
Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

Hoare Logic

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Hoare Logic

 Is a simple and intuitive logic to prove the correctness

of a sequential imperative programs.

 Programs are specified by “Hoare triples”, like :

 partial correctness or total correctness interpretation.

{ #S>0 } getMax(S) { return  S /\ (x: xS : return≥x) }

2

Examples of the proof rules

 You can weaken a post-condition :

 Analogously, you can weaken pre-condition.

 Hoare triples are conjunctive and disjunctive.

 { P } S { Q } , Q  R

 { P } S { R }

3

Dealing with seq



Require you to come up with Q…. we’ll get back to

this.

{ P } S1 { Q } , { Q } S2 { R }

{ P } S1 ; S2 { R }

4

IF-rule

 Deterministic

 Non-deterministic if

5

{P /\ g } S1 {Q} , {P /\ g} S2 {Q}

--

{ P } if g then S1 else S2 { Q }

{P /\ g } S1 {Q} , {P /\ h} S2 {Q} , P  g \/ h

--

 { P } if g  S1

 [] h  S2

 fi { Q }

This version does not

allow a situation where

none of the guards is

true. We can drop this

restriction, but first you

need to define what the

statement should do in

that case. E.g. if you

say that it will then just

do a skip, then we need

to replace the third

condition with P /\ ~g /\

~h ==> Q.

Dealing with assignment

 By introducing fresh variable representing the new

value of x :

 Or shorter:

 P /\ x’=e  Q[x’/x]

 { P } x:=e { Q }

 P  Q[e/x]

 { P } x:=e { Q }

6

Loop

 A loop is correct if you can find an “invariant” :

 E.g. a trivial loop:

7

P  I

{ g /\ I } S { I }

I /\ g  Q

--

 { P } while g do S { Q }

 { i≥0 } while i>0 do i=i-1 { i=0 }

Loop, few more examples

8

 { true } i:=0; while i<#a do { a[i]=3 ; i++ }

{ all elements of a is 3 }

 { i>0 /\ even(i) } while i<N do { i = i*2 } { even(i) /\ i>N }

assuming N0

To note: invariant can be used as abstraction!

Loop, few more examples

 A program to check if an array b contains ‘true’ :

9

{ true }

i = 0 ;

found = false ;

while i<#b /\ found do { found=b[i] ; i=i+1}

{ found = ( j: 0≤j<#b: b[j]) }

Rule for proving termination (of loop)

 Extend the previous rule to:

 P  I // setting up I

 { g /\ I } S { I } // invariance

 I /\ g  Q // exit cond

 { I /\ g } C:=m; S { m<C } // m decreasing

 I /\ g  m > 0 // m bounded below

 --

 { P } while g do S { Q }

 10

Example

 Bag of red and blue candy. Blues are delicious!

Mom: “Bob, you can take one everyday. When it’s empty

we’ll buy a new bag.”

Bob: “Yay!”

Mom: ”Oh, .. if you take a blue, put two new reds in the

bag.”

Bob: “But mom … the bag then will never be empty!”

Mom: “Oh it will be.”

 Prove that any sequence that Bob’s actions will terminate.

11

Example

 We model Bob’s actions with a non-deterministic

program:

 Sufficient to prove the correctness of this model.

{ r ≥0 /\ b ≥0 }

while r+b>0 do {

 if r>0  r:=r-1

 [] b>0  { b:=b-1; r:=r+2 }

 fi

 }

{ r=0 /\ b=0 }

non-deterministic if …

12

Recall the intermediate assertion problem in

SEQ …

 Try to come up with an algorithm :

 pre : Statement  Predicate  Predicate

that given a statement S and a post-condition Q

constructs a “consistent” pre-condition from which S

ends up in Q.

 Would give you a way to calculate Q in the SEQ-rule.

1

3

Using suf-pre …

 That is, we can have this inference rule :

 Can be incomplete. It may give you a pre-cond that is

too strong for your actual pre-cond to imply.

 Complete: ‘weakest pre-condition’ (wp)

 1

4

P  pre S1 (pre S2 R)

{ P } S1 ; S2 { R }

Weakest pre-condition

 Can be formally defined/characterized by:

 wp Stmt Q = { s | executing Stmt in s

 ends up in Q }

 { P } Stmt { Q } = P  wp Stmt Q

 But these are not constructive definitions.

15

WP

 wp (x:=e) Q = Q[e/x]

 wp (S1 ; S2) Q = wp S1 (wp S2 Q)

 wp (if g then S1 else S2) Q

 =

 (g  wp S1 Q) /\ (g  wp S2 Q)

 No constructive definition for loop nor recursion!

16

Example

 Prove:

 {* xy *} tmp:= x ; x:=y ; y:=tmp {* xy *}

 We do this with the help of intermediate assertions:

 {* xy *} tmp:= x { ? } ; x:=y { ? } ; y:=tmp {* xy *}

 Use the strategy “calculate sufficient pre-condition” to

fill-in the ? assertions.

17

Abstract model, overview

 Abstract model of a program S: abstractly models the

effect of a program.

 To convince yourself that H.L. is sound, in particular

when you need to extend H.L.

 We will just look at a simplistic model, for the purpose

of illustration.

 The elements:

 Models of: state, expression, and predicate

 Model of statement/program

 Semantic of Hoare triple in terms of those models

18

Model of states

 Many ways to model states, with pros/cons.

 E.g. using record:

 { x#0 , y#9 }

 Or, with a function VarName  Value

 In any case, those models are abstract ! Actual state

of P may consists of the value of CPU registers,

stacks etc.

 Let  denotes the space of all possible states of S.

19

Simplistic model of expression & predicate

 An expression is modeled by a function   val

 We do not take exception and non-termination of the

expr into account

 A (state) predicate is an expression that returns a

bool; so it is a function   bool

e.g.

 x>y is modeled by (s. s.x > s.y)

 |- P means (s: s : P s)

20

Simplistic model of a program

 We can model a program T by a function that takes

an initial state, and returns the final state:

 T :   

 We can only model deterministic programs in this

way.

21

Simplistic model of a program

 Instead, we’ll model a program by a function :

 T :   pow()

such that for any state s, T s gives us the set of all

possible end-states if T is executed in s.

 We will assume T terminates.

22

Specification

 Now we have enough to define what a specification

means:

 { P } Stmt { Q }

 =

 (s:: P s  (t : tStmt s  Q t))

We assume S terminates (so, we use the partial

correctness interpretation of Hoare triple).

23

How to proceed to prove the soundness of

the logic?

 You need to provide the semantic of every

programming constructs (assignment, if-else, loop,

etc) in terms of our abstract semantic.

 Then you can prove all the inference rules you saw

before.

24

Example, rule of SEQ

 If f : A  pow B, we lift it to pow A, overloading :

 f V = (x : xV : f x)

 Semantic of “;” (S1 ; S2) s = S2 (S1 s)

 From this we have enough formalism to prove :

{ P } S1 { Q } , { Q } S2 { R }

{ P } S1 ; S2 { R }

25

Refining the semantic

 How to express non-termination  e.g. by modeling

a program by:

 Stmt :   pow()

where  =  {}, and  represents non-termination.

Furthermore, Stmt  = {}.

 Specification {P} Stmt {Q} now means:

26

(s: s: P s   Stmt s

 and Stmt s  

 and (t : tStmt s  Q t))

Refining the semantic

 How to express exception and abort  by modeling a

state a pair (s,flag) where s is a record describing the

values of our variables as before, and flag is {N,E,A}

indicating whether the state is normal, exceptional, or

aborted.

 Post-condition is now a triple (QN,QE,QA)

 A specification {P} Stmt {QN,QE,QA } now means:

27

(s:: P s  (t,f : (t,f) Stmt (s,N)

 

 if f=N then QN t

 else if f=E then QE t

 else QA t))

