Course on Program Verification 2012/2013

URL: www.cs.uu.nl/docs/vakken/pv

by Wishnu Prasetya (wishnu@cs.uu.nl)

Course Goals

 'verification', we will define it as assuring that a program P satisfies a given specification S.

- Introducing you to:
 - some verification techniques
 - and technologies
- In the end, the gained insight and experience can help you to *identify how to use those techniques* in your particular setup latter in practice

Course goals

- Emphasize is on automated techniques.
- Trade off: expressiveness.
 - Check all possible executions.
 - Check only some representative instances of executions (aka testing)
 - Check vs a complete specification
 - Check vs a partial/weaker specification
 - Check the real software
 - Check a model

Course Setup

- Themes :
 - Model checker
 - Hoare logic
 - Higher order theorem prover
 - Refinement based approach
- 2 lab assignments (not so big)
- 1 project (big), also a lot of room for your own idea
- For the lab assignments and project, you can work in pairs. Note that deliverable always include a report.

Software

- You may need to bring your own laptop. Needed software: Spin, HOL, and Z3. Install them ASAP!!
- Theorem prover HOL, also requires
 - Moscow ML (Mosml), ML is a functional language
- Model checker SPIN, also requires
 - C compiler + its standard libraries.
 - On Windows you probably also need Cygwin or Msys+Mingw to get the C compiler.
 - Tk/Tcl for its GUI
 - Dot for drawing state automata
- Links to HOL & Spin sites can be found in PV website. Consult their install instructions.

Grading, etc

- Grading:
 - 2 assignments, each is worth 15% of end grade
 - the project is 30%
 - Final exam, 40 %
- Website: <u>www.cs.uu.nl/docs/vakken/pv</u>

Regularly check it out...