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Hoare Logic 

 Is a simple and intuitive logic to prove the correctness 

of a sequential imperative programs. 

 

 Programs are specified by “Hoare triples”, like : 

 

  

 

 

 

 partial correctness or total correctness interpretation. 

 

{ #S>0 }   getMax(S)    { return  S  /\  (x: xS : return≥x) } 
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Examples of the proof rules 

 You can weaken a post-condition : 

 

 

 

 

 

 Analogously, you can weaken pre-condition. 

 Hoare triples are conjunctive and disjunctive. 

 { P }   S   { Q }    ,    Q  R 

--------------------------------------- 

 { P }  S  { R } 
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Dealing with seq 

  

 

 

 

 

 

 

Require you to come up with Q….  we’ll get back to 

this. 

 

 

 

 

{ P }   S1   { Q }    ,   { Q }   S2   { R } 

------------------------------------------------------- 

{ P }   S1 ; S2   { R }  
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IF-rule 

 Deterministic 

 

 

 

 

 Non-deterministic if 
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{P /\ g }  S1  {Q}   ,   {P /\ g}  S2  {Q} 

---------------------------------------------------------- 

{ P }  if  g  then  S1  else  S2  { Q } 

{P /\ g }  S1  {Q}   ,   {P /\ h}  S2  {Q}   ,  P  g \/ h 

------------------------------------------------------------------ 

                       { P }  if   g      S1   

                                [ ]  h       S2   

                                fi  { Q } 

This version does not 

allow a situation where 

none of the guards is 

true. We can drop this 

restriction, but first you 

need to define what the 

statement should do in 

that case. E.g. if you 

say that it will then just 

do a skip, then we need 

to replace the third 

condition with P /\ ~g /\ 

~h ==>  Q. 



Dealing with assignment  

 By introducing fresh variable representing the new 

value of x : 

 

 

 

 

 Or shorter: 

 

 

 

 P  /\  x’=e    Q[x’/x] 

--------------------------------------- 

 { P }  x:=e  { Q } 

 P    Q[e/x] 

--------------------------------------- 

 { P }  x:=e  { Q } 
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Loop 

 A loop is correct if you can find an “invariant” : 

 

 

 

 

 

 

 E.g. a trivial loop: 
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P  I 

{ g  /\  I }    S    { I } 

I  /\ g    Q 

---------------------------------------- 

 { P }   while  g  do   S    { Q } 

 { i≥0 }     while i>0  do  i=i-1   { i=0 } 



Loop, few more examples 
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 { true }    i:=0; while i<#a  do  { a[i]=3 ; i++ }     

 

{ all elements of a is 3 } 

 { i>0 /\ even(i) }     while i<N  do  { i = i*2 }    { even(i) /\ i>N } 

assuming N0 

To note: invariant can be used as abstraction! 



Loop, few more examples 

 A program to check if an array b contains ‘true’ : 
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{ true } 

    

i = 0 ;    

found = false ; 

while i<#b /\ found  do  { found=b[i] ; i=i+1}   

 

{ found    =    ( j: 0≤j<#b: b[j]) } 



Rule for proving termination (of loop) 

 Extend the previous rule to: 

 

 P  I     // setting up I  

 { g  /\  I }    S    {  I  }  // invariance 

 I  /\ g    Q    // exit cond 

  

 { I /\ g }    C:=m; S   { m<C }  // m decreasing  

 I /\ g   m > 0   //  m bounded below  

  

 ---------------------------------------- 

  

 { P }   while  g  do   S    { Q } 
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Example 

 Bag of red and blue candy. Blues are delicious! 

 

Mom:  “Bob, you can take one everyday. When it’s empty 

we’ll buy a new bag.” 

 

Bob: “Yay!” 

 

Mom: ”Oh, .. if you take a blue, put two new reds in the 

bag.” 

 

Bob: “But mom … the bag then will never be empty!” 

 

Mom: “Oh it will be.” 

 Prove that any sequence that Bob’s actions will terminate. 
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Example 

 We model Bob’s actions with a non-deterministic 

program: 

 

 

 

 

 

 

 

 

 Sufficient to prove the correctness of this model. 

{ r ≥0  /\  b ≥0 }  

 

while  r+b>0  do {  

   if  r>0    r:=r-1  

   []  b>0  { b:=b-1;  r:=r+2 } 

   fi 

   } 

 

{ r=0   /\  b=0 } 

non-deterministic if … 
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Recall the intermediate assertion problem in 

SEQ … 

 Try to come up with an algorithm : 

 

 pre  : Statement  Predicate  Predicate 

 

that given a statement S and a post-condition Q 

constructs a “consistent” pre-condition from which S 

ends up in Q. 

 

 Would give you a way to calculate Q in the SEQ-rule. 

 

1
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Using suf-pre … 

 That is, we can have this inference rule : 

 

 

 

 

 

 Can be incomplete. It may give you a pre-cond that is 

too strong for your actual pre-cond to imply. 

 

  Complete: ‘weakest pre-condition’  (wp)  

 1
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P         pre  S1   (pre  S2  R) 

------------------------------------------------------- 

{ P }   S1 ; S2   { R }  



Weakest pre-condition 

 Can be formally defined/characterized by: 

 

 wp Stmt Q   =   {  s  | executing Stmt in s  

                                         ends up in Q } 

 

  

 { P }  Stmt  { Q }     =     P   wp Stmt Q 

 

 

 But these are not constructive definitions. 

 

 

 
15 



WP 

 wp   (x:=e)   Q          =            Q[e/x] 

 

 wp  (S1 ; S2)   Q       =             wp  S1  (wp  S2  Q) 

 

 wp  (if  g  then S1 else S2)   Q 

 = 

 (g    wp S1 Q)   /\    (g    wp S2  Q) 

 

 No constructive definition for loop nor recursion! 
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Example 

 Prove: 

 

 {* xy *}    tmp:= x  ; x:=y ; y:=tmp   {* xy *}  

 

 We do this with the help of  intermediate assertions: 

 

 {* xy *}    tmp:= x  { ? } ; x:=y { ? } ; y:=tmp   {* xy *}  

 

 Use the strategy “calculate sufficient pre-condition” to 

fill-in the ? assertions. 
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Abstract model, overview 

 Abstract model of a program S: abstractly models the 

effect of a program. 

 To convince yourself that H.L. is sound, in particular 

when you need to extend H.L. 

 We will just look at a simplistic model, for the purpose 

of illustration. 

 The elements: 

 Models of:  state, expression, and predicate 

 Model of statement/program 

 Semantic of Hoare triple in terms of those models 
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Model of states 

 Many ways to model states, with pros/cons. 

 E.g. using record: 

 

 {  x#0  ,  y#9 }  

 

 Or, with a function VarName  Value 

 In any case, those models are abstract ! Actual state 

of P may consists of the value of CPU registers, 

stacks etc. 

 Let  denotes the space of all possible states of S. 
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Simplistic model of expression & predicate 

 An expression is modeled by a function    val 

 We do not take exception and non-termination of the 

expr into account 

 A (state) predicate is an expression that returns a 

bool; so it is a function   bool 

e.g.  

 

 x>y    is modeled by     (s.  s.x  > s.y)  

  

 |-  P    means   (s: s  :  P s) 
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Simplistic model of a program 

 We can model a program T by a function that takes 

an initial state, and returns the final state: 

 

  

 T  :      

 

 

 We can only model deterministic programs in this 

way. 
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Simplistic model of a program 

 Instead, we’ll model a program by a function : 

 

 T  :    pow() 

 

 

such that for any state s,  T s gives us the set of all 

possible end-states if T is executed in s.  

 

 We will assume T terminates.  
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Specification 

 Now we have enough to define what a specification 

means: 

 

 { P }   Stmt   {  Q  }     

       =      

      (s::  P s   (t : tStmt s  Q t))  

 

We assume S terminates (so, we use the partial 

correctness interpretation of Hoare triple). 
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How to proceed to prove the soundness of 

the logic? 

 You need to provide the semantic of every 

programming constructs (assignment, if-else, loop, 

etc) in terms of our abstract semantic. 

 

 Then you can prove all the inference rules you saw 

before. 
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Example, rule of SEQ 

 If  f : A  pow B, we lift it to pow A, overloading : 

 

 f  V  =  (x :  xV : f x) 

 

 Semantic of  “;”        (S1 ; S2)  s    =    S2 (S1 s) 

 

 From this we have enough formalism to prove :  

{ P }   S1   { Q }    ,   { Q }   S2   { R } 

------------------------------------------------------- 

{ P }   S1 ; S2   { R }  
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Refining the semantic 

 How to express non-termination   e.g. by modeling 

a program by: 

 

 Stmt :    pow() 

 

where  =  {}, and  represents non-termination. 

Furthermore, Stmt  = {}.  

 Specification {P} Stmt {Q} now means: 

26 

(s: s:  P s    Stmt s 

                              and Stmt s   

                              and  (t : tStmt s  Q t)    )  



Refining the semantic 

 How to express exception and abort  by modeling a 

state a pair (s,flag) where s is a record describing the 

values of our variables as before, and flag is {N,E,A} 

indicating whether the state is normal, exceptional, or 

aborted. 

 Post-condition is now a triple (QN,QE,QA) 

 A specification {P} Stmt {QN,QE,QA } now means: 
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(s::  P s   (t,f : (t,f ) Stmt (s,N)  

                                   

                                 if         f=N   then   QN t 

                                 else if  f=E   then   QE t 

                                 else                         QA t  )) 


