
HOL, Part 2

More involved manipulation of goals

 Imagine A,B ?- hyp

 I want to :

 Rewrite hyp using A // ok

 I know A implies A’ ; I want to use A’ to reduce hyp

 Rewrite B

 I only want to rewrite some part of the hypothesis

2

Theorem Continuation
(Old Desc 10.5)

 Is an (ML) function of the form:

 Useful when we need a finer control on using or
transforming specific assumptions of the goal.

tc : (thm tactic) tactic

tc f typically takes one of the goal’s assumptions (e.g. the first in

the list), ASSUMEs it to a theorem t, and gives t to f. The latter

inspects t, and uses the knowledge to produce a new tactic, which

is then applied to the original goal.

3

Example

FIRST_ASSUM : (thm tactic) tactic

Goal: assumptions ?- ok 10

Contain “(n. P n ok n)”

So, by MP we should be able to reduce

to the one on the right:

But how?? With the tactic below:

 FIRST_ASSUM MATCH_MP_TAC

 “ assumptions ?- ok 10”

 assumptions ?- P 10

MATCH_MP_TAC : thm tactic

4

Some other theorem continuations

 POP_ASSUM : (thm tactic) tactic

 ASSUM_LIST : (thm list tactic) tactic

 EVERY_ASSUM : (thm tactic) tactic

 etc

5

Variations

 In general, exploiting higher order functions allows

flexible programming of tactics. Another example:

 Example:

 RULE_ASSUM_TAC (fn thm => SYM thm handle _ => thm)

RULE_ASSUM_TAC : (thmthm) tactic

RULE_ASSUM f maps f on all assumptions of the target goal; it fails if f fails

on one asm.

6

Conversion
(Old Desc Ch 9)

 Is a function to generate equality theorem

 Type: such that if c:conv

then c t can produce

 We have seen one: BETA_CONV; but HOL has lots of
conversions in its library.

 Used e.g. in rewrites, in particular rewrites on a
specific part of the goal.

|- t=u

conv = term thm

|- t = something

7

Examples

 BETA_CONV “(\x. x) 0”

 COOPER_CONV “1>0

 FUN_EQ_CONV “f=g”

|- (\x. x) 0 = 0

|- 1>0 = T

|- (f=g) = (!x. f x = g x)

8

Composing conversions

 The unit and zero: ALL_CONV, NO_CONV

 Sequencing:

If c produces |- u=v, d will take v; if d v then produces |- v=w, the
whole conversion will produce |- u=w.

u |- u = v |- v = w
c d

|- u = w c THENC d

c THENC d

9

Composing conversions

 Try c; but if it fails then use d.

 Repeatedly apply c until it fails:

c ORELSEC d

REPEATC c

10

And tree walking combinators ...

 Allows conversion to be applied to specific
subtrees instead of the whole tree:

RAND_CONV c t applies c to the ‘operand’ side of t.

 Similarly we also have RATOR_CONV apply
c to the ‘operator’ side of t

 You can get to any part of a term by combining
these kind of combinators.

RAND_CONV : conv conv

11

Example

|- (p \/ (0=0)) = (p \/ T)

RAND_CONV COOPER_CONV

p \/ (0 = 0)

RAND would apply COOPER_CONV to this

part of the target term.

|- (0=0) = T

COOPER_CONV

12

Tree walking combinators

 We also have combinators that operates a bit like in
strategic programming

 Example:

DEPTH_CONV c t will walk the tree t (bottom up, once, left to right) and
repeatedly applies c on each node.

 Variant: ONCE_DEPTH_CONV

 Not enough? Write your own?

DEPTH_CONV : conv conv

13

Examples

 DEPTH_CONV BETA_CONV t

 would do BETA-reduction on every node of t

 DEPTH_CONV COOPER_CONV t

 use COOPER to simplify every arithmetics subexpression of t

 e.g.

Though in this case it actually does not terminate because
COOPER_CONV on “T” produces “|- T=T”

Can be solved with CHANGED_CONV.

1>0 /\ p |- 1>0 /\ p = T /\ p

14

Turning a conversion to a tactic

 You can lift a conv to a rule or a tactic

 CONV_TAC c “A ? t”

would apply c on t; suppose this produces |- t=u , this this theorem will be used to
rewrite the goal to A ? u.

 Example:

To expand the inner functional equality to point-wise
equality do:

CONV_RULE : conv rule

CONV_TAC : conv tactic

?- ~ (f = g)

CONV_TAC (RAND_CONV FUN_EQ_CONV)
15

Primitive HOL

Implementing HOL

 An obvious way would be to start with an implementation

of the predicate logic, e.g. along this line:

 data Term = VAR String

 | OR Term Term

 | NOT Term

 | EXISTS String Term

 | ...

 But want/need more:

 We want terms to be typed.

 We want to have more operators

 We want to have functions.

 17

Building ontop (typed) - calculus

 It’s a clean and minimalistic formal system.

 It comes with a very natural and simple type system.

 Because of its simplicity, you can trust it.

 Straight forward to implement.

 You can express functions and higher order functions

very naturally.

 We’ll build our predicate logic ontop of it; so we get all

the benefit of -calculus for free.

18

- calculus

 Grammar:

 The terms are typed; allowed types:

term ::= var

 | const

 | term term // e.g. (x. x) 0

 | \var. term // e.g. (x. x)

type ::= tyvar // e.g. ‘a

 | tyconst // e.g. bool

 | (type,...,type) tyop // e.g. bool list

 | type type

19

- calculus computation rule

 One single rule called -reduction

 However in theorem proving we’re more interested in

concluding whether two terms are ‘equivalent’, e.g. that:

 (x. t) u = t[u/x]

 So we add the type “bool” and the constant “=“ of type:

 ‘a ‘a bool

(x. t) u t[u/x]

20

HOL Primitive logic
(Desc 1.7)

 These inference rules are then the minimum you

need to add (implemented as ML functions):

BETA_CONV “(\x. t) u”

 =

 |- (\x. t) u = t[u/x]

ASSUME (t:bool) = [t] |- t

REFL t = |- t=t

21

HOL Primitive logic

SUBST “|- x=u” t = |- t = t[u/x]

ABS “|- t=u” = |- (\x. t) = (\x. u)

INST_TYPE (,) “|- t” = |- t[/]

22

HOL Primitive logic

ETA_AX: |- f. (x. f x) = f

In -calculus you also have the -conversion that says:

 f = g iff (x. f x = g x)

This is formalized indirectly by, later, this axiom:

23

HOL Primitive logic

 We’ll also add the constant “”, whose logical

properties are captured by the following rules:

DISCH “t, A |- u” = A |- t u

MP thm1 thm2 implementing the modus ponens rule

24

Predicate logic
(Desc 3.2)

 So far the logic is just a logic about equalities of -calculus

terms.

 Next we want to add predicate logic, but preferably we

build it in terms of -calculus, rather than implementing it

as a hard-wired extension to the -calculus.

 Let’s start by declaring two constants T,F of type bool with

the obvious intent. Now find a way to encode the intent of

“T” in -calculus captured by this definition:

T_DEF: |- T = ((x:bool. x) = (x. x))

25

Encoding Predicate Logic
(Desc 3.2)

 Introduce constant “ “of type (‘abool)bool,

defined as follows:

 Now we define “F” as follows:

 Puzzle for you: prove just using HOL primitive rules

(more later) that (T = F).

FORALL_DEF : |- P = (P = (x. T))

which HOL pretty prints as (x. P x)

F_DEF : |- F = t:bool. t

26

Encoding Predicate Logic

 NOT_DEF : |- p. ~p = p F

 AND_DEF: |- p q. p /\ q = ~(p ~q)

 OR_DEF ...

 SELECT_AX: |- P x. P x P (@P)

 EXISTS_DEF : |- (x. P) = P @P
27

And some axioms ...

 BOOL_CASES_AX: |- b. (b=T) \/ (b=F)

 IMP_ANTISYM:

 |- b1 b2. (b1 b2) (b2 b1) (b1=b2)

28

And this infinity axiom...

One One f = x y. (f x = f y) (x = y) // every point in rng f has at most 1 source

Onto f = y. x. y = f x . // every point in rng f has at least 1 source

// also keep in mind that all function sin HOL are total

INFINITY_AX :

 |- f:indind. One_One f /\ ~ Onto f

This indirect says that there “ind” is a type with infinitely many elements!

We declare a type called “ind”, and impose this axiom:

29

Examples of building a derived rules

UNDISCH “A |- t u” = t,A |- u

fun UNDISCH thm1 = // A |- t u

 let

 thm2 = ASSUME t // t |- t

 thm3 = MP thm1 thm2 // t,A |- u

 in thm3 end

Note: this is just a pseudo code; not a real ML code. 30

Examples of building a derived rules

SYM “A |- t = u” = A |- u = t

fun SYM thm1 = // A |- t = u

 let

 thm2 = REFL t // |- t = t

 thm3 = SUBST { “x” thm1 } “x=c” thm2 // A |- u=t

 in thm3 end

31

Proving ~(T = F)

thm1 = REFL “(x. x)” // |- (x. x) = (x. x)

TRUTH = SUBST ... (SYM T_DEF) thm1 // |- T

thm2 = ASSUME “T=F” // T=F |- T=F

thm3 = SUBST ... thm2 TRUTH // T=F |- F

thm4 = DISCH “T=F” thm3 // |- (T=F) F

thm5 = SUBST ... (SYM … NOT_DEF) thm4 // |- ~(T=F)

32

extending HOL with new types

Extending HOL with your own types

 The easiest way to do it is by using the ML function

HOL_datatype, e.g. :

which will make the new type for you, and magically also

conjure a bunch of ‘axioms’ about this new type .

 We’ll take a closer look at the machinery behind this.

Hol_datatype `RGB = RED | GREEN | BLUE`

Hol_datatype `MyBinTree = Leaf int | Node MyBinTree MyBinTree

34

Defining your own type, from scratch.

 To do it from scratch we do:

 and then declare these constants:

 Is this ok now ?

 new_type (“RGB”,0) ;

new_constant (“RED”, Type `:RGB`) ;

new_constant (“GREEN”, Type `:RGB`) ;

new_constant (“BLUE”, Type `:RGB`) ;

35

To make it exactly as you expected, you will need to impose

some axionms on RGB…

new_axiom(“Axiom1",

--`

 ~(RED= GREEN) /\ ~(RED = BLUE) ...

`--) ;

(c:RGB. (c=RED) \/ (c=GREEN) \/ (c = BLUE))

36

(basically, we need to make sure that RGB is isomorphic to {RED,GREEN,BLUE})

Defining a recursive type, e.g. “num”

 We declare a new type “num”, and declare its constructors:

 Add sufficient axioms, we’ll use Peano’s axiomatization:

 0 : num
 SUC : num num

(n. 0 SUC n) (n. (n=0) \/ (k. n = SUC k))

(P. P 0 /\ (n. P n P (SUC n))

 (n. P n))

37

Defining “num”

 And this axiom too:

 which implies that equations like:

define a function with exactly the above properties.

(e .

 (f. (f 0 = e) /\ (n. f (SUC n) = n (f n))

)

sum 0 = 0

sum (SUC n) = n + (sum n)

38

But ...

 Just adding axioms can be dangerous. If they’re inconsistent

(contradicting) the whole HOL logic will break down.

 Contradicting type axioms imply that your type is actually

empty. So, e.g. -reduction should not be possible:

 |- (x:. P) e = P[e/x]

However HOL requires types to be non-empty; its -reduction

will always succeed.

39

Definitional extension

 A safer way is to define a ‘bijection’ between your new

type and an existing type.

 At the moment the only candidate is “ind” (“bool” would be

too small).

 Now try to prove the type axioms from this bijection

safer!

num

REP

ABS

ind

40

First characterize the part…

 First, define REPSUC as the function f:indind that

INFINITY_AX says to exist. That is, f satisfies:

 “REPSUC” is the model of “SUC” at the ind-side.

 Similarly, define REP0 as the model of 0:

ONE_ONE f /\ ~ONTO f

REP0 = @(z:ind. ~(x. z = REPSUC x))

So, REP0 is some member of “ind” who has no f-source (or REPSUC source).

41

The part

 Define as a subset of ind that admits num-induction.

We’ll encode as a predicate indbool:

So, x:ind represents a num, iff:

for any P satisfying num-induction’s premises, P holds on x.

 x = (P. P REP0 /\ (y. P y P (REPSUC y)) P x)

42

Defining “num”

 Now postulate that num can be obtained from by a the following

bijection. First declare these constants:

 Then add these axioms:

rep : num ind

abs : ind num

(x:ind. x rep(abs x) = x) (n:num. abs(rep n) = n)

(n:num. (rep n)) rep is injective

rep 0 = REP0

rep (SUC n) = REPSUC (rep n)

43

Now you can actually prove the orgininal axioms of

num

 E.g. to prove 0 SUC n; we prove this with contradiction:

 0 = SUC n

 rep 0 = rep (SUC n)

= // with axioms defining reps of 0 and SUC

 REP0 = REPSUC (rep n)

 // def. REP0

 F

44

Automated

 Fortunately all these steps are automated when you make

a new type using the function Hol_datatype. E.g. :

will generate the 4 axioms you saw before. e.g :

Hol_datatype `NaturalNumber = ZERO | NEXT of NaturalNumber

NaturalNumber_distinct : |- n. ~(ZERO = NEXT n)

NaturalNumber_induction :

 |- P. P ZERO /\ (n. P n P (NEXT n)) (n. P n))]

45

