
Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

ESC/Java Approach

mailto:wishnu@cs.uu.nl

ESC/Java

 Extended Static Checker for Java  an

implementation of Hoare Logic.

 Semi-automatic  theorem prover back-end.

It is not intended to verify complex functional

specification. Instead, the aim is to make your static

checking more powerful.

 Spec# is something similar, but for C#. The base-

language is called Boogie  reusable core.

2

3

1: class Bag {

2: int[] a;

3: int n;

4:

5: Bag (int[] input) {

6: n = input.length;

7: a = new int[n];

8: System.arraycopy(input, 0, a, 0, n);

9: }

10:

11: int extractMin() {

12: int m = Integer.MAX_VALUE;

13: int mindex = 0;

14: for (int i = 1; i <= n; i++) {

15: if (a[i] < m) {

16: mindex = i;

17: m = a[i];

18: }

19: }

20: n--;

21: a[mindex] = a[n];

22: return m;

23: }

24: }

Possible null deref.

Index possibly too large

Index possibly negative

/* @ non_null */

//@ requires n  1

// @ invariant 0  n & n  a.length

Still persist despite the inv.

 real bug

4

Architecture ESC/Java

Java + JML Hoare logic
(WP/SP-alg)

P  P’

Hoare Logic GCL

Implementing the Hoare

logic to work directly on

Java is complex and error

prone; but in theory you’ll

get better error messages.

ESC/Java first render

Java to a much simpler

lang. GCL. The Hoare

logic operates on GCL.
5

In principle this core is reusable. Alternatively, you can use

the Boogie core.

Guarded Command Language (GCL)

 cmd 
 var = expr
| skip
| raise // throw an exception
| assert expr
| assume expr
| var variable+ in cmd end // locvar with scope
| cmd ; cmd
| cmd ! cmd // try-catch
| cmd [] cmd // non-determ. choice

 expr : formula or term from untyped first-order pred.
Logic

 Also of the form Label x e  to tag e with feedback
information

 Data type : bool, int, infinite arrays

6

Non-termination, Abortion, Exception

 A state of an a GCL program has an additional flag:

 Normal

 Exceptional

This is set by raise, and unset upon entering the

handler in C!D.

 Error

This is set by violating assert; cannot be unset.

7

We first extend “post-condition”

 ‘post-condition’ is now a triple :

 (N , X , W)

These are predicates,

 N : post-cond if C terminates in a normal state

 X : post-cond if C terminates in an exceptional state

 W : post-cond if C terminates in an error state.

 Example:

{ x>0 } assert i>0 ; a[i]:=x { a[i]>0, false, i≤0 /\ x>0 }

8

The logic is based on pre-algorihm

 pre = “sufficient pre-condition”

But we also see it as a predicate transformation

algorithm:

 pre : Statement  Predicate  Predicate

such that:

{ pre S Q } S { Q } is always valid.

9

Variations of the concept “pre”

 wp (weakest pre-condition)

Is a predicate transformer that constructs the weakest

pre-condition such that S terminates in Q.

 wlp (weakest liberal pre-condition)

As wp, except that it does not care whether or not S

should terminate.

 We will now give you the explicit definition of wlp for

GCL… 10

WLP

 { ? } skip { x=0, y=0, z=0 }

 { ? } x:=e { x=0, y=1, z=2 }

evaluating e is assumed not to abort (as in uPL).

wlp skip (N,_,_) = N

wlp (x = e) (N,_,_) = N[e/x]

11

WLP

 { ? } raise { x=0, y=0, z=0 }

 { ? } assert P { x=0, y=0, z=0 }

 { ? } assume P { x=0, y=0, z=0 }

wlp raise (_,X,_) = X

wlp (assert P) (N,_,X) = (P /\ N) \/ (P /\ X)

wlp (assume P) (N,_,_) = P  N
12

How Esc/Java uses these …

 u = v.x // line 10

 First insert :

 check NullDeref@10 , v != null ;
 u = v.x

 Then desugar “check”, e.g. to (useful for error reporting!):

 assert (Label NullDeref@10 v!=null) ; // treat as error
 u = v.x

 Or to :

 assume (v!=null) ; // pretend it’s ok
 u = v.x

This would require that v is not null.

13

WLP, Composite Structures

 C [] D non-deterministically chooses C or D.

 { ? } C [] D { N, X, W }

{ P1 } C { N, X, W }

{ P2 } D { N, X, W }

--

wlp (C [] D) (N,X,W)

 = wlp C (N,X,W) /\ wlp D (N,X,W)

{ P1 /\ P2 } C [] D { N, X, W }

14

Traditional if-then

 if g then S is just if g then S else skip

 if g then S else T can be encoded as follows:

 assume g ; S

 []

 assume g ; T

15

WLP, Composite Structures

 { ? } C ; { M } D { x=0, y=0, z=0 }

{ P } C { M, X, W }

{M } D { N, X, W }

--

{ P } C;D { N, X, W }

wlp (C ; D) (N,X,W)

 = wlp C (wlp D (N,X,W) , X , W)
16

WLP, Composite Structures

 C ! D executes C, if it throws an exception it then

jumps to the handler D.

 { ? } C ! { M } D { N, X, W }

{ P } C { N, M, W }

{ M } D { N, X, W }

--

{ P } C!D { N, X, W }

wlp (C ! D) (N,X,W)

 = wlp C (N , wlp D (N,X,W) , W) 17

Local Block

 var x in C end

Introduce a local variable x, uninitialized  can be of

any value. Any x in C now binds to this x.

 Let’s do this in ordinary Hoare logic first:

 { ? } var x in assume x>0 ; y:=x end { y>z /\

x=0 }



18

wlp (var x’ in C end) Q = (x’:: wlp C Q)

(assuming fresh x’… else you need to apply subst on Q to protect refrence to x’ there, then reverse the

substituton again as you are exiting the block)

Back in ESC/Java logic

 Assume fresh local-vars:

 { ? } var x’ in C end { N, X, W }

wlp (var x’ in C end) (N,X,W)

 =

(x’:: wlp C (N,X,W))

19

How to handle program call

 You will have to inline it. Issue: how to handle

recursion?  we’ll not go into this.

 If a specification is available:

 { x0 } P(x) { return2 = x } // non-deterministic!

we can replace z := call P(e) with :

assert e0 ; var ret in { assume ret2 = e ; z := ret }

 This assumes x is passed-by-value, and P does not

modify a global variable. Else the needed logic

becomes quite complicated. 20

Handling loop

 To handle a loop, Hoare logic requires you to come up

with an invariant .

 Option 1 : manually annotate each loop with an invariant.

 Option 2 : try to infer the invariant?

 Undecidable problem.

 There are heuristics, for example replacing lower/upper

bounds in the post-condition with the loop counter.

 limited strength.

 Note: ESC/Java does not have a while construct. Instead it

has:

 loop C end

This loops forever, unless it throws an exeception. Traditional

loops can be encoded in this form.

21

Verifying annotated loop

 { ? } while g inv I do S { Q }

 Full verification :

 Take I as the wlp of the loop

 Additionally generate two verification conditions (VCs) of the loop-rule:

 { I /\ g } S { I } and I /\ g  Q

 Rather than explicitly generating VCs we can also encode the verifcation

as:

 { ? } assert I ;

 var v1,v2,... ;

 x1=v1; x2=v2 ; ... // all variables written by the loop

 if g then { assume I ; S ; assert I ; assume false }

 else assume I ;

 { Q }

22

“Idempotent” loop’s post-cond

 It is a post-condition that is also an invariant. That is,

it satisfies { I /\ g } S { I } :

 Then the post-condition itself is can be “used” as the

wlp (it is sufficient, though may not be the weakest).

23

{ ? } while g do i++ { k=0 }

{ ? } while g do i++ { i0 }

Partial logic for loop

 We only verify up to k number of iterations.

 This is obviously incomplete, but any violation found is still

a real error  no false positives.

 Claimed to already reveal many errors.

24

Partial logic for loop

 We only verify up to k number of iterations. This is obviously

incomplete, but any violation found is still a real error  no

false positives. Claimed to already reveal many errors.

 { ? } while g do S { Q }

is now transformed to:

 { ? } if g then { S ; if g then assume false } { Q }

 The wlp of this corresponds to doing at most 1 iteration.

 We can unroll the loop more times, e.g. up to 2 iterations :

25

{ ? } if g then

 { S ; if g then { S ; if g then assume false }} { Q }

Logic for array assignment

 Consider this assignment:

 { ? } a[0] := x { a[0] > a[1] }

As expected, the wp is x > a[1]. But naively applying

the substitution Q[e/x] can lead to a wrong result :

 { ? } a[0] := x { a[0] > a[k] }

You cannot just leave a[k] un-replaced by x, since k

could be equal to 0.

26

Logic for array assignment

 Since at this point we don’t know exactly what the value of

k is :

 { ? } a[0] := x { a[0] > a[k] }

The wp is a conditional expression:

 a[0] = (k=0  x | a[k])

 More generally, wp (a[e1] := e2) Q is :

 Q[(e3=e1  e2 | a[e3]) / a[e3]]

 This assumes the array has infinite range.

27

How to deal with objects?

 We assume each object to have a unique ID.

E.g. just uniquely map the object’s address to an integer.

 In an OO system, objects persist in a “heap” (set of objects

that live in the system at the moment)  can get side effect!

 Heap is modeled by a global infinite array :

 H : ObjectContent[ObjectId] // ID  Content

 N : int // size of H

 So, if i is the ID of object u, then H[i] gives us the content of

u.
28

Dealing with objects

 But, since objects have fields, we use this

representation instead:

 H : ObjectContent [FieldName][ObjectId]

 So, if u is an object with i as ID, and x is a field of u,

then:

 H[x,i] gives the value of u.x

 Leino et al use the notation select(x,i).

29

Translating the OO syntax

 u.x := v.x + y

 is translated to: H[x,u] := H[x,v] + y

 u := new Point()

 is translated to

 Note that Java’s array should be treated as an object, and is not translated directly to

native GCL array.

 u := N ;

 N++ ;

 H[x,u] := 0 ;

 H[y,u] := 0

30

Calculating WP

 u.x := e is translated to: H[x,u] := e

 But this explodes... replacing every v.y in Q with that

conditional expression. Fortunately, most can be

solved statically:

 if the (compile-time) type of u is not a subtype of that of

v then we know that vu

 field-names x and y are known statically, so the

condition y=x can be checked statically too.

 extending type checking?

31

wp (u.x := e) Q = Q [((y=x /\ v=u)  e | v.y) / v.y]

Calculating WP

 u := new Point() is translated to

 But... u gets a new object; so for any expression v which is not

syntactically the same as v, at this point cannot refer to this new

object. In other words, vu. So, the wp can be simplified to:

 u := N ;

 N++ ;

 H[x,u] := 0 ;

 H[y,u] := 0

32

wp (u := new C) Q

=

Q [((z=x /\ v=u)  0 | v.z) / v.z , ((z=y /\ v=u)  0 | v.z) / v.z]

wp (u := new Point) Q = Q [0 / u.x , 0 / v.y]

