl mapping, Parse.reveal.

upto (Lib)

upto : int -> int -> int list

Synopsis
Builds a list of integers

Description
An invocation upto b t returns the list [b, b+1, ..., t], if b <= t. Otherwise, the
empty list is returned.

Failure
Never fails.

Example

- upto 2 10;

> val it = [2,3,4,5,6,7,8,9,10]

uptodate term 1067

uptodate_term (Theory)

uptodate_term : term -> bool

Synopsis
Tells if a term is out of date.

Description
Operations in the current theory segment of HOL allow one to redefine types and con-
stants. This can cause theorems to become invalid. As a result, HOL has a rudimentary
consistency maintenance system built around the notion of whether type operators and
term constants are “up-to-date”.

An invocation uptodate_term M checks M to see if it has been built from any out-of-
date components. The definition of out-of-date is mutually recursive among types,
terms, and theorems. If M is a variable, it is out-of-date if its type is out-of-date. If M

is a constant, it is out-of-date if it has been redeclared, or if its type is out-of-date, or
if the witness theorem used to justify its existence is out-of-date. If M is a combination,
it is out-of-date if either of its components are out-of-date. If M is an abstraction, it is
out-of-date if either the bound variable or the body is out-of-date.

All items from ancestor theories are fixed, and unable to be overwritten, thus are
always up-to-date.

Failure
Never fails.

Example

- Define ‘fact x = if x=0 then 1 else x * fact (x-1)‘;

Equations stored under "fact_def".

Induction stored under "fact_ind".

> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

- val M = Term ‘!x. 0 < fact x‘;

> val M = ‘!x. 0 < fact x‘ : term

- uptodate_term M;

> val it = true : bool

- delete_const "fact";

1068 CHAPTER 1. ENTRIES

> val it = () : unit

- uptodate_term M;

> val it = false : bool

See also
Theory.uptodate type, Theory.uptodate thm.

uptodate_thm (Theory)

uptodate_thm : thm -> bool

Synopsis
Tells if a theorem is out of date.

Description
Operations in the current theory segment of HOL allow one to redefine types and con-
stants. This can cause theorems to become invalid. As a result, HOL has a rudimentary
consistency maintenance system built around the notion of whether type operators and
term constants are ”up-to-date”.

An invocation uptodate_thm th should check th to see if it has been proved from any
out-of-date components. However, HOL does not currently keep the proofs of theorems,
so a simpler approach is taken. Instead, th is checked to see if its hypotheses and
conclusions are up-to-date.

All items from ancestor theories are fixed, and unable to be overwritten, thus are
always up-to-date.

Failure
Never fails.

Example

- Define ‘fact x = if x=0 then 1 else x * fact (x-1)‘;

Equations stored under "fact_def".

Induction stored under "fact_ind".

> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

- val th = EVAL (Term ‘fact 3‘);

uptodate type 1069

> val th = |- fact 3 = 6 : thm

- uptodate_thm th;

> val it = true : bool

- delete_const "fact";

> val it = () : unit

- uptodate_thm th;

> val it = false : bool

Comments
It may happen that a theorem th is proved with the use of another theorem th1 that
subsequently becomes garbage because a constant c was deleted. If c does not occur
in th, then th does not become garbage, which may be contrary to expectation. The
conservative extension property of HOL says that th is still provable, even in the absence
of c.

See also
Theory.uptodate type, Theory.uptodate term, Theory.delete const,

Theory.delete type.

uptodate_type (Theory)

uptodate_type : hol_type -> bool

Synopsis
Tells if a type is out of date.

Description
Operations in the current theory segment of HOL allow one to redefine types and con-
stants. This can cause theorems to become invalid. As a result, HOL has a rudimentary
consistency maintenance system built around the notion of whether type operators and
term constants are ”up-to-date”.

An invocation uptodate_type ty, checks ty to see if it has been built from any out
of date components, returning false just in case it has. The definition of out-of-date
is mutually recursive among types, terms, and theorems. A type variable never out-
of-date. A compound type is out-of-date if either (a) its type operator is out-of-date,

1070 CHAPTER 1. ENTRIES

or (b) any of its argument types are out-of-date. A type operator is out-of-date if it
has been re-declared or if the witness theorem used to justify the type in the call to
new_type_definition is out-of-date. Only a component of the current theory segment
may be out-of-date. All items from ancestor theories are fixed, and unable to be over-
written, thus are always up-to-date.

Failure
Never fails.

Example

- Hol_datatype ‘foo = A | B of ’a‘;

<<HOL message: Defined type: "foo">>

> val it = () : unit

- val ty = Type ‘:’a foo list‘;

> val ty = ‘:’a foo list‘ : hol_type

- uptodate_type ty;

> val it = true : bool

- delete_type "foo";

> val it = () : unit

- uptodate_type ty;

> val it = false : bool

See also
Theory.uptodate term, Theory.uptodate thm.

VALID (Tactical)

VALID : tactic -> tactic

Synopsis
Makes a tactic fail if it would otherwise return an invalid proof.

var compare 1071

Description
If tac applied to the goal (asl,g) produces a justification that does not create a theorem
A |- g, with A a subset of asl, then VALID tac (asl,g) fails (raises an exception). If tac
produces a valid proof on the goal, then the behaviour of VALID tac (asl,g) is the same

Failure
Fails by design if its argument produces an invalid proof when applied to a goal. Also
fails if its argument fails when applied to the given proof.

See also
proofManagerLib.expand.

var_compare (Term)

var_compare : term * term -> order

Synopsis
Total ordering on variables.

Description
An invocation var_compare (v1,v2) will return one of {LESS, EQUAL, GREATER}, accord-
ing to an ordering on term variables. The ordering is transitive and total.

Failure
If v1 and v2 are not both variables.

Example

- var_compare (mk_var("x",bool), mk_var("x",bool --> bool));

> val it = LESS : order

Comments
Used to build high performance datastructures for dealing with sets having many vari-
ables.

See also
Term.empty varset, Term.compare.

1072 CHAPTER 1. ENTRIES

var_occurs (Term)

var_occurs : term -> term -> bool

Synopsis
Check if a variable occurs in free in a term.

Description
An invocation var_occurs v M returns true just in case v occurs free in M.

Failure
If the first argument is not a variable.

Example

- var_occurs (Term‘x:bool‘) (Term ‘a /\ b ==> x‘);

> val it = true : bool

- var_occurs (Term‘x:bool‘) (Term ‘!x. a /\ b ==> x‘);

> val it = false : bool

Comments
Identical to free_in, except for the requirement that the first argument be a variable.

See also
Term.free vars, Term.free in.

variant (Term)

variant : term list -> term -> term

Synopsis
Modifies a variable name to avoid clashes.

Description
When applied to a list of variables to avoid clashing with, and a variable to modify,
variant returns a variant of the variable to modify, that is, it changes the name as

version 1073

intuitively as possible to make it distinct from any variables in the list, or any constants.
This is normally done by adding primes to the name.

The exact form of the variable name should not be relied on, except that the original
variable will be returned unmodified unless it is itself in the list to avoid clashing with,
or if it is the name of a constant.

Failure
variant l t fails if any term in the list l is not a variable or if t is not a variable.

Example
The following shows a couple of typical cases:

- variant [Term‘y:bool‘, Term‘z:bool‘] (Term‘x:bool‘);

> val it = ‘x‘ : term

- variant [Term‘x:bool‘, Term‘x’:num‘, Term‘x’’:num‘] (Term ‘x:bool‘);

> val it = ‘x’’’‘ : term

while the following shows that clashes with the names of constants are also avoided:

- variant [] (mk_var("T",bool));

> val it = ‘T’‘ : term

The style of renaming can be altered by modifying the reference variable Globals.priming:

- with_flag (priming,SOME "_")

(uncurry variant)

([Term‘x:bool‘, Term‘x’:num‘, Term‘x’’:num‘], Term ‘x:bool‘);

> val it = ‘x_1‘ : term

Uses
The function variant is extremely useful for complicated derived rules which need to
rename variables to avoid free variable capture while still making the role of the variable
obvious to the user.

See also
Term.genvar, Term.prim variant, Globals.priming.

version (Globals)

Globals.version : int

1074 CHAPTER 1. ENTRIES

Synopsis
The version number of the HOL system being run.

Example

- Globals.version;

> val it = 2 : int

See also
Globals.release.

W (Lib)

W : (’a -> ’a -> ’b) -> ’a -> ’b

Synopsis
Duplicates function argument : W f x equals f x x.

Description
The W combinator can be understood as a planner: in the application f x x, the function
f can scrutinize x and generate a function that then gets applied to x.

Failure
W f never fails. W f x fails if f x fails or if f x x fails.

Example

- load "tautLib";

- tautLib.TAUT_PROVE (Term ‘(a = b) = (~a = ~b)‘);

> val it = |- (a = b) = (~a = ~b) : thm

- W (GENL o free_vars o concl) it;

> val it = |- !b a. (a = b) = (~a = ~b) : thm

See also
Lib.##, Lib.A, Lib.B, Lib.C, Lib.I, Lib.K, Lib.S.

WARNING outstream 1075

WARNING_outstream (Feedback)

WARNING_outstream : TextIO.outstream ref

Synopsis
Controlling output stream used when printing HOL_WARNING

Description
The value of reference cell WARNING_outstream controls where HOL_WARNING prints its
argument.

The default value of WARNING_outstream is TextIO.stdOut.

Example

- val ostrm = TextIO.openOut "foo";

> val ostrm = <outstream> : outstream

- WARNING_outstream := ostrm;

> val it = () : unit

- HOL_WARNING "Module" "Function" "Sufferin’ Succotash!";

> val it = () : unit

- TextIO.closeOut ostrm;

> val it = () : unit

- val istrm = TextIO.openIn "foo";

> val istrm = <instream> : instream

- print (TextIO.inputAll istrm);

<<HOL warning: Module.Function: Sufferin’ Succotash!>>

See also
Feedback, Feedback.HOL WARNING, Feedback.ERR outstream, Feedback.MESG outstream,

Feedback.emit WARNING.

1076 CHAPTER 1. ENTRIES

WARNING_to_string (Feedback)

WARNING_to_string : (string -> string -> string -> string) ref

Synopsis
Alterable function for formatting HOL_WARNING

Description
WARNING_to_string is a reference to a function for formatting the argument to HOL_WARNING.

The default value of WARNING_to_string is format_WARNING.

Example

- fun alt_WARNING_report s t u =

String.concat["WARNING---", s,".",t,": ",u,"---END WARNING\n"];

- WARNING_to_string := alt_WARNING_report;

- HOL_WARNING "Foo" "bar" "Look out";

WARNING---Foo.bar: Look out---END WARNING

> val it = () : unit

See also
Feedback, Feedback.HOL WARNING, Feedback.format WARNING, Feedback.ERR to string,

Feedback.MESG to string.

WEAKEN_CONSEQ_CONV_RULE (ConseqConv)

WEAKEN_CONSEQ_CONV_RULE : (directed_conseq_conv -> thm -> thm)

Synopsis
Tries to weaken the conclusion of a theorem consisting of an implication.

Description
Given a theorem of the form |- A ==> C and a directed consequence conversion c a
call of WEAKEN_CONSEQ_CONV_RULE c thm tries to weaken C to a predicate wC using c. If it
succeeds it returns the theorem |- A ==> wC.

WEAKEN TAC 1077

See also
ConseqConv.STRENGTHEN CONSEQ CONV RULE.

WEAKEN_TAC (Tactic)

WEAKEN_TAC : (term -> bool) -> tactic

Synopsis
Deletes assumption from goal.

Description
Given an ML predicate P mapping terms to true or false and a goal (asl,g), an invo-
cation WEAKEN_TAC P (asl,g) removes the first element (call it tm) that P holds of from
asl, returning the goal (asl - tm,g).

Failure
Fails if the assumption list of the goal is empty, or if P holds of no element in asl.

Example
Suppose we want to dispose of the equality assumption in the following goal:

C x

0. A = B

1. B x

The following application of WEAKEN_TAC does the job.

- e (WEAKEN_TAC is_eq);

OK..

1 subgoal:

> val it =

C x

B x

Uses
Occasionally useful for getting rid of superfluous assumptions.

1078 CHAPTER 1. ENTRIES

See also
Tactical.PAT ASSUM, Tactical.POP ASSUM.

WF_REL_TAC (bossLib)

WF_REL_TAC : term quotation -> tactic

Synopsis
Start termination proof.

Description
WF_REL_TAC builds a tactic that starts a termination proof. An invocation WF_REL_TAC q,
where q should parse into a term that denotes a wellfounded relation, builds a tactic tac

that is intended to be applied to a goal arising from an application of tgoal or tprove.
Such a goal has the form

?R. WF R /\ ...

The tactic tac will instantiate R with the relation denoted by q and will attempt various
simplifications of the goal. For example, it will try to automatically prove the well-
foundedness of the relation denoted by q, and will also attempt to simplify the goal
using some basic facts about well-founded relations. Often this can result in a much
simpler goal.

Failure
WF_REL_TAC q fails if q does not parse into a term whose type is an instance of
’a -> ’a -> bool.

Example
Suppose that a version of Quicksort had been defined as follows:

val qsort_defn =

Hol_defn "qsort"

‘(qsort ___ [] = []) /\

(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))

(x :: qsort ord (FILTER (ord x) rst)))‘;

Then one can start a termination proof as follows: set up a goalstack with tgoal and
then apply WF_REL_TAC with a quotation denoting a suitable wellfounded relation.

WF REL TAC 1079

- tgoal qsort_defn;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

?R. WF R /\

(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)) /\

!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

- e (WF_REL_TAC ‘measure (LENGTH o SND)‘);

OK..

2 subgoals:

> val it =

!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)

!rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst)

Execution of WF_REL_TAC has automatically proved the wellfoundedness of

measure (LENGTH o SND)

and the remainder of the goal has been simplified into a pair of easy goals.

Comments
There are two problems to deal with when trying to prove termination. First, one has to
understand, intuitively and then mathematically, why the function under consideration
terminates. Second, one must be able to phrase this in HOL. In the following, we shall
give a few examples of how this is done.

There are a number of basic and advanced means of specifying wellfounded relations.
The most common starting point for dealing with termination problems for recursive
functions is to find some function, known as a a ’measure’ under which the arguments
of a function call are larger than the arguments to any recursive calls that result.

For a very simple starter example, consider the following definition of a function that
computes the greatest common divisor of two numbers:

- val gcd_defn = Hol_defn "gcd"

‘(gcd (0,n) = n) /\

(gcd (m,n) = gcd (n MOD m, m))‘;

- Defn.tgoal gcd_defn;

1080 CHAPTER 1. ENTRIES

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

?R. WF R /\ !v2 n. R (n MOD SUC v2,SUC v2) (SUC v2,n)

The recursion happens in the first argument, and the recursive call in that position
is a smaller number. The way to phrase the termination of gcd in HOL is to use a
‘measure‘ function to map from the domain of gcd—a pair of numbers—to a number.
The definition of measure is equivalent to

measure f x y = (f x < f y).

(The actual definition of measure in prim_recTheory is more primitive.) Now we must
pick out the argument position to measure and invoke WF_REL_TAC:

- e (WF_REL_TAC ‘measure FST‘);

OK..

1 subgoal:

> val it =

!v2 n. n MOD SUC v2 < SUC v2

This goal is easy to prove with a few simple arithmetic facts:

- e (PROVE_TAC [arithmeticTheory.DIVISION, prim_recTheory.LESS_0]);

OK..

Goal proved. ...

Sometimes one needs a measure function that is itself recursive. For example, consider
a type of binary trees and a function that ‘unbalances‘ trees. The algorithm works by
rotating the tree until it gets a Leaf in the left branch, then it recurses into the right
branch. At the end of execution the tree has been linearized.

- Hol_datatype

‘btree = Leaf

| Brh of btree => btree‘;

- val Unbal_defn =

Hol_defn "Unbal"

‘(Unbal Leaf = Leaf)

/\ (Unbal (Brh Leaf bt) = Brh Leaf (Unbal bt))

WF REL TAC 1081

/\ (Unbal (Brh (Brh bt1 bt2) bt) = Unbal (Brh bt1 (Brh bt2 bt)))‘;

- Defn.tgoal Unbal_defn;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

?R. WF R /\

(!bt. R bt (Brh Leaf bt)) /\

!bt bt2 bt1. R (Brh bt1 (Brh bt2 bt)) (Brh (Brh bt1 bt2) bt)

Since the size of the tree is unchanged in the last clause in the definition of Unbal, a
simple size measure will not work. Instead, we can assign weights to nodes in the tree
such that the recursive calls of Unbal decrease the total weight in every case. One such
assignment is

Weight (Leaf) = 0

Weight (Brh x y) = (2 * Weight x) + (Weight y) + 1

It is easiest to use Define to define Weight, but if one is worried about ”polluting” the
signature, one can also use prove_rec_fn_exists from the Prim_rec structure:

val Weight =

Prim_rec.prove_rec_fn_exists (TypeBase.axiom_of ("", "btree"))

(Term‘(Weight (Leaf) = 0) /\

(Weight (Brh x y) = (2 * Weight x) + (Weight y) + 1)‘);

> val Weight =

|- ?Weight.

(Weight Leaf = 0) /\

!x y. Weight (Brh x y) = 2 * Weight x + Weight y + 1 : thm

- e (STRIP_ASSUME_TAC Weight);

OK..

1 subgoal:

> val it =

?R.

WF R /\ (!bt. R bt (Brh Leaf bt)) /\

!bt bt2 bt1. R (Brh bt1 (Brh bt2 bt)) (Brh (Brh bt1 bt2) bt)

1082 CHAPTER 1. ENTRIES

0. Weight Leaf = 0

1. !x y. Weight (Brh x y) = 2 * Weight x + Weight y + 1

Now we can invoke WF_REL_TAC:

e (WF_REL_TAC ‘measure Weight‘);

OK..

2 subgoals:

> val it =

!bt bt2 bt1.

Weight (Brh bt1 (Brh bt2 bt)) < Weight (Brh (Brh bt1 bt2) bt)

0. Weight Leaf = 0

1. !x y. Weight (Brh x y) = 2 * Weight x + Weight y + 1

!bt. Weight bt < Weight (Brh Leaf bt)

0. Weight Leaf = 0

1. !x y. Weight (Brh x y) = 2 * Weight x + Weight y + 1

Both of these subgoals are quite easy to prove.
The technique of ‘weighting‘ nodes in a tree in order to prove termination also goes

by the name of ‘polynomial interpretation‘. It must be admitted that finding the correct
weighting for a termination proof is more an art than a science. Typically, one makes a
guess and then tries the termination proof to see if it works.

Occasionally, there’s a combination of factors that complicate the termination argu-
ment. For example, the following specification describes a naive pattern matching al-
gorithm on strings (represented as lists here). The function takes four arguments: the
first is the remainder of the pattern being matched. The second is the remainder of the
string being searched. The third argument holds the original pattern to be matched.
The fourth argument is the string being searched. If the pattern (first argument) be-
comes exhausted, then a match has been found and the function returns T. Otherwise,
if the string being searched becomes exhausted, the function returns F.

val match0_defn =

Hol_defn "match0"

‘(match0 [] __ __ __ = T)

/\ (match0 __ [] __ __ = F)

/\ (match0 (p::pp) (s::ss) p0 rs =

if p=s then match0 pp ss p0 rs else

if NULL rs then F

WF REL TAC 1083

else match0 p0 (TL rs) p0 (TL rs))‘;

- val match = Define ‘match pat str = match0 pat str pat str‘;

The remaining case is when there’s more searching to do; the function checks if the
head of the pattern is the same as the head of the string being searched. If yes, then we
recursively search, using the tail of the pattern and the tail of the string being searched.
If no, that means that we have failed to match the pattern, so we should move one
character ahead in the string being searched and try again. If the string being searched
is empty, however, then we return F. The second and third arguments both represent the
string being searched. The second argument is a kind of ‘local‘ version of the string being
searched; we recurse into it as long as there are matches with the pattern. However,
if the search eventually fails, then the fourth argument, which ‘remembers‘ where the
search started from, is used to restart the search.

So much for the behaviour of the function. Why does it terminate? There are two
recursive calls. The first call reduces the size of the first and second arguments, and
leaves the other arguments unchanged. The second call can increase the size of the first
and second arguments, but reduces the size of the fourth.

This is a classic situation in which to use a lexicographic ordering: some arguments to
the function are reduced in some recursive calls, and some others are reduced in other
recursive calls. Recall that LEX is an infix operator, defined in pairTheory as follows:

LEX R1 R2 = \(x,y) (p,q). R1 x p \/ ((x=p) /\ R2 y q)

In the second recursive call, the length of rs is reduced, and in the first it stays the
same. This motivates having the length of the fourth argument be the first component
of the lexicographic combination, and the length of the second argument as the second
component.

What we need now is to formalize this. We want to map from the four-tuple of
arguments into a lexicographic combination of relations. This is enabled by inv_image

from relationTheory:

inv_image R f = \x y. R (f x) (f y)

The actual relation maps from the four-tuple of arguments into a pair of numbers (m,n),
where m is the length of the fourth argument, and n is the length of the second argument.
These lengths are then compared lexicographically with respect to less-than (<).

- Defn.tgoal match0_defn;

- e (WF_REL_TAC ‘inv_image ($< LEX $<)

(\(w,x,y,z). (LENGTH z, LENGTH x))‘);

1084 CHAPTER 1. ENTRIES

OK..

2 subgoals:

> val it =

!rs ss s p.

(p=s) ==> LENGTH rs < LENGTH rs \/ LENGTH ss < LENGTH (s::ss)

!ss rs s p.

~(p = s) /\ ~NULL rs ==>

LENGTH (TL rs) < LENGTH rs \/

(LENGTH (TL rs) = LENGTH rs) /\ LENGTH (TL rs) < LENGTH (s::ss)

The first subgoal needs a case-split on rs before it is proved by rewriting, and the
seconds is also easy to prove by rewriting.

As a final example, one occasionally needs to recurse over non-concrete data, such as
finite sets or multisets. We can define a ‘fold‘ function (of questionable utility) for finite
sets as follows:

load "pred_setTheory"; open pred_setTheory;

val FOLD_SET_defn =

Defn.Hol_defn "FOLD_SET"

‘FOLD_SET (s:’a->bool) (b:’b) =

if FINITE s then

if s={} then b

else FOLD_SET (REST s) (f (CHOICE s) b)

else ARB‘;

Typically, such functions terminate because the cardinality of the set (or multiset) is
reduced in the recursive call, and this is another application of measure:

val (FOLD_SET_0, FOLD_SET_IND) =

Defn.tprove (FOLD_SET_defn,

WF_REL_TAC ‘measure (CARD o FST)‘

THEN PROVE_TAC [CARD_PSUBSET, REST_PSUBSET]);

The desired recursion equation

|- FINITE s ==> (FOLD_SET f s b =

if s = {} then b

else FOLD_SET f (REST s) (f (CHOICE s) b))

WF REL TAC 1085

is easy to obtain from FOLD_SET_0.

See also
Defn.tgoal, Defn.tprove, bossLib.Hol defn.

WF_REL_TAC (TotalDefn)

WF_REL_TAC : term quotation -> tactic

Synopsis
Initiate a termination proof.

Description
bossLib.WF_REL_TAC is identical to TotalDefn.WF_REL_TAC.

See also
bossLib.WF REL TAC.

with_exn (Lib)

with_exn : (’a -> ’b) -> ’a -> exn -> ’b

Synopsis
Apply a function to an argument, raising supplied exception on failure.

Description
An evaluation of with_exn f x e applies function f to argument x. If that computa-
tion finishes with y, then y is the result. Otherwise, f x raised an exception, and the
exception e is raised instead. However, if f x raises the Interrupt exception, then
with_exn f x e results in the Interrupt exception being raised.

Failure
When f x fails or is interrupted.

Example

1086 CHAPTER 1. ENTRIES

- with_exn dest_comb (Term‘\x. x /\ y‘) (Fail "My kingdom for a horse");

! Uncaught exception:

! Fail "My kingdom for a horse"

- with_exn (fn _ => raise Interrupt) 1 (Fail "My kingdom for a horse");

> Interrupted.

Comments
Often with_exn can be used to clean up programming where lots of exceptions may be
handled. For example, taking apart a compound term of a certain desired form may fail
at several places, but a uniform error message is desired.

local val expected = mk_HOL_ERR "" "dest_quant" "expected !v.M or ?v.M"

in

fun dest_quant tm =

let val (q,body) = with_exn dest_comb tm expected

val (p as (v,M)) = with_exn dest_abs body expected

in

if q = universal orelse q = existential

then p

else raise expected

end

end

See also
Feedback.wrap exn, Lib.assert exn, Lib.assert.

with_flag (Lib)

with_flag : ’a ref * ’a -> (’b -> ’c) -> ’b -> ’c

Synopsis
Apply a function under a particular flag setting.

Description
An invocation with_flag (r,v) f x sets the reference variable r to the value v, then
evaluates f x, then resets r to its original value, and returns the value of f x.

WORD ARITH CONV 1087

Failure
Fails if f x fails. In that case, r is reset to its original value before raising the exception
from f x.

Example

- fun print_term_nl tm = (print_term tm; print "\n");

> val print_term_nl = fn : term -> unit

- with_flag (show_types, true) print_term_nl (concl T_DEF);

T = ((\(x :bool). x) = (\(x :bool). x))

> val it = () : unit

- print_term_nl (concl T_DEF);

T = ((\(x. x) = (\x. x))

> val it = () : unit

See also
Feedback.traces, Feedback.register btrace, Feedback.trace, Lib.time.

WORD_ARITH_CONV (wordsLib)

WORD_ARITH_CONV : conv

Synopsis
Conversion based on WORD_ARITH_ss and WORD_ARITH_EQ_ss.

Description
The conversion WORD_ARITH_CONV converts word arithmetic expressions into a canonical
form.

Example
WORD_ARITH_CONV fixes the sign of equalities.

- SIMP_CONV (std_ss++WORD_ARITH_ss++WORD_ARITH_EQ_ss) [] ‘‘$- a = b : ’a word‘‘

> val it = |- ($- a = b) = ($- 1w * a + $- 1w * b = 0w) : thm

- WORD_ARITH_CONV ‘‘$- a = b : ’a word‘‘

> val it = |- ($- a = b) = (a + b = 0w) : thm

1088 CHAPTER 1. ENTRIES

Comments
The fragment WORD_ARITH_EQ_ss and conversion WORD_CONV do not adjust the sign of
equalities.

See also
wordsLib.WORD ARITH ss, wordsLib.WORD ARITH EQ ss, wordsLib.WORD LOGIC CONV,

wordsLib.WORD MUL LSL CONV, wordsLib.WORD CONV, wordsLib.WORD BIT EQ CONV,

wordsLib.WORD EVAL CONV.

WORD_ARITH_EQ_ss (wordsLib)

WORD_ARITH_EQ_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment WORD_ARITH_EQ_ss simplifies ‘‘a = b : ’a word‘‘ to ‘‘a - b = 0w‘‘. It
also simplifies using the theorems WORD_LEFT_ADD_DISTRIB, WORD_RIGHT_ADD_DISTRIB,
WORD_MUL_LSL and WORD_NOT. When combined with wordsLib.WORD_ARITH_ss this frag-
ment can be used to test for the arithmetic equality of words.

Example
- SIMP_CONV (std_ss++WORD_ARITH_ss++WORD_ARITH_EQ_ss) [] ‘‘3w * (a + b) = b + 3w * a‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- (3w * (a + b) = b + 3w * a) = (2w * b = 0w) : thm

Comments
This fragment is not included in WORDS_ss.

See also
wordsLib.WORD ARITH CONV, fcpLib.FCP ss, wordsLib.BIT ss, wordsLib.SIZES ss,

wordsLib.WORD ARITH ss, wordsLib.WORD LOGIC ss, wordsLib.WORD SHIFT ss,

wordsLib.WORD BIT EQ ss, wordsLib.WORD EXTRACT ss, wordsLib.WORD MUL LSL ss,

wordsLib.WORD ss.

WORD_ARITH_ss (wordsLib)

WORD_ARITH_ss : ssfrag

WORD BIT EQ CONV 1089

Synopsis
Simplification fragment for words.

Description
The fragment WORD_ARITH_ss does AC simplification for word multiplication, addition
and subtraction. It also simplifies INT_MINw, INT_MAXw and UINT_MAXw. If the word
length is known then further simplification may occur, in particular for $- (n2w n) and
w2n (n2w n).

Example

- SIMP_CONV (pure_ss++WORD_ARITH_ss) [] ‘‘3w * b + a + 2w * b - a * 4w‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- 3w * b + a + 2w * b - a * 4w = $- 3w * a + 5w * b : thm

- SIMP_CONV (pure_ss++WORD_ARITH_ss) [] ‘‘INT_MINw + INT_MAXw + UINT_MAXw‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- INT_MINw + INT_MAXw + UINT_MAXw = $- 2w : thm

More simplification occurs when the word length is known.

- SIMP_CONV (pure_ss++WORD_ARITH_ss) [] ‘‘3w * b + a + 2w * b - a * 4w:word2‘‘

> val it = |- 3w * b + a + 2w * b - a * 4w = a + b : thm

- SIMP_CONV (pure_ss++WORD_ARITH_ss) [] ‘‘w2n (33w:word4)‘‘;

> val it = |- w2n 33w = 1 : thm

Comments
Any term of value UINT_MAXw simplifies to $- 1w even when the word length is known
- this helps when simplifying bitwise operations. If the word length is not known then
INT_MAXw becomes INT_MINw + $- 1w.

See also
wordsLib.WORD ARITH CONV, wordsLib.WORD CONV, fcpLib.FCP ss, wordsLib.BIT ss,

wordsLib.SIZES ss, wordsLib.WORD LOGIC ss, wordsLib.WORD SHIFT ss,

wordsLib.WORD ARITH EQ ss, wordsLib.WORD BIT EQ ss, wordsLib.WORD EXTRACT ss,

wordsLib.WORD MUL LSL ss, wordsLib.WORD ss.

WORD_BIT_EQ_CONV (wordsLib)

WORD_BIT_EQ_CONV : conv

1090 CHAPTER 1. ENTRIES

Synopsis
Conversion based on WORD_BIT_EQ_ss.

Description
The conversion WORD_BIT_EQ_CONV performs simplification using fcpLib.FCP_ss.

Example

- WORD_BIT_EQ_CONV ‘‘a << 2 >>> 1 = ((5 -- 0) a << 1) :word8‘‘

> val it = |- (a << 2 >>> 1 = (5 -- 0) a << 1) = T : thm

See also
wordsLib.WORD BIT EQ ss, wordsLib.WORD ARITH CONV, wordsLib.WORD LOGIC CONV,

wordsLib.WORD MUL LSL CONV, wordsLib.WORD CONV, wordsLib.WORD EVAL CONV.

WORD_BIT_EQ_ss (wordsLib)

WORD_BIT_EQ_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment WORD_BIT_EQ_ss simplifies using fcpLib.FCP_ss and the definitions of ”bit-
wise” operations, e.g., conjunction, disjunction, 1’s complement, shifts, concatenation
and sub-word extraction. Can be used in combination with decision procedures to test
for the bitwise equality of words.

Example

- SIMP_CONV (std_ss++WORD_BIT_EQ_ss) [] ‘‘a = b : ’a word‘‘

> val it = |- (a = b) = !i. i < dimindex (:’a) ==> (a ’ i = b ’ i) : thm

Further simplification occurs when the word length is known.

- SIMP_CONV (std_ss++WORD_BIT_EQ_ss) [] ‘‘a = b : word2‘‘

> val it = |- (a = b) = (a ’ 1 = b ’ 1) /\ (a ’ 0 = b ’ 0) : thm

Best used in combination with decision procedures.

WORD CONV 1091

- (SIMP_CONV (std_ss++WORD_BIT_EQ_ss) [] THENC tautLib.TAUT_CONV) ‘‘a && b && a = a && b‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- (a && b && a = a && b) = T : thm

Comments
This fragment is not included in WORDS_ss.

See also
wordsLib.WORD BIT EQ CONV, fcpLib.FCP ss, wordsLib.BIT ss, wordsLib.SIZES ss,

wordsLib.WORD ARITH ss, wordsLib.WORD LOGIC ss, wordsLib.WORD SHIFT ss,

wordsLib.WORD ARITH EQ ss, wordsLib.WORD EXTRACT ss, wordsLib.WORD MUL LSL ss,

wordsLib.WORD ss.

WORD_CONV (wordsLib)

WORD_CONV : conv

Synopsis
Conversion for words.

Description
The conversion WORD_CONV applies the simpset fragment WORD_ss.

Example

- WORD_CONV ‘‘c * (a + b) !! (b + a) * c‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- c * (a + b) !! (b + a) * c = a * c + b * c : thm

See also
wordsLib.WORD ss, wordsLib.WORD ARITH CONV, wordsLib.WORD LOGIC CONV,

wordsLib.WORD MUL LSL CONV, wordsLib.WORD BIT EQ CONV, wordsLib.WORD EVAL CONV.

WORD_DECIDE (wordsLib)

WORD_DECIDE : conv

1092 CHAPTER 1. ENTRIES

Synopsis
A decision procedure for words.

Description
The conversion WORD_DECIDE is the same as WORD_DP WORD_CONV bossLib.DECIDE.

Example

- WORD_DECIDE ‘‘a && (b !! a) = a !! a && b‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- a && (b !! a) = a !! a && b : thm

- WORD_DECIDE ‘‘a + 2w <+ 4w = a <+ 2w \/ 13w <+ a :word4‘‘

> val it = |- a + 2w <+ 4w = a <+ 2w \/ 13w <+ a : thm

- WORD_DECIDE ‘‘a < 0w = 1w <+ a : word2‘‘

> val it = |- a < 0w = 1w <+ a : thm

- WORD_DECIDE ‘‘(?w:word4. 14w <+ w) /\ ~(?w:word4. 15w <+ w)‘‘

> val it = |- (?w. 14w <+ w) /\ ~ ?w. 15w <+ w : thm

See also
wordsLib.WORD DP.

WORD_DECIDE_TAC (wordsLib)

WORD_DECIDE_TAC : tactic

Synopsis
A decision procedure tactic for words.

Description
WORD_DECIDE_TAC is a tactical verion of WORD_DECIDE.

Failure
As for WORD_DECIDE.

See also
wordsLib.WORD DECIDE.

WORD DP 1093

WORD_DP (wordsLib)

WORD_DP : conv -> conv -> conv

Synopsis
Constructs a decision procedure for words.

Description
The conversion WORD_DP conv dp is a decision procedure for words that makes use of the
supplied conversion conv and decision procedure dp. Suitable decision procedures in-
clude tautLib.TAUT_PROVE, bossLib.DECIDE, intLib.ARITH_PROVE and intLib.COOPER_PROVE.
The procedure will first apply conv and then WORD_BIT_EQ_CONV. If this is not suffi-
cient then an attempt is made to solve the problem by applying an arithmetic de-
cision procedure dp, e.g. ‘‘(a = 0w) \/ (a = 1w :1 word)‘‘ is mapped to the goal
‘‘w2n a < 2 ==> (w2n a = 0) \/ (w2n a = 1)‘‘.

Failure
The invocation will fail when the decision procedure dp fails.

Example

- wordsLib.WORD_DP ALL_CONV tautLib.TAUT_PROVE ‘‘a && b && a = a && b‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- a && b && a = a && b : thm

- wordsLib.WORD_DP ALL_CONV DECIDE ‘‘a < b /\ b < c ==> a < c : ’a word‘‘

> val it = |- a < b /\ b < c ==> a < c : thm

- wordsLib.WORD_DP ALL_CONV intLib.ARITH_PROVE ‘‘a <+ 3w:word16 ==> (a = 0w) \/ (a = 1w) \/ (a = 2w)‘‘

> val it = |- a <+ 3w ==> (a = 0w) \/ (a = 1w) \/ (a = 2w) : thm

Comments
On large problems intLib.ARITH_PROVE will perform much better than bossLib.DECIDE.

See also
wordsLib.WORD BIT EQ CONV, wordsLib.WORD DECIDE.

1094 CHAPTER 1. ENTRIES

WORD_EVAL_CONV (wordsLib)

WORD_EVAL_CONV : conv

Synopsis
Evaluation for words.

Description
The conversion WORD_EVAL_CONV provides efficient evaluation for word operations. It
uses wordsLib.words_compset.

Example
- WORD_EVAL_CONV ‘‘word_log2 (word_reverse (3w * (33w #<< 4))) : word32‘‘

> val it = |- word_log2 (word_reverse (3w * 33w #<< 4)) = 27w : thm

Comments
This conversion is best suited to evaluating ground terms with known word lengths.
The conversion wordsLib.WORD_CONV is a suitable alternative.

See also
bossLib.EVAL, computeLib.CBV CONV, wordsLib.WORD LOGIC CONV,

wordsLib.WORD MUL LSL CONV, wordsLib.WORD CONV, wordsLib.WORD BIT EQ CONV,

wordsLib.WORD EVAL CONV.

WORD_EXTRACT_ss (wordsLib)

WORD_EXTRACT_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment WORD_EXTRACT_ss simplifies the operations w2w, sw2sw (signed word-to-
word conversion), word_lsb, word_msb, word_bit, >> (arithmetic right shift), >>> (logical
right shift), #>> (rotate right), #<< (rotate left), @@ (concatenation), -- (word bits) and
’’ (word slice). The result is expressed in terms of !! (disjunction), << (left shift) and
>< (word extract).

Example

WORD LOGIC CONV 1095

- SIMP_CONV (std_ss++WORD_ss++WORD_EXTRACT_ss) [] ‘‘(((7 >< 5) (a:word8)):3 word @@ ((4 >< 0) a):5 word) : word8‘‘

> val it = |- (7 >< 5) a @@ (4 >< 0) a = a : thm

- SIMP_CONV (std_ss++WORD_ss++WORD_EXTRACT_ss) [] ‘‘(4 -- 2) ((a:word8) #>> 4)‘‘

> val it = |- (4 -- 2) (a #>> 4) = (7 >< 6) a !! (0 >< 0) a << 2 : thm

- SIMP_CONV (std_ss++WORD_ss++WORD_EXTRACT_ss) [] ‘‘w2w (sw2sw (a:word4):word8):word4‘‘

> val it = |- w2w (sw2sw a) = a : thm

Comments
Best used in combination with WORD_ss.

See also
fcpLib.FCP ss, wordsLib.BIT ss, wordsLib.SIZES ss, wordsLib.WORD ARITH ss,

wordsLib.WORD LOGIC ss, wordsLib.WORD ARITH EQ ss, wordsLib.WORD BIT EQ ss,

wordsLib.WORD SHIFT ss, wordsLib.WORD MUL LSL ss, wordsLib.WORD ss.

WORD_LOGIC_CONV (wordsLib)

WORD_LOGIC_CONV : conv

Synopsis
Conversion based on WORD_LOGIC_ss.

Description
The conversion WORD_LOGIC_CONV converts word logic expressions into a canonical form.

Example

- WORD_LOGIC_CONV ‘‘a && (b !! ~a !! c)‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- a && (b !! ~a !! c) = a && b !! a && c : thm

See also
wordsLib.WORD LOGIC ss, wordsLib.WORD ARITH CONV, wordsLib.WORD MUL LSL CONV,

wordsLib.WORD CONV, wordsLib.WORD BIT EQ CONV, wordsLib.WORD EVAL CONV.

1096 CHAPTER 1. ENTRIES

WORD_LOGIC_ss (wordsLib)

WORD_LOGIC_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment WORD_LOGIC_ss does AC simplification for word conjunction, disjunction
and 1’s complement (negation). If the word length is known then further simplification
occurs, in particular for ~(n2w n).

Example

- SIMP_CONV (pure_ss++WORD_LOGIC_ss) [] ‘‘3w !! 12w && a !! ~4w !! a && 16w‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- 3w !! 12w && a !! ~4w !! a && 16w = 28w && a !! $- 5w : thm

More simplification occurs when the word length is known.

- SIMP_CONV (pure_ss++WORD_LOGIC_ss) [] ‘‘~12w !! ~14w : word8‘‘

> val it = |- ~12w !! ~14w = 243w : thm

Comments
The term $- 1w represents UINT_MAXw, which is the supremum in bitwise operations.

See also
wordsLib.WORD LOGIC CONV, wordsLib.WORD CONV, fcpLib.FCP ss, wordsLib.BIT ss,

wordsLib.SIZES ss, wordsLib.WORD ARITH ss, wordsLib.WORD SHIFT ss,

wordsLib.WORD ARITH EQ ss, wordsLib.WORD BIT EQ ss, wordsLib.WORD EXTRACT ss,

wordsLib.WORD MUL LSL ss, wordsLib.WORD ss.

WORD_MUL_LSL_CONV (wordsLib)

WORD_MUL_LSL_CONV : conv

Synopsis
Conversion based on WORD_MUL_LSL_ss.

WORD MUL LSL ss 1097

Description
The conversion WORD_MUL_LSL_CONV converts a multiplication by a word literal into a sum
of left shifts.

Example

- WORD_MUL_LSL_CONV ‘‘49w * a‘‘

> val it = |- 49w * a = a << 5 + a << 4 + a : thm

See also
wordsLib.WORD MUL LSL ss, wordsLib.WORD ARITH CONV, wordsLib.WORD LOGIC CONV,

wordsLib.WORD CONV, wordsLib.WORD BIT EQ CONV, wordsLib.WORD EVAL CONV.

WORD_MUL_LSL_ss (wordsLib)

WORD_MUL_LSL_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment WORD_MUL_LSL_ss simplifies a multiplication by a word literal into a sum
of left shifts.

Example

- SIMP_CONV (std_ss++WORD_MUL_LSL_ss) [] ‘‘49w * a‘‘

> val it = |- 49w * a = a << 5 + a << 4 + a : thm

- SIMP_CONV (std_ss++WORD_ss++WORD_MUL_LSL_ss) [] ‘‘2w * a + a << 1‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- 2w * a + a << 1 = a << 2 : thm

Comments
This fragment is not included in WORDS_ss. It should not be used in combination with
WORD_ARITH_EQ_ss or wordsLib.WORD_ARITH_CONV, since these convert left shifts into mul-
tiplications.

1098 CHAPTER 1. ENTRIES

See also
wordsLib.WORD MUL LSL CONV, fcpLib.FCP ss, wordsLib.BIT ss, wordsLib.SIZES ss,

wordsLib.WORD ARITH ss, wordsLib.WORD LOGIC ss, wordsLib.WORD ARITH EQ ss,

wordsLib.WORD BIT EQ ss, wordsLib.WORD SHIFT ss, wordsLib.WORD EXTRACT ss,

wordsLib.WORD ss.

WORD_SHIFT_ss (wordsLib)

WORD_SHIFT_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment WORD_SHIFT_ss does some basic simplifications for the operations: <<

(left shift), >> (arithmetic right shift), >>> (logical right shift), #>> (rotate right) and
#<< (rotate left). More simplification is possible when used in combination with
wordsLib.SIZES_ss.

Example

- SIMP_CONV (std_ss++WORD_SHIFT_ss) [] ‘‘a << 2 << 3 + a >> 3 >> 2 + a >>> 1 >>> 2 + a #<< 1 #<< 2‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it =

|- a << 2 << 3 + a >> 3 >> 2 + a >>> 1 >>> 2 + a #<< 1 #<< 2 =

a << 5 + a >> 5 + a >>> 3 + a #<< 3 : thm

- SIMP_CONV (std_ss++WORD_SHIFT_ss) [] ‘‘a >> 0 + 0w << n + a #<< 2 #>> 2‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- a >> 0 + 0w << n + a #<< 2 #>> 2 = a + 0w + a : thm

More simplification is possible when the word length is known.

- SIMP_CONV (std_ss++SIZES_ss++WORD_SHIFT_ss) [] ‘‘a << 4 + (a #<< 6) : word4‘‘

> val it = |- a << 4 = 0w + a #<< 2 : thm

Comments
When the word length is known the fragment WORD_ss simplifies #<< to #>>.

WORD ss 1099

See also
fcpLib.FCP ss, wordsLib.BIT ss, wordsLib.SIZES ss, wordsLib.WORD ARITH ss,

wordsLib.WORD LOGIC ss, wordsLib.WORD ARITH EQ ss, wordsLib.WORD BIT EQ ss,

wordsLib.WORD EXTRACT ss, wordsLib.WORD MUL LSL ss, wordsLib.WORD ss.

WORD_ss (wordsLib)

WORD_ss : ssfrag

Synopsis
Simplification fragment for words.

Description
The fragment WORD_ss contains BIT_ss, SIZES_ss, WORD_LOGIC_ss, WORD_ARITH_ss and
WORD_SHIFT_ss. It also performs ground term evaluation.

Example

- SIMP_CONV (pure_ss++WORD_ss) [] ‘‘BIT i 42‘‘

> val it = |- BIT i 42 = i IN {1; 3; 5} : thm

- SIMP_CONV (pure_ss++WORD_ss) [] ‘‘dimword(:42)‘‘

> val it = |- dimword (:42) = 4398046511104 : thm

- SIMP_CONV (pure_ss++WORD_ss) [] ‘‘((a #<< 2 #>> 2 + a) && $- 1w) - a‘‘

<<HOL message: inventing new type variable names: ’a>>

> val it = |- (a #<< 2 #>> 2 + a && $- 1w) - a = a : thm

- SIMP_CONV (pure_ss++WORD_ss) [] ‘‘(4 -- 2) ($- 1w : word8)‘‘

> val it = |- (4 -- 2) ($- 1w) = 7w : thm

Comments
The WORD_ss fragment does not include WORD_ARITH_EQ_ss, WORD_BIT_EQ_ss, WORD_EXTRACT_ss
or WORD_MUL_LSL_ss. These extra fragments have more specialised applications.

See also
wordsLib.WORD CONV, fcpLib.FCP ss, wordsLib.BIT ss, wordsLib.SIZES ss,

wordsLib.WORD ARITH ss, wordsLib.WORD LOGIC ss, wordsLib.WORD ARITH EQ ss,

wordsLib.WORD BIT EQ ss, wordsLib.WORD SHIFT ss, wordsLib.WORD EXTRACT ss,

wordsLib.WORD MUL LSL ss.

1100 CHAPTER 1. ENTRIES

words2 (Lib)

words2 : string -> string -> string list

Synopsis
Splits a string into a list of substrings, breaking at occurrences of a specified character.

Description
words2 char s splits the string s into a list of substrings. Splitting occurs at each occur-
rence of a sequence of the character char. The char characters do not appear in the list
of substrings. Leading and trailing occurrences of char are also thrown away. If char

is not a single-character string (its length is not 1), then s will not be split and so the
result will be the list [s].

Failure
Never fails.

Example

- words2 "/" "/the/cat//sat/on//the/mat/";

> val it = ["the", "cat", "sat", "on", "the", "mat"] : string list

- words2 "//" "/the/cat//sat/on//the/mat/";

> val it = ["/the/cat//sat/on//the/mat/"] : string list

Comments
The SML Library functions String.tokens and String.fields offer similar functionality.

WORDS_EMIT_RULE (wordsLib)

WORDS_EMIT_RULE : rule

Synopsis
For use with EmitML.emitML.

WORDS EMIT RULE 1101

Description
When using EmitML.emitML the rule WORDS_EMIT_RULE should be applied to all definitions
containing word operations. The rule introduces type annotated word operations and
it also handles word equality and case statements.

Example

- val example_def = Define ‘example (w:1 word) = case w of 0w -> 1w:word8 || _ -> sw2sw w‘;

Definition has been stored under "example_def".

> val example_def = |- !w. example w = case w of 0w -> 1w || v -> sw2sw w : thm

- WORDS_EMIT_RULE example_def

> val it =

|- !w.

example w =

case word_eq w (n2w_itself (0,(:unit))) of

T -> n2w_itself (1,(:8))

|| F -> sw2sw_itself (:8) w : thm

Comments
Before using EmitML.emitML the references type_pp.pp_num_types and type_pp.pp_array_types

should both be set to false. In addition type abbreviations can be disabled with
disable_tyabbrev_printing or alternatively they must be handled by adding an appro-
priate signature entry. For example:

- ‘‘:word8‘‘

> val it = ‘‘:bool[8]‘‘ : hol_type

- type_pp.pp_array_types := false;

> val it = () : unit

- type_pp.pp_num_types := false;

> val it = () : unit

- disable_tyabbrev_printing "word8";

> val it = () : unit

- ‘‘:word8‘‘;

> val it = ‘‘:unit bit0 bit0 bit0 word‘‘ : hol_type

If the type abbreviation is not disabled then add the entry

EmitML.MLSIG "type word8 = wordsML.word8"

1102 CHAPTER 1. ENTRIES

wrap_exn (Feedback)

wrap_exn : string -> string -> exn -> exn

Synopsis
Adds supplementary information to an application of HOL_ERR.

Description
wrap_exn s1 s2 (HOL_ERR{origin_structure,origin_function,message}) where s1 typ-
ically denotes a structure and s2 typically denotes a function, returns
HOL_ERR{origin_structure=s1,origin_function=s2,message}

where origin_structure and origin_function have been added to the message field.
This can be used to achieve a kind of backtrace when an error occurs.

In MoscowML, the interrupt signal in Unix is mapped into the Interrupt exception.
If wrap_exn were to translate an interrupt into a HOL_ERR exception, crucial information
might be lost. For this reason, wrap_exn s1 s2 Interrupt raises the Interrupt exception.

Every other exception is mapped into an application of HOL_ERR by wrap_exn.

Failure
Never fails.

Example
In the following example, the original HOL_ERR is from Foo.bar. After wrap_exn is called,
the HOL_ERR is from Fred.barney and its message field has been augmented to reflect the
original source of the exception.

- val test_exn = mk_HOL_ERR "Foo" "bar" "incomprehensible input";

> val test_exn = HOL_ERR : exn

- wrap_exn "Fred" "barney" test_exn;

> val it = HOL_ERR : exn

- print(exn_to_string it);

Exception raised at Fred.barney:

Foo.bar - incomprehensible input

The following example shows how wrap_exn treats the Interrupt exception.

- wrap_exn "Fred" "barney" Interrupt;

> Interrupted.

X CASES THEN 1103

The following example shows how wrap_exn translates all exceptions that aren’t either
HOL_ERR or Interrupt into applications of HOL_ERR.

- wrap_exn "Fred" "barney" Div;

> val it = HOL_ERR : exn

- print(exn_to_string it);

Exception raised at Fred.barney:

Div

See also
Feedback, Feedback.HOL ERR.

X_CASES_THEN (Thm_cont)

X_CASES_THEN : term list list -> thm_tactical

Synopsis
Applies a theorem-tactic to all disjuncts of a theorem, choosing witnesses.

Description
Let [yl1,...,yln] represent a list of variable lists, each of length zero or more, and
xl1,...,xln each represent a vector of zero or more variables, so that the variables in
each of yl1...yln have the same types as the corresponding xli. X_CASES_THEN expects
such a list of variable lists, [yl1,...,yln], a tactic generating function f:thm->tactic,
and a disjunctive theorem, where each disjunct may be existentially quantified:

th = |-(?xl1.B1) \/...\/ (?xln.Bn)

each disjunct having the form (?xi1 ... xim. Bi). If applying f to the theorem ob-
tained by introducing witness variables yli for the objects xli whose existence is as-
serted by each disjunct, typically ({Bi[yli/xli]} |- Bi[yli/xli]), produce the follow-
ing results when applied to a goal (A ?- t):

A ?- t

========= f ({B1[yl1/xl1]} |- B1[yl1/xl1])

A ?- t1

1104 CHAPTER 1. ENTRIES

...

A ?- t

========= f ({Bn[yln/xln]} |- Bn[yln/xln])

A ?- tn

then applying (X_CHOOSE_THEN [yl1,...,yln] f th) to the goal (A ?- t) produces n

subgoals.

A ?- t

======================= X_CHOOSE_THEN [yl1,...,yln] f th

A ?- t1 ... A ?- tn

Failure
Fails (with X_CHOOSE_THEN) if any yli has more variables than the corresponding xli, or
(with SUBST) if corresponding variables have different types. Failures may arise in the
tactic-generating function. An invalid tactic is produced if any variable in any of the yli

is free in the corresponding Bi or in t, or if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.

Example
Given the goal ?- (x MOD 2) <= 1, the following theorem may be used to split into 2
cases:

th = |- (?m. x = 2 * m) \/ (?m. x = (2 * m) + 1)

by the tactic

X_CASES_THEN [[Term‘n:num‘],[Term‘n:num]] ASSUME_TAC th

to produce the subgoals:

{x = (2 * n) + 1} ?- (x MOD 2) <= 1

{x = 2 * n} ?- (x MOD 2) <= 1

See also
Thm cont.DISJ CASES THENL, Thm cont.X CASES THENL, Thm cont.X CHOOSE THEN.

X_CASES_THENL (Thm_cont)

X_CASES_THENL : term list list -> thm_tactic list -> thm_tactic

X CASES THENL 1105

Synopsis
Applies theorem-tactics to corresponding disjuncts of a theorem, choosing witnesses.

Description
Let [yl1,...,yln] represent a list of variable lists, each of length zero or more, and
xl1,...,xln each represent a vector of zero or more variables, so that the variables
in each of yl1...yln have the same types as the corresponding xli. The function
X_CASES_THENL expects a list of variable lists, [yl1,...,yln], a list of tactic-generating
functions [f1,...,fn]:(thm->tactic)list, and a disjunctive theorem, where each dis-
junct may be existentially quantified:

th = |-(?xl1.B1) \/...\/ (?xln.Bn)

each disjunct having the form (?xi1 ... xim. Bi). If applying each fi to the theorem
obtained by introducing witness variables yli for the objects xli whose existence is
asserted by the ith disjunct, ({Bi[yli/xli]} |- Bi[yli/xli]), produces the following
results when applied to a goal (A ?- t):

A ?- t

========= f1 ({B1[yl1/xl1]} |- B1[yl1/xl1])

A ?- t1

...

A ?- t

========= fn ({Bn[yln/xln]} |- Bn[yln/xln])

A ?- tn

then applying X_CASES_THENL [yl1,...,yln] [f1,...,fn] th to the goal (A ?- t) pro-
duces n subgoals.

A ?- t

======================= X_CASES_THENL [yl1,...,yln] [f1,...,fn] th

A ?- t1 ... A ?- tn

Failure
Fails (with X_CASES_THENL) if any yli has more variables than the corresponding xli,
or (with SUBST) if corresponding variables have different types, or (with combine) if the
number of theorem tactics differs from the number of disjuncts. Failures may arise in
the tactic-generating function. An invalid tactic is produced if any variable in any of the
yli is free in the corresponding Bi or in t, or if the theorem has any hypothesis which
is not alpha-convertible to an assumption of the goal.

1106 CHAPTER 1. ENTRIES

Example
Given the goal ?- (x MOD 2) <= 1, the following theorem may be used to split into 2
cases:

th = |- (?m. x = 2 * m) \/ (?m. x = (2 * m) + 1)

by the tactic

X_CASES_THENL [[Term‘n:num‘], [Term‘n:num‘]] [ASSUME_TAC, SUBST1_TAC] th

to produce the subgoals:

?- (((2 * n) + 1) MOD 2) <= 1

{x = 2 * n} ?- (x MOD 2) <= 1

See also
Thm cont.DISJ CASES THEN, Thm cont.X CASES THEN, Thm cont.X CHOOSE THEN.

X_CHOOSE_TAC (Tactic)

X_CHOOSE_TAC : term -> thm_tactic

Synopsis
Assumes a theorem, with existentially quantified variable replaced by a given witness.

Description
X_CHOOSE_TAC expects a variable y and theorem with an existentially quantified conclu-
sion. When applied to a goal, it adds a new assumption obtained by introducing the
variable y as a witness for the object x whose existence is asserted in the theorem.

A ?- t

=================== X_CHOOSE_TAC y (A1 |- ?x. w)

A u {w[y/x]} ?- t (y not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a variable. Failures may arise in the tactic-generating function. An invalid tactic is
produced if the introduced variable is free in w or t, or if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

Example
Given a goal of the form

X CHOOSE THEN 1107

{n < m} ?- ?x. m = n + (x + 1)

the following theorem may be applied:

th = [n < m] |- ?p. m = n + p

by the tactic (X_CHOOSE_TAC (Term‘q:num‘) th) giving the subgoal:

{n < m, m = n + q} ?- ?x. m = n + (x + 1)

See also
Thm.CHOOSE, Thm cont.CHOOSE THEN, Thm cont.X CHOOSE THEN.

X_CHOOSE_THEN (Thm_cont)

X_CHOOSE_THEN : (term -> thm_tactical)

Synopsis
Replaces existentially quantified variable with given witness, and passes it to a theorem-
tactic.

Description
X_CHOOSE_THEN expects a variable y, a tactic-generating function f:thm->tactic, and a
theorem of the form (A1 |- ?x. w) as arguments. A new theorem is created by intro-
ducing the given variable y as a witness for the object x whose existence is asserted in
the original theorem, (w[y/x] |- w[y/x]). If the tactic-generating function f applied to
this theorem produces results as follows when applied to a goal (A ?- t):

A ?- t

========= f ({w[y/x]} |- w[y/x])

A ?- t1

then applying (X_CHOOSE_THEN "y" f (A1 |- ?x. w)) to the goal (A ?- t) produces the
subgoal:

A ?- t

========= X_CHOOSE_THEN y f (A1 |- ?x. w)

A ?- t1 (y not free anywhere)

1108 CHAPTER 1. ENTRIES

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a variable. Failures may arise in the tactic-generating function. An invalid tactic is
produced if the introduced variable is free in w or t, or if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

Example
Given a goal of the form

{n < m} ?- ?x. m = n + (x + 1)

the following theorem may be applied:

th = [n < m] |- ?p. m = n + p

by the tactic (X_CHOOSE_THEN (Term‘q:num‘) SUBST1_TAC th) giving the subgoal:

{n < m} ?- ?x. n + q = n + (x + 1)

See also
Thm.CHOOSE, Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN,

Thm cont.CONJUNCTS THEN2, Thm cont.DISJ CASES THEN, Thm cont.DISJ CASES THEN2,

Thm cont.DISJ CASES THENL, Thm cont.STRIP THM THEN, Tactic.X CHOOSE TAC.

X_FUN_EQ_CONV (Conv)

X_FUN_EQ_CONV : (term -> conv)

Synopsis
Performs extensionality conversion for functions (function equality).

Description
The conversion X_FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. For any
variable "x" and equation "f = g", where x is of type ty1 and f and g are functions of
type ty1->ty2, a call to X_FUN_EQ_CONV "x" "f = g" returns the theorem:

|- (f = g) = (!x. f x = g x)

X GEN TAC 1109

Failure
X_FUN_EQ_CONV x tm fails if x is not a variable or if tm is not an equation f = g where f

and g are functions. Furthermore, if f and g are functions of type ty1->ty2, then the
variable x must have type ty1; otherwise the conversion fails. Finally, failure also occurs
if x is free in either f or g.

See also
Drule.EXT, Conv.FUN EQ CONV.

X_GEN_TAC (Tactic)

X_GEN_TAC : (term -> tactic)

Synopsis
Specializes a goal with the given variable.

Description
When applied to a term x’, which should be a variable, and a goal A ?- !x. t, the tactic
X_GEN_TAC returns the goal A ?- t[x’/x].

A ?- !x. t

============== X_GEN_TAC "x’"

A ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified and the term a variable of the
appropriate type. It also fails if the variable given is free in either the assumptions or
(initial) conclusion of the goal.

See also
Tactic.FILTER GEN TAC, Thm.GEN, Thm.GENL, Drule.GEN ALL, Thm.SPEC, Drule.SPECL,

Drule.SPEC ALL, Tactic.SPEC TAC, Tactic.STRIP TAC.

X_LIST_CONV (listLib)

X_LIST_CONV: {{Aux_thms: thm list, Fold_thms: thm list}} -> conv

1110 CHAPTER 1. ENTRIES

Synopsis
Proves theorems about list constants applied to NIL, CONS, SNOC, APPEND, FLAT and
REVERSE. Auxiliary information can be passed as an argument.

Description
X_LIST_CONV is a version of LIST_CONV which can be passed auxiliary theorems about
user-defined constants as an argument. It takes a term of the form:

CONST1 ... (CONST2 ...) ...

where CONST1 and CONST2 are operators on lists and CONST2 returns a list result. It can
be one of NIL, CONS, SNOC, APPEND, FLAT or REVERSE. The form of the resulting theorem
depends on CONST1 and CONST2. Some auxiliary information must be provided about
CONST1. X_LIST_CONV maintains a database of such auxiliary information. It initially
holds information about the constants in the system. However, additional information
can be supplied by the user as new constants are defined. The main information that
is needed is a theorem defining the constant in terms of FOLDR or FOLDL. The definition
should have the form:

|- CONST1 ...l... = fold f e l

where fold is either FOLDR or FOLDL, f is a function, e a base element and l a list variable.
For example, a suitable theorem for SUM is

|- SUM l = FOLDR $+ 0 l

Knowing this theorem and given the term --‘SUM (CONS x l)‘--, X_LIST_CONV returns
the theorem:

|- SUM (CONS x l) = x + (SUM l)

Other auxiliary theorems that are needed concern the terms f and e found in the defi-
nition with respect to FOLDR or FOLDL. For example, knowing the theorem:

|- MONOID $+ 0

and given the term --‘SUM (APPEND l1 l2)‘--, X_LIST_CONV returns the theorem

|- SUM (APPEND l1 l2) = (SUM l1) + (SUM l2)

The following table shows the form of the theorem returned and the auxiliary theorems
needed if CONST1 is defined in terms of FOLDR.

X LIST CONV 1111

CONST2 | side conditions | tm2 in result |- tm1 = tm2

==============|================================|===========================

[] | NONE | e

[x] | NONE | f x e

CONS x l | NONE | f x (CONST1 l)

SNOC x l | e is a list variable | CONST1 (f x e) l

APPEND l1 l2 | e is a list variable | CONST1 (CONST1 l1) l2

APPEND l1 l2 | |- FCOMM g f, |- LEFT_ID g e | g (CONST1 l1) (CONST2 l2)

FLAT l1 | |- FCOMM g f, |- LEFT_ID g e, |

| |- CONST3 l = FOLDR g e l | CONST3 (MAP CONST1 l)

REVERSE l | |- COMM f, |- ASSOC f | CONST1 l

REVERSE l | f == (\x l. h (g x) l) |

| |- COMM h, |- ASSOC h | CONST1 l

The following table shows the form of the theorem returned and the auxiliary theorems
needed if CONST1 is defined in terms of FOLDL.

CONST2 | side conditions | tm2 in result |- tm1 = tm2

==============|================================|===========================

[] | NONE | e

[x] | NONE | f x e

SNOC x l | NONE | f x (CONST1 l)

CONS x l | e is a list variable | CONST1 (f x e) l

APPEND l1 l2 | e is a list variable | CONST1 (CONST1 l1) l2

APPEND l1 l2 | |- FCOMM f g, |- RIGHT_ID g e | g (CONST1 l1) (CONST2 l2)

FLAT l1 | |- FCOMM f g, |- RIGHT_ID g e, |

| |- CONST3 l = FOLDR g e l | CONST3 (MAP CONST1 l)

REVERSE l | |- COMM f, |- ASSOC f | CONST1 l

REVERSE l | f == (\l x. h l (g x)) |

| |- COMM h, |- ASSOC h | CONST1 l

|- MONOID f e can be used instead of |- FCOMM f f, |- LEFT_ID f or |- RIGHT_ID f.
|- ASSOC f can also be used in place of |- FCOMM f f.

Auxiliary theorems are held in a user-updatable database. In particular, definitions
of constants in terms of FOLDR and FOLDL, and monoid, commutativity, associativity, left
identity, right identity and binary function commutativity theorems are stored. The
database can be updated by the user to allow LIST_CONV to prove theorems about new
constants. This is done by calling set_list_thm_database. The database can be in-
spected by calling list_thm_database. The database initially holds FOLDR/L theorems
for the following system constants: APPEND, FLAT, LENGTH, NULL, REVERSE, MAP, FILTER,
ALL_EL, SUM, SOME_EL, IS_EL, AND_EL, OR_EL, PREFIX, SUFFIX, SNOC and FLAT combined with

1112 CHAPTER 1. ENTRIES

REVERSE. It also holds auxiliary theorems about their step functions and base elements.
Rather than updating the database, additional theorems can be passed to X_LIST_CONV

as an argument. It takes a record with one field, Fold_thms, for fold definitions, and
one, Aux_thms, for theorems about step functions and base elements.

Example

- val MULTL = new_definition("MULTL",(--‘MULTL l = FOLDR $* 1 l‘--));

val MULTL = |- !l. MULTL l = FOLDR $* 1 l : thm

- X_LIST_CONV {{Fold_thms = MULTL, Aux_thms = []}} (--‘MULTL (CONS x l)‘--);

|- MULTL (CONS x l) = x * MULTL l

Failure
X_LIST_CONV tm fails if tm is not of the form described above. It fails if no fold definition
for CONST1 are either in the database or passed as an argument. It also fails if the
required auxiliary theorems, as described above, are not held in the databases or passed
aas an argument.

See also
listLib.LIST CONV, listLib.PURE LIST CONV.

X_SKOLEM_CONV (Conv)

X_SKOLEM_CONV : (term -> conv)

Synopsis
Introduces a user-supplied Skolem function.

Description
X_SKOLEM_CONV takes two arguments. The first is a variable f, which must range over
functions of the appropriate type, and the second is a term of the form !x1...xn. ?y. P.
Given these arguments, X_SKOLEM_CONV returns the theorem:

|- (!x1...xn. ?y. P) = (?f. !x1...xn. tm[f x1 ... xn/y])

which expresses the fact that a skolem function f of the universally quantified variables
x1...xn may be introduced in place of the the existentially quantified value y.

xDefine 1113

Failure
X_SKOLEM_CONV f tm fails if f is not a variable, or if the input term tm is not a term of
the form !x1...xn. ?y. P, or if the variable f is free in tm, or if the type of f does not
match its intended use as an n-place curried function from the variables x1...xn to a
value having the same type as y.

See also
Conv.SKOLEM CONV.

xDefine (bossLib)

xDefine : string -> term quotation -> thm

Synopsis
General-purpose function definition facility.

Description
xDefine behaves exactly like Define, except that it takes an alphanumeric string which
is used as a stem for building names with which to store the definition, associated
induction theorem (if there is one), and any auxiliary definitions used to construct the
specified function (if there are any) in the current theory segment.

Failure
xDefine allows the definition of symbolic identifiers, but Define doesn’t. In all other
respects, xDefine and Define succeed and fail in the same way.

Example
The following example shows how Define fails when asked to define a symbolic identi-
fier.

- set_fixity ("/", Infixl 600); (* tell the parser about "/" *)

> val it = () : unit

- Define

‘x/y = if y=0 then NONE else

if x<y then SOME 0

else OPTION_MAP SUC ((x-y)/y)‘;

Definition failed! Can’t make name for storing definition

1114 CHAPTER 1. ENTRIES

because there is no alphanumeric identifier in:

"/".

Try "xDefine <alphanumeric-stem> <eqns-quotation>" instead.

Next the same definition is attempted with xDefine, supplying the name for binding
the definition and the induction theorem with in the current theory.

- xDefine "div"

‘x/y = if y=0 then NONE else

if x<y then SOME 0

else OPTION_MAP SUC ((x-y)/y)‘;

Equations stored under "div_def".

Induction stored under "div_ind".

> val it =

|- x / y =

(if y = 0 then NONE

else

(if x < y then SOME 0

else OPTION_MAP SUC ((x - y) / y))) : thm

Comments
Define can be thought of as an application of xDefine, in which the stem is taken to be
the name of the function being defined.
bossLib.xDefine is most commonly used. TotalDefn.xDefine is identical to bossLib.xDefine,

except that the TotalDefn structure comes with less baggage—it depends only on numLib

and pairLib.

See also
bossLib.Define.

xDefine (TotalDefn)

xDefine : string -> term quotation -> thm

zDefine 1115

Synopsis
General purpose function definition facility.

Description
bossLib.xDefine is identical to TotalDefn.xDefine.

See also
bossLib.xDefine.

zDefine (bossLib)

zDefine : term quotation -> thm

Synopsis
General-purpose function definition facility.

Description
zDefine behaves exactly like Define, except that it does not add the definition to
computeLib.the_compset. Consequently the definition is not used by bossLib.EVAL when
evaluating expressions.

Failure
zDefine and Define succeed and fail in the same way.

Example

- zDefine ‘foo = 10 ** 10 ** 10‘

- EVAL ‘‘foo‘‘;

> val it = |- foo = foo: thm

Comments
zDefine is helpful when users wish to derive and use their own efficient evaluation theo-
rems, which can be added using computeLib.add_funs or computeLib.add_persistent_funs.

See also
bossLib.Define.

1116 CHAPTER 1. ENTRIES

zip (Lib)

zip : ’a list -> ’b list -> (’a * ’b) list

Synopsis
Transforms a pair of lists into a list of pairs.

Description
zip [x1,...,xn] [y1,...,yn] returns [(x1,y1),...,(xn,yn)].

Failure
Fails if the two lists are of different lengths.

Comments
Has much the same effect as the SML Basis function ListPair.zip except that it fails if
the arguments are not of equal length. zip is a curried version of combine

See also
Lib.combine, Lib.unzip, Lib.split.

|-> (Lib)

op |-> : ’a * ’b -> {redex : ’a, residue : ’b}

Synopsis
Infix operator for building a component of a substitution.

Description
An application x |-> y is equal to {redex = x, residue = y}. Since HOL substitutions
are lists of {redex,residue} records, the |-> operator is merely sugar used to create
substitutions.

Failure
Never fails.

Example

—¿ 1117

- type_subst [alpha |-> beta, beta |-> gamma]

(alpha --> beta);

> val it = ‘:’b -> ’c‘ : hol_type

See also
Lib.subst, Type.type subst, Term.subst, Term.inst, Thm.SUBST.

|> (Lib)

op |> : ’a -> (’a -> ’b) -> ’b

Synopsis
Infix operator for writing function application

Description
The expression x |> f is equal to f x. This way of writing application has two advan-
tages, both apparent when multiple functions are being applied. Without using |>, one
might write f (g (h x)). With it, one writes x |> h |> g |> f. The latter form needs
fewer parentheses, and also makes the order in which functions will operate correspond
to a left-to-right reading.

Failure
Never fails.

1118 CHAPTER 1. ENTRIES

Index

++, 11, 700
--, 11
-->, 12
==, 12
##, 9
&&, 10

A, 13
Abbr, 13
ABBREV TAC, 14
ABS, 16
ABS CONV, 17
ABS TAC, 17
Absyn, 18
AC, 19
AC CONV, 19
ACCEPT TAC, 20
aconv, 21
ADD ASSUM, 22
add bare numeral form, 22
ADD CONV, 24
add implicit rewrites, 24
add infix, 25
add infix type, 28
add listform, 29
add numeral form, 31
add rewrites, 33
add rule, 34
add tag, 38
add user printer, 39
adjoin to theory, 44
after new theory, 45
all, 47

all2, 47
all consts, 49
ALL CONV, 50
ALL EL CONV, 50
ALL TAC, 51
ALL THEN, 52
all thys, 53
all vars, 53
all varsl, 54
allowed term constant, 55
allowed type constant, 55
ALPHA, 56
alpha, 57
ALPHA CONV, 57
ancestry, 58
AND CONV, 58
AND EL CONV, 59
AND EXISTS CONV, 60
AND FORALL CONV, 61
AND PEXISTS CONV, 61
AND PFORALL CONV, 62
ANTE CONJ CONV, 63
ANTE RES THEN, 63
AP TERM, 64
AP TERM TAC, 65
AP THM, 65
AP THM TAC, 66
append, 67
APPEND CONV, 67
apply, 68
apropos, 69
arb, 70

1119

1120 Index

ARITH CONV, 70
ARITH FORM NORM CONV, 72
arith ss, 73
ASM CASES TAC, 76
ASM MESON TAC, 77
ASM REWRITE RULE, 77
ASM REWRITE TAC, 78
ASM SIMP RULE, 79
ASM SIMP TAC, 80
assert, 81
assert exn, 81
assoc, 82, 83
assoc1, 84
assoc2, 84
associate restriction, 85
ASSUM LIST, 87
ASSUME, 88
ASSUME TAC, 88
augment srw ss, 90
axioms, 91, 92

B, 92
b, 93
Backup, 846
backup, 93
BBLAST CONV, 95
BEQ CONV, 96
Beta, 97
beta, 98
BETA CONV, 99
beta conv, 99
BETA RULE, 100
BETA TAC, 101
BINDER CONV, 102
BINOP CONV, 102
BIT ss, 103
body, 104
BODY CONJUNCTS, 104
bool, 105
bool case, 106

BOOL CASES TAC, 106
bool compset, 107
bool EQ CONV, 107
bool rewrites, 108
bool ss, 109, 110
BUTFIRSTN CONV, 112
butlast, 113
BUTLAST CONV, 113
BUTLASTN CONV, 114
bvar, 114
bvk find term, 115
by, 116

C, 117
can, 117
CASE TAC, 118
Cases, 119
Cases on, 121
CASES THENL, 122
CBV CONV, 123
CCONTR, 125
CCONTR TAC, 126
CHANGED CONSEQ CONV, 126
CHANGED CONV, 127
CHANGED TAC, 128
CHECK ASSUME TAC, 128
CHOOSE, 129
CHOOSE TAC, 130
CHOOSE THEN, 131
class, 132
clear overloads on, 132
CNF CONV, 133
COMB CONV, 134
combine, 135
commafy, 135
compare, 136, 137
completeInduct on, 138
concl, 138
COND CASES TAC, 139
COND CONV, 140, 141

Index 1121

COND ELIM CONV, 141
COND REWR CANON, 142
COND REWR CONV, 143
COND REWR TAC, 145
COND REWRITE1 CONV, 148
COND REWRITE1 TAC, 149
conditional, 151
Cong, 151
CONJ, 152
CONJ DISCH, 153
CONJ DISCHL, 153
CONJ FORALL CONV, 154
CONJ FORALL ONCE CONV, 155
CONJ FORALL RIGHT RULE, 156
CONJ LIST, 156
CONJ PAIR, 157
CONJ TAC, 158
CONJUNCT1, 159
CONJUNCT2, 159
conjunction, 160
CONJUNCTS, 160
CONJUNCTS AC, 161
CONJUNCTS THEN, 162
CONJUNCTS THEN2, 163
cons, 164
conseq conv, 164
CONSEQ CONV direction, 165
CONSEQ CONV TAC, 166
CONSEQ REWRITE CONV, 166
CONSEQ TOP REWRITE CONV, 167
constants, 168
CONTR, 169
CONTR TAC, 169
CONTRAPOS, 170
CONTRAPOS CONV, 170
CONV RULE, 171
CONV TAC, 171
current axioms, 173
current definitions, 173
current defs, 174

current theorems, 174
current theory, 175
current thms, 176
current trace, 176
curry, 177
CURRY CONV, 177
CURRY EXISTS CONV, 178
CURRY FORALL CONV, 179

data, 179
datatype theorems, 180
datatype thm to string, 181
DECIDE, 181
DECIDE TAC, 182
declare ring, 183
decls, 184, 185
Define, 186, 192
Define mk ptree, 192
define new type bijections, 194
DefineSchema, 195
definitions, 197
delete binding, 198
delete const, 199
DELETE CONV, 200
delete type, 202
delta, 203, 204
delta apply, 204
delta map, 205
delta pair, 206
deprecate int, 206
DEPTH CONSEQ CONV, 208
DEPTH CONV, 209
DEPTH EXISTS CONV, 210
DEPTH FORALL CONV, 211
DEPTH STRENGTHEN CONSEQ CONV, 212
dest abs, 212
dest anylet, 213
dest arb, 213
dest bool case, 214
dest comb, 214

1122 Index

dest cond, 215
dest conj, 215
dest cons, 216
dest const, 216
dest disj, 217
dest eq, 217
dest eq ty, 218
dest exists, 218
dest exists1, 219
dest forall, 219
dest imp, 220
dest imp only, 220
dest let, 221
dest list, 221
dest neg, 222
dest numeral, 222
dest pabs, 223
dest pair, 223
dest pexists, 224
dest pforall, 224
dest prod, 225
dest pselect, 225
dest ptree, 226
dest res abstract, 227
dest res exists, 228
dest res exists unique, 229
dest res forall, 229, 230
dest res select, 231
dest select, 232
dest theory, 232
dest thm, 235
dest thy const, 235
dest thy type, 236
dest type, 237
dest var, 237
dest vartype, 238
diminish srw ss, 238
directed conseq conv, 240
disable tyabbrev printing, 240
DISCARD TAC, 241

DISCH, 242
disch, 242
DISCH ALL, 243
DISCH TAC, 244
DISCH THEN, 244
DISJ1, 246
DISJ1 TAC, 246
DISJ2, 247
DISJ2 TAC, 247
DISJ CASES, 248
DISJ CASES TAC, 249
DISJ CASES THEN, 250
DISJ CASES THEN2, 251
DISJ CASES THENL, 252
DISJ CASES UNION, 253
DISJ IMP, 254
DISJ INEQS FALSE CONV, 255
disjunction, 256
DISJUNCTS AC, 256
DIV CONV, 257
dom rng, 258

e, 259
el, 259
EL CONV, 260
ELL CONV, 260
emit ERR, 261
emit MESG, 262
emit WARNING, 263
empty model, 263
empty rewrites, 264
empty tmset, 264
empty varset, 265
end itlist, 265
end time, 266
enumerate, 267
EQ IMP RULE, 267
EQ LENGTH INDUCT TAC, 268
EQ LENGTH SNOC INDUCT TAC, 269
EQ MP, 269

Index 1123

EQ TAC, 270
EQF ELIM, 271
EQF INTRO, 271
EQT ELIM, 272
EQT INTRO, 272
equal, 273
equality, 273
ERR outstream, 274
ERR to string, 275
error record, 276
ETA CONV, 276
eta conv, 277
etyvar, 277
EVAL, 278
EVAL RULE, 278
EVAL TAC, 279
EVERY, 280
EVERY ASSUM, 281
EVERY CONJ CONV, 282
EVERY CONSEQ CONV, 283
EVERY CONV, 283
EVERY DISJ CONV, 283
EVERY TCL, 284
EXISTENCE, 285
existential, 286
EXISTS, 287
exists, 286
exists1, 288
EXISTS AND CONV, 288
EXISTS AND REORDER CONV, 289
EXISTS ARITH CONV, 290
EXISTS CONSEQ CONV, 291
EXISTS DEL1 CONV, 291
EXISTS DEL CONV, 292
EXISTS EQ, 292
EXISTS EQ CONSEQ CONV, 293
EXISTS EQN CONV, 293
EXISTS IMP, 294
EXISTS IMP CONV, 295
EXISTS NOT CONV, 295

EXISTS OR CONV, 296
EXISTS TAC, 296
exists tyvar, 297
EXISTS UNIQUE CONV, 298
exn to string, 298
EXP CONV, 299
expand, 300
EXPAND ALL BUT CONV, 303
EXPAND ALL BUT RIGHT RULE, 304
EXPAND AUTO CONV, 305
EXPAND AUTO RIGHT RULE, 307
expandf, 308
export rewrites, 310
export theory, 310
EXT, 312
EXT CONSEQ REWRITE CONV, 312
EXT DEPTH CONSEQ CONV, 313

F, 315
fail, 316
FAIL TAC, 316
failwith, 317
FALSE CONSEQ CONV, 318
FCP ss, 318
Feedback, 319
fetch, 319
filter, 320
FILTER ASM REWRITE RULE, 320
FILTER ASM REWRITE TAC, 321
FILTER CONV, 322
FILTER DISCH TAC, 323
FILTER DISCH THEN, 324
FILTER GEN TAC, 325
FILTER ONCE ASM REWRITE RULE, 325
FILTER ONCE ASM REWRITE TAC, 326
FILTER PGEN TAC, 327
FILTER PSTRIP TAC, 327
FILTER PSTRIP THEN, 329
FILTER PURE ASM REWRITE RULE, 330
FILTER PURE ASM REWRITE TAC, 330

1124 Index

FILTER PURE ONCE ASM REWRITE RULE,
331

FILTER PURE ONCE ASM REWRITE TAC, 332
FILTER STRIP TAC, 333
FILTER STRIP THEN, 334
find, 335
find term, 336
find terms, 337
FINITE CONV, 338
FIRST, 339
first, 338
FIRST ASSUM, 340
FIRST CONSEQ CONV, 341
FIRST CONV, 341
FIRST PROVE, 341
FIRST TCL, 342
FIRST X ASSUM, 343
FIRSTN CONV, 344
FLAT CONV, 344
flatten, 345
FLATTEN CONJ CONV, 346
FOLDL CONV, 346
FOLDR CONV, 347
for, 348
for se, 349
FORALL AND CONV, 350
FORALL ARITH CONV, 350
FORALL CONJ CONV, 351
FORALL CONJ ONCE CONV, 352
FORALL CONJ RIGHT RULE, 353
FORALL CONSEQ CONV, 354
FORALL EQ, 354
FORALL EQ CONSEQ CONV, 355
FORALL IMP CONV, 355
FORALL NOT CONV, 356
FORALL OR CONV, 356
forget history, 357
FORK CONV, 358
format ERR, 358
format MESG, 359

format WARNING, 360
free in, 360
free vars, 361
free vars lr, 362
free varsl, 363
frees, 363
freesl, 364
FREEZE THEN, 364
front last, 366
fst, 366
ftyvar, 367
FULL SIMP TAC, 367, 369
FULL STRUCT CASES TAC, 369
FUN EQ CONV, 370
funpow, 371
FVL, 372

g, 372
gamma, 373
GE CONV, 374
GEN, 374
GEN ALL, 375, 376
GEN ALPHA CONV, 377
GEN BETA CONV, 378
GEN MESON TAC, 379
GEN PALPHA CONV, 380
GEN REWRITE CONV, 380
GEN REWRITE RULE, 382
GEN REWRITE TAC, 383
GEN TAC, 385
gen tyvar, 386
GENL, 387
GENLIST CONV, 387
genvar, 388
genvars, 389
genvarstruct, 390
get flag abs, 391
get flag ric, 391
get init, 391
get name, 392

Index 1125

get props, 392
get results, 392
get state, 393
get trans, 393
get vord, 394
GPSPEC, 394
GSPEC, 395
GSUBST TAC, 396
GSYM, 397
GT CONV, 397
guess lengths, 398

HALF MK ABS, 399
HALF MK PABS, 400
hash, 400
hidden, 401
hide, 402
HO MATCH ABBREV TAC, 402
Hol datatype, 403
Hol defn, 409, 415
HOL ERR, 415
HOL MESG, 417
Hol reln, 417, 420
hol type, 420
HOL WARNING, 421
holCheck, 422
hyp, 424

I, 425
IMAGE CONV, 425
IMP ANTISYM RULE, 427
IMP CANON, 428
IMP CONJ, 429
IMP CONV, 429
IMP ELIM, 430
IMP RES FORALL CONV, 431
IMP RES TAC, 432
IMP RES THEN, 433
IMP TRANS, 435
implication, 435
implicit rewrites, 436

IN CONV, 437
ind, 439
IndDefRules, 439
index, 439
Induct, 440, 441
Induct on, 443, 444
INDUCT TAC, 445
INDUCT THEN, 445
Induct word, 447
insert, 448
INSERT CONV, 449
INST, 451
inst, 450
INST TY TERM, 452
INST TYPE, 453
inst word lengths, 454
INSTANCE T CONV, 455
int sort, 456
int to string, 456
intersect, 457
IPSPEC, 458
IPSPECL, 458
is abs, 459
is arb, 459
is bool case, 460
is comb, 460
is cond, 461
is conj, 461
is cons, 462
is const, 462
is disj, 463
IS EL CONV, 463
is eq, 464
is exists, 464
is exists1, 465
is forall, 465
is gen tyvar, 466
is genvar, 466
is imp, 467
is imp only, 468

1126 Index

is let, 468
is list, 469
is neg, 469
is numeral, 470
is pabs, 471
is pair, 471
is pexists, 471
is pforall, 472
is prenex, 472
is presburger, 473
is prod, 474
is pselect, 475
is ptree, 475
is pvar, 476
is res abstract, 476, 477
is res exists, 477
is res exists unique, 478
is res forall, 478, 479
is res select, 479, 480
is select, 480
is type, 481
is var, 481
is vartype, 482
isEmpty, 482
ISPEC, 483
ISPECL, 483
istream, 484
itlist, 484
itlist2, 485

K, 486
known constants, 486

LAND CONV, 487
last, 487
LAST CONV, 488
LAST EXISTS CONV, 488
LAST FORALL CONV, 489
LASTN CONV, 489
LE CONV, 490
LEAST ELIM TAC, 491

LEFT AND EXISTS CONV, 492
LEFT AND FORALL CONV, 492
LEFT AND PEXISTS CONV, 493
LEFT AND PFORALL CONV, 494
LEFT IMP EXISTS CONV, 494
LEFT IMP FORALL CONV, 495
LEFT IMP PEXISTS CONV, 495
LEFT IMP PFORALL CONV, 496
LEFT LIST PBETA, 496
LEFT OR EXISTS CONV, 497
LEFT OR FORALL CONV, 498
LEFT OR PEXISTS CONV, 498
LEFT OR PFORALL CONV, 499
LEFT PBETA, 499
LENGTH CONV, 500
let tm, 501
lhand, 501
lhs, 502
Lib.doc, 502
line name, 503
line var, 503
LIST BETA CONV, 504
list compare, 504
LIST CONJ, 505
LIST CONV, 506
list FOLD CONV, 508
LIST INDUCT TAC, 509
list mk abs, 510, 511
list mk anylet, 511
list mk binder, 512
list mk comb, 514
list mk conj, 515
list mk disj, 516
LIST MK EXISTS, 517
list mk exists, 517
list mk forall, 518
list mk fun, 518
list mk icomb, 519
list mk imp, 519
list mk pabs, 520

Index 1127

list mk pair, 520
LIST MK PEXISTS, 521
LIST MK PFORALL, 522
list mk res exists, 522, 523
list mk res forall, 523, 524
LIST MP, 524
LIST PBETA CONV, 525
list ss, 526
list thm database, 527
listDB, 528
LT CONV, 529

map2, 530
MAP2 CONV, 530
MAP CONV, 531
MAP EVERY, 533
MAP FIRST, 533
mapfilter, 534
match, 534, 536
MATCH ABBREV TAC, 536
MATCH ACCEPT TAC, 537
MATCH ASSUM ABBREV TAC, 538
MATCH ASSUM RENAME TAC, 539
MATCH MP, 540
MATCH MP TAC, 541
MATCH RENAME TAC, 542
match term, 543
match terml, 544
match type, 545
match typel, 546
matcher, 547
matchp, 549
max print depth, 551
measureInduct on, 552
mem, 552
merge, 553
MESG outstream, 554
MESG to string, 555
MESON TAC, 555
MK ABS, 557

mk abs, 557
mk anylet, 558
mk arb, 558
mk bool case, 559
MK COMB, 560
mk comb, 560
MK COMB TAC, 561
mk cond, 561
mk conj, 562
mk cons, 562
mk const, 563
mk disj, 564
mk eq, 565
MK EXISTS, 565
mk exists, 565
mk exists1, 566
mk forall, 566
mk HOL ERR, 567
mk icomb, 568
mk imp, 569
mk istream, 569
mk let, 570
mk list, 571
mk neg, 571
mk numeral, 572
mk oracle thm, 572
MK PABS, 574
mk pabs, 575
MK PAIR, 575
mk pair, 576
MK PEXISTS, 576
MK PFORALL, 577
mk primed var, 577
mk prod, 578
MK PSELECT, 579
mk ptree, 579
mk res abstract, 580
mk res exists, 581
mk res exists unique, 582
mk res forall, 582, 583

1128 Index

mk res select, 583, 584
mk select, 584
mk set, 585
mk simpset, 585
mk state, 586
mk thm, 586
mk thy const, 588
mk thy type, 588
mk type, 589
mk var, 590
mk vartype, 591
mk word size, 591
mlquote, 592
MOD CONV, 593
monitoring, 594
MP, 595
MP TAC, 595
MUL CONV, 596

NEG DISCH, 596
NEGATE CONV, 597
negation, 598
NEQ CONV, 598
new axiom, 599
new binder, 600
new binder definition, 601
new constant, 602
new definition, 603
new infix, 604
new infixl definition, 606
new infixr definition, 607
new recursive definition, 607
new specification, 611
new theory, 612
new type, 614
new type definition, 615
next, 617
NO CONV, 618
NO TAC, 618
NO THEN, 619

non presburger subterms, 619
non type definitions, 620
non type theorems, 622
norm subst, 624
NOT CONV, 625
NOT ELIM, 625
NOT EQ SYM, 626
NOT EXISTS CONV, 627
NOT FORALL CONV, 627
NOT INTRO, 628
NOT PEXISTS CONV, 628
NOT PFORALL CONV, 629
notify word length guesses, 629
NTAC, 630
Ntimes, 631
null intersection, 632
num CONV, 633
NUM DEPTH CONSEQ CONV, 633

occs in, 634
Once, 634
ONCE ASM REWRITE RULE, 635
ONCE ASM REWRITE TAC, 636
ONCE DEPTH CONSEQ CONV, 637
ONCE DEPTH CONV, 638
ONCE REWRITE CONV, 639
ONCE REWRITE RULE, 640
ONCE REWRITE TAC, 640
op arity, 642
op insert, 642
op intersect, 643
op mem, 644
op mk set, 645
op set diff, 645
op U, 646
OR CONV, 648
OR EL CONV, 649
OR EXISTS CONV, 650
OR FORALL CONV, 650
OR PEXISTS CONV, 651

Index 1129

OR PFORALL CONV, 651
ORELSE, 652
ORELSE CONSEQ CONV, 652
ORELSE TCL, 653
ORELSEC, 653
output words as, 654
output words as bin, 655
output words as dec, 655
output words as hex, 656
output words as oct, 656
overload on, 657

p, 659
P FUN EQ CONV, 660
P PCHOOSE TAC, 661
P PCHOOSE THEN, 661
P PGEN TAC, 662
P PSKOLEM CONV, 663
PABS, 664
PABS CONV, 664
paconv, 665
pair, 665
PAIR CONV, 666
pair of list, 666
PAIRED BETA CONV, 667
PAIRED ETA CONV, 669
PALPHA, 669
PALPHA CONV, 671
parents, 672
parse from grammars, 673
parse in context, 674
PART MATCH, 675
PART PMATCH, 676
partial, 677
partition, 678
PAT ASSUM, 678
PBETA CONV, 680
PBETA RULE, 681
PBETA TAC, 681
pbody, 682

PCHOOSE, 682
PCHOOSE TAC, 683
PCHOOSE THEN, 684
PETA CONV, 684
PEXISTENCE, 685
PEXISTS, 685
PEXISTS AND CONV, 686
PEXISTS CONV, 687
PEXISTS EQ, 688
PEXISTS IMP, 689
PEXISTS IMP CONV, 689
PEXISTS NOT CONV, 690
PEXISTS OR CONV, 690
PEXISTS RULE, 691
PEXISTS TAC, 692
PEXISTS UNIQUE CONV, 692
PEXT, 693
PFORALL AND CONV, 694
PFORALL EQ, 694
PFORALL IMP CONV, 695
PFORALL NOT CONV, 696
PFORALL OR CONV, 696
PGEN, 697
PGEN TAC, 698
PGENL, 698
pluck, 699
PMATCH MP, 700
PMATCH MP TAC, 701
polymorphic, 702
POP ASSUM, 703
POP ASSUM LIST, 704
pp tag, 705
pp term without overloads on, 706
PRE CONV, 707
prefer form with tok, 707
prefer int, 708
PRENEX CONV, 709
prim mk const, 710
prim variant, 711
prime, 711

1130 Index

priming, 712
print backend term without overloads on,

713
print datatypes, 713
print from grammars, 714
print term, 715
print term as tex, 716
print term by grammar, 717
print term without overloads on, 717
print theorem as tex, 718
print theories as tex doc, 719
print theory, 720
print theory as tex, 721
print type as tex, 723
PROVE, 723, 724
prove, 725
prove abs fn one one, 725, 726
prove abs fn onto, 726, 727
prove cases thm, 728
prove constructors distinct, 729
prove constructors one one, 730
PROVE HYP, 731
prove induction thm, 731
prove model, 732
prove rec fn exists, 733
prove rep fn one one, 734
prove rep fn onto, 735
PROVE TAC, 735, 736
PRUNE CONV, 736
PRUNE ONCE CONV, 737
PRUNE ONE CONV, 738
PRUNE RIGHT RULE, 739
PRUNE SOME CONV, 740
PRUNE SOME RIGHT RULE, 741
PSELECT CONV, 743
PSELECT ELIM, 743
PSELECT EQ, 744
PSELECT INTRO, 745
PSELECT RULE, 745
PSKOLEM CONV, 746

PSPEC, 747
PSPEC ALL, 748
PSPEC PAIR, 748
PSPEC TAC, 749
PSPECL, 750
PSTRIP ASSUME TAC, 751
PSTRIP GOAL THEN, 752
PSTRIP TAC, 753
PSTRIP THM THEN, 754
PSTRUCT CASES TAC, 756
PSUB CONV, 757
Psyntax, 758
PTAUT CONV, 759
PTAUT PROVE, 760
PTAUT TAC, 761
PTREE ADD CONV, 762
PTREE CONV, 763
PTREE DEFN CONV, 764
PTREE DEPTH CONV, 765
PTREE EVERY LEAF CONV, 766
PTREE EXISTS LEAF CONV, 767
PTREE IN PTREE CONV, 767
PTREE INSERT PTREE CONV, 768
PTREE IS PTREE CONV, 769
PTREE PEEK CONV, 770
PTREE REMOVE CONV, 770
PTREE SIZE CONV, 771
PTREE TRANSFORM CONV, 772
PURE ASM REWRITE RULE, 772
PURE ASM REWRITE TAC, 773
PURE CASE TAC, 774
PURE LIST CONV, 774
PURE ONCE ASM REWRITE RULE, 777
PURE ONCE ASM REWRITE TAC, 777
PURE ONCE REWRITE CONV, 778
PURE ONCE REWRITE RULE, 779
PURE ONCE REWRITE TAC, 779
PURE REWRITE CONV, 780
PURE REWRITE RULE, 780
PURE REWRITE TAC, 781

Index 1131

pure ss, 782
pvariant, 784

Q TAC, 785
QCHANGED CONSEQ CONV, 785
QCHANGED CONV, 785
QCONV, 786
quadruple, 787
quadruple of list, 787
QUANT CONSEQ CONV, 788
QUANT CONV, 788
quote, 789

r, 789
Raise, 790
rand, 791
RAND CONV, 791
rator, 792
RATOR CONV, 792
raw match, 793
raw match type, 795
read, 796
recInduct, 796, 797
RED CONV, 798
REDEPTH CONSEQ CONV, 799
REDEPTH CONV, 799
REDUCE CONV, 800, 801
REDUCE RULE, 802
REDUCE TAC, 803
REFINE EXISTS TAC, 804
REFL, 805
REFL CONSEQ CONV, 805
REFL TAC, 805
register btrace, 806
register ftrace, 807
register trace, 807
release, 808
remove ovl mapping, 808
remove rules for term, 809
remove ssfrags, 810
remove termtok, 811

remove user printer, 813
remove word printer, 813
rename bvar, 814
RENAME VARS CONV, 815
REPEAT, 817
repeat, 816
REPEAT GTCL, 817
REPEAT TCL, 818
REPEATC, 819
REPLICATE CONV, 819, 820
RES CANON, 821
RES EXISTS CONV, 823, 824
RES EXISTS UNIQUE CONV, 824
RES FORALL AND CONV, 825
RES FORALL CONV, 826
RES FORALL SWAP CONV, 827
RES SELECT CONV, 828
RES TAC, 828
RES THEN, 830
reset, 831
reset trace, 832
reset traces, 832
RESQ EXISTS TAC, 833
RESQ GEN TAC, 833
RESQ HALF SPEC, 834, 835
RESQ IMP RES TAC, 835
RESQ IMP RES THEN, 836
RESQ MATCH MP, 836
RESQ RES TAC, 837
RESQ RES THEN, 838
RESQ REWR CANON, 838, 839
RESQ REWRITE1 CONV, 840, 841
RESQ REWRITE1 TAC, 841, 842
RESQ SPEC, 843, 844
RESQ SPECL, 845
restart, 845
RESTR EVAL CONV, 847
RESTR EVAL RULE, 848
RESTR EVAL TAC, 848
rev assoc, 849

1132 Index

rev itlist, 850
rev itlist2, 851
reveal, 851
REVERSE, 852
REVERSE CONV, 853
REWR CONV, 854
REWRITE CONV, 857
REWRITE RULE, 857
REWRITE TAC, 858
rewrites, 860, 861
rhs, 861
RIGHT AND EXISTS CONV, 862
RIGHT AND FORALL CONV, 862
RIGHT AND PEXISTS CONV, 863
RIGHT AND PFORALL CONV, 863
RIGHT BETA, 864
RIGHT CONV RULE, 865
RIGHT ETA, 865
RIGHT IMP EXISTS CONV, 866
RIGHT IMP FORALL CONV, 867
RIGHT IMP PEXISTS CONV, 867
RIGHT IMP PFORALL CONV, 868
RIGHT LIST BETA, 868
RIGHT LIST PBETA, 869
RIGHT OR EXISTS CONV, 870
RIGHT OR FORALL CONV, 870
RIGHT OR PEXISTS CONV, 871
RIGHT OR PFORALL CONV, 871
RIGHT PBETA, 872
rpair, 873
Rsyntax, 873
RULE ASSUM TAC, 875
RW TAC, 876

S, 877
same const, 878
SAT PROVE, 878
save, 879
save thm, 880
say, 881

SBC CONV, 881
SCANL CONV, 882
SCANR CONV, 883
scrub, 884
search top down, 886
SEG CONV, 887
select, 888
SELECT CONV, 889
SELECT ELIM, 890
SELECT ELIM TAC, 891
SELECT EQ, 892
SELECT INTRO, 893
SELECT RULE, 894
set backup, 895
set diff, 896
set eq, 897
set fixity, 898
set flag abs, 900
set flag ric, 900
set goal, 901
set implicit rewrites, 902
SET INDUCT TAC, 902
set init, 903
set known constants, 904
set list thm database, 905
set mapped fixity, 907
set MLname, 908
set name, 909
set props, 910
SET SPEC CONV, 911
set state, 911
set trace, 912
set trans, 913
set vord, 914
show numeral types, 914
show tags, 915
show types, 916
SIMP CONV, 917, 919
SIMP PROVE, 920
SIMP RULE, 920, 921

Index 1133

SIMP TAC, 922, 923
single, 923
singleton of list, 924
SIZES CONV, 924
SIZES ss, 925
SKOLEM CONV, 925
snd, 926
SNOC CONV, 927
SNOC INDUCT TAC, 927
SOME EL CONV, 928
sort, 929
SPEC, 930
SPEC ALL, 931
SPEC TAC, 932
SPEC VAR, 933
Specialize, 933
SPECL, 934
spine pair, 935
split, 935
split after, 936
SPOSE NOT THEN, 937
srw ss, 938
SRW TAC, 939
SSFRAG, 941
start time, 944
state, 945
std ss, 945
store thm, 947
strcat, 948
STRENGTHEN CONSEQ CONV RULE, 949
string to int, 949
strip abs, 950
strip anylet, 951
STRIP ASSUME TAC, 952
strip binder, 953
STRIP BINDER CONV, 954
strip comb, 955
strip conj, 956
strip disj, 957
strip exists, 957

strip forall, 958
strip fun, 958
STRIP GOAL THEN, 959
strip imp, 960
strip imp only, 961
strip neg, 962
strip pabs, 963
strip pair, 963
strip pexists, 964
strip pforall, 964
STRIP QUANT CONV, 965
strip res exists, 966
strip res forall, 967, 968
STRIP TAC, 968
STRIP THM THEN, 970
STRUCT CASES TAC, 971
SUB AND COND ELIM CONV, 972
SUB CONV, 974
SUBGOAL THEN, 975
SUBS, 976
SUBS OCCS, 977
SUBST, 980
subst, 978, 979
SUBST1 TAC, 982
SUBST ALL TAC, 983
subst assoc, 984
SUBST CONV, 985
SUBST MATCH, 986
subst occs, 988
SUBST OCCS TAC, 988
SUBST TAC, 990
subtract, 991
SUC CONV, 991
SUC TO NUMERAL DEFN CONV, 992
SUM CONV, 993
swap, 994
SWAP EXISTS CONV, 994
SWAP PEXISTS CONV, 995
SWAP PFORALL CONV, 995
SYM, 996

1134 Index

SYM CONV, 996

T, 997
TAC PROOF, 997
tag, 998
TAUT CONV, 999
TAUT PROVE, 1000
TAUT TAC, 1001
tDefine, 1001
temp set grammars, 1003
Term, 1004
term, 1005
term grammar, 1006
term to string, 1006
term without overloads on to backend string,

1007
term without overloads on to string,

1007
tex theory, 1008
tgoal, 1009
THEN, 1010
THEN1, 1010
THEN CONSEQ CONV, 1012
THEN TCL, 1012
THENC, 1013
THENL, 1014
theorems, 1014
thm, 1015
thm count, 1016
thms, 1016
thy, 1017
thy addon, 1018
time, 1019
TOP DEPTH CONV, 1020
top goal, 1021
top thm, 1021
topsort, 1022
total, 1023
tprove, 1024
trace, 1025

traces, 1027
TRANS, 1027
triple, 1028
triple of list, 1029
TRUE CONSEQ CONV, 1029
TRUE FALSE REFL CONSEQ CONV, 1029
TRY, 1031
try, 1030
TRY CONV, 1031
trye, 1032
tryfind, 1033
trypluck, 1033
trypluck’, 1034
ty antiq, 1035
type abbrev, 1036
type of, 1037
type rws, 1038
type ssfrag, 1039
type subst, 1040
type var in, 1041
type vars, 1042
type vars in term, 1042
type varsl, 1043
TypeBase, 1044
types, 1045

U, 1046
UNABBREV TAC, 1047
UNBETA CONV, 1047
uncurry, 1048
UNCURRY CONV, 1049
UNCURRY EXISTS CONV, 1049
UNCURRY FORALL CONV, 1050
UNDISCH, 1051
UNDISCH ALL, 1051
UNDISCH TAC, 1052
UNDISCH THEN, 1053
UNFOLD CONV, 1053
UNFOLD RIGHT RULE, 1054
union, 647, 1055

Index 1135

UNION CONV, 1056
universal, 1057
UNPBETA CONV, 1058
UNWIND ALL BUT CONV, 1058
UNWIND ALL BUT RIGHT RULE, 1059
UNWIND AUTO CONV, 1061
UNWIND AUTO RIGHT RULE, 1062
UNWIND CONV, 1063
UNWIND ONCE CONV, 1064
unzip, 1065
update overload maps, 1065
upto, 1066
uptodate term, 1067
uptodate thm, 1068
uptodate type, 1069

VALID, 1070
var compare, 1071
var occurs, 1072
variant, 1072
version, 1073

W, 1074
WARNING outstream, 1075
WARNING to string, 1076
WEAKEN CONSEQ CONV RULE, 1076
WEAKEN TAC, 1077
WF REL TAC, 1078, 1085
with exn, 1085
with flag, 1086
WORD ARITH CONV, 1087
WORD ARITH EQ ss, 1088
WORD ARITH ss, 1088
WORD BIT EQ CONV, 1089
WORD BIT EQ ss, 1090
WORD CONV, 1091
WORD DECIDE, 1091
WORD DECIDE TAC, 1092
WORD DP, 1093
WORD EVAL CONV, 1094
WORD EXTRACT ss, 1094

WORD LOGIC CONV, 1095
WORD LOGIC ss, 1096
WORD MUL LSL CONV, 1096
WORD MUL LSL ss, 1097
WORD SHIFT ss, 1098
WORD ss, 1099
words2, 1100
WORDS EMIT RULE, 1100
wrap exn, 1102

X CASES THEN, 1103
X CASES THENL, 1104
X CHOOSE TAC, 1106
X CHOOSE THEN, 1107
X FUN EQ CONV, 1108
X GEN TAC, 1109
X LIST CONV, 1109
X SKOLEM CONV, 1112
xDefine, 1113, 1114

zDefine, 1115
zip, 1116

