Theorem Prover HOL, overview

Wishnu Prasetya

wishnu@cs.uu.nl
www.cs.uu.nl/docs/vakken/pv

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

e

Assumed background

Functional programming

Predicate logic, you know how to read this:
(VX. foox =x) = (3Ix. foo X =X)

and know how to prove lit.

% HOL Proof General: *shell*

SE

File Edit Wiew ©Cmds Tools Options Buffers Complete InfOut Signals Help
Aps | | » | 8 5
':|'Djen Elg E % gl::l? E ﬁ g R::Ila:::je I%ﬂ I3i|e I:l N
*zhell®
: El
- g '"MEM x 5 ==» MEM (f x) (MAP f s) ; setting up a proof

[HOL zays] Proof status: 1 proot.

MEM ¥ 5 ==> MEM (£) (MAP [=)

- e (Induct on “s°) ; applying a proof step

[HOL says] 2 subgoals:

'h. MEM x (h::s) ==> MEM (f x) (MARP £ (hi:s)) the 2-nd subgoal

MEM % 5 ==> MEM (f) (MAP f 3)

MEM x [] ==> MEM (f x) (MRP f []) the 1-st subgoal
- e (RW TAC list ss [1) : solving the first subgoal
[HOL says] Goal proved: |- MEM x [] ==» MEM (f x) (MAP £ [])

[HOL says] Remalining subgoals:

MEM x g ==> MEM {(f) (MAP f 3}

R FF-KEmacs: *shell* (shell:run)----A11----- --- - - - - - - - - - - -~~~ ———\—\—————————

.......... -

e
Features

“higher order”, as opposed to a first order prover as
Z3 - highly expresswe' You can model lots of things
iIn HOL.

A huge collection of theories and proof utilities. Well
documented.

Safe !

e computer-checked proofs.

e Simple underlying logic, you can trust it.

e Unless you hack it, you cannot infer falsity.

It is an DSL embedded in ML = powerful meta
programming!

Non-features

The name “theorem prover” is a bit misleading. Higher
order logic Is undecidable.

e Don’t expect HOL to do all the work for you!

It doesn’t have a good incremental learning material.

I?F]ut once you know your way... it's really a powerful
thing.

Embedding in ML &

e ML Is a mature functional programming language.
e You can access ML from HOL.

e |t gives you powerful meta programming of HOL! E.g. for:
scripting your proofs
manipulating your terms
translating back and forth to other representations

&

ML - programming level

E.g. these functions in ML:

val zero = 0

fun identity x = x;

fun afterfg = (fn x=>f(gXx));

These are ordinary programs, you can execute them.
E.g. evaluating:

after identity identity zero

will produce 0.

" What if | what to prove properties about A

my functions?

For example:

(VX. after identity identity X = X)

We can’t prove this in plain ML itself, since it has no
built-in theorem proving ability.

(most programming language has no built-in TP)

Model this in HOL, then verify.

HOL level

We model them in HOL as follows:

val zero_def = Define zero=0;
val identity_def = Define ‘identity X = X ;

Define ‘“afterfg=(\x.f(gx)) ;

val after _def

The property we want to prove:

--~ Ix. after identity identity x = X --

/The proof in HOL

val my_first theorem = prove (
--"Ix. after identity identity x = X --,
REWRITE_TAC [after_def]

THEN BETA_TAC
THEN REWRITE_TAC [identity def]

)je

But usually you prefer to prove your formula first interactively, and later
on collect your proof steps to make a neat proof script as above.

Model and the real thing

Keep in mind that what we have proven is a theorem
about the models !

E.g. in the real "after” and “identity” in ML :

after identity identity (3/0) =3/0 -> exception!

We didn’t capture this behavior in HOL.

e HOL will say it is true (aside from the fact that x/0 is undefined in
HOL).

e There is no built-in notion of exception in HOL, though we can
model it if we choose so.

e

Core syntax of HOL

Core syntax Is that of simple typed A-calculus:

term ::= var | const
term term
\var. term
term : type

Terms are typed.

We usually interact on its extended syntax, but all
extensions are actually built on this core syntax.

e

Types

Primitive: bool, num, int, etc.

Product, e.g.: (1,2) is aterm of type num#num
List, e.g.: [1,2,3] is a term of type num list

Function, e.g.: (\X. x+1) is a term of type num->num

Type variables, e.g.:

(\X. X) Is a term of type ‘a -> ‘a

You can define new types.

" Extended syntax

(Old Desc ch. 7)

Boolean operators:

Quantifications:

(Ix.fx=x%x), (?X.fx=Xx)

Conditional:

If ...then ... else ...

Tuples and lists - you have seen.
Sets, e.g. {1,2,3} = encoded as int->bool.
\& You can define your own constants, operators, quantifiers etc. -

s
Examples of modeling in HOL

» Define "double x = x + x* ;

» Define “skip state = state™ ;

» Define "assign x val

(\state. (\v. if v=x then val else state v)) ;

Modelling list functions

Define (sum |[]=0)
N\
(sum (Xx::S) = x +sums) ;

Define (mapf[]=1])
A
(mapf(x::s)= fx: :mapfs) ;

Modeling properties

How to express that a relation is reflexive and
transitive?

Define 'isReflexive R = (IX. R X X) ;

Define ‘isTransitive R

(IXyz.Rxy NRyz ==> RXYy) ;

Your turn. Define the reflexive and transitive closure
of a given R'.

" Practical thing: quoting HOL terms

(Desc 5.1.3)

Remember that HOL is embedded in ML, so you have to quote HOL
terms; else ML thinks it is a plain ML expression.

‘Quotation’ in Moscow ML is essentially just a string:

™

Xy z = isjust“xyz”

Notice the backquotes!

But it is represented a bit differently to support antiquotation:

val aap = 101

"abc Maap def’

- [QUOTE "a b c", ANTIQUOTE 101, QUOTE “d e f"] : int frag list

e
Quoting HOL terms

The ML functions Term and Type parse a quotation to ML
“term” and “hol_type”; these are ML datatypes
representing HOL term and HOL type.

Term “identity (X:int) - returns a term

Type :num->num’ - returns a hol_type

Actually, we often just use this alternate notation,
which has the same effect:

--"identity (x:int) --

e

A bit inconsistent styles

Some functions in HOL expect a term, e.g. :

prove : term -> tactic -> thm

And some others expect a frag list / quotation ®
g : term frag list -> proofs

Define : term frag list -> thm

Theorems and proofs

e
Theorem

HOLterms: --0-- --X=X--

Theorem : a bool-typed HOL term wrapped in a special type called
“thm”, meant to represent a valid fact.

|- X=X

The type thm is a protected data type, in such a way that you can only
produce an instance of it via a set of ML functions encoding HOL
axioms and primitive inference rules (HOL primitive logic).

e S0, If this primitive logic is sound, there is no way a user can produce an
invalid theorem.

e This primitive logic is very simple; so you can easily convince yourself of its
soundness.

&

Theorem in HOL

More precisely, a theorem is internally a pair (term list
* term), which is pretty printed e.g. like:

=N V] |

Intended to mean that a, Aa,/\ ... Implies c.

Terminology: assumptions, conclusion.

|- ¢ abbreviates [] |- c.

Inference rule

An (inference) rule is essentially just a function of type:

thm — thm

E.g. this (primitive) inf. rule :

................................... Modus Ponens

Is Implemented by a rule called MP : thm—thm—thm

You can compose your fun myMP t,t, = GEN_ALL (MPt,t,)

own.

e
Backward proving

Since a “rule” is a function of type (essentially) thm—thm,

it implies that to get a theorem you have to “compose” theorems.

- forward proof; you have to work from axioms
For human it is usually easier to work a proof backwardly.

HOL has support for backward proving. Concepts :

e Goal > termsrepresenting what you want to prove

e Tactic -> afunction that reduce a goal to new goals

e

Goal
type goal = term list * term
Pretty printed: [latiiabii ittt

Represent our intention to prove

[a;,a,,...] |- h
Terminology : assumptions, hypothesis

type tactic = goal — goal list * proof func

Proof Function

type tactic = goal -> goallist* proof func

So, suppose you have this definition of tac :

—
tac (A?-h) = ([A ?T h’]/,‘§9D

Then the ¢ has to be such that :

@A -n] = Al-h

So, a pfis an inference rule, and tac is essentially the reverse of
this rule.

e
Proof Tree

tacl

tac2

(proven)

tac3

l tac4

(proven)

A proof constructed by applying tactics has in principle a tree structure, where at
every node we also keep the proof function to ‘rebuild’ the node from its children.

If all leaves are ‘closed’ (proven) we build
the root-theorem by applying the proof
functions in the bottom-up way.

In interactive-proof-mode, such a ‘proof
tree’ is actually implemented as a ‘proof
stack’ (show example).

"~ Interactive backward proof
(Desc 5.2)

HOL maintains a global state variable of type proofs :

e proofs . set of active/unfinished goalstacks
e goalstack :implementation of proof tree as a stack

A set of basic functions to work on these structures.

e Setting up a new goalstack :

g . term quotation - proofs
set_goal :goal - proofs

* Applying a tactic to the current goal in the current goalstack:

e (expand) :tactic - goalstack

For working on proofs/goalstack...

Switching focus

r (rotate) : int —» goalstack

Undo
b . unit — goalstack
restart . unit —» goalstack
drop . unit — proofs

™

" Some basic rules and tactics A

Shifting from/to asm... (Old Desc 10.3)

Al-v A?- u==>v
------------------------ DISCHuUu | -------------——----——--DISCH_TAC
Al{u} |Fu==>v A+u?- Vv

Al-u==>v

---------------------- UNDISCH

A+ul-v

A7?-v

........................ UNDISCH_TAC u
Al{u} ?-u==>v

/

. Some basic rules and tactics

Modus Ponens (Old Desc 10.3)

Al |' L Al |' to

A A == A, |- IX. t, = u,
----------------------- MP e MATCH_MP
AL UA, |- U AL UA, |-u,

A U A ?- U,

AR L A |- Ix. t,=u,
-------------------- MP_TAC cmmmemmmeeeeeeeeemeeeeee- MATCH_MP
A2 it ==l A ?-1,

A’should be a subset of A

. Some basic rules and tactics

Stripping and introducing VvV (Old Desc 10.3)

Al- IX. P APPSR

WA TAHALAT) AL SPE@UI| A TUIERTH L SPEC_TAC(u,x)
A |- Plu/X] A ?- Ix. P[x/u]

Al- P A ?- IX.PX

................ GEN x IR AR SEN | [TAG

Al- x. P A ?- P[X/X]

provided x is not free in A x’is chosen so that it is not free in A

s

Some basic rules and tactics
Intro/striping 3 (Old Desc 10.3)

...................... EXISTS (?x. P[x/u], u)

........................... EXISTS_TAC u

ReWriting ouoes

A?- t
------------------- SUBST_TAC [A’ |- u=V]
A?- t[viu]
e provides A’ A
* you can supply more equalities...
A7?7- t
------------------- REWRITE_TAC [A |- u=V]
A?- t[v/u]
« also performs matching e.g. |- f x = x will also match
“Lf(xtl)”
* recursive

* may not terminate!

Tactics Combinators (Tacticals)
(Old Desc 10.4)

- The unit and zero ©

« ALL_TAC

o« NO_TAC
» Sequencing :
e t1 THEN t2
o t THENL [t1,12,...]

e REPEAT t

(-,

Examples
DISCH TAC ORELSE GEN_TAC

REPEAT DISCH_TAC
THEN EXISTS TAC “foo”
THEN ASM_REWRITE_TAC[]

fun UD1 (asms,h)

(if nullasms then NO_TAC
else UNDISCH_ TAC (hd asms)) (asms,h) ;

" Some common proof techniques

(Desc 5.3 - 5)

Power tactics

Proof by case split
Proof by contradiction
n-line lemma
nduction

Power Tactics: Simplifier

Power rewriter, usually to simplify goal :
SIMP_TAC: simpset— thm list — tactic

standard simpsets: std_ss, int_ss, list_ss

Does not fail. May not terminate.

Being a complex magic box, it is harder to predict what
you get.

You hope that its behavior is stable over future versions.

Examples

Simplify goal with standard simpset:

SIMP_TAC std ss []

And if you also want to use some definitions to
simplify:

SIMP_TAC std ss [foo def, fi_def, ...]

e

Other variations of SIMP_TAC

ASM_SIMP_TAC

FULL SIMP_TAC

RW_TAC does a bit more :

e case split on any if-then-else in the hypothesis
e Reducing e.g. (SUC x = SUC y) to (x=y)

e “reduce’” let-terms in hypothesis

e
Power Tactics: Automated Provers

1-st order prover. PROVE_TAC : thm list -> tactic

Integer arithmetic prover. ARITH _TAC, COOPER_TAC
(from intLib)

Natural numbers arith. prover:. ARITH _CONV (from
numLib)

Undecidable.
They may fall.
Magic box.

&

Examples

Simplify then use automated prover :

RW _TAC std_ss [foo def]
THEN PROVE_TAC []

In which situations do you want to do these?

RW _TAC std_ss [foo _def]
THEN TRY (PROVE_TACI))

RW_TAC std_ss [foo_def]
THEN (PROVE_TAC [] ORELSE ARITH TAC)

e

Case split

ASM_CASES TAC : term — tactic

.............................. ASM_CASES_TAC t
(1) t+A ?-u
(2) ~t+ A ?-u

Split on data constructors, Cases / Cases_on

.................................. Cases on 's’
(1) A ?- ok][]
(2) A ?- ok(x:t)

e

Induction

Induction over recursive data types: Induct/Induct_on

?- oks
.................................. Induct_on s’
(1) ?- ok][]
(2) okt 7?- ok (x:t)

Other types of induction:
* Prove/get the corresponding induction theorem
e Then apply MP

e
Adding “lemma’

by : (quotation * tactic) — tactic // infix

A ?-t If tac proves the
--------------------------------- lemma by tac S
lemma + A ?- t
A ?-t If tac only

reduces lemma

_________________________________ Iemma by taC to Z

(1) lemma +A ?- t
(2) A ?- 2z

e

Adding lemma

But when you use it in an interactive proof perhaps
you want to use it like this:

foox>0 by ALL _TAC

What does this do ?

Proof by contradiction

SPOSE_NOT_THEN : (thm—tactic)—tactic

SPOSE_NOT_THEN f

e assumes —hyp |- =hyp.
e NOW you must prove False.
e f (=hyp |- —hyp) produces a tactic, this is then applied.

Example:

............................. SPOSE_NOT_THEN ASSUME_TAC
~(fx=x)+ A ?- F

