
HOL, Part 2

More involved manipulation of goals

 Imagine A,B ?- hyp

 I want to :

 Rewrite hyp using A // ok

 I know A implies A’ ; I want to use A’ to reduce hyp

 Rewrite B

 I only want to rewrite some part of the hypothesis

2

Theorem Continuation
(Old Desc 10.5)

 Is an (ML) function of the form:

 Useful when we need a finer control on using or
transforming specific assumptions of the goal.

tc : (thm  tactic)  tactic

tc f typically takes one of the goal’s assumptions (e.g. the first in

the list), ASSUMEs it to a theorem t, and gives t to f. The latter

inspects t, and uses the knowledge to produce a new tactic, which

is then applied to the original goal.

3

Example

FIRST_ASSUM : (thm  tactic)  tactic

Goal: assumptions ?- ok 10

Contain “(n. P n  ok n)”

So, by MP we should be able to reduce

to the one on the right:

But how?? With the tactic below:

 FIRST_ASSUM MATCH_MP_TAC

 “ assumptions ?- ok 10”

 assumptions ?- P 10

MATCH_MP_TAC : thm  tactic

4

Some other theorem continuations

 POP_ASSUM : (thm  tactic)  tactic

 ASSUM_LIST : (thm list  tactic)  tactic

 EVERY_ASSUM : (thm  tactic)  tactic

 etc

5

Variations

 In general, exploiting higher order functions allows

flexible programming of tactics. Another example:

 Example:

 RULE_ASSUM_TAC (fn thm => SYM thm handle _ => thm)

RULE_ASSUM_TAC : (thmthm)  tactic

RULE_ASSUM f maps f on all assumptions of the target goal; it fails if f fails

on one asm.

6

Conversion
(Old Desc Ch 9)

 Is a function to generate equality theorem 

 Type: such that if c:conv

then c t can produce

 We have seen one: BETA_CONV; but HOL has lots of
conversions in its library.

 Used e.g. in rewrites, in particular rewrites on a
specific part of the goal.

|- t=u

conv = term  thm

|- t = something

7

Examples

 BETA_CONV “(\x. x) 0” 

 COOPER_CONV “1>0 

 FUN_EQ_CONV “f=g” 

|- (\x. x) 0 = 0

|- 1>0 = T

|- (f=g) = (!x. f x = g x)

8

Composing conversions

 The unit and zero: ALL_CONV, NO_CONV

 Sequencing:

If c produces |- u=v, d will take v; if d v then produces |- v=w, the
whole conversion will produce |- u=w.

u |- u = v |- v = w
c d

|- u = w c THENC d

c THENC d

9

Composing conversions

 Try c; but if it fails then use d.

 Repeatedly apply c until it fails:

c ORELSEC d

REPEATC c

10

And tree walking combinators ...

 Allows conversion to be applied to specific
subtrees instead of the whole tree:

RAND_CONV c t applies c to the ‘operand’ side of t.

 Similarly we also have RATOR_CONV  apply
c to the ‘operator’ side of t

 You can get to any part of a term by combining
these kind of combinators.

RAND_CONV : conv  conv

11

Example

|- (p \/ (0=0)) = (p \/ T)

RAND_CONV COOPER_CONV

p \/ (0 = 0)

RAND would apply COOPER_CONV to this

part of the target term.

|- (0=0) = T

COOPER_CONV

12

Tree walking combinators

 We also have combinators that operates a bit like in
strategic programming 

 Example:

DEPTH_CONV c t will walk the tree t (bottom up, once, left to right) and
repeatedly applies c on each node.

 Variant: ONCE_DEPTH_CONV

 Not enough? Write your own?

DEPTH_CONV : conv  conv

13

Examples

 DEPTH_CONV BETA_CONV t

 would do BETA-reduction on every node of t

 DEPTH_CONV COOPER_CONV t

 use COOPER to simplify every arithmetics subexpression of t

 e.g.

Though in this case it actually does not terminate because
COOPER_CONV on “T” produces “|- T=T”

Can be solved with CHANGED_CONV.

1>0 /\ p  |- 1>0 /\ p = T /\ p

14

Turning a conversion to a tactic

 You can lift a conv to a rule or a tactic 

 CONV_TAC c “A ? t”

would apply c on t; suppose this produces |- t=u , this this theorem will be used to
rewrite the goal to A ? u.

 Example:

To expand the inner functional equality to point-wise
equality do:

CONV_RULE : conv  rule

CONV_TAC : conv  tactic

?- ~ (f = g)

CONV_TAC (RAND_CONV FUN_EQ_CONV)
15

Primitive HOL

Implementing HOL

 An obvious way would be to start with an implementation

of the predicate logic, e.g. along this line:

 data Term = VAR String

 | OR Term Term

 | NOT Term

 | EXISTS String Term

 | ...

 But want/need more:

 We want terms to be typed.

 We want to have more operators

 We want to have functions.

 17

Building ontop (typed) - calculus

 It’s a clean and minimalistic formal system.

 It comes with a very natural and simple type system.

 Because of its simplicity, you can trust it.

 Straight forward to implement.

 You can express functions and higher order functions

very naturally.

 We’ll build our predicate logic ontop of it; so we get all

the benefit of -calculus for free.

18

- calculus

 Grammar:

 The terms are typed; allowed types:

term ::= var

 | const

 | term term // e.g. (x. x) 0

 | \var. term // e.g. (x. x)

type ::= tyvar // e.g. ‘a

 | tyconst // e.g. bool

 | (type,...,type) tyop // e.g. bool list

 | type  type

19

- calculus computation rule

 One single rule called -reduction

 However in theorem proving we’re more interested in

concluding whether two terms are ‘equivalent’, e.g. that:

 (x. t) u = t[u/x]

 So we add the type “bool” and the constant “=“ of type:

 ‘a  ‘a  bool

(x. t) u  t[u/x]

20

HOL Primitive logic
(Desc 1.7)

 These inference rules are then the minimum you

need to add (implemented as ML functions):

BETA_CONV “(\x. t) u”

 =

 |- (\x. t) u = t[u/x]

ASSUME (t:bool) = [t] |- t

REFL t = |- t=t

21

HOL Primitive logic

SUBST “|- x=u” t = |- t = t[u/x]

ABS “|- t=u” = |- (\x. t) = (\x. u)

INST_TYPE (,) “|- t” = |- t[/]

22

HOL Primitive logic

ETA_AX: |- f. (x. f x) = f

In -calculus you also have the -conversion that says:

 f = g iff (x. f x = g x)

This is formalized indirectly by, later, this axiom:

23

HOL Primitive logic

 We’ll also add the constant “”, whose logical

properties are captured by the following rules:

DISCH “t, A |- u” = A |- t  u

MP thm1 thm2  implementing the modus ponens rule

24

Predicate logic
(Desc 3.2)

 So far the logic is just a logic about equalities of -calculus

terms.

 Next we want to add predicate logic, but preferably we

build it in terms of -calculus, rather than implementing it

as a hard-wired extension to the -calculus.

 Let’s start by declaring two constants T,F of type bool with

the obvious intent. Now find a way to encode the intent of

“T” in -calculus  captured by this definition:

T_DEF: |- T = ((x:bool. x) = (x. x))

25

Encoding Predicate Logic
(Desc 3.2)

 Introduce constant “ “of type (‘abool)bool,

defined as follows:

 Now we define “F” as follows:

 Puzzle for you: prove just using HOL primitive rules

(more later) that (T = F).

FORALL_DEF : |- P = (P = (x. T))

which HOL pretty prints as (x. P x)

F_DEF : |- F = t:bool. t

26

Encoding Predicate Logic

 NOT_DEF : |- p. ~p = p  F

 AND_DEF: |-  p q. p /\ q = ~(p  ~q)

 OR_DEF ...

 SELECT_AX: |- P x. P x  P (@P)

 EXISTS_DEF : |- (x. P) = P @P
27

And some axioms ...

 BOOL_CASES_AX: |- b. (b=T) \/ (b=F)

 IMP_ANTISYM:

 |- b1 b2. (b1  b2)  (b2  b1)  (b1=b2)

28

And this infinity axiom...

One One f = x y. (f x = f y)  (x = y) // every point in rng f has at most 1 source

Onto f = y. x. y = f x . // every point in rng f has at least 1 source

// also keep in mind that all function sin HOL are total

INFINITY_AX :

 |- f:indind. One_One f /\ ~ Onto f

This indirect says that there “ind” is a type with infinitely many elements!

We declare a type called “ind”, and impose this axiom:

29

Examples of building a derived rules

UNDISCH “A |- t  u” = t,A |- u

fun UNDISCH thm1 = // A |- t  u

 let

 thm2 = ASSUME t // t |- t

 thm3 = MP thm1 thm2 // t,A |- u

 in thm3 end

Note: this is just a pseudo code; not a real ML code. 30

Examples of building a derived rules

SYM “A |- t = u” = A |- u = t

fun SYM thm1 = // A |- t = u

 let

 thm2 = REFL t // |- t = t

 thm3 = SUBST { “x”  thm1 } “x=c” thm2 // A |- u=t

 in thm3 end

31

Proving ~(T = F)

thm1 = REFL “(x. x)” // |- (x. x) = (x. x)

TRUTH = SUBST ... (SYM T_DEF) thm1 // |- T

thm2 = ASSUME “T=F” // T=F |- T=F

thm3 = SUBST ... thm2 TRUTH // T=F |- F

thm4 = DISCH “T=F” thm3 // |- (T=F)  F

thm5 = SUBST ... (SYM … NOT_DEF) thm4 // |- ~(T=F)

32

extending HOL with new types

Extending HOL with your own types

 The easiest way to do it is by using the ML function

HOL_datatype, e.g. :

which will make the new type for you, and magically also

conjure a bunch of ‘axioms’ about this new type .

 We’ll take a closer look at the machinery behind this.

Hol_datatype `RGB = RED | GREEN | BLUE`

Hol_datatype `MyBinTree = Leaf int | Node MyBinTree MyBinTree

34

Defining your own type, from scratch.

 To do it from scratch we do:

 and then declare these constants:

 Is this ok now ?

 new_type (“RGB”,0) ;

new_constant (“RED”, Type `:RGB`) ;

new_constant (“GREEN”, Type `:RGB`) ;

new_constant (“BLUE”, Type `:RGB`) ;

35

To make it exactly as you expected, you will need to impose

some axionms on RGB…

new_axiom(“Axiom1",

--`

 ~(RED= GREEN) /\ ~(RED = BLUE) ...

`--) ;

(c:RGB. (c=RED) \/ (c=GREEN) \/ (c = BLUE))

36

(basically, we need to make sure that RGB is isomorphic to {RED,GREEN,BLUE})

Defining a recursive type, e.g. “num”

 We declare a new type “num”, and declare its constructors:

 Add sufficient axioms, we’ll use Peano’s axiomatization:

 0 : num
 SUC : num num

(n. 0  SUC n) (n. (n=0) \/ (k. n = SUC k))

(P. P 0 /\ (n. P n  P (SUC n))

 

 (n. P n))

37

Defining “num”

 And this axiom too:

 which implies that equations like:

define a function with exactly the above properties.

(e .

 (f. (f 0 = e) /\ (n. f (SUC n) = n  (f n))

)

sum 0 = 0

sum (SUC n) = n + (sum n)

38

But ...

 Just adding axioms can be dangerous. If they’re inconsistent

(contradicting) the whole HOL logic will break down.

 Contradicting type axioms imply that your type  is actually

empty. So, e.g. -reduction should not be possible:

 |- (x:. P) e = P[e/x]

However HOL requires types to be non-empty; its -reduction

will always succeed.

39

Definitional extension

 A safer way is to define a ‘bijection’ between your new

type and an existing type.

 At the moment the only candidate is “ind” (“bool” would be

too small ).

 Now try to prove the type axioms from this bijection 

safer!

num


REP

ABS

ind

40

First characterize the  part…

 First, define REPSUC as the function f:indind that

INFINITY_AX says to exist. That is, f satisfies:

 “REPSUC” is the model of “SUC” at the ind-side.

 Similarly, define REP0 as the model of 0:

ONE_ONE f /\ ~ONTO f

REP0 = @(z:ind. ~(x. z = REPSUC x))

So, REP0 is some member of “ind” who has no f-source (or REPSUC source).

41

The  part

 Define  as a subset of ind that admits num-induction.

We’ll encode  as a predicate indbool:

So, x:ind represents a num, iff:

for any P satisfying num-induction’s premises, P holds on x.

 x = (P. P REP0 /\ (y. P y  P (REPSUC y))  P x)

42

Defining “num”

 Now postulate that num can be obtained from  by a the following

bijection. First declare these constants:

 Then add these axioms:

rep : num  ind

abs : ind  num

(x:ind.  x  rep(abs x) = x) (n:num. abs(rep n) = n)

(n:num.  (rep n)) rep is injective

rep 0 = REP0

rep (SUC n) = REPSUC (rep n)

43

Now you can actually prove the orgininal axioms of

num

 E.g. to prove 0  SUC n; we prove this with contradiction:

 0 = SUC n



 rep 0 = rep (SUC n)

= // with axioms defining reps of 0 and SUC

 REP0 = REPSUC (rep n)

 // def. REP0

 F

44

Automated

 Fortunately all these steps are automated when you make

a new type using the function Hol_datatype. E.g. :

will generate the 4 axioms you saw before. e.g :

Hol_datatype `NaturalNumber = ZERO | NEXT of NaturalNumber

NaturalNumber_distinct : |- n. ~(ZERO = NEXT n)

NaturalNumber_induction :

 |- P. P ZERO /\ (n. P n  P (NEXT n))  (n. P n))]

45

