
CTL Model Checking

Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Background

 Example: verification of web applications  e.g. to prove

existence of a path from page A to page B.

Use of CTL is popular  another variant of “temporal

logic”  different way of model checking.

 Model checker for verifying CTL: SMV. Also uses a

technique called “symbolic” model checking.

 In contrast, SPIN model checking is called “explicit state”.

 We’ll show you how this symbolic MC works, but first we’ll take a

look at CTL, and the web application case study.
2

Overview

 CTL

 CTL

 Model checking

 Symbolic model checking

 BDD

 Definition

 Reducing BDD

 Operations on BDD

 Acknowledgement: some slides are taken and adapted from various presentations by

Randal Bryant (CMU), Marsha Chechik (Toronto)

3

CTL

 Stands for Computation Tree Logic

 Consider this Kripke structure (labeling omitted) :

0

1

2

M :
0 0 0 1 2 . . .

0

0

0 1 2 2 2 . . .

1

2

2

0 1

2 . . .

In LTL, properties ate defined over “executions”, which

are sequences :

In CTL properties are

defined in terms of your

computation tree:

4

CTL

 Informally, CTL is interpreted over computation
trees.

 M |==  = M’s computation trees satisfies 

 We have path quantifiers :
 A ... : holds for all path (starting at the tree’s root)
 E ... : holds for some path

 Temporal operators :
 X ... : holds next time
 F ... : holds in the future
 G ... : always hold
 U : until

5

Intuition of CTL operators



EX (exists next) 

 













  

    



AX (all next) 

EG  AG 

6

Intuition of CTL operators



EF 



 



AF 











 





E[ U ] A[ U ]

7

Syntax

 ::= p // atomic (state) proposition

 |  | 1 /\ 2

 | EX  | AX 

 | E[1 U 2] | A[1 U 2]

8

Derived operators

  \/  = ( /\ )

    =  \/ 

 EF  = E[true U ]

 AF  = A[true U ]

 EG  =  AF 

 AG  =  EF 

9

Semantics

 Let M = (S, {s0}, R, V) be a Kripke structure 

 M,t |==   holds on the comp. tree t

 M |==  is defined as M, tree(s0) |== 

 M,t |== p = p  V(root(t))

 M,t |==  = not (M,t |== )

 M,t |== /\ = M,t |==  and M,t |== 

R : S  {S} : transition relation

V : S  {Prop} : observations

10

Semantic of “X”

 M,t |== EX = (v R(root(t)) :: M,tree(v) |== )

 M,t |== AX = (v R(root(t)) :: M,tree(v) |== )

11

This definition of the A-quantifier is a bit problematic if you have a terminal state t (state with

no successor), because then you get t |== AX  for free, for any  (the above -

quantification would quantify over an empty domain). This can be patched; but we’ll just

assume that your M contains no terminal state (all executions are infinite).

Semantic of “U”

 M,t |- E[ U ] =

There is a path  in M, starting in root(t) such that:

 For some i0, M,tree(i) |== 

 For all previous j, 0j<i, M,tree(j) |== 

 M,s |- A[ U ] =

For all path  in M, starting in root(t), these hold:

12

LTL vs CTL

 They are not the same.

 Some properties can be expressed in both:

 AG (x=0) = [] (x=0)

 AF (x=0) = <>(x=0)

 A[x=0 U y=0] = x=0 U y=0

 Some CTL properties can’t be expressed in LTL, e.g:

 EF (x = 0)

 {x=0}

13

Prop = { x= 0 }

LTL vs CTL

 Some LTL properties cannot be expressed in CTL,
e.g.

 <>[] p

E.g. AF AG p does not express the property; the
above Kripke does not satisfy it.

 {p} {p}

14

Prop = { p }

LTL vs CTL

 Another example, fairness restriction:

 ([]<> p  <>q)  <>q

 = []<>p \/ <>q



{p} {q}

15

e.g. AGAF p \/ AF q does

not hold on the tree.

CTL*

 Allows more combinations of path and temporal quantifiers.

 A CTL* formula is a “state formula”, syntax:

(State formula)

  :: p // p is atomic proposition

 |  | 1 \/ 2

 | E f | A f // f is a path formula

(Path formula)

 f :: 

 | f | f \/ g | Xf | Ff | Gf | f1 U f2
We can express all CTL

formulas in CTL*, but e.g.

this is also possible in CTL* :

 AFG (x=0)
16

Example: web application

 Based on:

A Model Checking-based Method for Verifying Web

Application Design, Donini et al, in Int. Workshop on

Web Lang. and Formal Methods (WLFM), 2005.

 In their approach, models are obtained from UML

design of the web application.

 Other possibilities:

 By crawling a web site

 By analyzing log

17

WAG

 Model web application as a graph (N,C), where

 N = W  P  L  A

each component is disjoint.

C : N2N defines the arrows in the graph, and such

that:

 A window can only be connected to pages

 A page can only be connected to links or actions

 A link or an action can only be connected to windows

 Called “Web Application Graph” (WAG)

W set of windows

P set of pages

L set of links

A set of actions

18

WAG as Kripke

 See a WAG as a Kripke structure, e.g. each node in the

WAG is a state in the Kripke structure.

 Label each state with propositions w,p,l,a to express

whether it is a window, or a page etc.

 Introduce other propositions of interest, e.g.

 login, logout To mark a login/logout action

 private To mark states considered “private”

 error To mark “error page”.

 Label the states with these propositions.
19

Example

frame/window

page

action

link

{ loginSuccess }

{ private }

20

…

Now properties like these are well defined…

• A (private W private /\ loginSuccess)

You cannot get to the private part without logging in….

• AG (loginSucess  EF private)

Once logged in, it should be possible to get to the private part

•

21

Model checking CTL formulas

 Kripke M = (S, {s0}, R, V)

 We want to verify M |== 

 Assume  is expressed in CTL’s (chosen) basic

operators.

 The verification algorithm works by systematic-

ally labeling M’s states with subformulas of ;

bottom up.

 For a sub-formula f ; we inspect every state s:

 Eventually, when we are done with the labeling

of the root formula  :

0

2

1

3

{ p }

{ p,q }

{ p }



If root(s) |= f , we label s with f (and otherwise we don’t label it)

M |=  iff s0 is labeled with 

22

Example, checking EX(p/\q)

0

2

1

3

{ p }

{ p,q }

{ p }



p /\ q EX(p/\q)

Initial state is not labeled

with the target formula; so

the formula is not valid.

23

Prop = {p,q}

EX(p/\q)

Example, checking: E[p U (p/\q)]

0

2

1

3

{ p }

{ p,q }

{ p }



p /\ q

E[p U p/\q]

E[p U p/\q] E[p U p/\q]

Initial state is labeled with

the target formula; so M

satisfies the formula.

24

Example, checking A[p U (p/\q)]

0

2

1

3

{ p }

{ p,q }

{ p }



p /\ q

A[p U p/\q]

A[p U p/\q]
At the end, initial state is

not labeled with the target

formula; so the formula is

not valid

25

A[p U p/\q]

Can we apply this to LTL ?

 Consider <>[] p

 Applying labeling :

 {p} {p}

26

Prop = { p }

<>[]p []p we can’t label this with []p;

thus also not with <>[]p

Symbolic representation

 You need the full statespace to do the labeling!

 Idea:

 Use formulas to encode sets of states (e.g. to express the

set of states labeled by something)

 A small formula can express a large set of states 

suggest a potential of space reduction.

27

Example

0

2

1

3

{ p }

{ p,q }

{ p }



4 states, can be encoded

by 2 boolean variables x

and y.

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

E.g. the set of states where q

holds is encoded by the formula:

 xy

Similarly, the set of states where p

holds : {0,1,2}, can be encoded by

formula:

 (xy)

28

Example

0

2

1

3

{ p }

{ p,q }

{ p }



States encoding:

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

xy

xy

xy
xy

29

We can also describe this more

program-like:

 if state{0,2}  goto {0,1}

 [] state{1,3}  goto 2

 [] state=3  goto {2,3}

 fi

which can be encoded with this

boolean formula:

yx’ \/ yx’y’ \/ xyx’

N.D.

Example

30

(x0..x7) /\ x’0... x’7

\/

x0...x7 /\ x’0... x’7

byte x ; // unspecified initial value

if x255  x=0 ;

The automaton has 256 states,

with 256 arrows.

• Bit matrix : 8.3 Kbyte

• List of arrows: 512 bytes

With boolean formula:

Model checking

 When we label states with a formula f, we are basically

calculating the set of states (of M) that satisfy f.

 Introduce this notation:

 Wf = the set of states (whose comp. trees) satisfy f

 = { s | sS, M, tree(s) |== f }

 We now encode Wf as as a boolean “formula”

31

M |= f if and only if Wf evaluated on s0 returns true

Labeling

 If p is an atomic formula:

 For conjunction:

 Negation:

 For EX:

 AX f = EXf So: WAXf = WEXf

WEXf = x’,y’:: R /\ Wf [x’,y’/x,y]

32

Wp = boolean formula representing the set of states where p holds.

Wf/\g = Wf /\ Wg

Wf = Wf

(The relation R is assumed to be

defined in terms of x,y and x’,y’)

Restricting the arrows over the destinations

States encoding:

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

33

y x’y’ \/ xyy’

{1,3}  {2} Suppose we have these arrows, R =

The set of all states that has at least an outgoing arrow to {0,1,2}

Encoding in Boolean formula:

(x’,y’ :: (y x’y’ \/ xyy’) /\ x’y’)

{3}  {1,3}

{ s | ( t:: t R(s) /\ s3) }

Restricting the arrows over the destinations

34

The set of all states whose all outgoing arrows go to {0,1,2} :

Encoding in Boolean formula :

Note:

• In both examples, invalid encodings (those states that were not actually in your M)

are actually also quantified along as well  incorrect  add a constraint that filters

your result to drop those states.

• In the  example, all terminal states in M will automatically be included in the set …

weird, but we discussed this before. We assumed M does not contain terminals.

 (x’,y’ :: R(x,y,x’,y’)  x’y’)

{ s | ( t:: t R(s)  s3) }

Example, EXp

0

2

1

3

{ p }

{ p,q }

{ p }



States encoding:

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

Wp = (xy)

WEXp = x’,y’:: R /\ (x’y’)

 = x’,y’:: ((yx’ \/ yx’y’ \/

xyx’) /\ (x’y’))

 = true

xy

xy

xy
xy

35

Labeling

 E.g. the states satisfying E[f U g] can be computed

by:

 Let Z1 = Wg

 Iteratively compute Zi

 Stop when Zi+1 = Zi ; then WE[p U q] = Zi

Zi+2 = Zi+1 \/ (x’,y’:: R /\ Wf /\ Zi+1 [x’,y’/x,y])

36

Example, EX[p U q]

0

2

1

3

{ p }

{ p,q }

{ p }



States encoding:

 St-0 xy

 St-1 xy

 St-2 xy

 St-3 xy

• Z3 = …

Till fix point.

xy

xy

xy
xy

37

Z1 = Wq = xy

Z2 = Z1

 \/

 (x’,y’:: R /\ Wp /\ Z1[x’,y’/x,y])

xy \/ (x’,y’:: ... /\ (xy) /\ x’y’)

But how to check fix point?

 To make this works, we need a way to efficiently

check the equivalence of two boolean formulas:

 f  g

So, we can decide when to we have reached a fix-

point

 In general this is an NP-hard problem.

 Use a SAT-solver to check if (f  g) is unsatisfiable.

 We’ll discusss BDD approach

38

Canonical representation

 = simplest/standard form.

 Here, a canonical representation Cf of a formula f is a

representation such that:

 Gives us a way to check equivalence.

 Only useful if the cost of constructing Cf, Cg + checking Cf

= Cg is cheaper than directly checking f  g.

 Some possibilities:

 Truth table  exponentially large.

 DNF/CNF  can also be exponentially large.

f  g iff Cf = Cg

39

BDD

 Binary Decision Diagram; a compact, and canonical

representation of a boolean formula.

 Can be constructed and combined efficiently.

 Invented by Bryant:

"Graph-Based Algorithms for Boolean Function

Manipulation". Bryant, in IEEE Transactions on

Computers, C-35(8),1986.

40

0 0

x 3

0 1

x 3

x 2

0 1

x 3

0 1

x 3

x 2

x 1

Decision Tree

with truth table : Or representing the table with a (binary decision)
tree :

 Each node xi represents a decision:

 Blue out-edge from xi  assigning 1 to xi

 Red out-edge from xi  assigning 0 to xi

 Function value is determined by leaf value.

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

 x1 x2 x3 \/ x1  x2 x3 \/ x1 x2 x3

41

TT is canonical if we fix the

order of the columns.

But we can compact the tree…

E.g. by merging the duplicate leaves:

We can compact this further by merging

duplicate subgraphs …

0 0

x 3

0 1

x 3

x 2

0 1

x 3

0 1

x 3

x 2

x 1

x 3 x 3

x 2

x 3

0 1

x 3

x 2

x 1

42

Results

Note: this is from Bryant’s paper in 1986.

They use their version of MC at that time,

running it on an DEC VAX 11/780, with

about 1 MIP speed 

43

Boolean formula

 A boolean formula (proposition logic formula) e.g. x . y \/ z can

be seen as a function :

 In Bryant’s paper this is called a : boolean function.

 E.g. ‘composing’ functions as in

 “f(x, y, g(x,y,z))”

is the same as the corresponding substitution.

f(x,y,z) = x.y \/ z

44

Binary Decision Diagram

 A BDD is a directed acyclic graph, with

 a single root

 two ‘leaves’  0/1

 non-leaf node

 labeled with ‘varname’

 has 2 children

 Along every path, no var appears more

than 1x

 We’ll keep the arrow-heads implicit

 always from top to bottom

 x

z

0 w: 1

y

val(w)

var(v)

45

high(v)

low(v)

suppose we call this node: v

func(G)

 func(v) = x . func(low(v)) \/ x . f(high(v))

x

z

0 1

y

46

y.z

z

xz \/ x.y.z

func(0) = 0, func(1) = 1

x = val(v)

func(G) = func(root)

Reduced BDD

 Two BDDS F ang G are isomorphic if you can obtain

G from F by renaming F’s nodes, vice versa.

But you are not allowed to rename var(v) nor val(v) !

 A BDD G is reduced if:

 for any non-leaf node v, low(v)  high(v).

 for any distinct nodes u and v, the sub-BDDs rooted at

them are not isomorphic.

 47 o
th

e
rw

is
e
 G

 c
a
n
 b

e
 r

e
d
u
c
e
d
!

then: func(F) = func(G)

Ordered BDD

 OBDD  fix an ordering on the variables

 let index(v)  the order of v in this ordering 

 index(v) < index(low(v)

 same with high(v)

48

y

z z

x

0 1

satisfies ordering

[y,z,x] but not [x,y,z]

Reduced OBDD

 Reduced OBDD is canonical:

 Same idea as in truth tables: canonical if you fix the order

of the columns.

 However, the chosen ordering may influence the size of

the OBDD.

If we fix the variable ordering, every boolean function is

uniquely represented by a reduced OBDD (up to isomorphism).

49

Effect of ordering

xyz \/ yz Consider:

x

z

0 1

y

y

z z

x

0 1

Order: x,y,z Order: y,z,x

50

The difference can be huge…

consider: a1b1 \/ a2b2 \/ a3b3

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

Here: “red” for value 1, “green” for 0. 51

Reducing BDD

By sharing leaves…

0 0

 z

0 1

 z

 y

0 1

 z

0 1

 z

 y

x

z z

y

z

0 1

z

y

x

52

Reducing BDD
x

y y

z

0 1

z z z

x

y y

0 1

z z

53

x

y

0 1

z

The reduction algorithm

 Introduce id, function Node  Node

Use it to keep track which nodes actually represent the same formula.

Iterate/recurse and maintain this invariant:

 So, we can remove u from the graph, and re-route arrows to it, to go

to id(u) instead.

 Work bottom up, and such that a node decorated with x is processed

after all nodes whose decorations come later in the var-ordering are

processed first.

54

func(u) = func(id(u))

The reduction algorithm

 We’ll do the relabeling recursively, bottom-up.

Now suppose we have done the id re-labeling for all non-leaves w

with index(w)>i. Suppose index(v)=i

 Case-1, id(low(v)) = id(high(v)) ; suppose var(v) = “x”

func(v) = y . func(low(v)) \/ y . func(high(v))

 = y . func(id(low(v))) \/ y . func(id(high(v)))

 = func(id(low(v))

55

x

y y

0 1

z

So, update: id(v) := id(low(v))

v

The reduction algorithm

 Case-2: there is another non-leaf udom(id)

(u has been processed) such that:

 1. var(u) = var(v) ; suppose this is “x”

 2. id(low(u)) = id(low(v))

 3. id(high(u)) = id(high(v))

func(v) = x func(low(v)) \/ x func(high(v))

 = x func(low(u)) \/ x func(high(u)) // by inv

 = func(u)

 = func(id(u))

56

x x

v

id

id

u

So, update: id(v) := id(u)

Building a BDD

 So far: we can reduce a BDD.

 Recall in CTL model checking, e.g. to the set of states

satisfying EX p is calculated by constructing this

formula:

Since formulas are now represented as BDDs, this

implies the need to combine BDDs.

 The combinators should be efficient!

x’,y’:: R /\ Wp [x’,y’/x,y]

57

Basic operations to combine BDDs

 Apply f1 <op> f2

 Restrict f |x=b // b is constant

 Compose f1 |x=f2 // f2 is another function

 Satisfy-one

Return a single combination of the variables of f that would make it true, else

return nothing.

58

Quantification

 With restriction we can encodes boolean

quantifications :

 (y:: f(x,y)) = f(x,y) | y=0 \/ f(x,y) | y=1

 (y:: f(x,y)) =  ( y::  f(x,y))

(Recall that we need this in the MC algorithm).

59

Restriction

 f(x,y,z) | y=c how to construct the BDD of the new function??

f(x,y,z) | y=0  replace all y nodes by low-sub-tree

f(x,y,z) | y=1  replace all y nodes by high-sub-tree

Example:

 f (x,y.z) = xz \/ xyz

So, f(x,y,z) |y=0 = z

x

z

0 1

y

x

z

0 1

z

0 1

After replacing “y”

Reduced

version.

60

Apply

 “Apply”, denoted by f <op> g , means the boolean
function obtained by applying op to f and g.

E.g. assuming they take x,y as parameters, f <and> g
means the function that maps x,y to f(x,y) /\ g(x,y).

 A single algorithm to implement /\, \/, xor

 We can even implement f , namely as f <xor> 1

61

Apply

 So, given the BDDs of f and g, how to construct the
BDD of f <op> g ?

 There is this ‘Shannon expansion’ :

 This tells us how to implement “apply” recursively !

Detail, see LN.

f <op> g

 =

x . (f |x=0 <op> g |x=0) \/ x . (f |x=1 <op> g |x=1)

62

Apply

63

f <op> g

 =

x . (f |x=0 <op> g |x=0) \/ x . (f |x=1 <op> g |x=1)

x

But this can be exponential. Solution: keep track of those sub-

expressions you have combined.

Example

We name the nodes, just so that we

can refer to them.

f <and> g

 =

x . (f |x=0 <and> g |x=0) \/ x . (f |x=1 <and> g |x=1)

We’ll do this by hand.

64

x

z

0 1

y

z

0 1

y

u1

u2

u3

u4 u5

v1

v2

v3

v4

Example

x

z

0 1

y

z

0 1

y

u1

u2

u3

u4 u5

v1

v2

v3

v4

apply(u1,v1)

apply(u3,v1)

apply(u3,v2)

apply(u5,v4)

apply(u4,v3)

apply(u5,v3)

apply(u2,v1)

apply(u3,v2)

apply(u4,v3)

apply(u5,v4)

apply(u4,v3)

Repeated call in recursion! To avoid

this, maintain a table to keep track

of already computed results.

65

Satisfy and Compose

 Compose, constructed through :

f1|x=f2 = f2 . f1|x=1 \/ f2 . f1|x=0

 In a reduced graph of a satisfiable formula, every

non-terminal node must have both leaf-0 and leaf-1

as decendants.

It follows that satisfy-one can be implemented in O(n)

time.



66

And substitution…

 Recall in CTL model checking, e.g. to the set of states

satisfying EX p is calculated by constructing this

formula:

So, how to we construct the BDD representing e.g.

f[x’,y’/x,y] ?

 Just replace x,y in the BDD with x’,y’, assuming this

does not violate the BDD’s ordering constraint (e.g. if

x<y but x’>y’). Else use compose.

x’,y’:: R /\ Wp [x’,y’/x,y]

67

The cost of various operations

 Reduce f O(|G|×log|G|)

where G is the graph of f’s BDD.

 Apply f1 <op> f2 O(|G1|×|G2|)

 Restrict f |x=b O(|G|×log|G|)

 Compose f1 |x=f2 O(|G1|2×|G2|)

 Satisfy-one O(n)

n is the number of parameters in the target boolean

function.

 68

