
Theorem Prover HOL, overview

Wishnu Prasetya

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl
mailto:wishnu@cs.uu.nl

Assumed background

 Functional programming

 Predicate logic, you know how to read this:

 (x. foo x = x)  (x. foo x = x)

and know how to prove it.

2

setting up a proof

applying a proof step

solving the first subgoal

the 2-nd subgoal

the 1-st subgoal

3

Features

 “higher order”, as opposed to a first order prover as
Z3  highly expressive! You can model lots of things
in HOL.

 A huge collection of theories and proof utilities. Well
documented.

 Safe !
 computer-checked proofs.
 Simple underlying logic, you can trust it.
 Unless you hack it, you cannot infer falsity.

 It is an DSL embedded in ML  powerful meta
programming!

4

Non-features

 The name “theorem prover” is a bit misleading. Higher
order logic is undecidable.

 Don’t expect HOL to do all the work for you!

 It doesn’t have a good incremental learning material.

But once you know your way… it’s really a powerful
thing.

5

Embedding in ML

 ML is a mature functional programming language.
 You can access ML from HOL.

 It gives you powerful meta programming of HOL! E.g. for:
 scripting your proofs
 manipulating your terms
 translating back and forth to other representations

HOL

ML

6

ML  programming level

 E.g. these functions in ML:

 These are ordinary programs, you can execute them.

E.g. evaluating:

 after identity identity zero

will produce 0.

val zero = 0 ;

fun identity x = x ;

fun after f g = (fn x=> f (g x)) ;

7

What if I what to prove properties about

my functions?

 For example:

We can’t prove this in plain ML itself, since it has no

built-in theorem proving ability.

(most programming language has no built-in TP)

 Model this in HOL, then verify.

(x. after identity identity x = x)

8

HOL level

 We model them in HOL as follows:

 The property we want to prove:

val zero_def = Define `zero = 0` ;

val identity_def = Define `identity x = x` ;

val after_def = Define `after f g = (\x. f (g x))` ;

--` !x. after identity identity x = x `--

9

The proof in HOL

val my_first_theorem = prove (

 --`!x. after identity identity x = x`--,

 REWRITE_TAC [after_def]

 THEN BETA_TAC

 THEN REWRITE_TAC [identity_def]

) ;

But usually you prefer to prove your formula first interactively, and later

on collect your proof steps to make a neat proof script as above.

10

Model and the real thing

 Keep in mind that what we have proven is a theorem

about the models !

 E.g. in the real “after” and “identity” in ML :

 after identity identity (3/0) = 3/0  exception!

 We didn’t capture this behavior in HOL.

 HOL will say it is true (aside from the fact that x/0 is undefined in

HOL).

 There is no built-in notion of exception in HOL, though we can

model it if we choose so.

11

Core syntax of HOL

 Core syntax is that of simple typed -calculus:

 Terms are typed.

 We usually interact on its extended syntax, but all

extensions are actually built on this core syntax.

 term ::= var | const

 | term term

 | \ var. term

 | term : type

12

Types

 Primitive: bool, num, int, etc.

 Product, e.g.: (1,2) is a term of type num#num

 List, e.g.: [1,2,3] is a term of type num list

 Function, e.g.: (\x. x+1) is a term of type num->num

 Type variables, e.g.:

 (\x. x) is a term of type ‘a -> ‘a

 You can define new types.

13

Extended syntax
(Old Desc ch. 7)

 Boolean operators:

 ~p , p /\ q , p \/ q , p ==> q

 Quantifications: // ! = , ? = 

 (!x. f x = x) , (?x. f x = x)

 Conditional:

 if ... then ... else ... // alternatively g -> e1 | e2

 Tuples and lists  you have seen.

 Sets, e.g. {1,2,3}  encoded as int->bool.

 You can define your own constants, operators, quantifiers etc.

14

Examples of modeling in HOL

 Define `double x = x + x` ;

 Define `skip state = state` ; // higher order at work!

(so … what is the type of skip?).

 Define `assign x val

 =

 (\state. (\v. if v=x then val else state v))` ;

(type of assign?)

15

Modelling list functions

 Define `(sum [] = 0)

 /\

 (sum (x::s) = x + sum s)` ;

 Define `(map f [] = [])

 /\

 (map f (x::s) = f x :: map f s)` ;

16

Modeling properties

 How to express that a relation is reflexive and

transitive?

 Define `isReflexive R = (!x. R x x)` ;

(so what is the type of isReflexive?)

 Define `isTransitive R

 =

 (!x y z. R x y /\ R y z ==> R x y)` ;

 Your turn. Define the reflexive and transitive closure

of a given R’.

17

Practical thing: quoting HOL terms
(Desc 5.1.3)

 Remember that HOL is embedded in ML, so you have to quote HOL

terms; else ML thinks it is a plain ML expression.

 ‘Quotation’ in Moscow ML is essentially just a string:

 `x y z`  is just “x y z”

 But it is represented a bit differently to support antiquotation:

val aap = 101

` a b c ^aap d e f `

 [QUOTE “a b c", ANTIQUOTE 101, QUOTE “d e f"] : int frag list

Notice the backquotes!

18

Quoting HOL terms

 The ML functions Term and Type parse a quotation to ML

“term” and “hol_type”; these are ML datatypes

representing HOL term and HOL type.

Term `identity (x:int)`  returns a term

Type `:num->num`  returns a hol_type

Actually, we often just use this alternate notation,

which has the same effect:

 --`identity (x:int)`--

19

A bit inconsistent styles

 Some functions in HOL expect a term, e.g. :

 prove : term -> tactic -> thm

 And some others expect a frag list / quotation 

 g : term frag list -> proofs

 Define : term frag list -> thm

20

Theorems and proofs

Theorem

 HOL terms: --`0`-- --`x = x`--

 Theorem : a bool-typed HOL term wrapped in a special type called

“thm”, meant to represent a valid fact.

 The type thm is a protected data type, in such a way that you can only

produce an instance of it via a set of ML functions encoding HOL

axioms and primitive inference rules (HOL primitive logic).

 So, if this primitive logic is sound, there is no way a user can produce an

invalid theorem.

 This primitive logic is very simple; so you can easily convince yourself of its

soundness.

|- x = x

22

Theorem in HOL

 More precisely, a theorem is internally a pair (term list

* term), which is pretty printed e.g. like:

Intended to mean that a1 /\ a2 /\ ... implies c.

 Terminology: assumptions, conclusion.

 |- c abbreviates [] |- c.

[a1, a2, ...] |- c

23

Inference rule

 An (inference) rule is essentially just a function of type:

 thm  thm

 E.g. this (primitive) inf. rule :

is implemented by a rule called MP : thmthmthm

 You can compose your

own:

 A |- t1  t2 , B |- t1

 ----------------------------------- Modus Ponens

 A @ B |- t2

fun myMP t1 t2 = GEN_ALL (MP t1 t2)

24

Backward proving

 Since a “rule” is a function of type (essentially) thmthm,

it implies that to get a theorem you have to “compose” theorems.

 forward proof; you have to work from axioms

 For human it is usually easier to work a proof backwardly.

 HOL has support for backward proving. Concepts :

 Goal  terms representing what you want to prove

 Tactic  a function that reduce a goal to new goals

25

Goal

 type goal = term list * term

Pretty printed:

Represent our intention to prove

 [a1 , a2 , ...] |- h

 Terminology : assumptions, hypothesis

 type tactic = goal  goal list * proof_func

[a1, a2 , ...] ?- h

26

Proof Function
 type tactic = goal  goal list * proof_func

 So, suppose you have this definition of tac :

 // so, just 1 new subgoal

Then the  has to be such that :

  [A’ |- h’] = A |- h

 So, a pf is an inference rule, and tac is essentially the reverse of
this rule.

tac (A ?- h) = ([A’ ?- h’] , )

27

Proof Tree

g1

g2 g3

g4

A proof constructed by applying tactics has in principle a tree structure, where at

every node we also keep the proof function to ‘rebuild’ the node from its children.

If all leaves are ‘closed’ (proven) we build

the root-theorem by applying the proof

functions in the bottom-up way.
tac1

tac3 tac2

tac4

 In interactive-proof-mode, such a ‘proof

tree’ is actually implemented as a ‘proof

stack’ (show example).
(proven)

(proven)

28

Interactive backward proof
(Desc 5.2)

 HOL maintains a global state variable of type proofs :

 proofs : set of active/unfinished goalstacks

 goalstack : implementation of proof tree as a stack

 A set of basic functions to work on these structures.

 Setting up a new goalstack :

 g : term quotation  proofs
 set_goal : goal  proofs

 Applying a tactic to the current goal in the current goalstack:

 e (expand) : tactic  goalstack

29

For working on proofs/goalstack...

 Switching focus

 r (rotate) : int  goalstack

 Undo

 b : unit  goalstack

 restart : unit  goalstack

 drop : unit  proofs

30

Some basic rules and tactics
Shifting from/to asm... (Old Desc 10.3)

31

 A |- v

------------------------ DISCH u

 A / {u} |- u ==> v

 A ?- u ==> v

-----------------------DISCH_TAC

 A + u ?- v

 A |- u ==> v

---------------------- UNDISCH

 A + u |- v

 A ?- v

------------------------ UNDISCH_TAC u

 A / {u} ?- u ==> v

Some basic rules and tactics
Modus Ponens (Old Desc 10.3)

32

 A ?- u

 A‘ |- t

-------------------- MP_TAC

 A ?- t  u

 A1 |- t

 A2 |- t  u

----------------------- MP

 A1  A2 |- u

 A1 |- to

 A2 |- !x. tx  ux

--------------------------- MATCH_MP

 A1  A2 |- uo

 A ?- uo

 A’ |- !x. tx  ux

--------------------------- MATCH_MP

 A ?- to

A’ should be a subset of A

Some basic rules and tactics
Stripping and introducing  (Old Desc 10.3)

33

 A |- !x. P

---------------- SPEC u

 A |- P[u/x]

A ?- !x. P x

---------------------- GEN_TAC

 A ?- P[x’/x]

A ?- P

---------------------- SPEC_TAC(u,x)

 A ?- !x. P[x/u]

 A |- P

---------------- GEN x

 A |- !x. P

provided x is not free in A x’ is chosen so that it is not free in A

Some basic rules and tactics
Intro/striping  (Old Desc 10.3)

34

 A |- P

---------------------- EXISTS (?x. P[x/u], u)

 A |- ?x. P[x/u]

 A ?- ?x. P

--------------------------- EXISTS_TAC u

 A ?- P[u/x]

Rewriting (Old Desc 10.3)

35

 A ?- t

------------------- SUBST_TAC [A’ |- u=v]

 A ?- t[v/u]

• provides A’  A

• you can supply more equalities...

 A ?- t

------------------- REWRITE_TAC [A’ |- u=v]

 A ?- t[v/u]

• also performs matching e.g. |- f x = x will also match

“... f (x+1)”

• recursive

• may not terminate!

Tactics Combinators (Tacticals)
(Old Desc 10.4)

 The unit and zero 

 ALL_TAC // a ‘skip’ 

 NO_TAC // always fail

 Sequencing :

 t1 THEN t2  apply t1, then t2 on all subgoals generated by t1

 t THENL [t1,t2,…]  apply t, then ti on i-th subgoal generated by t

 REPEAT t  repeatedly apply t until it fails (!)

36

Examples

 DISCH_TAC ORELSE GEN_TAC

 REPEAT DISCH_TAC

THEN EXISTS_TAC “foo”

THEN ASM_REWRITE_TAC []

 fun UD1 (asms,h)

 =

 (if null asms then NO_TAC

 else UNDISCH_TAC (hd asms)) (asms,h) ;

37

Some common proof techniques
(Desc 5.3 – 5)

 Power tactics

 Proof by case split

 Proof by contradiction

 In-line lemma

 Induction

38

Power Tactics: Simplifier

 Power rewriter, usually to simplify goal :

 SIMP_TAC: simpset thm list  tactic

standard simpsets: std_ss, int_ss, list_ss

 Does not fail. May not terminate.

 Being a complex magic box, it is harder to predict what

you get.

 You hope that its behavior is stable over future versions.

39

Examples

 Simplify goal with standard simpset:

 SIMP_TAC std_ss []

 (what happens if we use list_ss instead?)

 And if you also want to use some definitions to

simplify:

 SIMP_TAC std_ss [foo_def, fi_def , …]

 (what’s the type of foo_def ?)
40

Other variations of SIMP_TAC

 ASM_SIMP_TAC

 FULL_SIMP_TAC

 RW_TAC does a bit more :

 case split on any if-then-else in the hypothesis

 Reducing e.g. (SUC x = SUC y) to (x=y)

 “reduce” let-terms in hypothesis

41

Power Tactics: Automated Provers

 1-st order prover: PROVE_TAC : thm list -> tactic

 Integer arithmetic prover: ARITH_TAC, COOPER_TAC

(from intLib)

 Natural numbers arith. prover: ARITH_CONV (from

numLib)

 Undecidable.

 They may fail.

 Magic box.
42

Examples

 Simplify then use automated prover :

 RW_TAC std_ss [foo_def]

 THEN PROVE_TAC []

 In which situations do you want to do these?

 RW_TAC std_ss [foo_def]

 THEN TRY (PROVE_TAC [])

 RW_TAC std_ss [foo_def]

 THEN (PROVE_TAC [] ORELSE ARITH_TAC)

43

Case split

 ASM_CASES_TAC : term  tactic

 Split on data constructors, Cases / Cases_on

44

 A ?- u

------------------------------ ASM_CASES_TAC t

(1) t + A ?- u

(2) ~t + A ?- u

 A ?- ok s

---------------------------------- Cases_on `s`

(1) A ?- ok []

(2) A ?- ok (x::t)

Induction

 Induction over recursive data types: Induct/Induct_on

 Other types of induction:

 Prove/get the corresponding induction theorem

 Then apply MP

45

 ?- ok s

---------------------------------- Induct_on `s`

(1) ?- ok []

(2) ok t ?- ok (x::t)

Adding “lemma”

 by : (quotation * tactic)  tactic // infix

46

If tac proves the

lemma
 A ?- t

--------------------------------- lemma by tac

 lemma + A ?- t

 A ?- t

--------------------------------- lemma by tac

 (1) lemma + A ?- t

 (2) A ?- z

If tac only

reduces lemma

to z

Adding lemma

 But when you use it in an interactive proof perhaps

you want to use it like this:

 `foo x > 0` by ALL_TAC

What does this do ?

47

Proof by contradiction

 SPOSE_NOT_THEN : (thmtactic)tactic

SPOSE_NOT_THEN f

 assumes hyp |- hyp.

 now you must prove False.

 f (hyp |- hyp) produces a tactic, this is then applied.

 Example:

48

 A ?- f x = x

----------------------------- SPOSE_NOT_THEN ASSUME_TAC

~(f x = x) + A ?- F

