
Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

Model Checking with SPIN

A Bit More about SPIN

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Content

 SPIN internal data structures

 SPIN result report

 Writing LTL formulas

 Containing state explosion

 Example

2

Acknowledgement: some slides are taken and adapted from Theo Ruys’s SPIN Tutorials.

Data structures involved in SPIN DFS

 Representation of a state.

 Stack for the DFS

 To remember where to backtrack in DFS

 It corresponds to the current “execution prefix” that is

being inspected  used for reporting.

 Something to hold the set of visited states = “state

space”.

3

State

 Each (global) state of a system is a “product” of the states of its

processes.

 E.g. Suppose we have:

 One global var byte x

 Process P with byte y

 Process Q with byte z

 Each system state should describe:

 all these variables

 Program counter of each process

 Other SPIN predefined vars

 Represent each global state as a tuple … this tuple can be quite big.

4

The stack, optimization

 To save space SPIN does not literally keep a stack of

states (large)  most of the time, states can be

replaced by the ID of the actions that produce them

(smaller)

 But, when you backtrack you need to know the state!

SPIN calculated the reverse/undo of every action. So,

knowing the current state is sufficient.

5

 State-space is stored with a hash table

The list of “visited states” is maintained by a Hash-table. So matching if a

state occurring in the table is fast!

Optimization: bit state hashing  6

Verifier’s output
assertion violated !((crit[0]&&crit[1])) (at depth 5) // computation depth

...

Warning: Search not completed

Full statespace search for:

 ...

 never-claim - (not selected)

 assertion violations +

 invalid endstates +

State-vector 20 byte, depth reached 7, errors: 1 // max. stack depth

 24 states, stored // states stored in hash table

 17 states, matched // states found re-revisited

 41 transitions (= stored+matched)

hash conflicts: 0 (resolved)

(max size 2^19 states)

2.542 memory usage (Mbyte)

7

Watch out for state explosion!

 Size of each state: > 12 bytes

 Number of possible states  (232) 3 = 296

 Using byte (instead of int) brings this down to 50 MB

 Focus on the critical aspect of your model; abstract

from data when possible.

int x,y,z ;

P { do :: x++ od }

Q { do :: y++ od }

R { do :: x/=y  z++ od }

8

Another source of explosion : concurrency
imposing a coarser grain atomicity

 more abstract, less error prone, but less parallelism

 executable if the guard statement is executable

 none of stmt-i should be blocking; or rather : if any of then blocks,

atomicity is lost

atomic { guard  stmt_1; ... ; stmt_n }

 active proctype P { x++ ; (y>0) ; y-- ; x=y }

9

put in atomic ?

d_step sequences

 like an atomic, but must be deterministic and may not block anywhere

 atomic and d_step sequences are often used as a model reduction method,

to lower complexity of large models (improving tractability)

 No jump into the middle of a d_step

d_step { guard  stmt_1; ... ; stmt_n }

d_step { /* reset array elements to 0 */

 i = 0;

 do

 :: i < N -> x[i] = 0; i++

 :: else -> break

 od;

 i = 0

}

10

execution without atomics or d_steps

11

execution with one atomic sequence

12

execution with a d_step sequence

13

atomic vs d_step

 d_step:

 executed as one block

 deterministic

 blocking or non-termination would hang you 

 the verifier does not peek into intermediate states

 atomic:

 translated to a series of actions

 executed step-by-step, but without interleaving

 it can make non-deterministic choices

 verifies sees intermediate states

14

Partial Order Reduction

 The validity of a property ϕ is often insensitive to the order in
which ‘independent’ actions are interleaved.

e.g. stutter invariant  (does not contain X) that only refers
to global variables, is insensitive to the relative order of
actions that only access local variables.

 Idea: if in some global state, a process P can execute only
actions updating local variables, always do these actions
first (so they will not be interleaved!)

 We can also do the same with actions that :
 receive from a queue, from which no other process receives

 send to a queue, to which no other process sends

15

Reduction Algorithms

 Partial Order Reduction

16

Results on Partial Order Reduction

This result is from Holzmann & Peled in 1994, on a Sparc-10 workstation with 128Mbyte of RAM. (about 40 mhz; so 1 mips??)
17

 Specifying LTL properties

 (Check out the Manual)

 SPIN then generates the Buchi automaton for this

LTL formula; called “Never Claim” in SPIN.

#define PinCritical crit[1]

#define QinCritical crit[2]

[]!(PinCritical && QinCritical)

18

Example of a Never Claim

To verify: <>[] p

SPIN generates this never-claim / Buchi of []<>p

never {

 init:

 if

 :: p  goto accept

 :: else  goto init

 fi;

 accept:

 skip; goto init ;

}
19

Neverclaim

 From SPIN perspective, a neverclaim is just another

process, but it is executed in “lock-step” :

 innitially, it is executed first, before the system does it

first step

 then, after each step of the system, we execute a step

from the neverclaim.

 Is used to express properties

 E.g. by writing assertions inside a neverclaim

 Or by using acceptance states

 If an NC reaches its final state (its final “}”)  violation

 used to match against finite executions.

20

You can also manually write your custom NC …

 never {

 accept : do :: (x==0) ; (x==1) od

 }

21

never {

 do

 :: assert (b) ; assert (!b)

 od

}

Expressing the value of b should be

alternating.

recognize an execution

where (x==0)(x==1)

holds alternatingly,

which would then be

considered as error.

Note: in LTL this can be expressed as:

 []((b Xb) /\ (b  Xb)

You can also manually write your custom NC …

22

never {

 do

 :: (x>0)  skip

 :: else  break

}

If x ever becomes 0, then this

would be a violation (because the

NC then reaches its end-state).

Example: distributed sorting

 Idea:

 Spec:

[0]

193
[1] 31

[2]

333

[3] 31

Network

Let P(i) swap values with

P(i+1), if they are in the

wrong order.

Eventually the values will be

sorted.

23

SPIN model

#define N 5

byte a[N] ;

proctype P(byte i) {

 byte tmp = 0 ;

 do

 :: d_step{ a[i]>a[i+1] ->

 tmp=a[i] ;

 a[i]=a[i+1] ;

 a[i+1]=tmp ;

 tmp=0 }

 od ;

}

Swap values, set tmp back to 0 to save state.

init {

 byte i ;

 do

 :: i<N ->

 if

 :: a[i]=0

 :: a[i]=1

 ...

 fi ; i++

 :: else -> break ;

 od ;

 i=0 ;

 do

 :: i< N - 1 -> run P(i) ; i++

 :: else -> run detect() ; break

 od

}

24

(let’s just assume locking a[i] and

a[i+1] atomically is reasonable.)

Expressing the spec

Eventually the values will be sorted.

But SPIN does not support quantification in its Expr!

 Introduce a global shadow var i, non-deterministically initialized

to : 0i<N-1. Then verify this instead :

 <>[] a[i]  a[i +1]

<>[] (i : 0  i < N-1 : a[i]  a[i +1]) With LTL:

25

Detecting “termination”

New spec: we want the processes themselves to know that the goal

(to sort values) has been acomplished.

proctype detect() {

 byte i ;

 timeout ->

 do

 :: i<N-1 -> assert (a[i]<=a[i+1])

 :: else -> break

 od

}

done = true

Extend P(i), such that when it sees

“done” is true, it will terminate.

Unfortunately, not good enough. The above solution uses “timeout” which in SPIN is actually implemented as a

mechanism to detect non-progress; in the actual system we now assume not to have this mechanism in the first place,

and hence have to implement it ourselves.

26

Detecting “termination”

proctype detect() {

 byte i ;

 i=0 ;

 do

 :: i<N-1 -> if

 :: a[i]>a[i+1] -> i=0

 :: else -> i++

 fi

 :: else -> done=true ; break

 od

}

Unfortunately, this doesn’t work

perfectly. Consider this sequence of

steps:

 [4, 5, 1]

 detect 0,1  ok

 swap 1,2

 [4, 1, 5]

 detect 1,2  ok

now “detect” concludes termination!

Can you find a solution for this??

Idea: let “detect” keep scanning the

array to check if it is sorted.

27

