CTL Model Checking

Wishnu Prasetya

wishnu@cs.uu.nl
www.cs.uu.nl/docs/vakken/pv

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

e

&

Background

Example: verification of web applications = e.g. to prove
existence of a path from page A to page B.

Use of CTL is popular - another variant of “temporal
logic” = different way of model checking.

Model checker for verifying CTL: SMV. Also uses a
technique called “symbolic” model checking.

 In contrast, SPIN model checking is called “explicit state”.

* We'll show you how this symbolic MC works, but first we'll take a
look at CTL, and the web application case study.

e

Overview

CTL
e CTL
* Model checking

Symbolic model checking
BDD

o Definition

e Reducing BDD

e Operations on BDD

Acknowledgement: some slides are taken and adapted from various presentations by
Randal Bryant (CMU), Marsha Chechik (Toronto)

e
CTL

Stands for Computation Tree Logic
Consider this Kripke structure (labeling omitted) :

In LTL, properties ate defined over “executions”, which

are sequences :

) 0-0-0-0-@
@) ®-0-0-0-@

In CTL properties are
defined in terms of your
computation tree:

CTL

Informally, CTL is interpreted over computation
trees.

M|==¢ = M’'scomputation trees satisfies ¢

We have path quantifiers :
e A ... : holds for all path (starting at the tree’s root)
e E holds for some path

Temporal operators :
e X holds next time

e F ... - holds in the future
e G ... always hold

e U :untll

e
Intuition of CTL operators

EX (exists next) ¢ AX (all next) ¢
Sy £
H55 ASA

EG(D?E AGié v
o R

e

&

Intuition of CTL operators

EF ¢ 6@\? Aqup
Sh SEN

E[yU o] AlyU ¢]
giﬁfb 2,
Ak Ath

e

Syntax
@ =P /[atomic (state) proposition
| =0 | o1 N,
EXo | AX@

Ele, Ugpy] | Alpy U ogy]

Derived operators

yVeo = —=(=oN-y)
v = —y Vo

EF¢o = E[true U o]
AF o = A[true U o]
EGo = —AF —@
AG o = —EF —0

e

SemanUCS R:S— {5} : transition relation

V: S - {Prop} : observations

Let M = (S, {sy}, R, V) be a Kripke structure ©

Mt |== o ¢ holds on the comp. tree t

M|==0¢ IS defined as M, tree(s,) |== ¢
Mt |==p = peV(root(t))

Mgt [F===¢@ = not (Mt |== ¢)

Mt |==p/\y = Mt |== ¢ and Mt |== vy

Semantic of “X”

Mt |== EXo

(3dve R(root(t)) :: M,tree(v) |== o)

M,t |== AXo (Vve R(root(t)) :: Mtree(v) |==¢)

This definition of the A-quantifier is a bit problematic if you have a terminal state t (state with
no successor), because then you get t |[==AX ¢ for free, for any ¢ (the above V-
quantification would quantify over an empty domain). This can be patched; but we'll just
assume that your M contains no terminal state (all executions are infinite).

e

Semantic of “U”

Mt]|- ElyUe] =
There is a path o In M, starting in root(t) such that:
e For some =0, M,tree(o) |== ¢
e For all previous j, 0<j<i, M,tree(s;) |== vy
Ms |- AlyUe] =

For all path ¢ In M, starting in root(t), these hold:

LTLvs CTL

They are not the same.
Some properties can be expressed in both:

AG (x=0) =[] (x=0)
AF (x=0) = <>(x=0)
A[x=0 U y=0] = x=0 U y=0

Some CTL properties can’t be expressed in LTL, e.q:

EF (x =0)
@*@ Prop={x=0}

ol {x=0}

LTL vs CTL

Some LTL properties cannot be expressed in CTL,
e.g.

<>[] p
/fp} %) {p}
Prop={p }

E.g. AFAG p does not express the property; the
above Kripke does not satisfy it.

e

LTLvs CTL

Another example, fairness restriction:

(<> p » <>q) —> <>q

= [l<>p V <>g
<Ifl—4{>
e.g. AGAF p V AFq does
~ {p} {a} not hold on the tree.

CTL~*

Allows more combinations of path and temporal guantifiers.
A CTL* formulais a “state formula”, syntax:

(State formula)

Q@ I p /[p Is atomic proposition
| =0 | o1 V ¢,
| Ef | Af /[l fis a path formula

(Path formula)

foo
We can express all CTL
|_'f | ng | AT | F |Gf | flUfZ formulas in CTL*, but e.qg.

this is also possible in CTL* :

AFG (x=0)

e
Example: web application

Based on:

A Model Checking-based Method for Verifying Web
Application Design, Donini et al, in Int. Workshop on
Web Lang. and Formal Methods (WLFM), 2005.

In their approach, models are obtained from UML
design of the web application.

Other possibilities:

e By crawling a web site

e By analyzing log

WAG

Model web application as a graph (N,C), where

set of windows
set of pages
set of links

set of actions

N:WUPULUA/—\

each component is disjoint.

> TS

C : N2V defines the arrows in the graph, and such
that:

* A window can only be connected to pages
* A page can only be connected to links or actions
e Alink or an action can only be connected to windows

Called “Web Application Graph” (WAG)

e
WAG as Kripke

See a WAG as a Kripke structure, e.g. each node in the
WAG is a state in the Kripke structure.

Label each state with propositions w,p,l,a to express
whether it is a window, or a page etc.

Introduce other propositions of interest, e.g.

e login, logout To mark a login/logout action
e private To mark states considered “private”
* error To mark “error page”.

Label the states with these propositions.

Example

{ loginSuccess }

et

O frame/window
© Page
@ action
@ link

Now properties like these are well defined...

A (—private W —private A\ loginSuccess)

You cannot get to the private part without logging in....

AG (loginSucess — EF private)

Once logged in, it should be possible to get to the private part

e

Model checking CTL formulas

Kripke M = (S, {s;}, R, V) N\ {p}

We want to verify M |== ¢

Assume ¢ is expressed in CTL’s (chosen) basic
operators.

The verification algorithm works by systematic-

ally labeling M'’s states with subformulas of o;

bottom up. tpa}

For a sub-formula f ; we inspect every state s:

If root(s) |=f , we label swith f (and otherwise we don t label it)

Eventually, when we are done with the labeling
of the root formula ¢ :

M|=¢ Iiff s, islabeledwith ¢

{p}

e
Example, checking EX(p/\Q)

Prop = {p,q}
I N {p} {p}
Initial state is not labeled
with the target formula; so EX(p/\q)

the formula is not valid.

{p.q} %

e R
Example, checking: E[p U (p/\Q)]

E[pU pAg] _\ {p} {P} E[pU pAq]

T

Initial state is labeled with
the target formula; so M

satisfies the formula. 6)

{p.a} %)
p/Ag
E[p U p/Aq]

e
Example, checking A[p U (p/\q)]

N {p} {pP} A[pU pAq]

At the end, initial state is
not labeled with the target
formula; so the formula is
not valid

{p.a} O Atp-Y-—phal

pAdq
Alp U piq]

4 .
Can we apply thisto LTL ?

Consider <>[] p

Applying labeling :

(o) e (o)

/'

{p} % {p}

we can’t label this with []p; <>[]p lp
thus also not with <>[]p

Prop = {p }

e

Symbolic representation

You need the full statespace to do the labeling!

|dea:

e Use formulas to encode sets of states (e.g. to express the
set of states labeled by something)

e A small formula can express a large set of states -
suggest a potential of space reduction.

- Example

N {p} {p}
{p.q} 2
4 states, can be encoded
by 2 boolean variables x
and y.
St-0 —x—y
St-1 —xy
St-2 x—y
St-3 xy

E.g. the set of states where
holds is encoded by the formula:

Xy
Similarly, the set of states where p

holds : {0,1,2}, can be encoded by
formula:

—(Xy)

N\ {p} {p}
—XY
—X—Y
@
Xy
{p.q} %,

States encoding:

St-0 —x—y
St-1 —xy
St-2 x—y

St-3 xy

We can also describe this more
program-like:

If statee{0,2} — goto {0,1}
[] statee{1,3} — goto 2

[] state=3 — goto {2,3}
fi

which can be encoded with this
boolean formula:;

N.D.

—y—x V yx'—y’ V xyXx

e
Example

byte x ; // unspecified initial value The automaton has 256 states,
with 256 arrows.

If x#£255 -5 x=0;

* Bit matrix : 8.3 Kbyte
* List of arrows: 512 bytes

_I(Xo. .X7) /\ _IX,0. a _IX,7
With boolean formula: \/

Xg---X7 N Xg... X5

Model checking

When we label states with a formula f, we are basically
calculating the set of states (of M) that satisfy f.

Introduce this notation:

W; = the set of states (whose comp. trees) satisfy f

= { s | seS, M,tree(s)|==1}

We now encode W; as as a boolean “formula”

M |=f if and only if W; evaluated on s, returns true

Labeling

If p Is an atomic formula:

W, = boolean formula representing the set of states where p holds.

For conjunction: |W,, =W\ W,
Negation: W—;, = =W,

For EX: Wey, = Xy RN WXLy /XY]

(The relation R is assumed to be
defined in terms of x,y and x’,y)

e

Restricting the arrows over the destinations

States encoding:

St-0 —x—y
St-1 —xy
St-2 x—y
St-3 xy

yx=y \ xyy

Suppose WW

1,3} > {2}
{3} - {1,3}

The set of all states that has at least an outgoing arrow to {0,1,2}

1S |

(3t: teR(s) N s£3) }

Encoding in Boolean formula:

(EXAVI [

(yx—=y V xyy)

N —=XYy")

e

Restricting the arrows over the destinations

The set of all states whose all outgoing arrows go to {0,1,2} :

{s| (Vt: teR(s) =s#3) }

Encoding in Boolean formula :

(Vx,y = R(XyXx,y) = —XVy)

Note:

* In both examples, invalid encodings (those states that were not actually in your M)
are actually also quantified along as well = incorrect - add a constraint that filters

your result to drop those states.

* In the V example, all terminal states in M will automatically be included in the set ...

weird, but we discussed this before. We assumed M does not contain terminals.

™

Example, EXp

N\ {p} {p}
—XY W, = —(xy)
Xy Wey, = 3X,Y' R A=(XY')
@ =3I,y ((wy—=x Vo yxX=y V
Xy xyx') N\ —=(xy’))
{p.q} Z
= true

States encoding:

St-0 —x—y
St-1 —xy
St-2 Xy
St-3 xy

Labeling

E.g. the states satisfying E[f U g] can be computed

by:
e LetZ, =W,

e Iteratively compute Z,

Li,o = Zyg V (3IXy: RANWN Zy, [XLY/XY])

» Stop when Z;,; = Z;; then W,y o =4

e

Example, EX[p U q]

N\ {p} {p}

—XY

&

{p.q} %)

—X—Y

Z, = W, = x=y

Z, = Z,

V
@,y R AW, NZ[X,yIXy])

L

States encoding:

St-0 —x—y
St-1 —xy
St-2 x—y
St-3 xy

Jan il

—(xy) A xX'=y’)

Till fix point.

e
But how to check fix point?

To make this works, we need a way to efficiently
check the equivalence of two boolean formulas:

f<g

So, we can decide when to we have reached a fix-
point

In general this is an NP-hard problem.
Use a SAT-solver to check if —(f <> g) Is unsatisfiable.
We’'ll discusss BDD approach

e

&

Canonical representation

= simplest/standard form.

Here, a canonical representation C; of a formula f is a
representation such that:

f>g Iff C=C,

Gives us a way to check equivalence.

Only useful if the cost of constructing Cy, C, + checking C;
= C,Is cheaper than directly checking f <> g.

Some possibilities:

e Truth table - exponentially large.

» DNF/CNF - can also be exponentially large.

BDD

Binary Decision Diagram; a compact, and canonical
representation of a boolean formula.

Can be constructed and combined efficiently.

Invented by Bryant:

"Graph-Based Algorithms for Boolean Function
Manipulation". Bryant, in IEEE Transactions on
Computers, C-35(8),1986.

4 .
Decision Tree

with truth table . Or representing the table with a (binary decision)
tree :
X1 Xo X3 | f
O 0 O 0
00 1|0
O 1 O 0
0 1 1 1
1 0 O 0
1 0 1 1
110/ o0
1 1 1 1

TT is canonical if we fix the
order of the columns.

Each node x; represents a decision:
Blue out-edge from x; = assigning 1 to x;
Red out-edge from x; = assigning O to x;
Function value is determined by leaf value.

e

But we can compact the tree...

E.g. by merging the duplicate leaves:

0 0

1

We can compact this further by merging
duplicate subgraphs ...

e
Results

Word Size

16
32
64

Gates

52
123
227
473
927

Patterns

1.6x10%
42x10°
2.7x 10!
1.2x 102
2.2x%10%0

CPU Minutes

1.1
23
6.3
228
95.8

Table 2.ALU Verification Examples

A=B Graph

197
377
737
1457
2897

Note: this is from Bryants paper in 1986.
They use their version of MC at that time,
running it on an DEC VAX 11/780, with
about 1 MIP speed ©

Boolean formula

A boolean formula (proposition logic formula) e.g. x.y \/ z can
be seen as a function :

fix,y,z) = xyV z

In Bryant’s paper this is called a : boolean function.

E.g. ‘composing’ functions as in

<, ¥, 9(x%.2))

IS the same as the corresponding substitution.

e
Binary Decision Diagram

A BDD is a directed acyclic graph, with

 a single root

e two ‘leaves’ = 0/1 suppose we call this node: v var(v)
e non-leaf node

labeled with ‘varname’
has 2 children

low(V) y
Along every path, no var appears more LA
than 1x
_ . 0) w: 1
We'll keep the arrow-heads implicit T
e always from top to bottom val(w)

X = val(v)

i func(G) / \

func(v) = —x. func(low(v)) VV x. f(high(v))

func(G) = func(root)

Xz \[—X.—y.z

func(0) =0, func(l) =1

Reduced BDD

Two BDDS F ang G are isomorphic if you can obtain
G from F by renaming F’s nodes, vice versa.

But you are not allowed to rename var(v) nor val(v) !

then: func(F) = func(G)

A BDD G is reduced if:
 for any non-leaf node v, low(v) = high(v).

e for any distinct nodes u and v, the sub-BDDs rooted at
them are not isomorphic.

!

Kotherwise G can be reduced!

e

Ordered BDD

OBDD =2 fix an ordering on the variables

e |let index(v) - the order of v in this ordering ©

e index(v) < index(low(Vv)
e same with high(v)

satisfies ordering
[v,z,x] but not [X,y,Z]

e
Reduced OBDD

Reduced OBDD is canonical:

If we fix the variable ordering, every boolean function is
uniquely represented by a reduced OBDD (up to isomorphism).

Same idea as In truth tables: canonical if you fix the order
of the columns.

However, the chosen ordering may influence the size of
the OBDD.

Effect of ordering

Consider:

Xyz \| —yz

X

Z

0 1

Order: x,y,z

Order: y,z,x

" The difference can be huge...

consider: a;b; \ a,b,V ajb,

0 1

Exponential Growth

Linear Growth
k Here: “red” for value 1, “green” for 0./

4 .
Reducing BDD

By sharing leaves...

4 .
Reducing BDD

e
The reduction algorithm

Introduce id, function Node — Node
Use it to keep track which nodes actually represent the same formula.

Ilterate/recurse and maintain this invariant:

func(u) = func(id(u))

So, we can remove u from the graph, and re-route arrows to it, to go
to id(u) instead.

Work bottom up, and such that a node decorated with x is processed
after all nodes whose decorations come later in the var-ordering are
processed first.

e

The reduction algorithm

We'll do the relabeling recursively, bottom-up.

Now suppose we have done the id re-labeling for all non-leaves w
with index(w)>i. Suppose index(v)=i

e Case-1, id(low(v)) = id(high(v)) ; suppose var(v) = “X”

X
i func(v) = =y func(low(v)) [V vy | func(high(v))
y o
= —y . func(id(low(v))) V vy . func(id(high(v)))
Z
= func(id(low(v))
0 1

So, update: id(v) := id(low(V))

4 ™
The reduction algorithm

o Case-2: there is another non-leaf uedom(id)
(u has been processed) such that: u v

1. var(u) = var(v) ; suppose this is “X”

2. id(low(u)) = id(low(v))

3. id(high(u)) = id(high(v))

—X func(low(v)) V x func(high(v))

—X func(low(u)) V xfunc(high(u)) // by inv
func(u)

func(id(u))

func(v)

So, update: id(v) := id(u)

e
Building a BDD

So far: we can reduce a BDD.

Recall in CTL model checking, e.g. to the set of states
satisfying EX p Is calculated by constructing this
formula:

Ay RN Wy [X,y7x,y]

Since formulas are now represented as BDDs, this
Implies the need to combine BDDs.

The combinators should be efficient!

e
Basic operations to combine BDDs

Apply f, <op>f,

Restrict fl=p /I b is constant
Compose fy |z /I 2 Is another function
Satisfy-one

Return a single combination of the variables of f that would make it true, else
return nothing.

e
Quantification

With restriction we can encodes boolean
guantifications :

Ay: fxy)) = Y ly=0 V fXY) [y

(Vy: f(xyy)) = = (3y:-=1Xy))

(Recall that we need this in the MC algorithm).

4 ™
Restriction

f(x,y,2z) | y=c how to construct the BDD of the new function??
f(x,y:z) | y-o 2 replace all y nodes by low-sub-tree

f(x,y;z) | =1 = replace all y nodes by high-sub-tree

Example: X
T
f(x,y.z) = xz | —x—yz @\
y
So, f(X,Y,2) |y = Z Z 0 1
Reduced
0 1 0 1 version.

K After replacing “y” /

e
Apply

“Apply”, denoted by f <op> g, means the boolean
function obtained by applying op to f and g.

E.g. assuming they take X,y as parameters, f <and> g
means the function that maps x,y to f(x,y) /\ g(x,y).

e A single algorithm to implement A\, V, xor

e We can even implement —f , namely asf <xor> 1

e

Apply

So, given the BDDs of f and g, how to construct the
BDD of f <op>g ?

There is this ‘Shannon expansion’ :

f<op>g

—X . (flycg <0Pp>Qglg) V X.(f|=; <Op>0 =1)

This tells us how to implement “apply” recursively !

Detall, see LN.

/

Apply

f<op>g

\

—X . (fleeo <OP> G lyeo) V' X . (flyey <OP> g lyer)
[J

J

@ But this can be exponential. Solution: keep track of those sub-

expressions you have combined.

We name the nodes, just so that we
can refer to them.

WEe'll do this by hand.

f <and>g

—X. (f |x=0 <and> g |x=0) ViRl (f |x=l <and> g |x=1)

Example
ul apply(ul,vl)
X
u2 /\
y apply(u2,vl) apply(u3,vl)
u3
z A apply(us,v3)
ud U5 apply(u4,v3)
0 1
apply(us,v4)
/
apply(u5,v4
Repeated call in recursion! To avoid 7 PPIY() | | apply(u4,v3)
this, maintain a table to keep track V(U4 V3
of already computed results. apply(u4,v3)

e
Satisfy and Compose

Compose, constructed through :

fllx:fZ = f2 - 1:1|x:1 V _'f2 . fllx:O

In a reduced graph of a satisfiable formula, every
non-terminal node must have both leaf-O and leaf-1
as decendants.

It follows that satisfy-one can be implemented in O(n)
time.

4 ™
And substitution...

Recall in CTL model checking, e.g. to the set of states
satisfying EX p Is calculated by constructing this
formula:

Ay R A Wy XY,y

So, how to we construct the BDD representing e.g.
fx,y'/x,y] ?

Just replace x,y in the BDD with x',y’, assuming this
does not violate the BDD'’s ordering constraint (e.g. if
X<y but x’>y’). Else use compose.

e
The cost of various operations

Reduce f O(|G]|x*log|G|)

where G is the graph of f's BDD.

Apply f, <op>f, O(|G1[*|G2|)
Restrict fl=p O(|G|x*log|G|)
Compose f; |y O(|G1?%|G2|)
Satisfy-one O(n)

n is the number of parameters in the target boolean
function.

