
Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

Model Checking with SPIN

Modeling and Verification with

SPIN

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Overview

 Architecture & a bit more about SPIN

 SPIN’s modeling language

 Examples of models in SPIN

 Acknowledgement: some slides are taken and adapted from Theo Ruys’s

SPIN Tutorials.

2

Spin and Promela

 SPIN = Simple Promela Interpreter

 Promela = Process Meta Language

 Is a modelling language! (not a language to build an

application)

 Strong features :
 Powerful constructs to synchronize concurrent

processes

 Cutting edge model checking technology

 Simulation to support analysis (of the models)

3

SPIN

 Concurrency is a hot area again, now that we all use
multi-core CPUs.

 Other applications:

 AnWeb: a system for automatic support to web application
verification, Di Sciascio et al, in 14th conf. on Soft. Eng. and
knowledge eng., 2002.

 Privacy and Contextual Integrity: Framework and Applications,
Barth et al, in IEEE Symposium on Security and Privacy, 2006.

4

Frontend XSpin

5

(X)SPIN Architecture

LTL
Translater

spin

Simulator

Verifier
Generator

spin command
line tool

random
guided

interactive

ispin

ϕ

•deadlocks
•safety properties
•liveness properties

Promela
model M

editing window
simulation options
verification options
MSC simulation window

C program

checker

pan.*

pan.exe
counter
example

false

6

System, process, and action.

 A system in SPIN consists of a set of interacting and
concurrent processes.

 Each process is sequential, but possibly non-
deterministic.

 Each process is built from atomic actions (transition).

 Concurrent execution is modeled by interleaving.

 Fairness can be impossed.

7

Interleaving model of concurrency

 Consider (with pseudo notation):

Assume each arrow is atomic.

 An execution of P||Q abstractly proceeds as one of

these paths :

8

P :
x++ x++

print x
Q :

(note the interleaving)

Degree of atomicity

 Whether it is reasonable to model a statement as

‘atomic’, depends on your situation.

 x++ usually no problem

 x>0  y:=x ok, if we can lock both x and y

 0S  found:=true?

9

Example

10

byte x = 1 ;

active proctype P1() { x++ ; assert (x==2) ; }

active proctype P2() { x-- ; }

(using a global variable to interact)

Data types

 Bit 0,1

 Bool true, false

 Byte 0..255

 Short -215 .. 215-1

 Int -231 .. 231-1

 Pid 0..255

 Mtype 0..255 // user-def. enumeration

 Chan 0..255

 One dimensional array

 Record

11

What you don’t have…

 No sophisticated data types

 No methods ; you have macro

 There are only 2 levels of scope:

 global var (visible in the entire sys)

 local var (visible only to the process that contains the

declaration)

 there is no inner blocks

12

(Enabledness) Expression

 This process has 3 atomic actions.

 The action “y==0”
 only enabled in a state where the expression is true

 it can only be executed when it is enabled; the effect is skip

 so, as long as it is disabled, the process will block

 if it is not enabled in the current state, a transition in another
process may make it enabled in the next state.

 even if it is enabled in the current state, there is no guarantee the
action will be selected for execution; but there is a way in SPIN to
impose fairness.

active proctype P { x++ ; (y==0) ; x-- }

13

Example

 Use it to synchronize between processes :

 // both will terminate, but forcing Q to finish last

byte x=0 , y=0

 active proctype P { x++ ; (y>0) ; x-- }

 active proctype Q { (x>0) ; y++ ; (x==0) ; y-- }

14

Multiprogramming is tricky….

 E.g. one or more processes can become stuck

(deadlocked) :

 (6 potential executions…)

byte x=0 , y=0

active proctype P { x++ ; (y>0) ; x-- ; (y==0) }

active proctype Q { y++ ; (x>0) ; (x==0) ; y-- }

15

Processes can also synchronize with

channels

chan c = [3] of {byte} ;

active proctype producer() {

 do

 :: c ! 0

 od

 }

active proctype consumer() {

 do

 :: c ? x

 od

 }

16

Channels

 for exchanging messages between processes

 finite sized and asynchronously, unless you set it to size 0 

synchronous channel

 Syntax :

 c ! 0 sending over channel c; blocking if c is full

 c ? x receives from c, transfer it to x; blocking if c is empty

 d ? DATA, b, y match and receives

 There are some more exotic channel operations : checking empty/full,

testing head-value, copying instead of receiving, sorted send, random

receive ...  check out the Manual

chan c = [0] of {bit};

chan d = [2] of {mtype, bit, byte};

chan e[2] = [1] of {bit};

17

mtype = { DATA, ack }

Conditional

 if

 :: stmt1

 :: …

 :: stmtn

 fi

18

 The alternatives do not have to be atomic!

 The first action in an alternative acts as its “guard”, which determines

if the alternative is enabled on a given state.

 Non-deterministically choose one enabled alternatives.

 If there is none, the entire IF blocks.

 “else” is a special expression that is enabled if all other alternatives

block.

 if

 :: stmt1

 :: …

 :: else -> …

 fi

loop : do-statement

 Non-deterministic, as in IF

 If no alternative is enabled, the entire loop blocks.

 Loop on forever, as long as there are enabled alternatives when the

block cycle back.

 To exit you have explicitly do a break.

 do

 :: stmt1

 :: …

 :: stmtn

 od

19

Non-determinism can be useful for modeling

20

active proctype consumer() {
 do

 :: c ? x ;

 :: c ? x ; x=corrupted ; // to model occasional corrupted data

 od
}

Exiting a loop

do

 :: (i>0)  i--

 :: (i==0)  break

do

do

:: { (i>0) ; i-- }

:: { (i==0) ; break }

do

21

do

 :: { i-- ; (i>0) }

 :: break

do

Label and jump

 Labels can also be useful in specification, e.g.

 <> P@L0

 Referring to labels as above goes actually via a mechanism called

“remote reference”, which can also be used to inspect the value of local

variables for the purpose of specification.

L0: (x==0) ;

if

:: … goto L0 ;

:: …

fi

22

Expressing local correctness with

assertions

active proctype P …

active proctype Q { …; assert (x==0 && y==0) }

23

(here it implies that when Q terminates, x and y should be 0)

But we can also express global

invariant!

 Thanks to built-in non-determinism in the interleaving
semantics, we can also use assertion to specify a
global invariant !

// implying that at any time during the run x is either 0 or 1

byte x=0 , y=0

active proctype P { x++ ; (y>0) ; x-- }

active proctype Q { (x>0) ; y++ ; (x==0) ; y--}

 active proctype Monitor { assert ((x==0 || x==1)) }

24

Deadlock checking

 When a system comes to a state where it has no

enabled transition, but one of its processes is not in

its terminal (end) state:

 Deadlocked, will be reported by SPIN

 But sometimes you want to model that this is ok 

suppress it via the invalid-endstate option.

 The terminal state of a process P is by default just P’s

textual end of code.

 You can specify additional terminal states by using

end-label:

 Of the form “end_1” , “end_blabla” etc
25

Expressing progress requirement

 We can mark some states as progress states

 Using “progress*” labels

 Any infinite execution must pass through at least one

progress label infinitely many often; else violation.

 We can ask SPIN (with an option) to verify no such

violation exists (non-progress cycles option).

26

Dining philosophers

 N philosophers

 Each process:

1. grab left and right fork simultaneously

2. eat...

3. release forks

4. think................ then go back to 1

27

The processes in Promela

28

#define N 4

byte fork[N] ;

bool eating[N] ;

proctype P(byte i) {

 do

 :: (fork[i] == N && fork[(i + 1) % N] == N) -> {

 fork[i] = i

 fork[(i + 1) % N] = i ;

 eating[i] = 1 ;// eat ...

 eating[i] = 0 ;

 fork[i] = N ;

 fork [(i + 1) % N]= N

 }

 od

}

• Why use bytes ?
• Should we enable the default end-
state checking?
• How to instantiate the P(i)’s ?
• Ehm... this is not correct !

atomic { }

Creating processes and init { … }

29

init {

 byte i ;

 ... // initialize forks

 i = 0 ;

 do

 :: i<N -> { run P(i) ; i++ ; }

 :: i>=N -> break ;

 od

}

Put this in

atomic { … } ;

Be aware of

what it means!

What if we want to show that the algorithm is still correct for any

initial value of forks, as long as you have at least one pair of forks

free at the beginning, and hat forks are only taken in pairs?

Using non-determinism to quantify over

your data

30

init {

 // initializing the array x

 byte i = 0 ; byte v ;

 do

 :: i>=N -> break ;

 :: { if

 :: v = N

 :: v = i

 fi ;

 fork[i]=v ; fork[(i+1)%N]=v ;

 i++ ;

 }

 od ;

 …. // now create the processes as in the previous

slide

}

How to express the specification?

31

assert (fork[i] == i &&

 fork[(i+1)%N]== i)

proctype P(byte i) {

 do

 :: { atomic {(fork[i] == N && fork[(i + 1) % N] == N) ;

 fork[i] = i ;

 fork[(i + 1) % N] = i } ;

 eating[i] = 1 ;

 eating[i] = 0 ;

 fork[i] = N ;

 fork [(i + 1) % N]= N

 }

 od

}

Using a “monitor” process

32

active proctype monitor() {

 byte i ;

 i = 0 ;

 do

 :: i>=N -> break ;

 :: i<N -> {

 assert(!eating[i]

 ||

 (fork[i]==i && fork[i+1%N]==i)) ;

 i++ ;

 }

 od

}

 But we still can’t express that if a process is “hungry”, it will eventually
eat. In this particular problem, we can still express it using progress labels.
For more general temporal specification, we will look at the use of LTL
formulas.

Example: Alternating bit protocol

 imperfect “connections”, but corrupted data can be detected

(e.g. with checksum etc).

 Possible solution: send data, wait for a positive

acknowledgement before sending the next one.

Just 1 bit is needed for the ack, hence the “bit” in the name.

sender receiver

33

You can think of several ways to work it out...

 A note on reliable full-duplex transmission over half-
duplex links, K. A. Bartlett, R. A. Scantlebury, P. T.
Wilkinson, Communications of the ACM, Vol 12,
1969.

 NPL Protocol
 M<2 Protocol (we’ll discuss this one)

 For more, check out:

 http://spinroot.com/spin/Man/Exercises.html

e.g. Go-Back-N Sliding Window Protocol

34

M<2 Protocol, Sender part

State 1 is the starting state, and its accepting state in the sense when the sender is in this state, it assumes the last data

package it sent has been successfully received by the receiver, and so it fetches a new data package to send.

1

3

2 4

!1,data

? error

!0,data // Sender wants to resend

? 0 // Receiver wants Sender to resend

?1

!1,data

Fetch a new data.

35

M<2 Protocol, Receiver part

1

3

2 4

!0 // request Sender to resend

?0,rd

 // Sender wants Receiver to resend

!1

?1,rd

? error

!1

36

Scenario: 1x error, corrected

1

3

2 4

!1,data

? error

!0,data
// Sender wants to resend

?0
// Receiver wants S to resend

?1

!1,data

Fetch a new data.
1

3

2 4

!0 // request Sender to resend

?0,rd

 // Sender wants

 R to resend

!1

?1,rd

? error

!1

Though each automaton is simple, the combined (and concrete) behavior is quite complex;  100

states in my (abstract) SPIN model (there are more explicit states, if we take the “data” into

account). 37

Modeling in Promela

38

chan S2R = [BufSize] of { bit, byte } ;

chan R2S = [BufSize] of { bit } ;

proctype Sender (chan in, chan out) { … }

proctype Receiver(chan in, chan out) { … }

init {

 run Sender(R2S, S2R) ;

 run Receiver(S2R, R2S)

}

Modelling in SPIN

proctype Receiver(chan in, out) {

 show byte rd ; /* received data */

 show bit cbit ; /* control bit */

 do

 :: in ? cbit, rd ;

 if

 :: (cbit == 1) -> out!1

 :: (cbit == 0) -> out!1

 :: printf("MSC: ERROR1\n") ; out!0

 fi

 od

}

So, how big the

channels should

be? Is 0 good

enough ?

39

A different style, with “goto”

proctype Sender(chan in, out) {

 show byte data ; /* message data */

 show bit cbit ; /* received control bit */

 S1: data = (data+1) % MAX ; out!1,data ; goto S2;

 S2: in ? cbit ;

 if

 :: (cbit == 1) -> goto S1

 :: (cbit == 0) -> goto S3

 :: printf("MSC: AERROR1\n") -> goto S4

 fi ;

 S3: out!1,data ; goto S2 ;

 S4: out!0,data ; goto S2 ;

}

40

Specification, with assertions?

 This time, not possible with assertions (at least not

without the help of ‘something else’).

 In LTL (to be discussed later), we can try something

along this line :

 But this still does not quite express the above.



Each data package, if accepted by the receiver, is accepted exactly

once!

41

 (Receiver@S3  (Receiver@rd == Sender@data))

Specification, using shadow variables

 Extend the model with ‘shadow variables’

 Are used purely for expressing specifications

 Must not influence the original behavior

 In our case:

 exploit that sender generates new data by data+1

 introduce a shadow variable “last”  previously accepted data

 Impose this assertion on the acceptance state (of Receiver):

Each data package, if accepted by the receiver, is accepted exactly

once!

42

current data to be accepted = last + 1

Extending the model

proctype Receiver(chan in, out) {

 show byte rd ; /* received data */

 show bit cbit ; /* control bit */

 do

 :: in?cbit,rd ;

 progress:

 if

 :: (cbit == 1) -> out!1

 :: (cbit == 0) -> out!1

 :: printf("MSC: ERROR1\n") ; out!0

 fi

 od

}

show byte last

assert (rd == (last+1) % MAX) ;

last = rd ;

This is the Receiver’s accepting state S3
43

2x successive errors

1

3

2 4

!1,data

? error

!0,data
// Sender wants to resend

?0
// Receiver wants S to resend

?1

!1,data

Fetch a new data.
1

3

2 4

!0 // request Sender to resend

?0,rd

 // Sender wants

 R to resend

!1

?1,rd

? error

!1

Ouch…
44

Ok... but suppose we still want to verify

these:

45

But, if error does not occur twice successively then: every pck

sent, if accepted, is accepted exactly once.

If no error occur, every data sent will eventually be accepted.

The first can be expressed simply by constraining the model, namely how it

simulates error.

The 2nd one can’t be expressed with just assertions and shadow variables.

Alternative: LTL.

More on Promela

46

Exception/Escape

 S unless E

 Statement! Not to be confused with LTL “unless”.

 If E ever becomes enabled during the execution of S,

then S is aborted and the execution continues with E.

More precisely… check manual.

47

 Predefined variables in Promela

 _pid (local var) current process’ instantiation number

 _nr_pr the number of active processes

 np_ true when the model is not in a “progress state”

 _last the pid of process that executed last

 else true if no statement in the current process is

 executable

 timeout true if no statement in the system is executable

…

48

Timeout

 timeout becomes executable if there is no other process

the system is executable/enabled

 so, it models a global timeout

 useful as a mechanism to avoid deadlock

 beware of statements that are always executable.

do

:: c ? x  ...

:: timeout  break

od

49

