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Assumed background 

 Functional programming 

 

 Predicate logic, you know how to read this: 

 

 (x.  foo x = x)    (x. foo x = x) 

 

and know how to prove it. 
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setting up a proof  

applying a proof step 

solving the first subgoal 

the 2-nd subgoal 

the 1-st subgoal 
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Features 

 “higher order”, as opposed to a first order prover as 
Z3  highly expressive!  You can model lots of things 
in HOL. 

 

 A huge collection of theories and proof utilities. Well 
documented. 

 

 Safe ! 
 computer-checked proofs. 
 Simple underlying logic, you can trust it. 
 Unless you hack it, you cannot infer falsity. 

 

 It is an DSL embedded in ML  powerful meta 
programming! 

 
 

4 



Non-features 

 The name “theorem prover” is a bit misleading. Higher 
order logic is undecidable.  
 
 Don’t expect HOL to do all the work for you! 

 

 It doesn’t have a good incremental learning material.  
 
But once you know your way… it’s really a powerful 
thing. 
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Embedding in ML 

 ML is a mature functional programming language. 
 You can access ML from HOL. 

 
 It gives you powerful meta programming of HOL!  E.g. for: 
 scripting your proofs 
 manipulating your terms 
 translating back and forth to other representations 

 

HOL 

ML 
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ML  programming level  

 E.g. these functions in ML: 

 

 

 

 

 

 These are ordinary programs, you can execute them. 

E.g. evaluating: 

 

 after  identity  identity  zero 

 

will produce 0. 

 

val  zero  =  0 ; 

 

fun  identity x  =  x ; 

 

fun  after f g   =   (fn x=> f (g x)) ; 
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What if I what to prove properties about 

my functions? 

 For example: 

 

 

 

We can’t prove this in plain ML itself, since it has no 

built-in theorem proving ability. 

 

(most programming language has no built-in TP) 

 

 Model this in HOL, then verify. 

 

 

 

(x.  after identity identity  x  =  x) 
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HOL level 

 We model them in HOL as follows: 

 

 

 

 

 

 

 The property we want to prove: 

 

val zero_def      =  Define   `zero = 0` ; 

 

val identity_def  =  Define  `identity x = x` ; 

 

val after_def      =  Define   `after f g = (\x. f (g x))` ; 

--`  !x. after  identity  identity  x   =   x  `-- 
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The proof in HOL 

val my_first_theorem = prove ( 

 

    --`!x. after identity identity x = x`--, 

 

    REWRITE_TAC [after_def] 

    THEN BETA_TAC 

    THEN REWRITE_TAC [identity_def]  

 

) ; 

But usually you prefer to prove your formula first interactively, and later 

on collect your proof steps to make a neat proof script as above. 
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Model and the real thing 

 Keep in mind that what we have proven is a theorem 

about the models ! 

 

 E.g. in the real “after” and “identity” in ML  : 

 

 after  identity  identity  (3/0)  = 3/0     exception! 

 

 We didn’t capture this behavior in HOL.  

 HOL will say it is true (aside from the fact that x/0 is undefined in 

HOL). 

 There is no built-in notion of exception in HOL, though we can 

model it if we choose so. 
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Core syntax of HOL 

 Core syntax is that of simple typed -calculus: 

 

 

 

 

 

 Terms are typed. 

 We usually interact on its extended syntax, but all 

extensions are actually built on this core syntax. 

 

 

 

 term  ::=  var  |  const 

              |  term   term                 

              |  \ var.  term 

              |  term : type 
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Types 

 Primitive: bool, num, int, etc. 

 

 Product, e.g.:   (1,2)  is a term of type num#num 

 

 List, e.g.: [1,2,3] is a term of type num list 

 

 Function, e.g.:   (\x. x+1) is a term of type num->num 

 

 Type variables, e.g.: 

 

 (\x. x) is a term of type ‘a -> ‘a 

 

 You can define new types. 
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Extended syntax 
(Old Desc ch. 7) 

 Boolean operators: 

 

 ~p ,    p /\ q ,    p \/ q ,    p ==> q 

 

 Quantifications:  // ! = ,   ? =    

 

 (!x. f x = x) ,    (?x. f x = x) 

 

 Conditional: 

 

 if ... then ... else ...  // alternatively  g -> e1 | e2 

 

 Tuples and lists   you have seen. 

 Sets, e.g. {1,2,3}   encoded as int->bool. 

 You can define your own constants, operators, quantifiers etc. 
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Examples of modeling in HOL 

 Define `double x = x + x`  ; 

 

 Define `skip state = state`  ;  // higher order at work! 

 

(so … what is the type of skip?). 

 Define `assign x val  

             =  

             (\state. (\v. if v=x then val else state v))`  ; 

 

(type of assign?) 
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Modelling list functions 

 Define `(sum [ ] = 0)  

              /\  

             (sum (x::s) = x + sum s)` ; 

 

 

 Define `(map f [ ] = [ ])  

              /\  

             (map f (x::s) =  f x :: map f s)` ; 
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Modeling properties 

 How to express that a relation is reflexive and 

transitive? 

 

 Define `isReflexive R  =  (!x. R x x)` ; 

 

(so what is the type of isReflexive?) 

 Define `isTransitive R  

             = 

             (!x y z. R x y  /\  R y z   ==>   R x y)` ; 

 

 Your turn. Define the reflexive and transitive closure 

of a given R’. 
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Practical thing: quoting HOL terms 
(Desc 5.1.3) 

 Remember that HOL is embedded in ML, so you have to quote HOL 

terms; else ML thinks it is a plain ML expression. 

 

 ‘Quotation’ in Moscow ML is essentially just a string: 

 

 `x y z`    is just “x y z” 

 

 But it is represented a bit differently to support antiquotation: 

val  aap = 101  

 

` a b c  ^aap  d e f `  

 

  [QUOTE “a b c", ANTIQUOTE 101, QUOTE “d e f"] : int frag list 

Notice the backquotes! 
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Quoting HOL terms 

 The ML functions Term and Type parse a quotation to ML 

“term” and “hol_type”; these are ML datatypes 

representing  HOL term and HOL type. 

 

 

 

 

 

 

 

   

 

 

Term `identity (x:int)`  returns a term 

 

Type `:num->num`   returns a hol_type 

Actually, we often just use this alternate notation, 

which has the same effect: 

 

 --`identity (x:int)`--  
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A bit inconsistent styles 

 Some functions in HOL expect a term, e.g. : 

 

 prove : term -> tactic -> thm 

 

 And some others expect a frag list / quotation  

 

 g : term frag list -> proofs 

 

 Define : term frag list -> thm 
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Theorems and proofs 



Theorem 

 HOL terms:   --`0`--     --`x = x`-- 

 

 

 Theorem : a bool-typed HOL term wrapped in a special type called 

“thm”, meant to represent a valid fact. 

 

  

 

 The type thm is a protected data type, in such a way that you can only 

produce an instance of it via a set of ML functions encoding HOL 

axioms and primitive inference rules (HOL primitive logic). 

 

 So, if this primitive logic is sound, there is no way a user can produce an 

invalid theorem. 

 This primitive logic is very simple; so you can easily convince yourself of its 

soundness. 

 

|-    x = x 
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Theorem in HOL 

 More precisely, a theorem is internally a pair (term list 

* term), which is pretty printed e.g. like: 

 

                 

 

Intended to mean that   a1 /\ a2 /\  ...    implies   c.     

 

 Terminology: assumptions, conclusion. 

 

 |- c  abbreviates   [] |- c. 

[a1,  a2,  ...]    |-    c 
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Inference rule 

 An (inference) rule is essentially just a function of type: 

 

         thm  thm 

 

 E.g. this (primitive) inf. rule : 

 

  
 

 

 

 

 

is implemented by a rule called MP : thmthmthm 

 

 You can compose your  

own: 

 

  

      A |- t1   t2     ,     B |-  t1 

 -----------------------------------  Modus Ponens 

                  A @ B  |-  t2  

fun   myMP  t1 t2   =   GEN_ALL (MP t1 t2) 
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Backward proving 

 Since a “rule” is a function of type (essentially)  thmthm,  
 
it implies that to get a theorem you have to “compose” theorems. 
 
 
 forward proof; you have to work from axioms   

 

 For human it is usually easier to work a proof backwardly. 

 

 HOL has support for backward proving. Concepts : 

 
 Goal         terms representing what you want to prove 

 
 Tactic       a function that reduce a goal to new goals 
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Goal 

 type  goal   =   term list * term 

 

Pretty printed:    

 

Represent our intention to prove 

 

       [ a1 , a2 , ... ]   |-  h 

 

  Terminology :  assumptions, hypothesis  

 

 type   tactic   =   goal    goal list * proof_func 

[ a1, a2 , ... ]    ?-     h 
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Proof Function 
 type   tactic   =   goal    goal list * proof_func 

 

 

 So, suppose you have this definition of tac :  
   
 
         
 
         
 // so, just 1 new subgoal 
 
 
Then the  has to be such that : 
 

           [ A’  |-  h’ ]      =        A |- h 
 
 

 So, a pf is an inference rule, and tac is essentially the reverse of 
this rule. 

 

tac  (A ?- h)     =     ( [  A’   ?-   h’  ]   ,     ) 
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Proof Tree 

g1 

g2 g3 

g4 

A proof constructed by applying tactics has in principle a tree structure, where at 

every node we also keep the proof function to ‘rebuild’ the node from its children. 

If all leaves are ‘closed’ (proven) we build 

the root-theorem by applying the proof 

functions in the bottom-up way. 
tac1 

tac3 tac2 

tac4 

 In interactive-proof-mode, such a ‘proof 

tree’ is actually implemented as a ‘proof 

stack’ (show example). 
(proven) 

(proven) 
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Interactive backward proof 
(Desc 5.2) 

 HOL maintains a global state variable of type proofs : 
 

 proofs         : set of active/unfinished goalstacks 

 goalstack    : implementation of proof tree as a stack 

 
 

 A set of basic functions to work on these structures. 
 

 Setting up a new goalstack : 
 
    g                : term quotation  proofs 
    set_goal    : goal  proofs 

 

 Applying a tactic to the current goal in the current goalstack:       
 
    e (expand)   : tactic  goalstack 
 

29 



For working on proofs/goalstack... 

 Switching focus   
 
     r (rotate)  :  int  goalstack 

 

 

 Undo  
 
     b              :  unit  goalstack 
 
     restart     :  unit  goalstack  
 
     drop        :  unit  proofs 
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Some basic rules and tactics 
Shifting from/to asm...  (Old Desc 10.3) 
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   A |- v 

------------------------ DISCH u 

  A / {u}  |- u ==> v 

  A ?-   u ==> v 

-----------------------DISCH_TAC 

  A + u ?-    v 

  A |- u ==> v 

---------------------- UNDISCH 

  A + u |- v 

   A ?- v 

------------------------ UNDISCH_TAC u 

  A / {u}  ?- u ==> v 



Some basic rules and tactics  
Modus Ponens (Old Desc 10.3)  
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  A   ?-   u 

  A‘  |-    t 

--------------------  MP_TAC 

  A  ?-    t  u 

   A1 |-   t  

   A2 |-   t   u 

-----------------------  MP 

   A1  A2  |-  u 

 A1  |-   to 

 A2  |-   !x.  tx  ux 

---------------------------  MATCH_MP 

 A1  A2  |- uo 

 A  ?-   uo 

 A’  |-   !x.  tx  ux 

---------------------------  MATCH_MP 

 A   ?- to 

A’ should be a subset of A 



Some basic rules and tactics  
Stripping and introducing  (Old Desc 10.3) 

33 

  A |-  !x. P 

---------------- SPEC u 

  A |-  P[u/x] 

A   ?-   !x. P x 

----------------------  GEN_TAC 

 A  ?-   P[x’/x] 

A   ?-   P 

----------------------  SPEC_TAC(u,x) 

 A  ?-   !x. P[x/u] 

  A |-  P 

---------------- GEN x 

  A |-  !x. P 

provided x is not free in A x’ is chosen so that it is not free in A 



Some basic rules and tactics  
Intro/striping  (Old Desc 10.3) 
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   A |- P 

---------------------- EXISTS (?x. P[x/u], u) 

   A |- ?x. P[x/u] 

   A  ?-   ?x. P 

--------------------------- EXISTS_TAC u 

   A  ?-    P[u/x] 



Rewriting (Old Desc 10.3) 
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   A ?-   t 

-------------------  SUBST_TAC [A’  |-  u=v] 

  A ?-   t[v/u] 

• provides A’  A 

• you can supply more equalities... 

   A ?-   t 

-------------------  REWRITE_TAC [A’  |-  u=v] 

  A ?-   t[v/u] 

•  also performs matching e.g. |- f x = x  will also match 

“... f (x+1)” 

•  recursive 

•  may not terminate! 



Tactics Combinators (Tacticals) 
(Old Desc 10.4) 

 The unit and zero  
 

 ALL_TAC                       // a ‘skip’  
 

 NO_TAC                        // always fail 

 

 Sequencing :  

 
 t1  THEN  t2               apply t1, then t2 on all subgoals generated by t1 

 
    

 t THENL [t1,t2,…]      apply t, then ti on i-th subgoal generated by t 
 
 

 REPEAT t                   repeatedly apply t until it fails (!) 
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Examples 

 DISCH_TAC  ORELSE  GEN_TAC 

 

 REPEAT  DISCH_TAC 

THEN      EXISTS_TAC “foo” 

THEN      ASM_REWRITE_TAC [ ] 

 

 fun UD1 (asms,h)   

   =  

   ( if  null asms  then  NO_TAC 

         else  UNDISCH_TAC (hd asms) )   (asms,h)  ; 
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Some common proof techniques 
(Desc 5.3 – 5) 

 Power tactics 

 Proof by case split 

 Proof by contradiction 

 In-line lemma 

 Induction 

 

 

38 



Power Tactics: Simplifier 

 Power rewriter, usually to simplify goal : 

 

      SIMP_TAC: simpset thm list  tactic 

 

standard simpsets:  std_ss, int_ss, list_ss 

 

 Does not fail. May not terminate. 

 Being a complex magic box, it is harder to predict what 

you get. 

 You hope that its behavior is stable over future versions. 
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Examples 

 Simplify goal with standard simpset: 

 

   SIMP_TAC   std_ss   [ ] 

 

   (what happens if we use list_ss instead?) 

 

 And if you also want to use some definitions to 

simplify: 

 

   SIMP_TAC   std_ss   [ foo_def, fi_def , … ] 

 

   (what’s the type of foo_def ? ) 
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Other variations of SIMP_TAC 

 ASM_SIMP_TAC 

 

 FULL_SIMP_TAC  

 

 RW_TAC does a bit more : 

 case split on any if-then-else in the hypothesis 

 Reducing e.g. (SUC x  = SUC y) to (x=y) 

 “reduce” let-terms in hypothesis 
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Power Tactics: Automated Provers 

 1-st order prover:   PROVE_TAC : thm list -> tactic 

 

 Integer arithmetic prover:  ARITH_TAC, COOPER_TAC 

(from intLib) 

 

 Natural numbers arith. prover:     ARITH_CONV    (from 

numLib) 

 

 Undecidable.  

 They may fail. 

  Magic box. 
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Examples 

 Simplify then use automated prover : 

 

     RW_TAC  std_ss  [ foo_def ] 

     THEN  PROVE_TAC  [ ] 

 

 In which situations do you want to do these? 

 

     RW_TAC std_ss [ foo_def ]  

     THEN  TRY  (PROVE_TAC [ ]) 

 

     RW_TAC std_ss [ foo_def ]  

     THEN  ( PROVE_TAC  [ ]   ORELSE   ARITH_TAC ) 
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Case split 

 ASM_CASES_TAC  :  term  tactic 

 

 

 

 

 

 Split on data constructors, Cases / Cases_on 
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          A  ?-   u 

------------------------------   ASM_CASES_TAC   t 

(1)    t + A    ?-  u 

(2)  ~t +  A   ?-  u    

          A  ?-   ok s 

----------------------------------   Cases_on  `s` 

(1)    A   ?-  ok [ ] 

(2)    A   ?-  ok (x::t)    



Induction 

 Induction over recursive data types: Induct/Induct_on 

 

 

 

 

 

 Other types of induction:  

 Prove/get the corresponding induction theorem 

 Then apply MP 

45 

          ?-   ok s 

----------------------------------   Induct_on  `s` 

(1)    ?-  ok [ ] 

(2)    ok t   ?-  ok (x::t)    



Adding “lemma” 

 by : (quotation * tactic)  tactic    // infix 
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If tac proves the 

lemma 
             A  ?-  t 

---------------------------------   lemma  by  tac    

    lemma + A  ?-   t  

          A  ?-  t 

---------------------------------   lemma  by  tac    

   (1) lemma + A  ?-   t 

   (2)  A  ?-  z 

If tac only 

reduces lemma 

to  z 



Adding lemma 

 But when you use it in an interactive proof perhaps 

you want to use it like this: 

 

     `foo x > 0`  by   ALL_TAC 

 

 

What does this do ? 
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Proof by contradiction 

 SPOSE_NOT_THEN : (thmtactic)tactic 

 

SPOSE_NOT_THEN  f   

 assumes  hyp  |-  hyp.   

 now you must prove False.  

 f (hyp  |-  hyp)  produces a tactic, this is then applied. 

 

 Example: 
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       A  ?-   f x = x 

-----------------------------   SPOSE_NOT_THEN   ASSUME_TAC 

~(f x = x) +  A    ?-   F 


