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Background 

 Example: verification of web applications  e.g. to prove 

existence of a path from page A to page B. 

 

Use of CTL is popular   another variant of “temporal 

logic”  different way of model checking. 

 

 Model checker for verifying CTL: SMV. Also uses a 

technique called “symbolic” model checking.  

 

 In contrast, SPIN model checking is called “explicit state”.  

 

 We’ll show you how this symbolic MC works, but first we’ll take a 

look at CTL, and the web application case study. 
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Overview 

 CTL 

 CTL  

 Model checking 

 Symbolic model checking 

 BDD 

 Definition 

 Reducing BDD 

 Operations on BDD 

 
 Acknowledgement: some slides are taken and adapted from various presentations by 

Randal Bryant (CMU), Marsha Chechik (Toronto) 
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CTL 

 Stands for Computation Tree Logic 

 Consider this Kripke structure (labeling omitted) : 

0 

1 

2 

M : 
0 0 0 1 2 . . . 

0 

0 

0 1 2 2 2 . . . 

1 

2 

2 

0 1 

2 . . . 

In LTL, properties ate defined over “executions”, which 

are sequences : 

In CTL properties are 

defined in terms of your 

computation tree: 
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CTL 

 Informally, CTL is interpreted over computation 
trees. 
 
    M |==     =   M’s computation trees satisfies  

 

 We have path quantifiers : 
 A ...  :  holds for all path (starting at the tree’s root) 
 E ...  :  holds for some path 

 

 Temporal operators : 
 X ... : holds next time  
 F ... : holds in the future 
 G ... : always hold 
 U     : until 
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Intuition of CTL operators 

 

EX (exists next)   

  

 

 

 

 

 

 

   

     

 

AX (all next)   

EG  AG  
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Intuition of CTL operators 

 

EF  

 

  

 

AF  

 

 

 

 

 

  

 

 

E[  U  ] A[  U  ] 
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Syntax 

  ::=  p         // atomic (state) proposition 
 
       |    |  1 /\ 2 
 
       |  EX   |  AX   
 
       |  E[1 U 2]   |    A[1 U 2] 
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Derived operators 

  \/     =   ( /\ ) 

      =     \/  

 

 EF   =  E[ true  U  ] 

 AF   =  A[ true  U  ] 

 EG   =   AF  

 AG   =   EF  
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Semantics 

 Let M = ( S, {s0}, R, V ) be a Kripke structure  

 

 M,t  |==           holds on the comp. tree t 

 

 M |==        is defined as M, tree(s0) |==  

 

 M,t  |==  p      =    p  V(root(t))  

 

 M,t  |==     =     not   (   M,t  |==     ) 

 

 M,t  |== /\    =     M,t  |==       and   M,t  |==      

 

R : S  {S} : transition relation 

V :  S  {Prop} : observations  
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Semantic of “X” 

 

 M,t |==  EX   =    ( v R(root(t)) ::    M,tree(v)  |==  )  

 

 M,t |==  AX   =    ( v R(root(t)) ::    M,tree(v)  |==  ) 
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This definition of the A-quantifier is a bit problematic if you have a terminal state t (state with 

no successor),  because then you get  t |== AX   for free, for any  (the above -

quantification would quantify over an empty domain). This can be patched; but we’ll just 

assume that your M contains no terminal state (all executions are infinite). 



Semantic of “U” 

   M,t |-  E[  U  ]    =     

 

There is a path  in M, starting in root(t) such that: 

 

 For some i0,  M,tree(i) |==  

 

 For all previous j, 0j<i,  M,tree(j) |==  

 

  M,s |-  A[  U  ]    = 

 

For all path  in M, starting in root(t), these hold: 
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LTL vs CTL 

 They are not the same. 

 Some properties can be expressed in both: 
 
     AG (x=0)    =    [] (x=0) 
 
     AF (x=0)    =     <>(x=0) 
 
     A[x=0  U  y=0]   =   x=0  U   y=0  
 

 Some CTL properties can’t be expressed in LTL, e.g:  
 
    EF (x = 0) 

 
 {x=0} 

13 

Prop = { x= 0 } 



LTL vs CTL 

 Some LTL properties cannot be expressed in CTL, 
e.g. 
 
    <>[] p   
 
 
 
 
 
 
 
 
E.g.  AF AG p  does not express the property; the 
above Kripke does not satisfy it. 

 {p} {p} 
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Prop = { p } 



LTL vs CTL 

 Another example, fairness restriction: 
 
    ([]<> p  <>q)    <>q 
 
    =   []<>p   \/   <>q 

 

 

 

 
 

 

 

 
 

 

{p} {q} 
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e.g. AGAF p  \/  AF q   does 

not hold on the tree. 



CTL* 

 Allows more combinations of path and temporal quantifiers. 

 A   CTL*   formula is a “state formula”, syntax: 

 

(State formula) 

 

   ::  p   // p is atomic proposition 

    |     |  1  \/  2 

            |   E f   |  A f  // f is a path formula 

 

(Path formula) 

 

 f  ::   

           | f  |  f \/ g  |  Xf  |  Ff  | Gf  |  f1 U f2 
We can express all CTL 

formulas in CTL*, but e.g. 

this is also possible in CTL* : 

 

 AFG (x=0) 
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Example: web application 

 Based on: 

 

A Model Checking-based Method for Verifying Web 

Application Design, Donini et al, in Int. Workshop on 

Web Lang. and Formal Methods (WLFM), 2005.  

 

 In their approach, models are obtained from UML 

design of the web application. 

 Other possibilities:  

 By crawling a web site 

 By analyzing log 
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WAG 

 Model web application as a graph (N,C), where  

 

 N = W  P  L  A 

 

each component is disjoint. 

 

C : N2N    defines the arrows in the graph, and such 

that: 

 

 A window can only be connected to pages 

 A page can only be connected to links or actions 

 A link or an action can only be connected to windows 

 

 Called “Web Application Graph” (WAG) 

 

W set of windows 

P set of pages 

L set of links 

A set of actions 
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WAG as Kripke 

 See a WAG as a Kripke structure, e.g. each node in the 

WAG is a state in the Kripke structure. 

 

 Label each state with propositions w,p,l,a to express 

whether it is a window, or a page etc. 

 

 Introduce other propositions of interest, e.g. 

 login, logout  To mark a login/logout action 

 private   To mark states considered “private” 

 error   To mark “error page”. 

 

 Label the states with these propositions. 
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Example 

frame/window 

page 

action 

link 

{ loginSuccess } 

{ private } 

20 

… 



Now properties like these are well defined… 

• A (private  W private /\  loginSuccess) 

 

You cannot get to the private part without logging in…. 

 

• AG ( loginSucess   EF private ) 

 

Once logged in, it should be possible to get to the private part 

 

•   
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Model checking CTL formulas 

 Kripke M = ( S, {s0}, R, V ) 

 We want to verify M |==  

 Assume  is expressed in CTL’s (chosen) basic 

operators. 

 The verification algorithm works by systematic-

ally labeling M’s states with subformulas of ; 

bottom up.  

 For a sub-formula f ; we inspect every state s: 

 

 

 

 Eventually, when we are done with the labeling 

of the root formula   : 

 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

If  root(s) |= f  , we label s with f  (and otherwise we don’t label it) 

M |=     iff      s0  is labeled with  
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Example, checking  EX(p/\q)  

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

p /\ q EX(p/\q) 

Initial state is not labeled 

with the target formula; so 

the formula is not valid. 
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Prop = {p,q} 

EX(p/\q) 



Example, checking:  E[ p U (p/\q) ] 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

p /\ q 

E[ p U  p/\q] 

E[ p U  p/\q] E[ p U  p/\q] 

Initial state is labeled with 

the target formula; so M 

satisfies the formula. 
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Example, checking  A[ p U (p/\q) ] 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

p /\ q 

A[ p U  p/\q] 

A[ p U  p/\q] 
At the end, initial state is 

not labeled with the target 

formula; so the formula is 

not valid 
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A[ p U  p/\q] 



Can we apply this to LTL ? 

 Consider  <>[] p 

 

 Applying labeling : 
 
 
 
 
 
 
 
 
 

 {p} {p} 
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Prop = { p } 

<>[]p []p we can’t  label this with []p; 

thus also not with  <>[]p 



Symbolic representation 

 You need the full statespace to do the labeling! 

 

 Idea: 

 

 Use formulas to encode sets of states (e.g. to express the 

set of states labeled by something) 

 

 A small formula can express a large set of states  

suggest a potential of space reduction. 
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Example 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

4 states, can be encoded 

by 2 boolean variables x 

and y. 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

E.g. the set of states where q 

holds is encoded by the formula: 

 

  xy  

 

Similarly, the set of states where p 

holds : {0,1,2}, can be encoded by 

formula: 

 

 (xy) 
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Example 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

States encoding: 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

xy 

xy 

xy 
xy 
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We can also describe this more 

program-like: 

 

   if state{0,2}     goto {0,1} 

   [] state{1,3}     goto 2 

   [] state=3           goto {2,3} 

   fi 

 

which can be encoded with this 

boolean formula: 

 

 
yx’   \/   yx’y’  \/  xyx’ 

N.D. 



Example 
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(x0..x7) /\ x’0... x’7     

\/     

x0...x7 /\ x’0... x’7 

byte x ;  // unspecified initial value 

 

if x255   x=0 ;  

The automaton has 256 states, 

with 256 arrows. 

 

• Bit matrix : 8.3 Kbyte 

• List of arrows: 512 bytes 

With boolean formula: 



Model checking 

 When we label states with a formula f, we are basically 

calculating the set of states (of M) that satisfy f. 

 

 Introduce this notation: 

 

 Wf  = the set of states (whose comp. trees) satisfy f 

 

       =  {  s  |  sS,  M, tree(s) |== f } 

 

 We now encode Wf as as a boolean “formula” 
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M |= f    if and only if  Wf evaluated on s0 returns true 



Labeling 

 If p is an atomic formula: 

 

 

 

 For conjunction: 

 Negation:  

 

 For EX: 

 

 

 AX f   =   EXf    So:   WAXf   = WEXf  

 

WEXf   =  x’,y’::  R  /\  Wf [x’,y’/x,y] 

32 

Wp  =   boolean formula representing the set of states where p holds. 

Wf/\g  = Wf /\  Wg  

Wf  =  Wf  

(The relation R is assumed to be 

defined in terms of x,y and x’,y’) 



Restricting the arrows over the destinations 

States encoding: 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

33 

y x’y’   \/   xyy’  

{1,3}   {2} Suppose we have these arrows,  R =  

The set of all states that has at least an outgoing arrow to {0,1,2} 

 

 

 

 

Encoding in Boolean formula: 

(x’,y’  ::  ( y x’y’   \/   xyy’  )   /\   x’y’ ) 

{3}   {1,3} 

{ s  |   ( t::  t R(s)  /\  s3 )  } 



Restricting the arrows over the destinations 
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The set of all states whose all outgoing arrows go to {0,1,2} : 

 

 

 

 

Encoding in Boolean formula : 

 

 
 

 

 

Note:  

 

• In both examples, invalid encodings (those states that were not actually in your M) 

are actually also quantified along as well   incorrect  add a constraint that filters 

your result to drop those states. 

•  In the  example,  all terminal states in M will automatically be included in the set … 

weird, but we discussed this before. We assumed M does not contain terminals. 

 

  (x’,y’  ::   R(x,y,x’,y’)    x’y’ ) 

{ s  |   ( t::  t R(s)   s3 )  } 



Example, EXp 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

States encoding: 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

Wp  =  (xy) 

 

WEXp  =  x’,y’::  R  /\ (x’y’) 

 

          = x’,y’:: ((yx’   \/   yx’y’  \/  

xyx’)  /\ (x’y’)) 

 

          = true 

xy 

xy 

xy 
xy 
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Labeling 

 E.g. the states satisfying E[f U g] can be computed 

by: 

 Let Z1 = Wg 

 

 Iteratively compute Zi 

 

 

 

 Stop when Zi+1 = Zi ; then WE[p U q]   = Zi 

 

 

 

 

Zi+2  =   Zi+1   \/  ( x’,y’::  R  /\  Wf /\  Zi+1 [x’,y’/x,y] ) 
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Example, EX[ p U q ] 

0 

2 

1 

3 

{ p } 

{ p,q } 

{ p } 

 

States encoding: 

 

    St-0 xy 

    St-1  xy 

    St-2  xy 

    St-3 xy 

• Z3   =   … 

 

Till  fix point. 

xy 

xy 

xy 
xy 
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Z1   =   Wq  =  xy 

Z2   =    Z1   

                   \/ 

            (x’,y’::  R  /\ Wp  /\ Z1[x’,y’/x,y]) 

xy  \/ (x’,y’::  ...  /\ (xy)  /\ x’y’) 



But how to check fix point? 

 To make this works, we need a way to efficiently 

check the equivalence of two boolean formulas: 

 

 f  g 

 

So, we can decide when to we have reached a fix-

point  

 In general this is an NP-hard problem. 

 Use a SAT-solver to check if (f  g) is unsatisfiable. 

 We’ll discusss BDD approach 
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Canonical representation 

 = simplest/standard form. 

 Here, a canonical representation Cf of a formula f is a 

representation such that: 

 

 

 

 Gives us a way to check equivalence. 

 Only useful if the cost of constructing Cf, Cg + checking Cf 

= Cg is cheaper than directly checking f  g. 

 Some possibilities: 

 Truth table   exponentially large. 

 DNF/CNF   can also be exponentially large.  

 

 

f  g   iff   Cf = Cg 
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BDD 

 Binary Decision Diagram; a compact, and canonical 

representation of a boolean formula. 

 

 Can be constructed and combined efficiently. 

 

 Invented by Bryant: 

 

"Graph-Based Algorithms for Boolean Function 

Manipulation". Bryant, in IEEE Transactions on 

Computers, C-35(8),1986. 
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0 0 

x 3 

0 1 

x 3 

x 2 

0 1 

x 3 

0 1 

x 3 

x 2 

x 1 

Decision Tree 

with truth table : Or representing the table with a (binary decision) 
tree : 

 Each node xi  represents a decision: 

 Blue  out-edge from xi  assigning 1 to xi 

 Red  out-edge  from xi  assigning 0 to xi 

 Function value is determined by leaf value. 

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

           x1 x2 x3    \/    x1  x2 x3    \/     x1 x2 x3 

41 

TT is canonical if we fix the 

order of the columns. 



But we can compact the tree… 

E.g. by merging the duplicate leaves: 

We can compact this further by merging 

duplicate subgraphs … 

0 0 

x 3 

0 1 

x 3 

x 2 

0 1 

x 3 

0 1 

x 3 

x 2 

x 1 

x 3 x 3 

x 2 

x 3 

0 1 

x 3 

x 2 

x 1 
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Results 

 

 

 

 

 

 

 

Note: this is from Bryant’s paper in 1986. 

They use their version of MC at that time, 

running it on an DEC VAX 11/780, with 

about 1 MIP speed  
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Boolean formula 

 A boolean formula (proposition logic formula) e.g.   x . y   \/   z  can 

be seen as a function : 

 

 

 

 

 In Bryant’s paper this is called a : boolean function. 

 

 E.g. ‘composing’ functions as in 

 

 “f(x, y, g(x,y,z))”  

 

is the same as the corresponding substitution. 

 

f(x,y,z)    =     x.y  \/   z 
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Binary Decision Diagram 

 A BDD  is a directed acyclic graph, with 

 a single root 

 two ‘leaves’  0/1 

 non-leaf node 

 labeled with ‘varname’ 

 has 2 children 

 

 Along every path, no var appears more 

than 1x 

 

 We’ll keep the arrow-heads implicit  

 always from top to bottom 
 

 

 

 

 x 

z 

0 w: 1 

y 

val(w) 

var(v) 
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high(v) 

low(v) 

suppose we call this node: v 



func(G) 

 func(v) =  x . func(low(v))   \/      x . f(high(v)) 

 

 

 

x 

z 

0 1 

y 
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y.z 

z 

xz  \/  x.y.z 

func(0) = 0,    func(1) = 1 

x = val(v) 

func(G) = func(root) 



Reduced BDD 

 Two BDDS F ang G are isomorphic if you can obtain 

G from F by renaming F’s nodes, vice versa. 

 

But you are not allowed to rename var(v) nor val(v) ! 

 

 

 A BDD G is reduced if: 

 

 for any non-leaf node v, low(v)  high(v).  

 

 for any distinct nodes u and v, the sub-BDDs rooted at 

them are not isomorphic.  

 47 o
th

e
rw

is
e
 G

 c
a
n
 b

e
 r

e
d
u
c
e
d
! 

then:   func(F) = func(G) 



Ordered BDD 

 OBDD  fix an ordering on the variables 

 

 let index(v)  the order of v in this ordering  

 

 index(v)  <  index(low(v) 

  same with high(v) 
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y 

z z 

x 

0 1 

satisfies ordering 

[y,z,x]  but not [x,y,z] 



Reduced OBDD 

 Reduced OBDD is canonical: 

 

 

 

 

 Same idea as in truth tables: canonical if you fix the order 

of the columns. 

 

 However, the chosen ordering may influence the size of 

the OBDD. 

If we fix the variable ordering, every boolean function is 

uniquely represented by  a reduced OBDD (up to isomorphism). 
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Effect of ordering 

xyz  \/  yz Consider: 

x 

z 

0 1 

y 

y 

z z 

x 

0 1 

Order: x,y,z Order: y,z,x 
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The difference can be huge…  

consider:   a1b1   \/ a2b2 \/ a3b3 

Linear Growth 

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth 

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

Here: “red” for value 1, “green” for 0. 51 



Reducing BDD 

By sharing leaves… 

0 0 

 z 

0 1 

 z 

 y 

0 1 

 z 

0 1 

 z 

 y 

x 

z z 

y 

z 

0 1 

z 

y 

x 
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Reducing BDD 
x 

y y 

z 

0 1 

z z z 

x 

y y 

0 1 

z z 
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x 

y 

0 1 

z 



The reduction algorithm 

 Introduce id, function Node  Node 

 

Use it to keep track which nodes actually represent the same formula. 

 

Iterate/recurse and maintain this invariant: 

 

 

 

 So, we can remove u from the graph, and re-route arrows to it, to go 

to id(u) instead. 

 Work bottom up, and such that a node decorated with x is processed 

after all nodes whose decorations come later in the var-ordering are 

processed first.   
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func(u) = func(id(u)) 



The reduction algorithm 

 We’ll do the relabeling recursively, bottom-up. 

 

Now suppose we have done the id re-labeling for all non-leaves w 

with index(w)>i.  Suppose index(v)=i 

 

 Case-1,  id(low(v))   =   id(high(v))  ; suppose var(v) = “x” 

 

 

 

 

 

 

 

 

 

 

 

 

func(v)   =    y . func(low(v))  \/    y . func(high(v))  

 

               

 =   y . func(id(low(v))) \/    y . func(id(high(v))) 

 

 =    func(id(low(v)) 
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x 

y y 

0 1 

z 

So,  update:  id(v) :=  id(low(v)) 

v 



The reduction algorithm 

 Case-2: there is another non-leaf udom(id) 

(u has been processed) such that: 

 

 1.  var(u) = var(v)  ; suppose this is “x”   

 

 2.  id(low(u))  =   id(low(v)) 

 

 3.  id(high(u)) = id(high(v)) 

 

 

 

 

 

 

  

 

 

func(v)    =    x func(low(v))   \/    x func(high(v)) 

               =    x func(low(u))   \/    x func(high(u))     // by inv 

               =     func(u) 

               =     func(id(u)) 
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x x 

v 

id 

id 

u 

So, update:  id(v) :=  id(u) 



Building a BDD 

 So far: we can reduce a BDD. 

 Recall in CTL model checking, e.g. to the set of states 

satisfying EX p is calculated by constructing this 

formula: 

 

 

 

Since formulas are now represented as BDDs, this 

implies the need to combine BDDs.  

 

 The combinators should be efficient! 

x’,y’::  R  /\  Wp [x’,y’/x,y]  

57 



Basic operations to combine BDDs 

 Apply              f1 <op> f2   

   

 Restrict          f |x=b   // b is constant 

   

 Compose       f1 |x=f2    // f2 is another function

  

 

 Satisfy-one      

 
Return a single combination of the variables of f that would make it true, else 

return nothing. 
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Quantification 

  With restriction we can encodes boolean 

quantifications : 

 

 (y::  f(x,y) )   =     f(x,y) | y=0   \/     f(x,y) | y=1  

 

 (y:: f(x,y) )   =    ( y::  f(x,y)) 

 

 

(Recall that we need this in the MC algorithm). 
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Restriction 

  f(x,y,z) | y=c     how to construct the BDD of the new function??  

 

f(x,y,z) | y=0     replace all y nodes by low-sub-tree 

 

f(x,y,z) | y=1        replace all y nodes by high-sub-tree 

 

 

Example: 

 

     f (x,y.z)  =  xz  \/  xyz 

 

So, f(x,y,z) |y=0  =  z 

x 

z 

0 1 

y 

x 

z 

0 1 

z 

0 1 

After replacing “y” 

Reduced 

version. 
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Apply 

 “Apply”, denoted by f <op> g , means the boolean 
function obtained by applying op to f and g. 
 
E.g. assuming they take x,y as parameters, f <and> g 
means the function that maps x,y to f(x,y) /\ g(x,y). 

 

 A single algorithm to implement  /\,  \/, xor 
 

 We can even implement f  ,  namely as f  <xor>  1 
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Apply 

 So, given the BDDs of f and g, how to construct the 
BDD of f <op> g ?  

 

 There is this ‘Shannon expansion’ : 
 
   
 

 

 

 

 This tells us how to implement  “apply” recursively ! 
 
Detail, see LN. 
 
 

f <op> g   

 =   

x . (f |x=0 <op> g |x=0 )    \/   x . ( f |x=1 <op> g |x=1 ) 
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Apply 

63 

f <op> g   

 =   

x . (f |x=0 <op> g |x=0 )    \/   x . ( f |x=1 <op> g |x=1 ) 

x 

But this can be exponential. Solution: keep track of those sub-

expressions you have combined. 



Example 

We name the nodes, just so that we 

can refer to them. 

f <and> g   

 =   

x . (f |x=0 <and> g |x=0 )    \/   x . ( f |x=1 <and> g |x=1 ) 

We’ll do this by hand. 
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x 

z 

0 1 

y 

z 

0 1 

y 

u1 

u2 

u3 

u4 u5 

v1 

v2 

v3 

v4 



Example 

x 

z 

0 1 

y 

z 

0 1 

y 

u1 

u2 

u3 

u4 u5 

v1 

v2 

v3 

v4 

apply(u1,v1)   

apply(u3,v1)  

apply(u3,v2)  

apply(u5,v4)  

apply(u4,v3)  

apply(u5,v3)  

apply(u2,v1)  

apply(u3,v2)  

apply(u4,v3)  

apply(u5,v4)  

apply(u4,v3)  

Repeated call in recursion! To avoid 

this, maintain a table to keep track 

of already computed results.  
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Satisfy and Compose 

 Compose, constructed through : 

 

f1|x=f2  =   f2 . f1|x=1  \/   f2 . f1|x=0 

 

 In a reduced graph of a satisfiable formula, every 

non-terminal node must have both leaf-0 and  leaf-1 

as decendants. 

 

It follows that satisfy-one can be implemented in O(n) 

time. 
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And substitution… 

 Recall in CTL model checking, e.g. to the set of states 

satisfying EX p is calculated by constructing this 

formula: 

 

 

 

So, how to we construct the BDD representing e.g. 

f[x’,y’/x,y] ? 

 

 Just replace x,y in the BDD with x’,y’, assuming this 

does not violate the BDD’s ordering constraint (e.g. if 

x<y but x’>y’). Else use compose. 

 

x’,y’::  R  /\  Wp [x’,y’/x,y] 
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The cost of various operations 

 Reduce f      O(|G|×log|G|) 

 

where G is the graph of f’s BDD. 

 

 Apply              f1 <op> f2    O(|G1|×|G2|)  

 Restrict          f |x=b    O(|G|×log|G|) 

 Compose      f1 |x=f2     O(|G1|2×|G2|) 

 

 Satisfy-one     O(n) 

 

n is the number of parameters in the target boolean 

function. 
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