
Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

Model Checking with SPIN

A Bit More about SPIN

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Content

 SPIN internal data structures

 SPIN result report

 Writing LTL formulas

 Containing state explosion

 Example

2

Acknowledgement: some slides are taken and adapted from Theo Ruys’s SPIN Tutorials.

Data structures involved in SPIN DFS

 Representation of a state.

 Stack for the DFS

 To remember where to backtrack in DFS

 It corresponds to the current “execution prefix” that is

being inspected used for reporting.

 Something to hold the set of visited states = “state

space”.

3

State

 Each (global) state of a system is a “product” of the states of its

processes.

 E.g. Suppose we have:

 One global var byte x

 Process P with byte y

 Process Q with byte z

 Each system state should describe:

 all these variables

 Program counter of each process

 Other SPIN predefined vars

 Represent each global state as a tuple … this tuple can be quite big.

4

The stack, optimization

 To save space SPIN does not literally keep a stack of

states (large) most of the time, states can be

replaced by the ID of the actions that produce them

(smaller)

 But, when you backtrack you need to know the state!

SPIN calculated the reverse/undo of every action. So,

knowing the current state is sufficient.

5

 State-space is stored with a hash table

The list of “visited states” is maintained by a Hash-table. So matching if a

state occurring in the table is fast!

Optimization: bit state hashing 6

Verifier’s output
assertion violated !((crit[0]&&crit[1])) (at depth 5) // computation depth

...

Warning: Search not completed

Full statespace search for:

 ...

 never-claim - (not selected)

 assertion violations +

 invalid endstates +

State-vector 20 byte, depth reached 7, errors: 1 // max. stack depth

 24 states, stored // states stored in hash table

 17 states, matched // states found re-revisited

 41 transitions (= stored+matched)

hash conflicts: 0 (resolved)

(max size 2^19 states)

2.542 memory usage (Mbyte)

7

Watch out for state explosion!

 Size of each state: > 12 bytes

 Number of possible states (232) 3 = 296

 Using byte (instead of int) brings this down to 50 MB

 Focus on the critical aspect of your model; abstract

from data when possible.

int x,y,z ;

P { do :: x++ od }

Q { do :: y++ od }

R { do :: x/=y z++ od }

8

Another source of explosion : concurrency
imposing a coarser grain atomicity

 more abstract, less error prone, but less parallelism

 executable if the guard statement is executable

 none of stmt-i should be blocking; or rather : if any of then blocks,

atomicity is lost

atomic { guard stmt_1; ... ; stmt_n }

 active proctype P { x++ ; (y>0) ; y-- ; x=y }

9

put in atomic ?

d_step sequences

 like an atomic, but must be deterministic and may not block anywhere

 atomic and d_step sequences are often used as a model reduction method,

to lower complexity of large models (improving tractability)

 No jump into the middle of a d_step

d_step { guard stmt_1; ... ; stmt_n }

d_step { /* reset array elements to 0 */

 i = 0;

 do

 :: i < N -> x[i] = 0; i++

 :: else -> break

 od;

 i = 0

}

10

execution without atomics or d_steps

11

execution with one atomic sequence

12

execution with a d_step sequence

13

atomic vs d_step

 d_step:

 executed as one block

 deterministic

 blocking or non-termination would hang you

 the verifier does not peek into intermediate states

 atomic:

 translated to a series of actions

 executed step-by-step, but without interleaving

 it can make non-deterministic choices

 verifies sees intermediate states

14

Partial Order Reduction

 The validity of a property ϕ is often insensitive to the order in
which ‘independent’ actions are interleaved.

e.g. stutter invariant (does not contain X) that only refers
to global variables, is insensitive to the relative order of
actions that only access local variables.

 Idea: if in some global state, a process P can execute only
actions updating local variables, always do these actions
first (so they will not be interleaved!)

 We can also do the same with actions that :
 receive from a queue, from which no other process receives

 send to a queue, to which no other process sends

15

Reduction Algorithms

 Partial Order Reduction

16

Results on Partial Order Reduction

This result is from Holzmann & Peled in 1994, on a Sparc-10 workstation with 128Mbyte of RAM. (about 40 mhz; so 1 mips??)
17

 Specifying LTL properties

 (Check out the Manual)

 SPIN then generates the Buchi automaton for this

LTL formula; called “Never Claim” in SPIN.

#define PinCritical crit[1]

#define QinCritical crit[2]

[]!(PinCritical && QinCritical)

18

Example of a Never Claim

To verify: <>[] p

SPIN generates this never-claim / Buchi of []<>p

never {

 init:

 if

 :: p goto accept

 :: else goto init

 fi;

 accept:

 skip; goto init ;

}
19

Neverclaim

 From SPIN perspective, a neverclaim is just another

process, but it is executed in “lock-step” :

 innitially, it is executed first, before the system does it

first step

 then, after each step of the system, we execute a step

from the neverclaim.

 Is used to express properties

 E.g. by writing assertions inside a neverclaim

 Or by using acceptance states

 If an NC reaches its final state (its final “}”) violation

 used to match against finite executions.

20

You can also manually write your custom NC …

 never {

 accept : do :: (x==0) ; (x==1) od

 }

21

never {

 do

 :: assert (b) ; assert (!b)

 od

}

Expressing the value of b should be

alternating.

recognize an execution

where (x==0)(x==1)

holds alternatingly,

which would then be

considered as error.

Note: in LTL this can be expressed as:

 []((b Xb) /\ (b Xb)

You can also manually write your custom NC …

22

never {

 do

 :: (x>0) skip

 :: else break

}

If x ever becomes 0, then this

would be a violation (because the

NC then reaches its end-state).

Example: distributed sorting

 Idea:

 Spec:

[0]

193
[1] 31

[2]

333

[3] 31

Network

Let P(i) swap values with

P(i+1), if they are in the

wrong order.

Eventually the values will be

sorted.

23

SPIN model

#define N 5

byte a[N] ;

proctype P(byte i) {

 byte tmp = 0 ;

 do

 :: d_step{ a[i]>a[i+1] ->

 tmp=a[i] ;

 a[i]=a[i+1] ;

 a[i+1]=tmp ;

 tmp=0 }

 od ;

}

Swap values, set tmp back to 0 to save state.

init {

 byte i ;

 do

 :: i<N ->

 if

 :: a[i]=0

 :: a[i]=1

 ...

 fi ; i++

 :: else -> break ;

 od ;

 i=0 ;

 do

 :: i< N - 1 -> run P(i) ; i++

 :: else -> run detect() ; break

 od

}

24

(let’s just assume locking a[i] and

a[i+1] atomically is reasonable.)

Expressing the spec

Eventually the values will be sorted.

But SPIN does not support quantification in its Expr!

 Introduce a global shadow var i, non-deterministically initialized

to : 0i<N-1. Then verify this instead :

 <>[] a[i] a[i +1]

<>[] (i : 0 i < N-1 : a[i] a[i +1]) With LTL:

25

Detecting “termination”

New spec: we want the processes themselves to know that the goal

(to sort values) has been acomplished.

proctype detect() {

 byte i ;

 timeout ->

 do

 :: i<N-1 -> assert (a[i]<=a[i+1])

 :: else -> break

 od

}

done = true

Extend P(i), such that when it sees

“done” is true, it will terminate.

Unfortunately, not good enough. The above solution uses “timeout” which in SPIN is actually implemented as a

mechanism to detect non-progress; in the actual system we now assume not to have this mechanism in the first place,

and hence have to implement it ourselves.

26

Detecting “termination”

proctype detect() {

 byte i ;

 i=0 ;

 do

 :: i<N-1 -> if

 :: a[i]>a[i+1] -> i=0

 :: else -> i++

 fi

 :: else -> done=true ; break

 od

}

Unfortunately, this doesn’t work

perfectly. Consider this sequence of

steps:

 [4, 5, 1]

 detect 0,1 ok

 swap 1,2

 [4, 1, 5]

 detect 1,2 ok

now “detect” concludes termination!

Can you find a solution for this??

Idea: let “detect” keep scanning the

array to check if it is sorted.

27

