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ESC/Java 

 Extended Static Checker for Java   an 

implementation of Hoare Logic.  

 

 Semi-automatic  theorem prover back-end. 

 

It is not intended to verify complex functional 

specification. Instead, the aim is to make your static 

checking more powerful. 

 

 Spec# is something similar, but for C#. The base-

language is called Boogie  reusable core. 
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1:      class Bag { 

2:         int[] a; 

3:         int n;           

4: 

5:         Bag (int[] input) { 

6:             n = input.length; 

7:             a = new int[n]; 

8:            System.arraycopy(input, 0, a, 0, n); 

9:             } 

10: 

11:        int extractMin() {       

12:             int m = Integer.MAX_VALUE; 

13:             int mindex = 0; 

14:             for (int i = 1; i <= n; i++) { 

15:                    if (a[i] < m) { 

16:                           mindex = i; 

17:                           m = a[i]; 

18:                         } 

19:                  } 

20:             n--; 

21:             a[mindex] = a[n]; 

22:             return m; 

23:            } 

24:       } 

Possible null deref. 

Index possibly too large 

Index possibly negative 

/*  @ non_null   */ 

//@ requires n  1  

//  @ invariant 0  n & n   a.length 

Still persist despite the inv.  

 real bug 
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Architecture ESC/Java 

Java + JML Hoare logic 
(WP/SP-alg) 

P  P’ 

Hoare Logic GCL 

Implementing the Hoare 

logic to work directly on 

Java is complex and error 

prone; but in theory you’ll 

get better error messages. 

ESC/Java first render 

Java to a much simpler 

lang. GCL. The Hoare 

logic operates on GCL. 
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In principle this  core is reusable. Alternatively, you can use 

the Boogie core. 



Guarded Command Language (GCL) 

 cmd     
  var = expr  
| skip  
| raise                                               // throw an exception 
|  assert expr  
|  assume expr 
|  var variable+   in   cmd    end      // locvar with scope  
| cmd  ;   cmd  
| cmd  !   cmd                     //  try-catch 
| cmd  []  cmd                     //  non-determ. choice 

 expr  :  formula or term from untyped first-order pred. 
Logic 

 Also of the form Label x e    to tag e with feedback 
information 

 Data type : bool, int, infinite arrays 
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Non-termination, Abortion, Exception 

 A state of an a GCL program has an additional flag: 

 

 Normal 

 

 Exceptional 

 

This is set by raise, and unset upon entering the 

handler in C!D. 

 

 Error 

 

This is set by violating assert; cannot be unset. 
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We first extend “post-condition” 

 ‘post-condition’ is now a triple : 

 

       ( N , X , W ) 

 

These are predicates, 

 

    N  :  post-cond if C terminates in a normal state 

    X  :  post-cond if C terminates in an exceptional state 

    W :   post-cond if C terminates in an error state. 

 

 Example: 

 

{ x>0 }     assert i>0 ;  a[i]:=x    {  a[i]>0,  false,  i≤0  /\ x>0  }  
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The logic is based on pre-algorihm 

 pre = “sufficient pre-condition” 

 

But we also see it as a predicate transformation 

algorithm: 

 

 pre : Statement  Predicate  Predicate 

 

such that: 

 

 

 

 

{ pre S Q }   S   { Q }         is always valid. 
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Variations of the concept “pre” 

 wp (weakest pre-condition) 

 

Is a predicate transformer that constructs the weakest 

pre-condition such that S terminates in Q. 

 

 wlp (weakest liberal pre-condition) 

 

As wp, except that it does not care whether or not S 

should terminate. 

 

 We will now give you the explicit definition of wlp for 

GCL… 10 



WLP 

 { ? }   skip   { x=0,  y=0, z=0  } 

 

 

 

 

 {  ?  }    x:=e    {  x=0,   y=1,   z=2  } 

 

evaluating e is assumed not to abort (as in uPL). 

wlp  skip  (N,_,_)    =   N 

wlp  ( x = e )  (N,_,_)  =   N[e/x] 
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WLP 

 { ? }   raise    { x=0,  y=0,  z=0  }        

 

 

 

 { ? }   assert  P   { x=0,  y=0,  z=0 } 

 

 

 

 { ? }   assume P   { x=0, y=0, z=0 } 

wlp   raise    (_,X,_)    =    X 

wlp   (assert  P)   (N,_,X)    =    (P /\  N)  \/  (P /\  X) 

wlp   (assume  P)   (N,_,_)    =    P  N 
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How Esc/Java uses these … 

 

 u = v.x     //  line 10 
 

 First  insert : 
 
     check  NullDeref@10 ,  v != null  ; 
     u = v.x 

 

 Then desugar “check”, e.g. to (useful for error reporting!): 
   
     assert (Label NullDeref@10  v!=null) ;     // treat as error  
     u = v.x 
 

 Or to : 
 
      assume (v!=null) ;                           // pretend it’s ok 
      u = v.x 

 

This would require that v is not null. 
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WLP,  Composite Structures 

 C [] D  non-deterministically chooses C or D. 

 

 {  ?  }   C  []  D   {  N,  X,  W  } 

 
{ P1 }    C    { N, X, W } 

{ P2 }    D   {  N, X, W } 

---------------------------------------- 

wlp  (C [] D)  (N,X,W)   
 
    =     wlp C (N,X,W)   /\    wlp D (N,X,W) 

{ P1 /\  P2  }   C [] D   { N, X, W } 
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Traditional if-then 

 if  g  then  S   is just   if  g  then  S  else skip 

 

 if  g  then  S  else T   can be encoded as follows: 

 

 assume g ; S 

 [] 

 assume g ; T  
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WLP,  Composite Structures 

 {  ?  }     C ;   { M }   D    {  x=0,  y=0,  z=0  } 

 

 
{ P }     C    { M, X, W } 

{M }   D   {  N, X, W } 

---------------------------------------- 

{ P }   C;D   { N, X, W } 

wlp  (C ; D)   (N,X,W)   

 

    =    wlp  C  (  wlp  D  (N,X,W) , X  ,  W) 
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WLP,  Composite Structures 

 C ! D  executes C, if it throws an exception it then 

jumps to the handler D. 

 

 { ? }   C   !  { M }  D   { N,  X,  W } 

{ P }     C    { N, M, W } 

{ M }     D   {  N, X, W } 

---------------------------------------- 

{ P }   C!D   { N, X, W } 

wlp  (C ! D)   (N,X,W)   
 
    =    wlp C  (N , wlp D (N,X,W) ,  W) 17 



Local Block 

 var  x  in  C  end 

 

Introduce a local variable x, uninitialized  can be of 

any value.  Any x in C now binds to this x. 

 Let’s do this in ordinary Hoare logic first: 

 

 { ? }    var  x  in  assume x>0 ; y:=x   end  {  y>z  /\  

x=0 }   

 

   
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wlp    (var  x’  in  C  end)    Q    = (x’:: wlp  C  Q)  

(assuming fresh x’… else you need to apply subst on Q to protect refrence to x’ there,  then reverse the 

substituton again as you are exiting the block) 



Back in ESC/Java logic 

 Assume fresh local-vars: 

 

 {  ?  }   var  x’  in  C  end    { N, X,  W }    

wlp    (var  x’  in  C  end)    (N,X,W)  

 

 = 

  

(x’:: wlp  C  (N,X,W) )  
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How to handle program call 

 You will have to inline it. Issue: how to handle 

recursion?  we’ll not go into this. 

 If a specification is available: 

 

     { x0 }  P(x)  {  return2  = x }   // non-deterministic!  

 

we can replace z := call P(e)  with : 

 

assert e0 ; var ret in { assume ret2 = e ; z := ret }    

 

 This assumes x is passed-by-value, and P does not 

modify a global variable. Else the needed logic 

becomes quite complicated. 20 



Handling loop 

 To handle a loop, Hoare logic requires you to come up 

with an invariant . 

 Option 1 : manually annotate each loop with an invariant. 

 Option 2 : try to infer the invariant? 

 Undecidable problem.  

 There are heuristics, for example replacing lower/upper 

bounds in the post-condition with the loop counter.  

 limited strength. 

 Note: ESC/Java does not have a while construct. Instead it 

has: 

   loop   C   end 

 

This loops forever, unless it throws an exeception. Traditional 

loops can be encoded in this form. 
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Verifying annotated loop 

 { ? }  while  g   inv I do   S   { Q } 

 

 Full verification : 

 Take I as the wlp of the loop 

 Additionally generate two verification conditions (VCs) of the loop-rule: 

 

 { I /\ g }  S  { I }     and    I /\ g    Q 

 

 Rather than explicitly generating VCs we can also encode the verifcation 

as: 

  { ? }  assert I ;  

                   var  v1,v2,...  ;  

                   x1=v1; x2=v2 ; ... // all variables written by the loop 

                   if g  then { assume I ; S ;  assert I ; assume false } 

                          else  assume I ; 

          { Q }  
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“Idempotent” loop’s post-cond 

 It is a post-condition that is also an invariant. That is, 

it satisfies { I /\ g } S  { I }  : 

 

 

 

 

 

 Then the post-condition itself is can be “used” as the 

wlp (it is sufficient, though may not be the weakest). 
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{ ? }     while g do i++    { k=0 } 

{ ? }     while g do i++    { i0 } 



Partial logic for loop 

 We only verify up to k number of iterations. 

 This is obviously incomplete, but any violation found is still 

a real error   no false positives. 

 Claimed to already reveal many errors. 
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Partial logic for loop 

 We only verify up to k number of iterations. This is obviously 

incomplete, but any violation found is still a real error   no 

false positives. Claimed to already reveal many errors. 

 { ? }  while  g   do   S   { Q } 

 

is now transformed to: 

 

 { ? }  if  g  then  { S  ; if g then assume false }   {  Q  } 

 

 The wlp of this corresponds to doing at most 1 iteration. 

 We can unroll the loop more times, e.g. up to 2 iterations : 
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{ ? }  if g  then   

                { S ; if g then  { S ; if g then assume false }}      {  Q  } 



Logic for array assignment 

 Consider this assignment: 

 

 { ? }    a[0] :=  x    {  a[0] > a[1] } 

 

As expected, the wp is x > a[1]. But naively applying 

the substitution Q[e/x] can lead to a wrong result : 

 

  { ? }    a[0] :=  x    {  a[0] > a[k] } 

 

You cannot just leave a[k] un-replaced by x, since k 

could be equal to 0. 
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Logic for array assignment 

 Since at this point we don’t know exactly what the value of 

k  is : 

 

  { ? }    a[0] :=  x    {  a[0] > a[k] } 

 

The wp is a conditional expression: 

 

 a[0]  =  (k=0  x  |  a[k]) 

 

 More generally,  wp   (a[e1] := e2)   Q    is : 

 

 Q[ (e3=e1   e2 | a[e3] ) / a[e3]  ]  

 

 This assumes the array has infinite range. 
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How to deal with objects? 

 We assume each object to have a unique ID. 

 

E.g. just uniquely map the object’s address to an integer. 

 

 In an OO system, objects persist in a “heap” (set of objects 

that live in the system at the moment)  can get side effect! 

 

 Heap is modeled by a global infinite array :   

 

 H : ObjectContent[ObjectId]          // ID  Content 

 N : int     // size of H 

 

 So,  if  i is the ID of object u, then H[i] gives us the content of 

u. 
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Dealing with objects 

 But, since objects have fields, we use this 

representation instead: 

 

 H : ObjectContent [FieldName][ObjectId]  

 

 So, if u is an object with i as ID, and x is a field of u, 

then: 

 

 H[x,i]      gives the value of  u.x 

 

 Leino et al use the notation  select(x,i). 
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Translating the OO syntax 

 u.x   :=   v.x  + y       

 

 is translated to:       H[x,u]  :=  H[x,v]  +  y 

 

 u  :=    new Point()  

 

 is translated to   

 

 

 
 Note that Java’s array should be treated as an object, and is not translated directly to 

native GCL array. 

  u := N ;  

  N++ ;  

  H[x,u] := 0 ;  

  H[y,u] := 0 
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Calculating WP 

 u.x   :=   e    is translated to:   H[x,u]  :=  e 

 

 

 But this explodes... replacing every v.y in Q with that 

conditional expression. Fortunately, most can be 

solved statically:  

 if the (compile-time) type of u is not a subtype of that of 

v then we know that vu 

 field-names x and y are known statically, so the 

condition y=x can be checked statically too. 

 extending type checking? 
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wp  (u.x  :=  e)  Q  =   Q [ ((y=x /\ v=u)   e | v.y) / v.y ]  



Calculating WP 

 u  :=  new Point()  is translated to   

 

 

 

 

 

 

 But... u gets a new object; so for any expression v which is not 

syntactically the same as v, at this point cannot refer to this new 

object. In other words, vu. So, the wp can be simplified to: 

  u := N ;  

  N++ ;  

  H[x,u] := 0 ;  

  H[y,u] := 0 
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wp  (u  :=  new C)  Q    

=    

Q [ ((z=x /\ v=u)   0 | v.z) / v.z  , ((z=y /\ v=u)   0 | v.z) / v.z ] 

wp  (u  :=  new Point)  Q    =    Q [ 0 / u.x  , 0 / v.y ] 


