qll Il

HOL, Part 2

e
More involved manipulation of goals

Imagine A,B ?- hyp

| want to :

e Rewrite hyp using A Il ok

e | know A implies A’; | want to use A’ to reduce hyp
e Rewrite B

| only want to rewrite some part of the hypothesis

" Theorem Continuation

(Old Desc 10.5)

Is an (ML) function of the form:

tc : (thm — tactic) — tactic

tc f typically takes one of the goal’s assumptions (e.g. the first in
the list), ASSUMESs it to a theorem t, and gives t to f. The latter
Inspects t, and uses the knowledge to produce a new tactic, which
IS then applied to the original goal.

Useful when we need a finer control on using or
transforming specific assumptions of the goal.

Example

Goal: assumptions ?- ok 10

/
Contain “(¥h. P n= okn)”

. ny
So, by MP we should be able to reduce assumptions P10

to the one on the right:
But how?? With the tactic below:
\7I\/IATCH_MP_TAC . thm —s tactic

FIRST ASSUM MATCH MP TAC'
/ “assumptions ?- ok 10”
v

'FIRST_ASSUM : (thm —» tactic) — tactic

&

Some other theorem continuations

POP_ASSUM : (thm — tactic) —» tactic
ASSUM_LIST : (thm list — tactic) — tactic
EVERY_ASSUM : (thm — tactic) — tactic

etc

e

Variations

In general, exploiting higher order functions allows
flexible programming of tactics. Another example:

RULE_ASSUM_TAC : (thm—thm) — tactic

RULE_ASSUM f maps f on all assumptions of the target goal,; it fails if f fails
on one asm.

Example:

RULE_ASSUM _TAC (fn thm=> SYM thm handle =>thm)

" Conversion

(Old Desc Ch 9)

Is a function to generate equality theorem - | |- t=u
Type: |conv = term — thm such that if c:conv
then ct can produce | |- t=something

We have seen one: BETA CONV; but HOL has lots of
conversions In its library.

Used e.g. Iin rewrites, in particular rewrites on a
specific part of the goal.

e

Examples

BETA CONV “(x. x) 0° = UG e |1 O
COOPER_CONV “1>0 -> (B O =T
FUN EQ _CONV “f=¢g” S

- (=g) = (x. fx = gx)

Composing conversions

The unit and zero: ALL _CONV, NO CONV

Sequencing: ¢ THENC d

If ¢ produces |- u=v, d will take v; if d v then produces |- v=w, the
whole conversion will produce |- u=w.

e

Composing conversions

Try c; but if it fails then use d.

c ORELSEC d

Repeatedly apply c until it fails:

REPEATC ¢

And tree walking combinators ...

Allows conversion to be applied to specific
subtrees instead of the whole tree:

RAND_CONYV : conv — conv

RAND CONV ct applies ¢ to the ‘operand’ side of t.

Similarly we also have RATOR_CONV - apply
c to the ‘operator’ side of t

You can get to any part of a term by combining
these kind of combinators.

e
Example

 RANDCONV COOPER_CONV

RAND would apply COOPER_CONV to this
part of the target term.

-(0=0)=T

L ELMIKOE) SRV

e
Tree walking combinators

We also have combinators that operates a bit like in
strategic programming ©

Example: | DEPTH_CONV : conv — conv

DEPTH _CONV ct will walk the tree t (bottom up, once, left to right) and
repeatedly applies ¢ on each node.

Variant. ONCE_DEPTH_CONV

Not enough? Write your own?

e
Examples

DEPTH_CONV BETA _CONV t

- would do BETA-reduction on every node of t

DEPTH_CONV COOPER_CONV t

- use COOPER to simplify every arithmetics subexpression of t

eg. [1>0A\p 2> |- 1>0Ap = TAp

Though in this case it actually does not terminate because
COOPER_CONV on “T” produces ‘|- T=T"

Can be solved with CHANGED CONV.

4 . . .
Turning a conversion to a tactic

You can lift a conv to a rule or a tactic ©

CONV_RULE : conv — rule

CONV_TAC : conv — tactic

CONV TAC ¢ “A7t”

would apply ¢ on t; suppose this produces |- t=u, this this theorem will be used to
rewrite the goal to A ? u.

Example: (?- ~(f=9)

To expand the inner functional equality to point-wise
equality do:

CONV_TAC (RAND_CONV FUN_EQ_CONV)

qll Il

Primitive HOL

e
Implementing HOL

An obvious way would be to start with an implementation
of the predicate logic, e.g. along this line:

data Term = VAR String

OR Term Term
NOT Term

EXISTS String Term

But want/need more:

* We want terms to be typed.

* We want to have more operators
* We want to have functions.

&

e
Building ontop (typed) A- calculus

It's a clean and minimalistic formal system.

It comes with a very natural and simple type system.
Because of its simplicity, you can trust it.

Straight forward to implement.

You can express functions and higher order functions
very naturally.

We'll build our predicate logic ontop of it; so we get all
the benefit of A-calculus for free.

e

A- calculus
Grammar:
term ;= var
const
term term /feg. (Ax.x) 0
\var. term ifeg. (AX.X)

The terms are typed; allowed types:

type ::= tyvar

tyconst
(type,...,type) tyop
type »type

Vel
/[e.qg. bool
/[e.qg. bool list

/
A- calculus computation rule

One single rule called B-reduction

(AX.) u — tJu/x]

However in theorem proving we're more interested in
concluding whether two terms are ‘equivalent’, e.g. that:

(Ax.t) u = tfu/x]

TP

So we add the type “bool” and the constant “=" of type:

‘a > ‘a > bool

" HOL Primitive logic

(Desc 1.7)

These inference rules are then the minimum you
need to add (implemented as ML functions):

ASSUME (t:hool) = [t] |-t

RE I =

BETA CONV “(\x.t) u”

- (. t)u = tfu/x]

. HOL Primitive logic

ABS “|-t=u” = - (. 1) = (\X. u)

SUBST “|-x=u” t = |- t=tfu/X]

INST TYPE (a,7) “|-t” = |- t[dd]

e
HOL Primitive logic

In A\-calculus you also have the n-conversion that says:
f=g iff (VX.fx=gXx)

This Is formalized indirectly by, later, this axiom:

ETA AX: |-Vl (Ax.fx) = f

e

HOL Primitive logic

We’'ll also add the constant “=", whose logical
properties are captured by the following rules:

pIsEE AN S Rz D o=

MP thm, thm, — Implementing the modus ponens rule

" Predicate logic

(Desc 3.2)

So far the logic Is just a logic about equalities of A-calculus
terms.

Next we want to add predicate logic, but preferably we
build it in terms of A-calculus, rather than implementing it
as a hard-wired extension to the A-calculus.

Let’s start by declaring two constants T,F of type bool with
the obvious intent. Now find a way to encode the intent of
“T" in A-calculus — captured by this definition:

T DEF: |- T = ((Ax:bool. x) = (Ax. X))

" Encoding Predicate Logic

(Desc 3.2)

Introduce constant “V “of type (‘a—bool)—bool,
defined as follows:

FORALL_DEF: |- ¥P = (P= (Ax.T))

X

which HOL pretty prints as (7X. P X)

Now we define “F” as follows:

F DEF: |- F = Wt:bool.t

Puzzle for you: prove just using HOL primitive rules
\’ (more later) that —(T = F).

Encoding Predicate Logic

NOT DEF: |- vp. ~p = p=F

AND DEF: |- ¥pg. pAg = ~(p=~q)
OR_DEF ..

SELECT AX: |- YPx. Px = P (@P)

EXISTS_DEF: |- (% P) = P@P

e

And some axioms ...
BOOL_CASES_AX: - vb. (b=T)V (b=F)

IMP_ANTISYM:

|- vb, b,. (by =b,) = (b, = b)) = (b;=hby)

e

&

And this infinity axiom...

We declare a type called “ind”, and impose this axiom:

INFINITY_AX:

|- F:ind—ind. One Onef N ~Ontof

This indirect says that there “ind” is a type with infinitely many elements!

OneOnef=vxy. (Fx=fy) = (x=y) [//every pointinrng f has at most 1 source
Ontof=Vvy. Ix.y=1x . /[every point in rng f has at least 1 source
/[also keep in mind that all function sin HOL are total

Examples of building a derived rules

UNDISCH “A|-t=u” = tA |- U
fun UNDISCH thm,; = I A - t=u
let
thm, = ASSUME t I t |-t
thm; = MP thm,; thm, I tA |- u
in thm,; end

k Note: this is just a pseudo code; not a real ML code. /

4 . . R
Examples of building a derived rules

SYM “A|-t=u” = A4 |- u=t

fun SYM thm, = I A |- t=u
let
thm, = REFLt I |- t=t
thm; = SUBST { X" - thm, } "x=c¢” thm, I/ A |- u=t
in thm; end

e
Proving ~(T = F)

thm, = REFL“(x. x)" I |- (A% X) = (AX. X)

TRUTH = SUBST..(SYMT_DEF) thm, // |-T

thm, = ASSUME “T=F" Il T=F |- T=F
thm; = SUBST ... thm, TRUTH I T=F |- F
thm, = DISCH “T=F" thm, II-(T=F)=F

thm; = SUBST ... (SYM ... NOT_DEF) thm, /I |- ~(T=F)

extending HOL with new types

Extending HOL with your own types

The easiest way to do it is by using the ML function
HOL datatype, e.g.:

Hol datatype 'RGB = RED | GREEN | BLUE

Hol datatype "MyBinTree = Leaf int | Node MyBinTree MyBinTree

which will make the new type for you, and magically also
conjure a bunch of ‘axioms’ about this new type ©.

We'll take a closer look at the machinery behind this.

™
Defining your own type, from scratch.

To do It from scratch we do:

new fype (“RGB”,0) ;

and then declare these constants:

new_constant (“RED”, Type :RGB),
new_constant (“GREEN”, Type :RGB) ;
new_constant (“BLUE”, Type :RGB),

Is this ok now ?

To make It exactly as you expected, you will need to impose
some axionms on RGB...

new_axiom(“Axioml”,

~(RED= GREEN) N\ ~(RED = BLUE) ...
=)

(Vc:RGB. (c=RED) \/ (c=GREEN)V (c = BLUE))

(basically, we need to make sure that RGB is isomorphic to {RED,GREEN,BLUE})

e

Defining a recursive type, e.g. "num’

We declare a new type “num”, and declare its constructors:

= 0:num
= SUC : num— num

Add sufficient axioms, we’ll use Peano’s axiomatization:

(th. 0 = SUCnh)

(vh. (n=0) V (5k.n=SUCK))

p—
(vh. P n))

(vP. PO A (vh.Pn= P (SUCn))

e

&

Defining "num”

And this axiom too:

(Ve .
(#A. f0=e) N (. T(SUCN)= n® (fn))

)

which implies that equations like:

sum0=0
sum (SUC n) = n+ (sumn)

define a function with exactly the above properties.

But ...

Just adding axioms can be dangerous. If they’re inconsistent
(contradicting) the whole HOL logic will break down.

Contradicting type axioms imply that your type t is actually
empty. So, e.g. B-reduction should not be possible:

|- (Ax:z. P) e = Plelx]

However HOL requires types to be non-empty; its B-reduction
will always succeed.

e
Definitional extension

A safer way is to define a ‘bijection’ between your new
type and an existing type.

At the moment the only candidate is “ind” ("bool” would be
too small ©).

ABS

REP

Now try to prove the type axioms from this bijection —»
safer!

First characterize the X part...

First, define REPg - as the function f:ind—ind that
INFINITY_AX says to exist. That is, f satisfies:

ONE ONE f A ~ONTO f

“‘REPg" Is the model of “SUC” at the ind-side.
Similarly, define REP, as the model of O:

REP, = @(Az:ind. ~(ZX. z = REPg ¢ X))

So, REP, is some member of “ind” who has no f-source (or REPg . source).

e

The X part

Define X as a subset of ind that admits num-induction.

We’'ll encode X as a predicate ind—bool:

X = (WP. P REP, N\ (W.Py= P (REPg,.Y)) = PX)
N)

So, x:ind represents a num, Iff:

for any P satisfying num-induction’s premises, P holds on x.

e

Defining "num”

Now postulate that num can be obtained from X by a the following
bijection. First declare these constants:

rep : num — ind
abs : ind — num

Then add these axioms:

rep is injective (vh:num. 2'(repn))

(vh:num. abs(repn) =n)

(Vx:ind. 2’x = rep(absx) =x)

rep O

REP,
rep (SUC n)

REP,c (repn)

” Now you can actually prove the orgininal axioms of A
num

E.g. to prove 0 = SUC n; we prove this with contradiction:

0=SUCn
—
rep 0 = rep (SUC n)
REP, = REPg,. (repn)
—

e
Automated

Fortunately all these steps are automated when you make
a new type using the function Hol datatype. E.g. :

Hol datatype "NaturalNumber = ZERO | NEXT of NaturalNumber

will generate the 4 axioms you saw before. e.g :

NaturalNumber _distinct: |- vh. ~(ZERO = NEXT n)

NaturalNumber_induction :

- YP. PZEROA(Vh.Pn = P (NEXTn))= (¥n.Pn))]

