
Tutorial HOL
Program Verification Course 11/12

It is important that you do all the exercies here. A solution is provided to help
you; but try not to peek into it too quickly.

1 Learning Basic Tactics

Do not use HOL’s power tactics in the exercises below.

1. Prove this: p ∧ (p ⇒ q) ⇒ q.

Hints. Check out your HOL documentation. You have it in the help direc-
tory of your HOL install, or you can also check the online version.

Basic tactics are provided by the ’Structure’ Tactic. Check the documenta-
tion of the tactics STRIP TAC and RES TAC.

2. Doing a case split.

Prove this: p ∧ (p ⇒ q ⇒ r) ⇒ (¬q ∨ r)

Hints. This time you have a disjunction on your ’hypothesis’: ¬q ∨ r. To
prove it you may want to do a case split, e.g. on the cases that q is true and
false. Check out the documentation of the tactic ASM CASES TAC.

The structure Rewrite provides a whole bunch of basic rewriting utilities,
including rewriting tactics. Check the doc of the tactic ASM REWRITE TAC.

3. Composing your proof to a ’proof script’.

So far you writing your proof interactively. This works fine, but it is not the
best form to document and to share the proof. Gather your proof fragments
from No. 2 and compose them into a single tactic. Write your proof in this
style:

val mytheorem1 = prove(

--‘p /\ (p ==> q ==> r) ==> (~q \/ r)‘-- ,

tactic1

THEN tactic2

THEN ... etc

) ;

Check the doc of THEN and THENL in the structure Tactical.

4. Defining new concepts.

Let define the function identity. Let me give you two definitions:

fun identity x = x ;

val identity_def = Define ‘identity x = x‘ ;

What is the important difference between the two definitions?

1



5. Querying the type of something.

You can query the type of an ML-value simply by typing the value in the ML
interpreter, as in:

- identity;

> val ’a it = fn : ’a -> ’a

Querying the type of a HOL-value is a bit more involed. See below; and see
if you understand why you get those different answers.

- identity_def ;

> val it = |- !x. identity x = x : thm

- ‘identity‘ ;

> val ’a it = [QUOTE " (*#loc 152 2*)identity"] : ’a frag/1 list

- (--‘identity‘--) ;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘identity‘‘ : term

- Term ‘identity‘ ;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘identity‘‘ : term

- type_of (--‘identity‘--) ;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘:’a -> ’a‘‘ : hol_type

- type_of (Term ‘identity‘) ;

<<HOL message: inventing new type variable names: ’a>>

> val it = ‘‘:’a -> ’a‘‘ : hol_type

Note: to ask the type of an ML infix operator:

- + ;

! Ill-formed infix expression

- op+ ;

> val it = fn : int * int -> int

To ask the type of a HOL infix operator:

- type_of (--‘+‘--) ;

! HOL_ERR

- type_of (--‘(+)‘--) ;

<<HOL message: more than one resolution of overloading was possible>>

> val it = ‘‘:int -> int -> int‘‘ : hol_type

6. Let’s prove some properties about functions. Prove this:

(∀x. identity (identity x) = x)

Hint. Check the doc of REWRITE TAC. It is in the structure Rewrite.

7. Sometimes you get stuck. Prove this:

identity ◦ identity = identity

In HOL function composition is represented by the infix o. To prove the
property above, you will also need to use the definition of o. This is provided

2



in the theory combinTheory. This theory has been pre-loaded by HOL, but
not ’opened’.

You can access things exported by a loaded module in a fully qualified way,
as in BoolTheory.o DEF. If the module is opened, then you don’t need the
full qualification; so simply o DEF.

To load and open a module named foo, you do:

load "foo" ;

open foo ;

For boolTheory, we just need to open it.

Try now to rewrite your goal with the definition of o and identity. Unfortu-
nately now you get stuck in this goal:

(\x. x) = identity

This is clearly a tautology. HOL fails to see it because we have defined identity
in HOL as follows:

identity x = x

HOL refuses to auto-lift this definition to identity = (λx.x). Although in this
case it is desired to do so, there are other cases where we actually do not want
this auto-lifting.

Anyway, to make this work we can convert the functional equality to ’point
equality’ by applying this so-called extensionality theorem:

- FUN_EQ_THM;

> val it = |- !f g. (f = g) <=> !x. f x = g x : thm

Now you should be able to finish the proof. Oh, one more: use BETA TAC to
do β-reduction.

8. Prove this:

(x = 0) ⇒ (∃f : num→ num. f x = 0)

The hypothesis is in the existential form. In general HOL cannot automati-
cally prove such a formula. Check the doc of EXISTS TAC.

Note that EXISTS TAC fails if you try to eliminate an existentially bound
variable x with a term t whose type is more general than x. Compare the
effect of applying these two:

- e (EXISTS_TAC (--‘identity‘--))

- e (EXISTS_TAC (--‘identity:num->num‘--))

2 Proving formulas involving simple integer arith-
metics

1. Let’s define this function dbl : int→ int

dbl x = x+ x

First you will need the type int and the library supporting it. This is not
pre-loaded in HOL. Load and open intLib. So:

3



load "intLib" ;

open intLib ;

Now you can write the definition. Make sure that the type of dbl is indeed
: int→ int.

Prove this: (∀x. x>1 ⇒ dbl x > x+1).

In general proving an arithmetic formula can be quite involved. However
for simple things, HOL comes with some decision procedures. The tactic
ARITH TAC exported by intLib can solve simple integer arithmetics. But do
note that in general the problem is undecidable.

2. Try another one: (∃f. (∀x. f x > 2 ∗ x)).

Hint. The syntax for λ-expression is e.g. (\x. x + 1).

3 Modelling, a simple case

Imagine a program (let’s call it skido) that operates on a single variable x : int.
It either leaves x unchanged, or double its value. The choice is non-deterministic.
Model this program in HOL.

Because it is non-deterministic, note that you can not model it by a function of
type int→ int; so you have to come up with something else.

Define the concept of even integer.
Now prove that if x is initially even, then iterating skido any number of times

will keep its value even. You will first need to express/model iteration in HOL.

Hints.

1. Check chapter 4 of the HOL Description (download it from PV or HOL web-
site) on how to define a recursive function in HOL.

2. Define the (higher order) function iter n f that will iterate a program f,
n number of times. Make sure that n is typed as num to allow you to do a
natural number induction later.

You can limit the type of f so that it only represents a program that operates
on a single variable x.

3. Check chapter 5 of the HOL Description on high level proofs, in particular
the use of power tactics such as RW TAC and PROVE TAC.

4. Finally, some handy self-defined tactcis that maybe helpful for you:

val UNDISCH_TOP_TAC = FIRST_ASSUM (UNDISCH_TAC o concl) ;

val UNDISCH_ALL_TAC = REPEAT UNDISCH_TOP_TAC ;

4


