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Overview 

 This pack : 

 Abstract model of programs 

 Temporal properties 

 Verification (via model checking) algorithm 

 Concurrency   
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Abstract Model 

 Temporarily back off from concrete SPIN level, and 

look instead at a more abstract view on the problem. 

 

 Model a “program” as a finite automaton. 

 

 More interested in “run-time properties” (as opposed 

to e.g. pre/post conditions): 

 Whenever R receives, the value it receives is never 0. 

 If a holds, then eventually b 
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To keep in mind: the term “model” is 

heavily overloaded... 

Real Program 

SPIN’s Promela 

model 

Automaton SPIN 

constructs during 

verification 

Automaton for 

explaining SPIN 
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UML model 

(but generally, a model simply means a 

simplified version of a real thing) 



Finite State Automaton 

0 

1 

 Execution : a path through the automaton, starting with an 

initial state. 

Many variations, depending on modeling 

purposes: 

 

• Single or multiple init states 

• With our without accepting states 

• With or without label on arrows, or on 

states 

• How it executes 
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State? 

 Concrete state of a program  too verbose. 

 

 More abstract  the values of program’s variables 

 How SPIN works 

 

 Even more abstractly, through a fixed set of 

propositions 

 Define your set of propositions 

 Specify which propositions hold on which states 

 How I will explain SPIN 
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Example 

0 

1 

With Prop = { isOdd x, x>0 } 

 

    V(0)   =   { isOdd x } 

    V (1)  =   { isOdd x,  x>0 } 

Abstract: we can’t say anything about properties which were 

not taken in Prop. 
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Convention: this implies 

that x>0 does not hold in 

state 0. 



Kripke Structure 

 A finite automaton ( S, s0, R, Prop, V ) 

 

 S : the set of possible states, with s0 the initial state. 

 R : the arrows 

 R(s)  gives the set of possible next-state from s 

 non-deterministic 

 

 Prop : set of atomic propositions 

 

 V :  labeling function 

 

a  V(s)  means a holds in s, else it does not hold. 
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Prop 

 It consists of atomic propositions.  

 We’ll require them to be non-contradictive.  That is, for any 

subset Q of Prop : 

 

       (/\Q)  /\  (/\{ p | p  Q}) 

 

is satisfiable.  Else you may get inconsistent labeling. 

 Example: 

 Prop  =  { x>0  , y>0  }  is ok. 

 Prop  =  { x>0 , x>1 }    is not ok. E.g. the subset { x>1 } is 

inconsistent. 
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Modelling execution 

 Recall: an execution is a path through your 

automaton. 

 

 Limit to infinite executions   to simplify discussion. 

 

 This induces what we will call an ‘abstract’ execution, 

which is a sequence of set of propositions that hold 

along that path. 

 

 Overloading the term “execution”... 
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Example 
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0 

1 

x := -1 

x := 1 

Prop = { isOdd x, x>0 } 

 

    V(0)  =  { isOdd x } 

    V(1)  =  { isOdd x,  x>0 } 

Consider execution:  0, 0, 1, 1, ... 

It induces abs-exec:   

 

{isOdd x} , {isOdd x}, {isOdd x, x>0}, {isOdd x, x>0} , ... 

 
Note that it is a sequence over power(Prop). 



Properties 

 Recall that we want to express “run-time” properties  
we’ll use “temporal properties” from Linear Temporal 
Logic  (LTL) 

 

 Originally designed by philosophers to study the way 
that time is used in natural language arguments  
 
Based on a number of operators to express relation 
over time: “next”, “always”, “eventually” 
 

 Brought to Computer Science by Pnueli, 1977. 
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Informal meaning 
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[] f       // always f 

 

 

X f       // next f   

 

 

f U g    //  f holds      

                  until g 

  

 f  f  f  f  f  f 

 f  f  f  f g 

  f 



Example 
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active proctype S () { 

   do  

   ::  { c!x ;  

         passed: x++ }  

   od 

} 

active proctype R () { 

   do 

    ::  c?y 

   od 

} 

 

• [] (y==x  || y==x-1)   

• [] (true U  S@passed  ) 

• Could have been expressed as a Monitor process and 

progress-labels. 

• But e.g. [](a U q) cannot be expressed with progress 

labels. 



Quite expressive! For example… 

 [] ( p      (true U q ))            // whenever p holds, eventually q will hold 

 

 

 p  U  ( q   U   r )       

 

 true  U  []p                              // eventually stabilizing to p 
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Let’s do this more formally... 

 Syntax: 

 

 ::=     p         // atomic proposition from Prop 

 

   |        |       /\       |  X       |      U  

 

 Derived operators: 

  \/     =  (  /\  ) 

      =    \/   

 [],  <>,  W , … 

 

 Interpreted over (abstract) executions. 
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Defining the meaning of temporal formulas 

 First we’ll define the meaning wrt to a single abstract 

execution. Let  be such an execution:  

 ,i   |==     

 

    |==         =       ,0  |==   

 

 If P is a Kripke structure, 

 

P |==    means that   holds on all abs.  

                           executions of P 
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Meaning 

 Let   be an (abstract) execution. 

 

 ,i  |==  p =   p  (i)  // p  Prop 

 

 ,i  |==   =   not (,i  |==  ) 

 

 ,i  |==  /\ =   ,i  |==      

                              and    

                               ,i  |==   
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Meaning 

 

 ,i  |==  X =   ,i+1  |==   

 

 

 ,i  |==   U  =   there is a ji such that ,j  |==   

 

        and 

 

        for all h, ih<j,  we have ,h  |==  . 

 

 

19 



Example 

20 

0 

1 

Consider abs-exec  :  {isOdd x} , {isOdd x}, {isOdd x, x>0}, {isOdd x, x>0} , ... 

   |==   isOdd x  U  x>0 

However, this is not a valid property of the 

program. 

isOdd x 

isOdd x ,  x>0 



Some derived operators 
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<> f     // eventually f 

 

 

 

f  W  g     // weak until 

 

 

 

 

g R f    // releases 

   f 

f   g,f f f 

 f  f  f  f g 

 f  f  f  f  f  f 

f f f f f f 



Derived operators 

<>  =    true  U   

 

[]  =    <> 

 

  W    =    []    \/     ( U ) 

 

  R   =       W   ( /\ )  
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Past operators 

 Useful, e.g. to say: if P is doing something with x, 

then it must have asked a permission to do so.  

 

 “previous” 

,i |== Y  =   holds in the previous state 

 

 “since” 

 ,i |==  S  =   held in the past, and since  

           that to now  holds 

 

 Unfortunately, not supported by SPIN. 
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Ok, so how can I verify  P |==   ? 

 We can’t directly check all executions  infinite (in 

two dimensions). 

 Try to prove it directly using the definitions?  

 We’ll take a look another strategy… 

 First, let’s view abstract executions as sentences. 

 

View P as a sentence-generator. Define: 

 

 

 
 

L(P)    =    {    |   is an abs-exec of P } 

these are sentences over pow(erProp) 24 



Representing   as an automaton … 

 Let  be the temporal formula we want to verify. 

 

 Suppose we can construct automaton A that ‘accepts’ 

exactly those infinite sentences over power(Prop) for 

which  holds. 

 

 So A is such that : 

 

  

 

 

 L(A)   =    {    |      |==   } 
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Re-express as a language problem 

 Well,  P |==    iff 

 

 There is no L(P) which will violate .   

 

 In other words, there is no L(P) that will be accepted 

by L(A). 

  

 So: 

 

 

 

 

P |==      iff    L(P)  L(A)  =   
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Automaton for accepting sentences 

 Add acceptance states. 

 Accepted sentence: 

 

 “aba” and “aa” is accepted 

 “bb” is not accepted. 

 

 But this is for finite sentences. 

 

For infinite ...? 
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a 

b 

q1 

q2 

a 

b 



Buchi Automaton 

“abab”     not an infinite 

 

“ababab…”    accepted 

 

“abbbb…”   not accepted! 

 Just different criterion for acceptance 

 Examples 
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a 

b 

q1 

q2 

a 

b 



Expressing temporal formulas as Buchi 

We’ll take Prop = { p } 

{p}  

{p} 

Use power(Prop) as the alphabet  of arrow-labels. 

 

Example: Xp      ( =  Xp) 

Indirectly saying that p is false. 

We can drop this, since we only 

need to (fully) cover accepted 

sentences. 

 

 

{p} 
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To make the drawing less verbose... 
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Xp,  using  Prop = {p} 

*  
* 

Xp,  using  Prop = {p,q} 

* * 

p  
Stands for all subsets of 

Prop that do not contain p; 

thus implying “p does not 

hold”. 

Stands for all subsets of 

Prop that contain p; thus 

implying “p holds”. 
p 

So we have 4 

subsets. 

p  



Always and Eventually 
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<>p p 
* * 

[]p p 

<>[]p 
p 

p * 



Until 
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p U q   : 
p 

* 
q 

 p  U  Xq   : 
p 

* q 
* 



Not Until 
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Formula:   ( p  U q ) 

p,q 
* p 

q 

We’ll use the help of these properties: 

 

(p U q)          =   p /\ q  W  p /\ q 

 

(p  W  q)       =    p /\ q  U  p /\ q 

 

(also generally when p,q are LTL formulas) 

=   q  W  p /\ q  

=   q  U  p /\ q  



Generalized Buchi Automaton 
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[]<>p     /\     []<>q 

0 2 

p q 

* 
1 * 

* 

Sets of accepting states:   F  =  { {1} , {2} } 

 

which is different than just F = { 1, 2 } in an ordinary Buchi. 

 

Every GBA can be converted to BA. 



Difficult cases 

 How about nested formulas like: 

 

 (Xp) U  q 

 ( p  U q )  U  r 

 

Their Buchi is not trivial to construct. 

 

 Still, any LTL formula can be converted to a Buchi. 

SPIN implements an automated conversion 

algorithm; unfortunately it is quite complicated.  
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Check list 

1. How to construct  A  ?    Buchi    

  

2. We still have a mismatch, because P is a Kripke 

structure! 

 Fortunately, we can easily convert it to a Buchi. 

 

3. We still have to construct the intersection. 

 

4. We still to figure out a way to check emptiness. 

 

 

P |==      iff    L(P)  L(A)  =   
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Label on state or label on arrow... 
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a 

b 

c 

a 

b 
c 

b 
c b 

d 

e 

d e 

c 

generate the same 

sentences 

generate the same 

sentences 



Converting Kripke to Buchi 
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0 

1 

isOdd x 

isOdd x ,  x>0 

0 

1 

{ isOdd x } 

{ isOdd x, x>0 } 

z 

{ isOdd x } 

{ isOdd x, x>0 } 

Generate the same inf. sentences! 

Single accepting set F, 

containing all states. 



Computing intersection 

 Rather than directly checking: 

 

 L(AP)    L(A)  =    

 

We check: 

 

 L(AP    A)  =    

 

The Buchi version of Kripke P 

 

 So we need to figure out how to construct this intersection of 

two Buchis. Execution over this intersection is also called a 

“lock-step” execution. 
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Intersection 

 Two buchi automata A and B over the same alphabet 

 The set of states are respectively A  and B.  

 starting at respectively sA and sB. 

 Single accepting set, respectively FA  and FB. 

 FA  is assumed to be A 

 A  B can be thought as defining lock-step execution 

of both: 

 The states : A   B, starting at (sA,sB) 

 Can make a transition only if A and B can both make the 

corresponding transition. 

 A single acceptance set F; (s,t) is accepting if t  FB.  
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Constructing Intersection, example 

0 1 { p } 
{ p } 

{ p,q } 

p :  isOdd x 

q :  x>0 AP: 

A<>q: 

a q 
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(0,a) 

{ p } 

Ap  A<>q : 

(1,a) 
{ p } 



Verification  

 Sufficient to have an algorithm to check if L(C) = , 
for the intersection-automaton C.  
 

 

 

 

 So, it comes down to a cycle finding in a finite 
graph! Solvable. 

 

 The path leading to such a cycle also acts as your 
counter example! 

L(C)    iff   there is a finite path from C’s initial state to 

an accepting state f , followed by a cycle back to f . 
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Approaches 

 View C = AP    A  as a directed graph. 
Approach 1 : 
1. Calculate all strongly connected component (SCCs) 

of  C (e.g. with Tarjan) . 

2. Check if there is an SCC containing an accepting 
state, reachable from C’s initial state. 
 

 Approach 2, based on Depth First Search (DFS); 
can be made lazy : 
 the full graph is constructed as-we-go, as you 

search for a cycle. 
 
(so you don’t immediately need the full graph) 
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DFS-approach (SPIN) 

 DFS is a way to traverse a graph : 

 

 

 

 

 

 

 

 

 

 This will visit all reachable nodes. You can already 
use this to check assertions. 

DFS(u)  { 

 

     if (u  visited)  return ; 

 

     visited.add(u) ; 

 

     for (s  next(u))  DFS(s) ; 

 

} 
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Example 

0 

1 2 3 

45 

4 



Adding cycle detection 

DFS(u)  { 

     if (u  visited) return ; 

     visited.add(u) ; 

     for each (s  next(u))  { 

            if (u  accept)  { 

                visited2 =  ; 

                checkCycle (u,s) ; 

            } 

            DFS(s ) ; 

     } 

} 
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checkCycle is another DFS 

checkCycle(root,u)  { 

 

     if  (u = root)  throw CycleFound ;  

 

     if ( u visited2 ) return ; 

     visited2.add(u) ; 

     for each (s  next(u))   

           checkCycle(root, s) ; 

} 
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Can be extended to keep track of the path leading to the cycle   counter 

example. 

See Lecture Notes.  



Example 

0 

1 2 3 

checkCycle(1,2) 
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the node currently being processed root 



Lazy (on-the-fly) construction 

 Remember that automaton to explore is C = AP   A 

 

 AP and A  are not literally expressed as an automata; 

they are Promela models. In particular AP , when it is 

“expanded” to an automaton, it is usually huge!  

 

Can we avoid the construction of AP? 

 

 Can we avoid the construction of C? 

 

We can at least do lazy construction (SPIN does so). 

Benefit : if a cycle is found (verification fails), effort is not 

wasted to first construct the full C. 
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Lazy construction, representing states 

 For now assume P is just a single process (no concurrency). 

If we would construct AP, each of its state u is a pair (pc,vars)  

 pc is the “program counter” of P, to keep track where P is during 

an execution. 

 vars is a vector of the values of all variables at that state. 

 

 pc is associated to location in the Promela code; it is straight 

forward to locate and check all “next” statements/actions  

which are possible to execute.  

 

   enabledOn(pc,vars) 
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Lazy construction 

 If  is an action that is syntactically possible on program 

counter pc, let : 

 

        exec  (pc,vars)   

 

denote the execution of  at the state (pc,vars), and this 

result a new state (pc’,vars’). 

 

 We now modify this quantification in the DFS algorithm: 

 

      for each (s  next(u))  …. 
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Lazy construction 

 To (still incorrect): 

 

     for each (    enabledOn(pc,vars)) { 

          s = exec  (pc,vars)  

          … 

     } 

 

    possible(pc,vars) means that  is syntactically a 

possible next action at pc, and can execute on state vars. 

 

 But, we also have to deal with the intersection. 
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Lazy construction + intersection 
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DFSlazy(path, <u,v> )  { 

     if (<u,v>  visited) return ; 

     visited.add(<u,v>) ; 

 

     for each (  enabledOn(u),    outArrow(v), 

                     suchthat label() holds on u ) 

        s =  exec(,u)    

        t  =  destination ()  

        if (t  accept)  { 

            visited2 =  ; 

            checkCycle ( ....) ; 

            } 

        else  DFSlazy( ... , < s, t > ) ; 

} 

DFS1(path,u)  { 

     if (u  visited) return ; 

     visited.add(u) ; 

     for each (s  next(u))  

        if (s  accept)  { 

            visited2 =  ; 

            checkCycle ( path++[u] , u, s) ; 

            } 

        else  DFS1( path++[u], s ) ; 

} 



Concurrency 

 So far, we assumed P is just a single process. What if 

we have a system S of N concurrent processes  A1 … 

AN. 

 Recall : interleaving model of execution. 

 Solution: construct an automaton that equvallently 

models S, by taking the product automaton: 

 

     A1  …   AN 

 

 But... again you may prefer to construct this product 

lazily as well. 
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Interleaved execution in SPIN 

 

 The state of A1 || …|| AN is represented by a vector 

 

        u  =   <pc1,...,pcN, vars> 

 

 vars  represent the vector of all variables (of all 

processes). 

 We just need to redifine   enabledOn(u): 

  belongs to some process Ai  , and syntacticaly can 

execute at pci. 

  is enabled on vars 
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Fairness 
 Consider this concurrent system : 

 
 
 
 
 
Is it possible that print x is ignored forever?   

 

 The runtime system determines which fairness assumption is 
reasonable : 
 No fairness 

 Weak fairness : any action that is persistently enabled  will eventually be 
executed. 

 Strong fairness : any action that is kept recurrently enabled (but not 
necessarily persistently enabled) will eventually be executed. 

 There are other variations… 

 

 A fair execution : an execution respecting the assumed fairness 
condition. 

P { do :: x = (x+1) % N  od } Q  {  (x==0) ; print x } || 
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Fairness in SPIN 

 WFair   =   [] ([](x==0)         <>Q@lab1) 

 SFair    =   [] ( []<>(x==0)    <>Q@lab1 ) 

 To verify, e.g.  SFair   <> x is printed 

SPIN only impose “process level 

weak fairness” : when a process is 

continually enabled (it has at least 

one runnable action), an action of 

the process will eventually be 

executed. 

More elaborate fairness assumptions 

can be encoded as LTL formulas 

(but gives additional verification 

overhead). 
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active proctype P(){  

   do  

    :: x = (x+1) % N 

    od      

} 

active proctype Q() {   

    (x==0) ; 

    lab1 : print x   } 



Closing remarks 

 In principle the use of LTL model checking technique 

is not limited to SPIN. 

 

 Model checking real programs (as in Java Pathfinder) 

 You need a way to fully control thread scheduling  

 You have to constraint values range to make them finite state. 

 You may also need to limit the depth/length of executions 

 

 Testing concurrent programs 

 Chose a selected set of inputs P(x). These are your test-cases. 

For each test-case, use model checking to verify all possible 

scheduling of the threads. 
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