
CTL Model Checking

Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Background

 Example: verification of web applications e.g. to prove

existence of a path from page A to page B.

Use of CTL is popular another variant of “temporal

logic” different way of model checking.

 Model checker for verifying CTL: SMV. Also uses a

technique called “symbolic” model checking.

 In contrast, SPIN model checking is called “explicit state”.

 We’ll show you how this symbolic MC works, but first we’ll take a

look at CTL, and the web application case study.
2

Overview

 CTL

 CTL

 Model checking

 Symbolic model checking

 BDD

 Definition

 Reducing BDD

 Operations on BDD

 Acknowledgement: some slides are taken and adapted from various presentations by

Randal Bryant (CMU), Marsha Chechik (Toronto)

3

CTL

 Stands for Computation Tree Logic

 Consider this Kripke structure (labeling omitted) :

0

1

2

M :
0 0 0 1 2 . . .

0

0

0 1 2 2 2 . . .

1

2

2

0 1

2 . . .

In LTL, properties ate defined over “executions”, which

are sequences :

In CTL properties are

defined in terms of your

computation tree:

4

CTL

 Informally, CTL is interpreted over computation
trees.

 M |== = M’s computation trees satisfies

 We have path quantifiers :
 A ... : holds for all path (starting at the tree’s root)
 E ... : holds for some path

 Temporal operators :
 X ... : holds next time
 F ... : holds in the future
 G ... : always hold
 U : until

5

Intuition of CTL operators

EX (exists next)

AX (all next)

EG AG

6

Intuition of CTL operators

EF

AF

E[U] A[U]

7

Syntax

 ::= p // atomic (state) proposition

 | | 1 /\ 2

 | EX | AX

 | E[1 U 2] | A[1 U 2]

8

Derived operators

 \/ = (/\)

 = \/

 EF = E[true U]

 AF = A[true U]

 EG = AF

 AG = EF

9

Semantics

 Let M = (S, {s0}, R, V) be a Kripke structure

 M,t |== holds on the comp. tree t

 M |== is defined as M, tree(s0) |==

 M,t |== p = p V(root(t))

 M,t |== = not (M,t |==)

 M,t |== /\ = M,t |== and M,t |==

R : S {S} : transition relation

V : S {Prop} : observations

10

Semantic of “X”

 M,t |== EX = (v R(root(t)) :: M,tree(v) |==)

 M,t |== AX = (v R(root(t)) :: M,tree(v) |==)

11

This definition of the A-quantifier is a bit problematic if you have a terminal state t (state with

no successor), because then you get t |== AX for free, for any (the above -

quantification would quantify over an empty domain). This can be patched; but we’ll just

assume that your M contains no terminal state (all executions are infinite).

Semantic of “U”

 M,t |- E[U] =

There is a path in M, starting in root(t) such that:

 For some i0, M,tree(i) |==

 For all previous j, 0j<i, M,tree(j) |==

 M,s |- A[U] =

For all path in M, starting in root(t), these hold:

12

LTL vs CTL

 They are not the same.

 Some properties can be expressed in both:

 AG (x=0) = [] (x=0)

 AF (x=0) = <>(x=0)

 A[x=0 U y=0] = x=0 U y=0

 Some CTL properties can’t be expressed in LTL, e.g:

 EF (x = 0)

 {x=0}

13

Prop = { x= 0 }

LTL vs CTL

 Some LTL properties cannot be expressed in CTL,
e.g.

 <>[] p

E.g. AF AG p does not express the property; the
above Kripke does not satisfy it.

 {p} {p}

14

Prop = { p }

LTL vs CTL

 Another example, fairness restriction:

 ([]<> p <>q) <>q

 = []<>p \/ <>q

{p} {q}

15

e.g. AGAF p \/ AF q does

not hold on the tree.

CTL*

 Allows more combinations of path and temporal quantifiers.

 A CTL* formula is a “state formula”, syntax:

(State formula)

 :: p // p is atomic proposition

 | | 1 \/ 2

 | E f | A f // f is a path formula

(Path formula)

 f ::

 | f | f \/ g | Xf | Ff | Gf | f1 U f2
We can express all CTL

formulas in CTL*, but e.g.

this is also possible in CTL* :

 AFG (x=0)
16

Example: web application

 Based on:

A Model Checking-based Method for Verifying Web

Application Design, Donini et al, in Int. Workshop on

Web Lang. and Formal Methods (WLFM), 2005.

 In their approach, models are obtained from UML

design of the web application.

 Other possibilities:

 By crawling a web site

 By analyzing log

17

WAG

 Model web application as a graph (N,C), where

 N = W P L A

each component is disjoint.

C : N2N defines the arrows in the graph, and such

that:

 A window can only be connected to pages

 A page can only be connected to links or actions

 A link or an action can only be connected to windows

 Called “Web Application Graph” (WAG)

W set of windows

P set of pages

L set of links

A set of actions

18

WAG as Kripke

 See a WAG as a Kripke structure, e.g. each node in the

WAG is a state in the Kripke structure.

 Label each state with propositions w,p,l,a to express

whether it is a window, or a page etc.

 Introduce other propositions of interest, e.g.

 login, logout To mark a login/logout action

 private To mark states considered “private”

 error To mark “error page”.

 Label the states with these propositions.
19

Example

frame/window

page

action

link

{ loginSuccess }

{ private }

20

…

Now properties like these are well defined…

• A (private W private /\ loginSuccess)

You cannot get to the private part without logging in….

• AG (loginSucess EF private)

Once logged in, it should be possible to get to the private part

•

21

Model checking CTL formulas

 Kripke M = (S, {s0}, R, V)

 We want to verify M |==

 Assume is expressed in CTL’s (chosen) basic

operators.

 The verification algorithm works by systematic-

ally labeling M’s states with subformulas of ;

bottom up.

 For a sub-formula f ; we inspect every state s:

 Eventually, when we are done with the labeling

of the root formula :

0

2

1

3

{ p }

{ p,q }

{ p }

If root(s) |= f , we label s with f (and otherwise we don’t label it)

M |= iff s0 is labeled with

22

Example, checking EX(p/\q)

0

2

1

3

{ p }

{ p,q }

{ p }

p /\ q EX(p/\q)

Initial state is not labeled

with the target formula; so

the formula is not valid.

23

Prop = {p,q}

EX(p/\q)

Example, checking: E[p U (p/\q)]

0

2

1

3

{ p }

{ p,q }

{ p }

p /\ q

E[p U p/\q]

E[p U p/\q] E[p U p/\q]

Initial state is labeled with

the target formula; so M

satisfies the formula.

24

Example, checking A[p U (p/\q)]

0

2

1

3

{ p }

{ p,q }

{ p }

p /\ q

A[p U p/\q]

A[p U p/\q]
At the end, initial state is

not labeled with the target

formula; so the formula is

not valid

25

A[p U p/\q]

Can we apply this to LTL ?

 Consider <>[] p

 Applying labeling :

 {p} {p}

26

Prop = { p }

<>[]p []p we can’t label this with []p;

thus also not with <>[]p

Symbolic representation

 You need the full statespace to do the labeling!

 Idea:

 Use formulas to encode sets of states (e.g. to express the

set of states labeled by something)

 A small formula can express a large set of states

suggest a potential of space reduction.

27

Example

0

2

1

3

{ p }

{ p,q }

{ p }

4 states, can be encoded

by 2 boolean variables x

and y.

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

E.g. the set of states where q

holds is encoded by the formula:

 xy

Similarly, the set of states where p

holds : {0,1,2}, can be encoded by

formula:

 (xy)

28

Example

0

2

1

3

{ p }

{ p,q }

{ p }

States encoding:

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

xy

xy

xy
xy

29

We can also describe this more

program-like:

 if state{0,2} goto {0,1}

 [] state{1,3} goto 2

 [] state=3 goto {2,3}

 fi

which can be encoded with this

boolean formula:

yx’ \/ yx’y’ \/ xyx’

N.D.

Example

30

(x0..x7) /\ x’0... x’7

\/

x0...x7 /\ x’0... x’7

byte x ; // unspecified initial value

if x255 x=0 ;

The automaton has 256 states,

with 256 arrows.

• Bit matrix : 8.3 Kbyte

• List of arrows: 512 bytes

With boolean formula:

Model checking

 When we label states with a formula f, we are basically

calculating the set of states (of M) that satisfy f.

 Introduce this notation:

 Wf = the set of states (whose comp. trees) satisfy f

 = { s | sS, M, tree(s) |== f }

 We now encode Wf as as a boolean “formula”

31

M |= f if and only if Wf evaluated on s0 returns true

Labeling

 If p is an atomic formula:

 For conjunction:

 Negation:

 For EX:

 AX f = EXf So: WAXf = WEXf

WEXf = x’,y’:: R /\ Wf [x’,y’/x,y]

32

Wp = boolean formula representing the set of states where p holds.

Wf/\g = Wf /\ Wg

Wf = Wf

(The relation R is assumed to be

defined in terms of x,y and x’,y’)

Restricting the arrows over the destinations

States encoding:

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

33

y x’y’ \/ xyy’

{1,3} {2} Suppose we have these arrows, R =

The set of all states that has at least an outgoing arrow to {0,1,2}

Encoding in Boolean formula:

(x’,y’ :: (y x’y’ \/ xyy’) /\ x’y’)

{3} {1,3}

{ s | (t:: t R(s) /\ s3) }

Restricting the arrows over the destinations

34

The set of all states whose all outgoing arrows go to {0,1,2} :

Encoding in Boolean formula :

Note:

• In both examples, invalid encodings (those states that were not actually in your M)

are actually also quantified along as well incorrect add a constraint that filters

your result to drop those states.

• In the example, all terminal states in M will automatically be included in the set …

weird, but we discussed this before. We assumed M does not contain terminals.

 (x’,y’ :: R(x,y,x’,y’) x’y’)

{ s | (t:: t R(s) s3) }

Example, EXp

0

2

1

3

{ p }

{ p,q }

{ p }

States encoding:

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

Wp = (xy)

WEXp = x’,y’:: R /\ (x’y’)

 = x’,y’:: ((yx’ \/ yx’y’ \/

xyx’) /\ (x’y’))

 = true

xy

xy

xy
xy

35

Labeling

 E.g. the states satisfying E[f U g] can be computed

by:

 Let Z1 = Wg

 Iteratively compute Zi

 Stop when Zi+1 = Zi ; then WE[p U q] = Zi

Zi+2 = Zi+1 \/ (x’,y’:: R /\ Wf /\ Zi+1 [x’,y’/x,y])

36

Example, EX[p U q]

0

2

1

3

{ p }

{ p,q }

{ p }

States encoding:

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

• Z3 = …

Till fix point.

xy

xy

xy
xy

37

Z1 = Wq = xy

Z2 = Z1

 \/

 (x’,y’:: R /\ Wp /\ Z1[x’,y’/x,y])

xy \/ (x’,y’:: ... /\ (xy) /\ x’y’)

But how to check fix point?

 To make this works, we need a way to efficiently

check the equivalence of two boolean formulas:

 f g

So, we can decide when to we have reached a fix-

point

 In general this is an NP-hard problem.

 Use a SAT-solver to check if (f g) is unsatisfiable.

 We’ll discusss BDD approach

38

Canonical representation

 = simplest/standard form.

 Here, a canonical representation Cf of a formula f is a

representation such that:

 Gives us a way to check equivalence.

 Only useful if the cost of constructing Cf, Cg + checking Cf

= Cg is cheaper than directly checking f g.

 Some possibilities:

 Truth table exponentially large.

 DNF/CNF can also be exponentially large.

f g iff Cf = Cg

39

BDD

 Binary Decision Diagram; a compact, and canonical

representation of a boolean formula.

 Can be constructed and combined efficiently.

 Invented by Bryant:

"Graph-Based Algorithms for Boolean Function

Manipulation". Bryant, in IEEE Transactions on

Computers, C-35(8),1986.

40

0 0

x 3

0 1

x 3

x 2

0 1

x 3

0 1

x 3

x 2

x 1

Decision Tree

with truth table : Or representing the table with a (binary decision)
tree :

 Each node xi represents a decision:

 Blue out-edge from xi assigning 1 to xi

 Red out-edge from xi assigning 0 to xi

 Function value is determined by leaf value.

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

 x1 x2 x3 \/ x1 x2 x3 \/ x1 x2 x3

41

TT is canonical if we fix the

order of the columns.

But we can compact the tree…

E.g. by merging the duplicate leaves:

We can compact this further by merging

duplicate subgraphs …

0 0

x 3

0 1

x 3

x 2

0 1

x 3

0 1

x 3

x 2

x 1

x 3 x 3

x 2

x 3

0 1

x 3

x 2

x 1

42

Results

Note: this is from Bryant’s paper in 1986.

They use their version of MC at that time,

running it on an DEC VAX 11/780, with

about 1 MIP speed

43

Boolean formula

 A boolean formula (proposition logic formula) e.g. x . y \/ z can

be seen as a function :

 In Bryant’s paper this is called a : boolean function.

 E.g. ‘composing’ functions as in

 “f(x, y, g(x,y,z))”

is the same as the corresponding substitution.

f(x,y,z) = x.y \/ z

44

Binary Decision Diagram

 A BDD is a directed acyclic graph, with

 a single root

 two ‘leaves’ 0/1

 non-leaf node

 labeled with ‘varname’

 has 2 children

 Along every path, no var appears more

than 1x

 We’ll keep the arrow-heads implicit

 always from top to bottom

 x

z

0 w: 1

y

val(w)

var(v)

45

high(v)

low(v)

suppose we call this node: v

func(G)

 func(v) = x . func(low(v)) \/ x . f(high(v))

x

z

0 1

y

46

y.z

z

xz \/ x.y.z

func(0) = 0, func(1) = 1

x = val(v)

func(G) = func(root)

Reduced BDD

 Two BDDS F ang G are isomorphic if you can obtain

G from F by renaming F’s nodes, vice versa.

But you are not allowed to rename var(v) nor val(v) !

 A BDD G is reduced if:

 for any non-leaf node v, low(v) high(v).

 for any distinct nodes u and v, the sub-BDDs rooted at

them are not isomorphic.

 47 o
th

e
rw

is
e
 G

 c
a
n
 b

e
 r

e
d
u
c
e
d
!

then: func(F) = func(G)

Ordered BDD

 OBDD fix an ordering on the variables

 let index(v) the order of v in this ordering

 index(v) < index(low(v)

 same with high(v)

48

y

z z

x

0 1

satisfies ordering

[y,z,x] but not [x,y,z]

Reduced OBDD

 Reduced OBDD is canonical:

 Same idea as in truth tables: canonical if you fix the order

of the columns.

 However, the chosen ordering may influence the size of

the OBDD.

If we fix the variable ordering, every boolean function is

uniquely represented by a reduced OBDD (up to isomorphism).

49

Effect of ordering

xyz \/ yz Consider:

x

z

0 1

y

y

z z

x

0 1

Order: x,y,z Order: y,z,x

50

The difference can be huge…

consider: a1b1 \/ a2b2 \/ a3b3

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

Here: “red” for value 1, “green” for 0. 51

Reducing BDD

By sharing leaves…

0 0

 z

0 1

 z

 y

0 1

 z

0 1

 z

 y

x

z z

y

z

0 1

z

y

x

52

Reducing BDD
x

y y

z

0 1

z z z

x

y y

0 1

z z

53

x

y

0 1

z

The reduction algorithm

 Introduce id, function Node Node

Use it to keep track which nodes actually represent the same formula.

Iterate/recurse and maintain this invariant:

 So, we can remove u from the graph, and re-route arrows to it, to go

to id(u) instead.

 Work bottom up, and such that a node decorated with x is processed

after all nodes whose decorations come later in the var-ordering are

processed first.

54

func(u) = func(id(u))

The reduction algorithm

 We’ll do the relabeling recursively, bottom-up.

Now suppose we have done the id re-labeling for all non-leaves w

with index(w)>i. Suppose index(v)=i

 Case-1, id(low(v)) = id(high(v)) ; suppose var(v) = “x”

func(v) = y . func(low(v)) \/ y . func(high(v))

 = y . func(id(low(v))) \/ y . func(id(high(v)))

 = func(id(low(v))

55

x

y y

0 1

z

So, update: id(v) := id(low(v))

v

The reduction algorithm

 Case-2: there is another non-leaf udom(id)

(u has been processed) such that:

 1. var(u) = var(v) ; suppose this is “x”

 2. id(low(u)) = id(low(v))

 3. id(high(u)) = id(high(v))

func(v) = x func(low(v)) \/ x func(high(v))

 = x func(low(u)) \/ x func(high(u)) // by inv

 = func(u)

 = func(id(u))

56

x x

v

id

id

u

So, update: id(v) := id(u)

Building a BDD

 So far: we can reduce a BDD.

 Recall in CTL model checking, e.g. to the set of states

satisfying EX p is calculated by constructing this

formula:

Since formulas are now represented as BDDs, this

implies the need to combine BDDs.

 The combinators should be efficient!

x’,y’:: R /\ Wp [x’,y’/x,y]

57

Basic operations to combine BDDs

 Apply f1 <op> f2

 Restrict f |x=b // b is constant

 Compose f1 |x=f2 // f2 is another function

 Satisfy-one

Return a single combination of the variables of f that would make it true, else

return nothing.

58

Quantification

 With restriction we can encodes boolean

quantifications :

 (y:: f(x,y)) = f(x,y) | y=0 \/ f(x,y) | y=1

 (y:: f(x,y)) = (y:: f(x,y))

(Recall that we need this in the MC algorithm).

59

Restriction

 f(x,y,z) | y=c how to construct the BDD of the new function??

f(x,y,z) | y=0 replace all y nodes by low-sub-tree

f(x,y,z) | y=1 replace all y nodes by high-sub-tree

Example:

 f (x,y.z) = xz \/ xyz

So, f(x,y,z) |y=0 = z

x

z

0 1

y

x

z

0 1

z

0 1

After replacing “y”

Reduced

version.

60

Apply

 “Apply”, denoted by f <op> g , means the boolean
function obtained by applying op to f and g.

E.g. assuming they take x,y as parameters, f <and> g
means the function that maps x,y to f(x,y) /\ g(x,y).

 A single algorithm to implement /\, \/, xor

 We can even implement f , namely as f <xor> 1

61

Apply

 So, given the BDDs of f and g, how to construct the
BDD of f <op> g ?

 There is this ‘Shannon expansion’ :

 This tells us how to implement “apply” recursively !

Detail, see LN.

f <op> g

 =

x . (f |x=0 <op> g |x=0) \/ x . (f |x=1 <op> g |x=1)

62

Apply

63

f <op> g

 =

x . (f |x=0 <op> g |x=0) \/ x . (f |x=1 <op> g |x=1)

x

But this can be exponential. Solution: keep track of those sub-

expressions you have combined.

Example

We name the nodes, just so that we

can refer to them.

f <and> g

 =

x . (f |x=0 <and> g |x=0) \/ x . (f |x=1 <and> g |x=1)

We’ll do this by hand.

64

x

z

0 1

y

z

0 1

y

u1

u2

u3

u4 u5

v1

v2

v3

v4

Example

x

z

0 1

y

z

0 1

y

u1

u2

u3

u4 u5

v1

v2

v3

v4

apply(u1,v1)

apply(u3,v1)

apply(u3,v2)

apply(u5,v4)

apply(u4,v3)

apply(u5,v3)

apply(u2,v1)

apply(u3,v2)

apply(u4,v3)

apply(u5,v4)

apply(u4,v3)

Repeated call in recursion! To avoid

this, maintain a table to keep track

of already computed results.

65

Satisfy and Compose

 Compose, constructed through :

f1|x=f2 = f2 . f1|x=1 \/ f2 . f1|x=0

 In a reduced graph of a satisfiable formula, every

non-terminal node must have both leaf-0 and leaf-1

as decendants.

It follows that satisfy-one can be implemented in O(n)

time.

66

And substitution…

 Recall in CTL model checking, e.g. to the set of states

satisfying EX p is calculated by constructing this

formula:

So, how to we construct the BDD representing e.g.

f[x’,y’/x,y] ?

 Just replace x,y in the BDD with x’,y’, assuming this

does not violate the BDD’s ordering constraint (e.g. if

x<y but x’>y’). Else use compose.

x’,y’:: R /\ Wp [x’,y’/x,y]

67

The cost of various operations

 Reduce f O(|G|×log|G|)

where G is the graph of f’s BDD.

 Apply f1 <op> f2 O(|G1|×|G2|)

 Restrict f |x=b O(|G|×log|G|)

 Compose f1 |x=f2 O(|G1|2×|G2|)

 Satisfy-one O(n)

n is the number of parameters in the target boolean

function.

 68

