A Bit More about SPIN

Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Content

SPIN internal data structures
SPIN result report

Writing LTL formulas
Containing state explosion
Example

Acknowledgement: some slides are taken and adapted from Theo Ruys’s SPIN Tutorials.

&

Data structures involved in SPIN DFS

Representation of a state.

Stack for the DFS
e To remember where to backtrack in DFS

e |t corresponds to the current “execution prefix” that is
being inspected - used for reporting.

Something to hold the set of visited states = “state
space”.

4 ™
State

Each (global) state of a system is a “product” of the states of its
processes.

E.g. Suppose we have:

e One global var byte x

e Process P with byte y

* Process Q with byte z

Each system state should describe:
* all these variables

* Program counter of each process
e Other SPIN predefined vars

Represent each global state as a tuple ... this tuple can be quite big.

& /

e
The stack, optimization

To save space SPIN does not literally keep a stack of
states (large) > most of the time, states can be

replaced by the ID of the actions that produce them
(smaller)

But, when you backtrack you need to know the state!

SPIN calculated the reverse/undo of every action. So,
knowing the current state is sufficient.

/ ™
State-space is stored with a hash table

The list of “visited states” is maintained by a Hash-table. So matching if a
state occurring in the table is fast!

Default method

0 addresses to
linked-list of states

LY

s >Chash(s)

computes address/index
in the hash table

* all states are explicitly stored
* lookup is fast due to hash function
* memory needed:

n*m bytes + hash table

h-1

hash table

Optimization: bit state hashing ©

e
Verifier’'s output

assertion violated !((crit[0]&&crit[1])) (at depth 5)

Warning: Search not completed
Full statespace search for:

never-claim - (not selected)
assertion violations +
invalid endstates +

State-vector 20 byte, depth reached 7, errors: 1
24 states, stored
17 states, matched
41 transitions (= stored+matched)

hash conflicts: O (resolved)
(max size 219 states)

2.542 memory usage (Mbyte)

e
Watch out for state explosion!

P {do: x++o0d}
Q {do:y++od}
R {do: x/=y > z++ 0d}

Size of each state: > 12 bytes
Number of possible states ~ (23%)3 = 2%

Using byte (instead of int) brings this down to 50 MB

Focus on the critical aspect of your model; abstract
from data when possible.

™

Another source of explosion : concurrency
Imposing a coarser grain atomicity

atomic { guard 2 stmt_1; ...; stmt_n}

active proctype P { x++ ; (y>0) ; y--; x=y }
\ J
|
put in atomic ?

more abstract, less error prone, but less parallelism
executable if the guard statement is executable

none of stmt-i should be blocking; or rather : if any of then blocks,
atomicity is lost

e

d_step sequences

d_step { guard 2 stmt_1; ... ; stmt_n}

d_step {
i =0;
do
i <N->x[i]=0;it++
:: else -> break

i=0
}

like an atomic, but must be deterministic and may not block anywhere

atomic and d_step sequences are often used as a model reduction method,
to lower complexity of large models (improving tractability)

No jump into the middle of a d_step

/
execution without atomics or d_steps

active proctype P1() { tla; tilb } execution

active proctype P2() { t2a; t2b } without atomics or d_steps

execution with
full interleaving

/

execution with one atomic sequence

active proctype P1() { atomic { tla; tlb } } execution with one
active proctype P2() { t2a; t2b } atomic sequence

P2 can be interrupted, but not P1

P1 could make alternate choices at
the intermediate states (e.g., in if
or do-statements)

\

s
execution with a d_step sequence

active proctype P1() { d_step {tla; tilb} } execution with a
active proctype P2() { t2a; t2b } d_step sequence

PL P2 0.0,
O O D
2 D . @
0 @ D &=

t2b @ t2b @

o e t2b end
end @ @
end
no intermediate states are created:
faster, smaller graph, but no non-

determinism possible inside d_step
sequence itself

e
atomic vs d_step

d_step:

e executed as one block

e deterministic

 blocking or non-termination would hang you ©

e the verifier does not peek into intermediate states

atomic:

e translated to a series of actions

e executed step-by-step, but without interleaving
e it can make non-deterministic choices

o verifies sees intermediate states

4 ™
Partial Order Reduction

The validity of a property ¢ is often insensitive to the order in
which ‘independent’ actions are interleaved.

e.g. stutter invariant ¢ (does not contain X) that only refers
to global variables, is insensitive to the relative order of
actions that only access local variables.

ldea: if in some global state, a process P can execute only
actions updating local variables, always do these actions
first (so they will not be interleaved!)

We can also do the same with actions that :
e receive from a queue, from which no other process receives
e send to a queue, to which no other process sends

Reduction Algorithms

Partial Order Reduction

Suppose the statements
of P1 and P2 are all local. tla

e

&

Results on Partial Order Reduction

Protocol Algorithm States Transitions | Time(sec.) Memory (Mb)
Best-Case Non-Reduced 100,001 450,002 13.2 4.3
Static Reduction 47 47 (<0.1) 1.0
Dynamic Reduction 47 47 0.1 14
Worst-Case Non-Reduced 100,001 450,002 14.5 5.0
Static Reduction 100,001 450,002 16.7 5.1
Dynamic Reduction 100,001 450,002 84.5 5.3
Tpc Non-Reduced 3918286 11.762.426 630.6 268.4
Static Reduction 391,534 466,753 30.6 26.2
Dynamic Reduction 267,204 295,395 131.4 18.9
Snoopy Non-Reduced 91,920 305,460 14.4 11.5
Static Reduction 16,279 23,532 1.7 3.2
Dynamic Reduction 7.158 8.459 6.8 2.6
Ptip Non-Reduced 417,321 1,244 865 73.2 62.3
Static Reduction 53.244 67,901 6.8 9.3
Dynamic Reduction 125,718 163,459 105.5 20.6
Leader Non-Reduced 45,885 185,032 8.1 9.6
Static Reduction 79 79 0.1 1.1
Dynamic Reduction 79 79 0.2 14

™

This result is from Holzmann & Peled in 1994, on a Sparc-10 workstation with 128Mbyte of RAM. (about 40 mhz; so 1 mips??) /

e

Specifying LTL properties

(Check out the Manual)

#define PinCritical crit[1]
#define QinCiritical crit[2]

[]'(PinCritical && QinCritical)

SPIN then generates the Buchi automaton for this
LTL formula; called “Never Claim” in SPIN.

e

Example of a Never Claim

To verify: <>[] p
SPIN generates this never-claim / Buchi of []<>—p

never {

Init:
if
.. —p — goto accept
.. else —» goto Init

fi;
accept:
skip; goto Init ;

&

Neverclaim

From SPIN perspective, a neverclaim is just another
process, but it is executed in “lock-step” .

e innitially, it is executed first, before the system does it
first step

e then, after each step of the system, we execute a step
from the neverclaim.

Is used to express properties
e E.g. by writing assertions inside a neverclaim
e Or by using acceptance states

e If an NC reaches its final state (its final “}") = violation
—> used to match against finite executions.

e

You can also manually write your custom NC ...

never { Expressing the value of b should be
do alternating.
.. assert (b) ; assert (Ib) Note: in LTL this can be expressed as:
\ od [((b >X=b) A (—b — Xb)
recognize an execution
never { where (x==0)(x==1)
accept : do :: (x==0); (x==1) od holds alternatingly,
} which would then be
considered as error.

e

You can also manually write your custom NC ...

never {
do
.. (x>0) — skip
.. else — break

}

If X ever becomes 0, then this
would be a violation (because the
NC then reaches its end-state).

e

=
O
SEES
&

Example: distributed sorting

ldea:

Let P(i) swap values with
P(i+1), if they are in the
wrong order.

Spec:

Eventually the values will be
sorted.

$ 3

&

e
SPIN model

#define N 5
byte a[N] ;

proctype P(byte i) {
byte tmp =0 ;
do
.. d_step{ a[i]>a[i+1] ->
tmp=all] ;
ali]=ali+1] ;
a[i+1]=tmp ;
tmp=0 }
od;
}

init {
byte i ;

do

<N ->
if

- a[il=0
- afi]=1

fi

. else -> break ;

od :

(let’s just assume locking afi] and
a[i+1] atomically is reasonable.)

4+

1=0 :

do

- else
od

1<K N-1->run P()

s+t
-> run detect() ; brea

}

Swap values, set tmp back to 0 to save state.

e

Expressing the spec

Eventually the values will be sorted.

With LTL: |<>[] (¥i: 0<i<N-1: ai] <a[i +1])

But SPIN does not support quantification in its Expr!

Introduce a global shadow var 1, non-deterministically initialized
to : O<i<N-1. Then verify this instead :

<>[] a[i] < a[i +1]

e

&

Detecting “termination”

New spec: we want the processes themselves to know that the goal
(to sort values) has been acomplished.

proctype detect() {
byte i ;
timeout ->
do
.. IKN-1 -> assert (a[il<=a[i+1])

' eISW
od Extend P(i), such that when it sees

} “done’” is true, it will terminate.

_—— done = true

Unfortunately, not good enough. The above solution uses “timeout” which in SPIN is actually implemented as a
mechanism to detect non-progress; in the actual system we now assume not to have this mechanism in the first place,
and hence have to implement it ourselves.

: Detecting “termination”

Idea: let “detect” keep scanning the ~ Unfortunately, this doesn’t work

array to check if it is sorted. perfectly. Consider this sequence of
steps:

proctype detect() {
byte i ; ‘H
=i
Ido detect 0,1 = ok
o I<N-1 -> if
.o ali]=ali+1] -> i=0

- else -> |++
il [4,1,5;

fi
:: else -> done=true ; break
d_ detect 1,2 = ok

swap 1,2

}

now “detect” concludes termination!

Can you find a solution for this??

