
Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

LTL Model Checking

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Overview

 This pack :

 Abstract model of programs

 Temporal properties

 Verification (via model checking) algorithm

 Concurrency

2

Abstract Model

 Temporarily back off from concrete SPIN level, and

look instead at a more abstract view on the problem.

 Model a “program” as a finite automaton.

 More interested in “run-time properties” (as opposed

to e.g. pre/post conditions):

 Whenever R receives, the value it receives is never 0.

 If a holds, then eventually b

3

To keep in mind: the term “model” is

heavily overloaded...

Real Program

SPIN’s Promela

model

Automaton SPIN

constructs during

verification

Automaton for

explaining SPIN

4

UML model

(but generally, a model simply means a

simplified version of a real thing)

Finite State Automaton

0

1

 Execution : a path through the automaton, starting with an

initial state.

Many variations, depending on modeling

purposes:

• Single or multiple init states

• With our without accepting states

• With or without label on arrows, or on

states

• How it executes

5

State?

 Concrete state of a program too verbose.

 More abstract the values of program’s variables

 How SPIN works

 Even more abstractly, through a fixed set of

propositions

 Define your set of propositions

 Specify which propositions hold on which states

 How I will explain SPIN

6

Example

0

1

With Prop = { isOdd x, x>0 }

 V(0) = { isOdd x }

 V (1) = { isOdd x, x>0 }

Abstract: we can’t say anything about properties which were

not taken in Prop.
7

Convention: this implies

that x>0 does not hold in

state 0.

Kripke Structure

 A finite automaton (S, s0, R, Prop, V)

 S : the set of possible states, with s0 the initial state.

 R : the arrows

 R(s) gives the set of possible next-state from s

 non-deterministic

 Prop : set of atomic propositions

 V : labeling function

a V(s) means a holds in s, else it does not hold.

8

Prop

 It consists of atomic propositions.

 We’ll require them to be non-contradictive. That is, for any

subset Q of Prop :

 (/\Q) /\ (/\{ p | p Q})

is satisfiable. Else you may get inconsistent labeling.

 Example:

 Prop = { x>0 , y>0 } is ok.

 Prop = { x>0 , x>1 } is not ok. E.g. the subset { x>1 } is

inconsistent.

 9

Modelling execution

 Recall: an execution is a path through your

automaton.

 Limit to infinite executions to simplify discussion.

 This induces what we will call an ‘abstract’ execution,

which is a sequence of set of propositions that hold

along that path.

 Overloading the term “execution”...

10

Example

11

0

1

x := -1

x := 1

Prop = { isOdd x, x>0 }

 V(0) = { isOdd x }

 V(1) = { isOdd x, x>0 }

Consider execution: 0, 0, 1, 1, ...

It induces abs-exec:

{isOdd x} , {isOdd x}, {isOdd x, x>0}, {isOdd x, x>0} , ...

Note that it is a sequence over power(Prop).

Properties

 Recall that we want to express “run-time” properties
we’ll use “temporal properties” from Linear Temporal
Logic (LTL)

 Originally designed by philosophers to study the way
that time is used in natural language arguments

Based on a number of operators to express relation
over time: “next”, “always”, “eventually”

 Brought to Computer Science by Pnueli, 1977.

12

Informal meaning

13

[] f // always f

X f // next f

f U g // f holds

 until g

 f f f f f f

 f f f f g

 f

Example

14

active proctype S () {

 do

 :: { c!x ;

 passed: x++ }

 od

}

active proctype R () {

 do

 :: c?y

 od

}

• [] (y==x || y==x-1)

• [] (true U S@passed)

• Could have been expressed as a Monitor process and

progress-labels.

• But e.g. [](a U q) cannot be expressed with progress

labels.

Quite expressive! For example…

 [] (p (true U q)) // whenever p holds, eventually q will hold

 p U (q U r)

 true U []p // eventually stabilizing to p

15

Let’s do this more formally...

 Syntax:

 ::= p // atomic proposition from Prop

 | | /\ | X | U

 Derived operators:

 \/ = (/\)

 = \/

 [], <>, W , …

 Interpreted over (abstract) executions.
16

Defining the meaning of temporal formulas

 First we’ll define the meaning wrt to a single abstract

execution. Let be such an execution:

 ,i |==

 |== = ,0 |==

 If P is a Kripke structure,

P |== means that holds on all abs.

 executions of P

17

Meaning

 Let be an (abstract) execution.

 ,i |== p = p (i) // p Prop

 ,i |== = not (,i |==)

 ,i |== /\ = ,i |==

 and

 ,i |==

 18

Meaning

 ,i |== X = ,i+1 |==

 ,i |== U = there is a ji such that ,j |==

 and

 for all h, ih<j, we have ,h |== .

19

Example

20

0

1

Consider abs-exec : {isOdd x} , {isOdd x}, {isOdd x, x>0}, {isOdd x, x>0} , ...

 |== isOdd x U x>0

However, this is not a valid property of the

program.

isOdd x

isOdd x , x>0

Some derived operators

21

<> f // eventually f

f W g // weak until

g R f // releases

 f

f g,f f f

 f f f f g

 f f f f f f

f f f f f f

Derived operators

<> = true U

[] = <>

 W = [] \/ (U)

 R = W (/\)

22

Past operators

 Useful, e.g. to say: if P is doing something with x,

then it must have asked a permission to do so.

 “previous”

,i |== Y = holds in the previous state

 “since”

 ,i |== S = held in the past, and since

 that to now holds

 Unfortunately, not supported by SPIN.
23

Ok, so how can I verify P |== ?

 We can’t directly check all executions infinite (in

two dimensions).

 Try to prove it directly using the definitions?

 We’ll take a look another strategy…

 First, let’s view abstract executions as sentences.

View P as a sentence-generator. Define:

L(P) = { | is an abs-exec of P }

these are sentences over pow(erProp) 24

Representing as an automaton …

 Let be the temporal formula we want to verify.

 Suppose we can construct automaton A that ‘accepts’

exactly those infinite sentences over power(Prop) for

which holds.

 So A is such that :

 L(A) = { | |== }

25

Re-express as a language problem

 Well, P |== iff

 There is no L(P) which will violate .

 In other words, there is no L(P) that will be accepted

by L(A).

 So:

P |== iff L(P) L(A) =

26

Automaton for accepting sentences

 Add acceptance states.

 Accepted sentence:

 “aba” and “aa” is accepted

 “bb” is not accepted.

 But this is for finite sentences.

For infinite ...?

27

a

b

q1

q2

a

b

Buchi Automaton

“abab” not an infinite

“ababab…” accepted

“abbbb…” not accepted!

 Just different criterion for acceptance

 Examples

28

a

b

q1

q2

a

b

Expressing temporal formulas as Buchi

We’ll take Prop = { p }

{p}

{p}

Use power(Prop) as the alphabet of arrow-labels.

Example: Xp (= Xp)

Indirectly saying that p is false.

We can drop this, since we only

need to (fully) cover accepted

sentences.

{p}

29

To make the drawing less verbose...

30

Xp, using Prop = {p}

*
*

Xp, using Prop = {p,q}

* *

p
Stands for all subsets of

Prop that do not contain p;

thus implying “p does not

hold”.

Stands for all subsets of

Prop that contain p; thus

implying “p holds”.
p

So we have 4

subsets.

p

Always and Eventually

31

<>p p
* *

[]p p

<>[]p
p

p *

Until

32

p U q :
p

*
q

 p U Xq :
p

* q
*

Not Until

33

Formula: (p U q)

p,q
* p

q

We’ll use the help of these properties:

(p U q) = p /\ q W p /\ q

(p W q) = p /\ q U p /\ q

(also generally when p,q are LTL formulas)

= q W p /\ q

= q U p /\ q

Generalized Buchi Automaton

34

[]<>p /\ []<>q

0 2

p q

*
1 *

*

Sets of accepting states: F = { {1} , {2} }

which is different than just F = { 1, 2 } in an ordinary Buchi.

Every GBA can be converted to BA.

Difficult cases

 How about nested formulas like:

 (Xp) U q

 (p U q) U r

Their Buchi is not trivial to construct.

 Still, any LTL formula can be converted to a Buchi.

SPIN implements an automated conversion

algorithm; unfortunately it is quite complicated.

35

Check list

1. How to construct A ? Buchi

2. We still have a mismatch, because P is a Kripke

structure!

 Fortunately, we can easily convert it to a Buchi.

3. We still have to construct the intersection.

4. We still to figure out a way to check emptiness.

P |== iff L(P) L(A) =

36

Label on state or label on arrow...

37

a

b

c

a

b
c

b
c b

d

e

d e

c

generate the same

sentences

generate the same

sentences

Converting Kripke to Buchi

38

0

1

isOdd x

isOdd x , x>0

0

1

{ isOdd x }

{ isOdd x, x>0 }

z

{ isOdd x }

{ isOdd x, x>0 }

Generate the same inf. sentences!

Single accepting set F,

containing all states.

Computing intersection

 Rather than directly checking:

 L(AP) L(A) =

We check:

 L(AP A) =

The Buchi version of Kripke P

 So we need to figure out how to construct this intersection of

two Buchis. Execution over this intersection is also called a

“lock-step” execution.

39

Intersection

 Two buchi automata A and B over the same alphabet

 The set of states are respectively A and B.

 starting at respectively sA and sB.

 Single accepting set, respectively FA and FB.

 FA is assumed to be A

 A B can be thought as defining lock-step execution

of both:

 The states : A B, starting at (sA,sB)

 Can make a transition only if A and B can both make the

corresponding transition.

 A single acceptance set F; (s,t) is accepting if t FB.

40

Constructing Intersection, example

0 1 { p }
{ p }

{ p,q }

p : isOdd x

q : x>0 AP:

A<>q:

a q

41

(0,a)

{ p }

Ap A<>q :

(1,a)
{ p }

Verification

 Sufficient to have an algorithm to check if L(C) = ,
for the intersection-automaton C.

 So, it comes down to a cycle finding in a finite
graph! Solvable.

 The path leading to such a cycle also acts as your
counter example!

L(C) iff there is a finite path from C’s initial state to

an accepting state f , followed by a cycle back to f .

42

Approaches

 View C = AP A as a directed graph.
Approach 1 :
1. Calculate all strongly connected component (SCCs)

of C (e.g. with Tarjan) .

2. Check if there is an SCC containing an accepting
state, reachable from C’s initial state.

 Approach 2, based on Depth First Search (DFS);
can be made lazy :
 the full graph is constructed as-we-go, as you

search for a cycle.

(so you don’t immediately need the full graph)

43

DFS-approach (SPIN)

 DFS is a way to traverse a graph :

 This will visit all reachable nodes. You can already
use this to check assertions.

DFS(u) {

 if (u visited) return ;

 visited.add(u) ;

 for (s next(u)) DFS(s) ;

}

44

Example

0

1 2 3

45

4

Adding cycle detection

DFS(u) {

 if (u visited) return ;

 visited.add(u) ;

 for each (s next(u)) {

 if (u accept) {

 visited2 = ;

 checkCycle (u,s) ;

 }

 DFS(s) ;

 }

}

46

checkCycle is another DFS

checkCycle(root,u) {

 if (u = root) throw CycleFound ;

 if (u visited2) return ;

 visited2.add(u) ;

 for each (s next(u))

 checkCycle(root, s) ;

}

47

Can be extended to keep track of the path leading to the cycle counter

example.

See Lecture Notes.

Example

0

1 2 3

checkCycle(1,2)

48

the node currently being processed root

Lazy (on-the-fly) construction

 Remember that automaton to explore is C = AP A

 AP and A are not literally expressed as an automata;

they are Promela models. In particular AP , when it is

“expanded” to an automaton, it is usually huge!

Can we avoid the construction of AP?

 Can we avoid the construction of C?

We can at least do lazy construction (SPIN does so).

Benefit : if a cycle is found (verification fails), effort is not

wasted to first construct the full C.

49

Lazy construction, representing states

 For now assume P is just a single process (no concurrency).

If we would construct AP, each of its state u is a pair (pc,vars)

 pc is the “program counter” of P, to keep track where P is during

an execution.

 vars is a vector of the values of all variables at that state.

 pc is associated to location in the Promela code; it is straight

forward to locate and check all “next” statements/actions

which are possible to execute.

 enabledOn(pc,vars)

50

Lazy construction

 If is an action that is syntactically possible on program

counter pc, let :

 exec (pc,vars)

denote the execution of at the state (pc,vars), and this

result a new state (pc’,vars’).

 We now modify this quantification in the DFS algorithm:

 for each (s next(u)) ….

51

Lazy construction

 To (still incorrect):

 for each (enabledOn(pc,vars)) {

 s = exec (pc,vars)

 …

 }

 possible(pc,vars) means that is syntactically a

possible next action at pc, and can execute on state vars.

 But, we also have to deal with the intersection.

52

Lazy construction + intersection

53

DFSlazy(path, <u,v>) {

 if (<u,v> visited) return ;

 visited.add(<u,v>) ;

 for each (enabledOn(u), outArrow(v),

 suchthat label() holds on u)

 s = exec(,u)

 t = destination ()

 if (t accept) {

 visited2 = ;

 checkCycle (....) ;

 }

 else DFSlazy(... , < s, t >) ;

}

DFS1(path,u) {

 if (u visited) return ;

 visited.add(u) ;

 for each (s next(u))

 if (s accept) {

 visited2 = ;

 checkCycle (path++[u] , u, s) ;

 }

 else DFS1(path++[u], s) ;

}

Concurrency

 So far, we assumed P is just a single process. What if

we have a system S of N concurrent processes A1 …

AN.

 Recall : interleaving model of execution.

 Solution: construct an automaton that equvallently

models S, by taking the product automaton:

 A1 … AN

 But... again you may prefer to construct this product

lazily as well.

54

Interleaved execution in SPIN

 The state of A1 || …|| AN is represented by a vector

 u = <pc1,...,pcN, vars>

 vars represent the vector of all variables (of all

processes).

 We just need to redifine enabledOn(u):

 belongs to some process Ai , and syntacticaly can

execute at pci.

 is enabled on vars

55

Fairness
 Consider this concurrent system :

Is it possible that print x is ignored forever?

 The runtime system determines which fairness assumption is
reasonable :
 No fairness

 Weak fairness : any action that is persistently enabled will eventually be
executed.

 Strong fairness : any action that is kept recurrently enabled (but not
necessarily persistently enabled) will eventually be executed.

 There are other variations…

 A fair execution : an execution respecting the assumed fairness
condition.

P { do :: x = (x+1) % N od } Q { (x==0) ; print x } ||

56

Fairness in SPIN

 WFair = [] ([](x==0) <>Q@lab1)

 SFair = [] ([]<>(x==0) <>Q@lab1)

 To verify, e.g. SFair <> x is printed

SPIN only impose “process level

weak fairness” : when a process is

continually enabled (it has at least

one runnable action), an action of

the process will eventually be

executed.

More elaborate fairness assumptions

can be encoded as LTL formulas

(but gives additional verification

overhead).

57

active proctype P(){

 do

 :: x = (x+1) % N

 od

}

active proctype Q() {

 (x==0) ;

 lab1 : print x }

Closing remarks

 In principle the use of LTL model checking technique

is not limited to SPIN.

 Model checking real programs (as in Java Pathfinder)

 You need a way to fully control thread scheduling

 You have to constraint values range to make them finite state.

 You may also need to limit the depth/length of executions

 Testing concurrent programs

 Chose a selected set of inputs P(x). These are your test-cases.

For each test-case, use model checking to verify all possible

scheduling of the threads.

58

