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Overview 

 Architecture & a bit more about SPIN 

 SPIN’s modeling language 

 Examples of models in SPIN 

 

 

 

 
 Acknowledgement: some slides are taken and adapted from Theo Ruys’s 

SPIN Tutorials. 
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Spin and Promela 

 SPIN =  Simple Promela Interpreter 

 

 Promela = Process Meta Language 
 
 Is a modelling language! (not  a language to build an 

application) 
 
 

 Strong features : 
 Powerful constructs to synchronize concurrent 

processes 

 Cutting edge model checking technology 

 Simulation to support analysis (of the models) 
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SPIN 

 Concurrency is a hot area again, now that we all use 
multi-core CPUs. 

 

 Other applications: 
 

 AnWeb: a system for automatic support to web application 
verification, Di Sciascio et al, in 14th conf. on Soft. Eng. and 
knowledge eng., 2002. 

 

 Privacy and Contextual Integrity: Framework and Applications, 
Barth et al, in IEEE Symposium on Security and Privacy, 2006. 

 

 

4 



Frontend XSpin 
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(X)SPIN Architecture 
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System, process, and action. 

 A system in SPIN consists of a set of interacting and 
concurrent processes. 

 

 Each process is sequential, but possibly non-
deterministic. 

 

 Each process is built from atomic actions (transition). 

 

 Concurrent execution is modeled by interleaving. 

 

 Fairness can be impossed. 
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Interleaving model of concurrency 

 Consider (with pseudo notation): 

 

 

 

 

Assume each arrow is atomic.  

 An execution of P||Q abstractly proceeds as one of 

these paths : 
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P : 
x++ x++ 

print x 
Q : 

(note the interleaving) 



Degree of atomicity 

 Whether it is reasonable to model a statement as 

‘atomic’, depends on your situation. 

 

 x++   usually no problem 

 

 x>0  y:=x  ok, if we can lock both x and y 

 

 0S  found:=true ....? 
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Example 
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byte  x = 1 ; 

 

active proctype  P1() { x++ ;  assert (x==2)  ; } 

 

active proctype P2() { x-- ; } 

 

(using a global variable to interact) 



Data types 

 Bit   0,1 

 Bool   true, false 

 Byte   0..255 

 Short  -215 .. 215-1 

 Int   -231 .. 231-1 

 Pid   0..255 

 Mtype  0..255  // user-def. enumeration 

 Chan  0..255 

 

 One dimensional array 

 Record 
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What you don’t have… 

 No sophisticated data types 

 No methods ; you have macro 

 There are only 2 levels of scope: 

 global var (visible in the entire sys) 

 local var   (visible only to the process that contains the 

declaration) 

 there is no inner blocks 
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(Enabledness) Expression  

 This process has 3 atomic actions. 

 The action  “y==0”  
 only enabled in a state where the expression is true 

 it can only be executed when it is enabled; the effect is skip 

 so, as long as it is disabled, the process will block 

 if it is not enabled in the current state, a transition in another 
process may make it enabled in the next state. 

 even if it is enabled in the current state, there is no guarantee the 
action will be selected for execution; but there is a way in SPIN to 
impose fairness. 

 

active proctype P { x++ ; (y==0) ; x-- } 
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Example 

 Use it to synchronize between processes : 

 

       

 

 

 

 

 

  

    // both will terminate, but forcing Q to finish last 

 

byte x=0 , y=0 

 

 active proctype P { x++  ; (y>0) ; x-- } 

 

 active proctype Q { (x>0) ; y++ ; (x==0) ; y-- } 
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Multiprogramming is tricky…. 

 E.g. one or more processes can become stuck 

(deadlocked) : 

 

       

 

 

 

 

 

 

 (6 potential executions…) 

byte x=0 , y=0 

  

active proctype P   { x++  ; (y>0) ; x-- ; (y==0) } 

 

active proctype Q  { y++ ; (x>0) ; (x==0) ; y-- } 
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Processes can also synchronize with 

channels 

chan c = [3] of {byte} ; 

 

active proctype  producer() { 

   do   

    :: c ! 0   

    od 

   } 

 

active proctype consumer() {   

   do 

   ::  c ? x   

   od  

   } 
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Channels 

 for exchanging messages between processes 

 finite sized and asynchronously, unless you set it to size 0  

synchronous channel 

 Syntax : 

 

     c ! 0       sending over channel c; blocking if c is full 

     c ? x      receives from c, transfer it to x; blocking if c is empty 

     d ? DATA, b, y     match and receives 

 There are some more exotic channel operations : checking empty/full, 

testing head-value, copying instead of receiving, sorted send, random 

receive ...  check out the Manual 

chan  c        =    [0]   of   {bit}; 

chan  d        =    [2]   of   {mtype, bit, byte}; 

chan  e[2]    =    [1]   of   {bit}; 
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mtype   =  {  DATA, ack } 



Conditional 

  if 

  :: stmt1 

  :: … 

  :: stmtn 

  fi 
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 The alternatives do not have to be atomic! 

 The first action in an alternative acts as its “guard”, which determines 

if the alternative is enabled on a given state. 

 Non-deterministically choose one enabled alternatives. 

 If there is none, the entire IF blocks. 

 “else” is a special expression that is enabled if all other alternatives 

block. 

  if 

  :: stmt1 

  :: … 

  :: else -> … 

  fi 



loop : do-statement 

 Non-deterministic, as in IF 

 If no alternative is enabled, the entire loop blocks. 

 Loop on forever, as long as there are enabled alternatives when the 

block cycle back. 

 To exit you have explicitly do a break. 

  do 

  :: stmt1 

  :: … 

  :: stmtn 

  od 
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Non-determinism can be useful for modeling 
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active proctype consumer() {   
   do 
 
   ::  c ? x ; 
 
   ::  c ? x ; x=corrupted ;  //  to model occasional corrupted data 

   
  od  
} 



Exiting a loop 

do 

   :: (i>0)    i--  

   :: (i==0)  break  

do 

do 

:: { (i>0)    ; i--      } 

:: { (i==0) ; break } 

do 
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do 

   :: { i-- ; (i>0) } 

   :: break  

do 



Label and jump 

 Labels can also be useful in specification, e.g. 

 

 <> P@L0 

 

 Referring to labels as above goes actually via a mechanism called 

“remote reference”, which can also be used to inspect the value of local 

variables for the purpose of specification.  

L0:  (x==0)  ; 

if  

::  …  goto L0 ; 

::  … 

fi   
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Expressing local correctness with 

assertions 

active proctype P … 

 

active proctype Q { …; assert (x==0 && y==0)  } 
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(here it implies that when Q terminates, x and y should be 0) 



But we can also express global 

invariant! 

 Thanks to built-in non-determinism in the interleaving 
semantics, we can also use assertion to specify a 
global invariant ! 
 
       
 
 
 
 
 
 
 
 
// implying that at any time during the run x is either 0 or 1 
                                                                 

byte x=0 , y=0 

 

active proctype P { x++  ; (y>0) ; x-- } 

 

active proctype Q { (x>0) ; y++ ; (x==0) ; y--} 

 

 active proctype Monitor { assert ((x==0 || x==1)) } 
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Deadlock checking 

 When a system comes to a state where it has no 

enabled transition, but one of its processes is not in 

its terminal (end) state: 

 Deadlocked, will be reported by SPIN 

 But sometimes you want to model that this is ok  

suppress it  via the invalid-endstate option. 

 

 The terminal state of a process P is by default just P’s 

textual end of code. 

 You can specify additional terminal states by using 

end-label: 

 Of the form “end_1”  , “end_blabla”  etc 
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Expressing progress requirement 

 We can mark some states as progress states 

 Using “progress*” labels 

 

 Any infinite execution must pass through at least one 

progress label infinitely many often; else violation. 

 

 We can ask SPIN (with an option) to verify no such 

violation exists ( non-progress cycles option). 
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Dining philosophers 

 N philosophers 

 Each process: 

1. grab left and right fork simultaneously 

2. eat... 

3. release forks 

4. think................ then go back to 1  
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The processes in Promela 
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#define N 4 

byte fork[N] ; 

bool eating[N] ; 

 

proctype P(byte i) { 

  do 

  :: (fork[i] == N && fork[(i + 1) % N] == N) -> { 

        fork[i] = i 

        fork[(i + 1) % N] = i ; 

 

        eating[i] = 1 ;// eat ... 

        eating[i] = 0 ;  

        fork[i] = N ;  

        fork [(i + 1) % N]= N  

      } 

  od 

} 

•  Why use bytes ? 
•  Should we enable the default end-
state checking? 
• How to instantiate the P(i)’s ? 
• Ehm... this is not correct ! 

atomic { ..... }   



Creating processes and init { … } 
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init { 

  byte i ; 

  ... // initialize forks 

  i = 0 ; 

  do 

  :: i<N   -> { run P(i) ; i++ ; } 

  :: i>=N  ->  break ; 

  od 

} 

Put this in 

atomic { … } ; 

Be aware of 

what it means! 

What if we want to show that the algorithm is still correct for any 

initial value of  forks, as long as you have at least one pair of forks 

free at the beginning, and hat forks are only taken in pairs? 



Using non-determinism to quantify over 

your data 
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init { 

  // initializing the array x 

  byte i = 0 ;  byte v ; 

  do 

  :: i>=N -> break ; 

  :: { if 

       :: v = N 

       :: v = i 

       fi ; 

       fork[i]=v ; fork[(i+1)%N]=v ; 

       i++ ; 

     } 

  od ;        

   …. // now create the processes as in the previous 

slide   

} 



How to express the specification? 
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assert  (fork[i] == i  &&  

             fork[(i+1)%N]== i) 

proctype P(byte i) { 

  do 

  :: { atomic {(fork[i] == N && fork[(i + 1) % N] == N) ; 

                fork[i] = i ; 

                fork[(i + 1) % N] = i } ; 

         

        eating[i] = 1 ; 

        eating[i] = 0 ; 

        fork[i] = N ;  

        fork [(i + 1) % N]= N  

      } 

  od 

} 



Using a “monitor” process 
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active proctype monitor() { 

   byte i ; 

   i = 0 ; 

   do 

   :: i>=N -> break ; 

   :: i<N  -> { 

        assert(!eating[i]  

               ||  

               (fork[i]==i && fork[i+1%N]==i)) ;  

        i++ ; 

      } 

   od  

} 

  But we still can’t express that if a process is “hungry”, it will eventually 
eat. In this particular problem, we can still express it using progress labels. 
For more general temporal specification, we will look at the use of LTL 
formulas. 



Example: Alternating bit protocol 

 imperfect “connections”, but corrupted data can be detected 

(e.g. with checksum etc). 

 

 Possible solution: send data, wait for a positive 

acknowledgement before sending the next one.  

 

Just 1 bit is needed for the ack, hence the “bit” in the name. 

 

 

sender receiver 
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You can think of several ways to work it out... 

 A note on reliable full-duplex transmission over half-
duplex links, K. A. Bartlett, R. A. Scantlebury, P. T. 
Wilkinson, Communications of the ACM, Vol 12, 
1969. 

 
 NPL Protocol 
 M<2 Protocol (we’ll discuss this one)   

 

 For more, check out: 
 
 http://spinroot.com/spin/Man/Exercises.html 
 
e.g. Go-Back-N Sliding Window Protocol 
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M<2 Protocol, Sender part 

State 1 is the starting state, and its accepting state in the sense when the sender is in this state, it assumes the last data 

package it sent has been successfully received by the receiver, and so it fetches a new data package to send. 

1 

3 

2 4 

!1,data 

? error  

!0,data   // Sender wants to resend 

? 0    //  Receiver wants Sender to resend 

?1 

!1,data 

Fetch a new data. 
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M<2 Protocol, Receiver part 

1 

3 

2 4 

!0   // request Sender to resend 

?0,rd    

 // Sender wants Receiver to resend 

!1  

?1,rd 

? error  

!1 
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Scenario: 1x error, corrected 

1 

3 

2 4 

!1,data 

? error 

!0,data    
// Sender wants to resend 

?0     
// Receiver wants S to resend 

?1 

!1,data 

Fetch a new data. 
1 

3 

2 4 

!0   // request Sender to resend 

?0,rd    

 // Sender wants  

     R to resend 

!1  

?1,rd 

? error 

!1 

Though each automaton is simple, the combined (and concrete) behavior is quite complex;  100 

states in my (abstract) SPIN model (there are more explicit states, if we take the “data” into 

account). 37 



Modeling in Promela 
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chan S2R = [BufSize] of { bit, byte } ; 

chan R2S = [BufSize] of { bit } ; 

 

proctype Sender (chan in, chan out) { … } 

 

proctype Receiver(chan in, chan out) { … } 

 

init { 

       run   Sender(R2S, S2R)  ; 

       run   Receiver(S2R, R2S) 

} 



Modelling in SPIN 

proctype  Receiver(chan in, out) { 

   show byte rd   ;  /* received data */ 

   show bit  cbit   ;  /* control bit */ 

 

   do 

   :: in ? cbit, rd ; 

      if 

      :: (cbit == 1) -> out!1 

      :: (cbit == 0) -> out!1  

      :: printf("MSC: ERROR1\n") ; out!0  

      fi  

   od 

} 

So, how big the 

channels should 

be? Is 0 good 

enough ? 
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A different style, with “goto” 

proctype Sender(chan in, out) { 

   show byte data  ; /* message data */ 

   show bit  cbit  ; /* received control bit  */ 

 

   S1: data = (data+1) % MAX ; out!1,data ; goto S2; 

    

   S2: in ? cbit ; 

       if 

       :: (cbit == 1) -> goto S1 

       :: (cbit == 0) -> goto S3 

       ::  printf("MSC: AERROR1\n") -> goto S4 

       fi ; 

 

   S3: out!1,data ; goto S2 ; 

 

   S4: out!0,data ; goto S2 ; 

} 
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Specification, with assertions? 

 This time, not possible with assertions (at least not 

without the help of ‘something else’). 

 

 In LTL (to be discussed later),  we can try something 

along this line :      

 

 

 

 But this still does not quite express the above. 

  

  

Each data package, if accepted by the receiver, is accepted exactly 

once! 
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 (Receiver@S3     (Receiver@rd == Sender@data)) 



Specification, using shadow variables 

 Extend the model with ‘shadow variables’  

 Are used purely for expressing specifications 

 Must not influence the original behavior 

 In our case: 

 exploit that sender generates new data by data+1 

 introduce a shadow variable “last”  previously accepted data 

 Impose this assertion on the acceptance state (of Receiver): 

 

  

Each data package, if accepted by the receiver, is accepted exactly 

once! 
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current data to be accepted    =     last + 1 



Extending the model 

proctype Receiver(chan in, out) { 

   show byte rd   ;  /* received data */ 

   show bit  cbit   ;  /* control bit */ 

 

   do 

   :: in?cbit,rd ; 

      progress: 

      if 

      :: (cbit == 1) -> out!1 

      :: (cbit == 0) -> out!1  

      :: printf("MSC: ERROR1\n") ; out!0  

      fi  

   od 

} 

show byte last 

assert (rd == (last+1) % MAX) ; 

  

last = rd ; 

This is the Receiver’s accepting state S3 
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2x successive errors 

1 

3 

2 4 

!1,data 

? error 

!0,data    
// Sender wants to resend 

?0     
// Receiver wants S to resend 

?1 

!1,data 

Fetch a new data. 
1 

3 

2 4 

!0   // request Sender to resend 

?0,rd    

 // Sender wants  

     R to resend 

!1  

?1,rd 

? error 

!1 

Ouch… 
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Ok... but suppose we still want to verify 

these: 
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But, if error does not occur twice successively then: every pck 

sent, if accepted, is accepted exactly once. 

If no error occur, every data sent will eventually be accepted. 

The first can be expressed simply by constraining the model, namely how it 

simulates error. 

 

The 2nd one can’t be expressed with just assertions and shadow variables. 

 

Alternative: LTL. 



More on Promela 
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Exception/Escape 

 S  unless  E 

 

 Statement! Not to be confused with LTL “unless”. 

 

 If E ever becomes enabled during the execution of S, 

then S is aborted and the execution continues with E. 

 

More precisely…  check manual. 
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  Predefined variables in Promela 

 _pid              (local var) current process’ instantiation number 

 _nr_pr          the number of active processes 

 np_               true when the model is not in a “progress state” 

 _last             the pid of process that executed last 

 

 else              true if no statement in the current process is  

     executable 

 

 timeout        true if no statement in the system is executable 

… 
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Timeout 

 timeout  becomes executable if there is no other process 

the system is executable/enabled 

 so,  it models a global timeout 

 useful as a mechanism to avoid deadlock  

 beware of statements that are always executable. 

do 

::  c ? x   ...                     

::  timeout  break 

od 
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