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Background 

 Example: verification of web applications  e.g. to prove 

existence of a path from page A to page B. 

 

Use of CTL is popular   another variant of “temporal 

logic”  different way of model checking. 

 

 Model checker for verifying CTL: SMV. Also uses a 

technique called “symbolic” model checking.  

 

 In contrast, SPIN model checking is called “explicit state”.  

 

 We’ll show you how this symbolic MC works, but first we’ll take a 

look at CTL, and the web application case study. 
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Overview 

 CTL 

 CTL  

 Model checking 

 Symbolic model checking 

 BDD 

 Definition 

 Reducing BDD 

 Operations on BDD 

 
 Acknowledgement: some slides are taken and adapted from various presentations by 

Randal Bryant (CMU), Marsha Chechik (Toronto) 
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CTL 

 Stands for Computation Tree Logic 

 Consider this Kripke structure (labeling omitted) : 

0 

1 

2 

M : 
0 0 0 1 2 . . . 

0 

0 

0 1 2 2 2 . . . 

1 

2 

2 

0 1 

2 . . . 

In LTL, properties ate defined over “executions”, which 

are sequences : 

In CTL properties are 

defined in terms of your 

computation tree: 
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CTL 

 Informally, CTL is interpreted over computation 
trees. 
 
    M |==     =   M’s computation trees satisfies  

 

 We have path quantifiers : 
 A ...  :  holds for all path (starting at the tree’s root) 
 E ...  :  holds for some path 

 

 Temporal operators : 
 X ... : holds next time  
 F ... : holds in the future 
 G ... : always hold 
 U     : until 
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Intuition of CTL operators 

 

EX (exists next)   

  

 

 

 

 

 

 

   

     

 

AX (all next)   

EG  AG  
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Intuition of CTL operators 

 

EF  

 

  

 

AF  

 

 

 

 

 

  

 

 

E[  U  ] A[  U  ] 
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Syntax 

  ::=  p         // atomic (state) proposition 
 
       |    |  1 /\ 2 
 
       |  EX   |  AX   
 
       |  E[1 U 2]   |    A[1 U 2] 
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Derived operators 

  \/     =   ( /\ ) 

      =     \/  

 

 EF   =  E[ true  U  ] 

 AF   =  A[ true  U  ] 

 EG   =   AF  

 AG   =   EF  
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Semantics 

 Let M = ( S, {s0}, R, V ) be a Kripke structure  

 

 M,t  |==           holds on the comp. tree t 

 

 M |==        is defined as M, tree(s0) |==  

 

 M,t  |==  p      =    p  V(root(t))  

 

 M,t  |==     =     not   (   M,t  |==     ) 

 

 M,t  |== /\    =     M,t  |==       and   M,t  |==      

 

R : S  {S} : transition relation 

V :  S  {Prop} : observations  
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Semantic of “X” 

 

 M,t |==  EX   =    ( v R(root(t)) ::    M,tree(v)  |==  )  

 

 M,t |==  AX   =    ( v R(root(t)) ::    M,tree(v)  |==  ) 
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This definition of the A-quantifier is a bit problematic if you have a terminal state t (state with 

no successor),  because then you get  t |== AX   for free, for any  (the above -

quantification would quantify over an empty domain). This can be patched; but we’ll just 

assume that your M contains no terminal state (all executions are infinite). 



Semantic of “U” 

   M,t |-  E[  U  ]    =     

 

There is a path  in M, starting in root(t) such that: 

 

 For some i0,  M,tree(i) |==  

 

 For all previous j, 0j<i,  M,tree(j) |==  

 

  M,s |-  A[  U  ]    = 

 

For all path  in M, starting in root(t), these hold: 
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LTL vs CTL 

 They are not the same. 

 Some properties can be expressed in both: 
 
     AG (x=0)    =    [] (x=0) 
 
     AF (x=0)    =     <>(x=0) 
 
     A[x=0  U  y=0]   =   x=0  U   y=0  
 

 Some CTL properties can’t be expressed in LTL, e.g:  
 
    EF (x = 0) 

 
 {x=0} 
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Prop = { x= 0 } 



LTL vs CTL 

 Some LTL properties cannot be expressed in CTL, 
e.g. 
 
    <>[] p   
 
 
 
 
 
 
 
 
E.g.  AF AG p  does not express the property; the 
above Kripke does not satisfy it. 

 {p} {p} 
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Prop = { p } 



LTL vs CTL 

 Another example, fairness restriction: 
 
    ([]<> p  <>q)    <>q 
 
    =   []<>p   \/   <>q 

 

 

 

 
 

 

 

 
 

 

{p} {q} 
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e.g. AGAF p  \/  AF q   does 

not hold on the tree. 



CTL* 

 Allows more combinations of path and temporal quantifiers. 

 A   CTL*   formula is a “state formula”, syntax: 

 

(State formula) 

 

   ::  p   // p is atomic proposition 

    |     |  1  \/  2 

            |   E f   |  A f  // f is a path formula 

 

(Path formula) 

 

 f  ::   

           | f  |  f \/ g  |  Xf  |  Ff  | Gf  |  f1 U f2 
We can express all CTL 

formulas in CTL*, but e.g. 

this is also possible in CTL* : 

 

 AFG (x=0) 
16 



Example: web application 

 Based on: 

 

A Model Checking-based Method for Verifying Web 

Application Design, Donini et al, in Int. Workshop on 

Web Lang. and Formal Methods (WLFM), 2005.  

 

 In their approach, models are obtained from UML 

design of the web application. 

 Other possibilities:  

 By crawling a web site 

 By analyzing log 
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WAG 

 Model web application as a graph (N,C), where  

 

 N = W  P  L  A 

 

each component is disjoint. 

 

C : N2N    defines the arrows in the graph, and such 

that: 

 

 A window can only be connected to pages 

 A page can only be connected to links or actions 

 A link or an action can only be connected to windows 

 

 Called “Web Application Graph” (WAG) 

 

W set of windows 

P set of pages 

L set of links 

A set of actions 
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WAG as Kripke 

 See a WAG as a Kripke structure, e.g. each node in the 

WAG is a state in the Kripke structure. 

 

 Label each state with propositions w,p,l,a to express 

whether it is a window, or a page etc. 

 

 Introduce other propositions of interest, e.g. 

 login, logout  To mark a login/logout action 

 private   To mark states considered “private” 

 error   To mark “error page”. 

 

 Label the states with these propositions. 
19 



Example 

frame/window 

page 

action 

link 

{ loginSuccess } 

{ private } 

20 

… 



Now properties like these are well defined… 

• A (private  W private /\  loginSuccess) 

 

You cannot get to the private part without logging in…. 

 

• AG ( loginSucess   EF private ) 

 

Once logged in, it should be possible to get to the private part 

 

•   

 

21 



Model checking CTL formulas 

 Kripke M = ( S, {s0}, R, V ) 

 We want to verify M |==  

 Assume  is expressed in CTL’s (chosen) basic 

operators. 

 The verification algorithm works by systematic-

ally labeling M’s states with subformulas of ; 

bottom up.  

 For a sub-formula f ; we inspect every state s: 

 

 

 

 Eventually, when we are done with the labeling 

of the root formula   : 

 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

If  root(s) |= f  , we label s with f  (and otherwise we don’t label it) 

M |=     iff      s0  is labeled with  
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Example, checking  EX(p/\q)  

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

p /\ q EX(p/\q) 

Initial state is not labeled 

with the target formula; so 

the formula is not valid. 

23 

Prop = {p,q} 

EX(p/\q) 



Example, checking:  E[ p U (p/\q) ] 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

p /\ q 

E[ p U  p/\q] 

E[ p U  p/\q] E[ p U  p/\q] 

Initial state is labeled with 

the target formula; so M 

satisfies the formula. 
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Example, checking  A[ p U (p/\q) ] 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

p /\ q 

A[ p U  p/\q] 

A[ p U  p/\q] 
At the end, initial state is 

not labeled with the target 

formula; so the formula is 

not valid 

25 

A[ p U  p/\q] 



Can we apply this to LTL ? 

 Consider  <>[] p 

 

 Applying labeling : 
 
 
 
 
 
 
 
 
 

 {p} {p} 
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Prop = { p } 

<>[]p []p we can’t  label this with []p; 

thus also not with  <>[]p 



Symbolic representation 

 You need the full statespace to do the labeling! 

 

 Idea: 

 

 Use formulas to encode sets of states (e.g. to express the 

set of states labeled by something) 

 

 A small formula can express a large set of states  

suggest a potential of space reduction. 
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Example 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

4 states, can be encoded 

by 2 boolean variables x 

and y. 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

E.g. the set of states where q 

holds is encoded by the formula: 

 

  xy  

 

Similarly, the set of states where p 

holds : {0,1,2}, can be encoded by 

formula: 

 

 (xy) 
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Example 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

States encoding: 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

xy 

xy 

xy 
xy 

29 

We can also describe this more 

program-like: 

 

   if state{0,2}     goto {0,1} 

   [] state{1,3}     goto 2 

   [] state=3           goto {2,3} 

   fi 

 

which can be encoded with this 

boolean formula: 

 

 
yx’   \/   yx’y’  \/  xyx’ 

N.D. 



Example 
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(x0..x7) /\ x’0... x’7     

\/     

x0...x7 /\ x’0... x’7 

byte x ;  // unspecified initial value 

 

if x255   x=0 ;  

The automaton has 256 states, 

with 256 arrows. 

 

• Bit matrix : 8.3 Kbyte 

• List of arrows: 512 bytes 

With boolean formula: 



Model checking 

 When we label states with a formula f, we are basically 

calculating the set of states (of M) that satisfy f. 

 

 Introduce this notation: 

 

 Wf  = the set of states (whose comp. trees) satisfy f 

 

       =  {  s  |  sS,  M, tree(s) |== f } 

 

 We now encode Wf as as a boolean “formula” 
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M |= f    if and only if  Wf evaluated on s0 returns true 



Labeling 

 If p is an atomic formula: 

 

 

 

 For conjunction: 

 Negation:  

 

 For EX: 

 

 

 AX f   =   EXf    So:   WAXf   = WEXf  

 

WEXf   =  x’,y’::  R  /\  Wf [x’,y’/x,y] 

32 

Wp  =   boolean formula representing the set of states where p holds. 

Wf/\g  = Wf /\  Wg  

Wf  =  Wf  

(The relation R is assumed to be 

defined in terms of x,y and x’,y’) 



Restricting the arrows over the destinations 

States encoding: 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

33 

y x’y’   \/   xyy’  

{1,3}   {2} Suppose we have these arrows,  R =  

The set of all states that has at least an outgoing arrow to {0,1,2} 

 

 

 

 

Encoding in Boolean formula: 

(x’,y’  ::  ( y x’y’   \/   xyy’  )   /\   x’y’ ) 

{3}   {1,3} 

{ s  |   ( t::  t R(s)  /\  s3 )  } 



Restricting the arrows over the destinations 

34 

The set of all states whose all outgoing arrows go to {0,1,2} : 

 

 

 

 

Encoding in Boolean formula : 

 

 
 

 

 

Note:  

 

• In both examples, invalid encodings (those states that were not actually in your M) 

are actually also quantified along as well   incorrect  add a constraint that filters 

your result to drop those states. 

•  In the  example,  all terminal states in M will automatically be included in the set … 

weird, but we discussed this before. We assumed M does not contain terminals. 

 

  (x’,y’  ::   R(x,y,x’,y’)    x’y’ ) 

{ s  |   ( t::  t R(s)   s3 )  } 



Example, EXp 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

States encoding: 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

Wp  =  (xy) 

 

WEXp  =  x’,y’::  R  /\ (x’y’) 

 

          = x’,y’:: ((yx’   \/   yx’y’  \/  

xyx’)  /\ (x’y’)) 

 

          = true 

xy 

xy 

xy 
xy 
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Labeling 

 E.g. the states satisfying E[f U g] can be computed 

by: 

 Let Z1 = Wg 

 

 Iteratively compute Zi 

 

 

 

 Stop when Zi+1 = Zi ; then WE[p U q]   = Zi 

 

 

 

 

Zi+2  =   Zi+1   \/  ( x’,y’::  R  /\  Wf /\  Zi+1 [x’,y’/x,y] ) 
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Example, EX[ p U q ] 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

States encoding: 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

• Z3   =   … 

 

Till  fix point. 

xy 

xy 

xy 
xy 
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Z1   =   Wq  =  xy 

Z2   =    Z1   

                   \/ 

            (x’,y’::  R  /\ Wp  /\ Z1[x’,y’/x,y]) 

xy  \/ (x’,y’::  ...  /\ (xy)  /\ x’y’) 



But how to check fix point? 

 To make this works, we need a way to efficiently 

check the equivalence of two boolean formulas: 

 

 f  g 

 

So, we can decide when to we have reached a fix-

point  

 In general this is an NP-hard problem. 

 Use a SAT-solver to check if (f  g) is unsatisfiable. 

 We’ll discusss BDD approach 
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Canonical representation 

 = simplest/standard form. 

 Here, a canonical representation Cf of a formula f is a 

representation such that: 

 

 

 

 Gives us a way to check equivalence. 

 Only useful if the cost of constructing Cf, Cg + checking Cf 

= Cg is cheaper than directly checking f  g. 

 Some possibilities: 

 Truth table   exponentially large. 

 DNF/CNF   can also be exponentially large.  

 

 

f  g   iff   Cf = Cg 
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BDD 

 Binary Decision Diagram; a compact, and canonical 

representation of a boolean formula. 

 

 Can be constructed and combined efficiently. 

 

 Invented by Bryant: 

 

"Graph-Based Algorithms for Boolean Function 

Manipulation". Bryant, in IEEE Transactions on 

Computers, C-35(8),1986. 
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0 0 

x 3 

0 1 

x 3 

x 2 

0 1 

x 3 

0 1 

x 3 

x 2 

x 1 

Decision Tree 

with truth table : Or representing the table with a (binary decision) 
tree : 

 Each node xi  represents a decision: 

 Blue  out-edge from xi  assigning 1 to xi 

 Red  out-edge  from xi  assigning 0 to xi 

 Function value is determined by leaf value. 

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

           x1 x2 x3    \/    x1  x2 x3    \/     x1 x2 x3 
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TT is canonical if we fix the 

order of the columns. 



But we can compact the tree… 

E.g. by merging the duplicate leaves: 

We can compact this further by merging 

duplicate subgraphs … 

0 0 

x 3 

0 1 

x 3 

x 2 

0 1 

x 3 

0 1 

x 3 

x 2 

x 1 

x 3 x 3 

x 2 

x 3 

0 1 

x 3 

x 2 

x 1 
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Results 

 

 

 

 

 

 

 

Note: this is from Bryant’s paper in 1986. 

They use their version of MC at that time, 

running it on an DEC VAX 11/780, with 

about 1 MIP speed  
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Boolean formula 

 A boolean formula (proposition logic formula) e.g.   x . y   \/   z  can 

be seen as a function : 

 

 

 

 

 In Bryant’s paper this is called a : boolean function. 

 

 E.g. ‘composing’ functions as in 

 

 “f(x, y, g(x,y,z))”  

 

is the same as the corresponding substitution. 

 

f(x,y,z)    =     x.y  \/   z 
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Binary Decision Diagram 

 A BDD  is a directed acyclic graph, with 

 a single root 

 two ‘leaves’  0/1 

 non-leaf node 

 labeled with ‘varname’ 

 has 2 children 

 

 Along every path, no var appears more 

than 1x 

 

 We’ll keep the arrow-heads implicit  

 always from top to bottom 
 

 

 

 

 x 

z 

0 w: 1 

y 

val(w) 

var(v) 
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high(v) 

low(v) 

suppose we call this node: v 



func(G) 

 func(v) =  x . func(low(v))   \/      x . f(high(v)) 

 

 

 

x 

z 

0 1 

y 

46 

y.z 

z 

xz  \/  x.y.z 

func(0) = 0,    func(1) = 1 

x = val(v) 

func(G) = func(root) 



Reduced BDD 

 Two BDDS F ang G are isomorphic if you can obtain 

G from F by renaming F’s nodes, vice versa. 

 

But you are not allowed to rename var(v) nor val(v) ! 

 

 

 A BDD G is reduced if: 

 

 for any non-leaf node v, low(v)  high(v).  

 

 for any distinct nodes u and v, the sub-BDDs rooted at 

them are not isomorphic.  

 47 o
th

e
rw

is
e
 G

 c
a
n
 b

e
 r

e
d
u
c
e
d
! 

then:   func(F) = func(G) 



Ordered BDD 

 OBDD  fix an ordering on the variables 

 

 let index(v)  the order of v in this ordering  

 

 index(v)  <  index(low(v) 

  same with high(v) 
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y 

z z 

x 

0 1 

satisfies ordering 

[y,z,x]  but not [x,y,z] 



Reduced OBDD 

 Reduced OBDD is canonical: 

 

 

 

 

 Same idea as in truth tables: canonical if you fix the order 

of the columns. 

 

 However, the chosen ordering may influence the size of 

the OBDD. 

If we fix the variable ordering, every boolean function is 

uniquely represented by  a reduced OBDD (up to isomorphism). 
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Effect of ordering 

xyz  \/  yz Consider: 

x 

z 

0 1 

y 

y 

z z 

x 

0 1 

Order: x,y,z Order: y,z,x 
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The difference can be huge…  

consider:   a1b1   \/ a2b2 \/ a3b3 

Linear Growth 

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth 

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

Here: “red” for value 1, “green” for 0. 51 



Reducing BDD 

By sharing leaves… 

0 0 

 z 

0 1 

 z 

 y 

0 1 

 z 

0 1 

 z 

 y 

x 

z z 

y 

z 

0 1 

z 

y 

x 
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Reducing BDD 
x 

y y 

z 

0 1 

z z z 

x 

y y 

0 1 

z z 
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x 

y 

0 1 

z 



The reduction algorithm 

 Introduce id, function Node  Node 

 

Use it to keep track which nodes actually represent the same formula. 

 

Iterate/recurse and maintain this invariant: 

 

 

 

 So, we can remove u from the graph, and re-route arrows to it, to go 

to id(u) instead. 

 Work bottom up, and such that a node decorated with x is processed 

after all nodes whose decorations come later in the var-ordering are 

processed first.   
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func(u) = func(id(u)) 



The reduction algorithm 

 We’ll do the relabeling recursively, bottom-up. 

 

Now suppose we have done the id re-labeling for all non-leaves w 

with index(w)>i.  Suppose index(v)=i 

 

 Case-1,  id(low(v))   =   id(high(v))  ; suppose var(v) = “x” 

 

 

 

 

 

 

 

 

 

 

 

 

func(v)   =    y . func(low(v))  \/    y . func(high(v))  

 

               

 =   y . func(id(low(v))) \/    y . func(id(high(v))) 

 

 =    func(id(low(v)) 
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x 

y y 

0 1 

z 

So,  update:  id(v) :=  id(low(v)) 

v 



The reduction algorithm 

 Case-2: there is another non-leaf udom(id) 

(u has been processed) such that: 

 

 1.  var(u) = var(v)  ; suppose this is “x”   

 

 2.  id(low(u))  =   id(low(v)) 

 

 3.  id(high(u)) = id(high(v)) 

 

 

 

 

 

 

  

 

 

func(v)    =    x func(low(v))   \/    x func(high(v)) 

               =    x func(low(u))   \/    x func(high(u))     // by inv 

               =     func(u) 

               =     func(id(u)) 
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x x 

v 

id 

id 

u 

So, update:  id(v) :=  id(u) 



Building a BDD 

 So far: we can reduce a BDD. 

 Recall in CTL model checking, e.g. to the set of states 

satisfying EX p is calculated by constructing this 

formula: 

 

 

 

Since formulas are now represented as BDDs, this 

implies the need to combine BDDs.  

 

 The combinators should be efficient! 

x’,y’::  R  /\  Wp [x’,y’/x,y]  
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Basic operations to combine BDDs 

 Apply              f1 <op> f2   

   

 Restrict          f |x=b   // b is constant 

   

 Compose       f1 |x=f2    // f2 is another function

  

 

 Satisfy-one      

 
Return a single combination of the variables of f that would make it true, else 

return nothing. 
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Quantification 

  With restriction we can encodes boolean 

quantifications : 

 

 (y::  f(x,y) )   =     f(x,y) | y=0   \/     f(x,y) | y=1  

 

 (y:: f(x,y) )   =    ( y::  f(x,y)) 

 

 

(Recall that we need this in the MC algorithm). 

 

59 



Restriction 

  f(x,y,z) | y=c     how to construct the BDD of the new function??  

 

f(x,y,z) | y=0     replace all y nodes by low-sub-tree 

 

f(x,y,z) | y=1        replace all y nodes by high-sub-tree 

 

 

Example: 

 

     f (x,y.z)  =  xz  \/  xyz 

 

So, f(x,y,z) |y=0  =  z 

x 

z 

0 1 

y 

x 

z 

0 1 

z 

0 1 

After replacing “y” 

Reduced 

version. 
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Apply 

 “Apply”, denoted by f <op> g , means the boolean 
function obtained by applying op to f and g. 
 
E.g. assuming they take x,y as parameters, f <and> g 
means the function that maps x,y to f(x,y) /\ g(x,y). 

 

 A single algorithm to implement  /\,  \/, xor 
 

 We can even implement f  ,  namely as f  <xor>  1 
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Apply 

 So, given the BDDs of f and g, how to construct the 
BDD of f <op> g ?  

 

 There is this ‘Shannon expansion’ : 
 
   
 

 

 

 

 This tells us how to implement  “apply” recursively ! 
 
Detail, see LN. 
 
 

f <op> g   

 =   

x . (f |x=0 <op> g |x=0 )    \/   x . ( f |x=1 <op> g |x=1 ) 
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Apply 
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f <op> g   

 =   

x . (f |x=0 <op> g |x=0 )    \/   x . ( f |x=1 <op> g |x=1 ) 

x 

But this can be exponential. Solution: keep track of those sub-

expressions you have combined. 



Example 

We name the nodes, just so that we 

can refer to them. 

f <and> g   

 =   

x . (f |x=0 <and> g |x=0 )    \/   x . ( f |x=1 <and> g |x=1 ) 

We’ll do this by hand. 

64 

x 

z 

0 1 

y 

z 

0 1 

y 

u1 

u2 

u3 

u4 u5 

v1 

v2 

v3 

v4 



Example 

x 

z 

0 1 

y 

z 

0 1 

y 

u1 

u2 

u3 

u4 u5 

v1 

v2 

v3 

v4 

apply(u1,v1)   

apply(u3,v1)  

apply(u3,v2)  

apply(u5,v4)  

apply(u4,v3)  

apply(u5,v3)  

apply(u2,v1)  

apply(u3,v2)  

apply(u4,v3)  

apply(u5,v4)  

apply(u4,v3)  

Repeated call in recursion! To avoid 

this, maintain a table to keep track 

of already computed results.  
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Satisfy and Compose 

 Compose, constructed through : 

 

f1|x=f2  =   f2 . f1|x=1  \/   f2 . f1|x=0 

 

 In a reduced graph of a satisfiable formula, every 

non-terminal node must have both leaf-0 and  leaf-1 

as decendants. 

 

It follows that satisfy-one can be implemented in O(n) 

time. 

 

  
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And substitution… 

 Recall in CTL model checking, e.g. to the set of states 

satisfying EX p is calculated by constructing this 

formula: 

 

 

 

So, how to we construct the BDD representing e.g. 

f[x’,y’/x,y] ? 

 

 Just replace x,y in the BDD with x’,y’, assuming this 

does not violate the BDD’s ordering constraint (e.g. if 

x<y but x’>y’). Else use compose. 

 

x’,y’::  R  /\  Wp [x’,y’/x,y] 
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The cost of various operations 

 Reduce f      O(|G|×log|G|) 

 

where G is the graph of f’s BDD. 

 

 Apply              f1 <op> f2    O(|G1|×|G2|)  

 Restrict          f |x=b    O(|G|×log|G|) 

 Compose      f1 |x=f2     O(|G1|2×|G2|) 

 

 Satisfy-one     O(n) 

 

n is the number of parameters in the target boolean 

function. 
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