HOL, Part 2

More involved manipulation of goals

- Imagine A,B ?- hyp
- I want to :
 - Rewrite *hyp* using *A* // ok
 - I know A implies A'; I want to use A' to reduce hyp
 - Rewrite B
- I only want to rewrite some part of the hypothesis

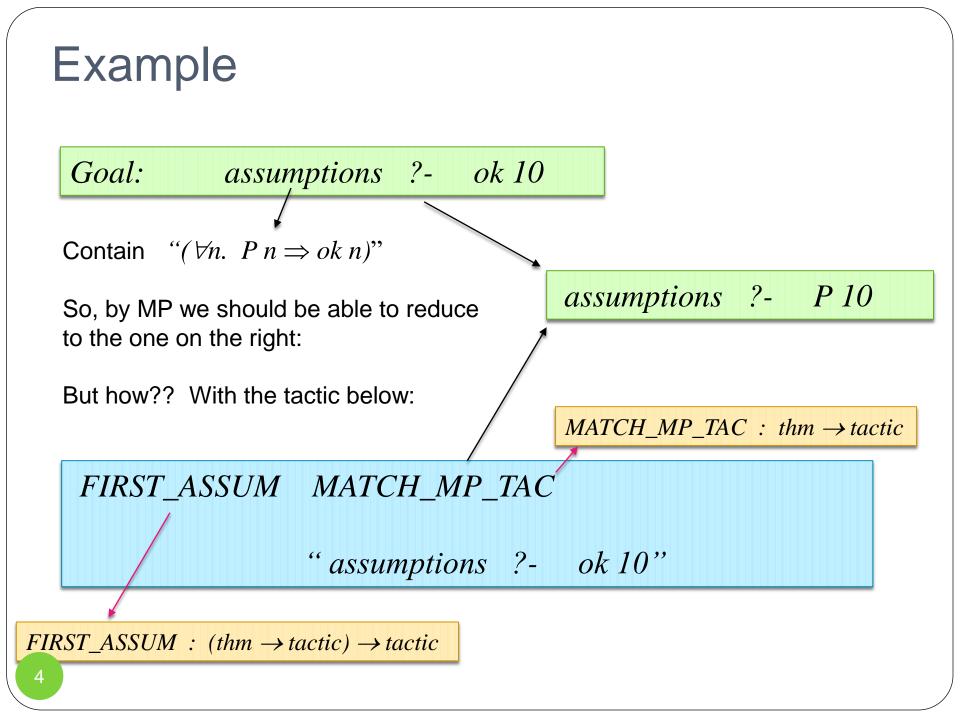
(Old Desc 10.5)

• Is an (ML) function of the form:

tc : $(thm \rightarrow tactic) \rightarrow tactic$

tc f typically takes one of the goal's assumptions (e.g. the first in the list), ASSUMEs it to a theorem t, and gives t to f. The latter inspects t, and uses the knowledge to produce a new tactic, which is then applied to the original goal.

 Useful when we need a finer control on using or transforming specific assumptions of the goal.



Some other theorem continuations

- POP_ASSUM : $(thm \rightarrow tactic) \rightarrow tactic$
- $ASSUM_LIST$: (thm list \rightarrow tactic) \rightarrow tactic
- $EVERY_ASSUM$: $(thm \rightarrow tactic) \rightarrow tactic$
- etc

Variations

 In general, exploiting higher order functions allows flexible programming of tactics. Another example:

$RULE_ASSUM_TAC: (thm \rightarrow thm) \rightarrow tactic$

RULE_ASSUM f maps f on all assumptions of the target goal; it fails if f fails on one asm.

• Example:

RULE_ASSUM_TAC (fn thm => SYM thm handle _ => thm)

Conversion (Old Desc Ch 9)

• Is a function to generate equality theorem \rightarrow

• Type: $conv = term \rightarrow thm$

such that if *c:conv*

- We have seen one: BETA_CONV; but HOL has *lots* of conversions in its library.
- Used e.g. in rewrites, in particular rewrites on a specific part of the goal.

Examples
• BETA_CONV "(\x. x) 0"
$$\rightarrow$$
 [- (\x. x) 0 = 0
• COOPER_CONV "1>0 \rightarrow [- 1>0 = T
• FUN_EQ_CONV "f=g" \rightarrow
[- (f=g) = (!x. f x = g x)]

Composing conversions

- The unit and zero: ALL_CONV, NO_CONV
- Sequencing:

If *c* produces /- u=v, *d* will take *v*; if *d v* then produces /- v=w, the whole conversion will produce /- u=w.

$$u \xrightarrow{c} /- u = v \xrightarrow{d} /- v = w$$

$$c \text{ THENC } d \xrightarrow{-} /- u = w$$

Composing conversions • Try c; but if it fails then use d. c ORELSEC d Repeatedly apply c until it fails: REPEATC c

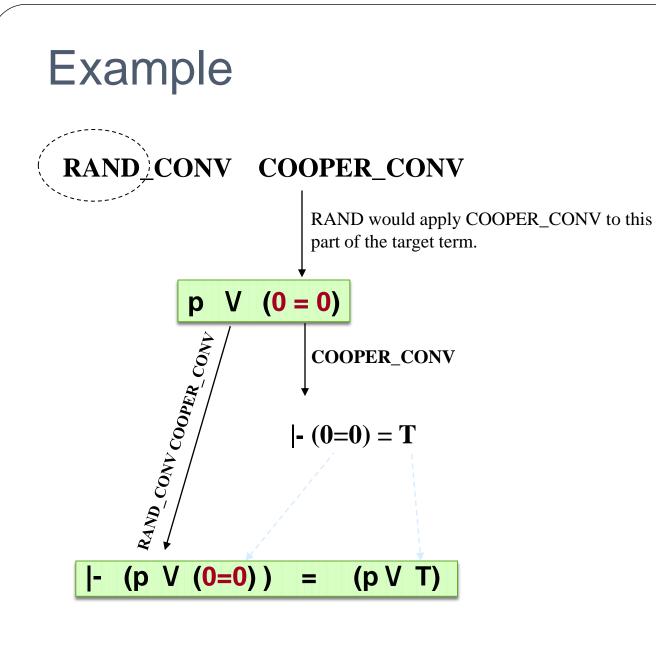
And tree walking combinators ...

 Allows conversion to be applied to specific subtrees instead of the whole tree:

 $RAND_CONV: conv \rightarrow conv$

 $RAND_CONV c t$ applies c to the 'operand' side of t.

- Similarly we also have RATOR_CONV → apply c to the 'operator' side of t
- You can get to any part of a term by combining these kind of combinators.

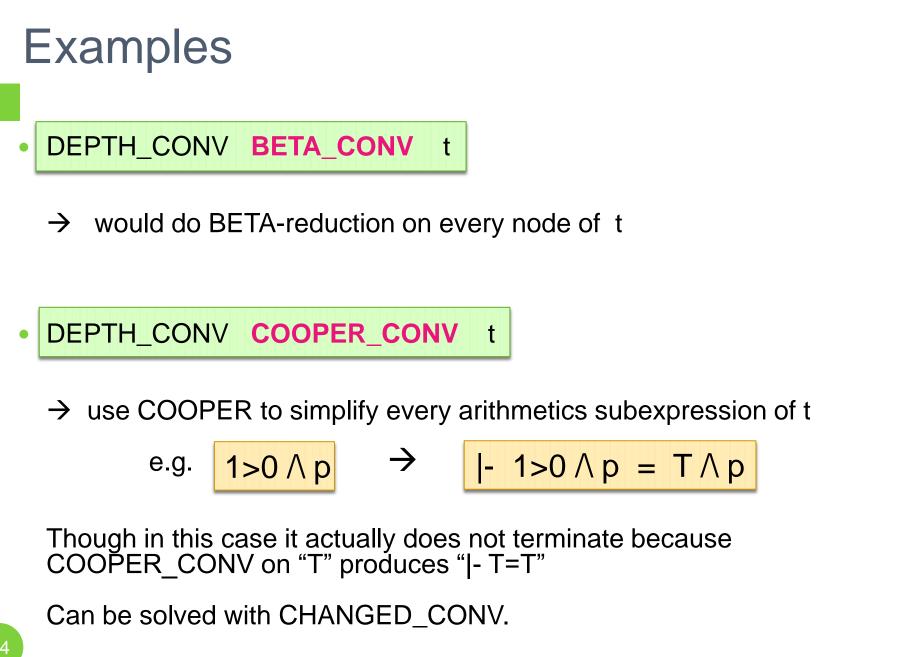


Tree walking combinators

- We also have combinators that operates a bit like in strategic programming ⁽²⁾
- Example: $DEPTH_CONV : conv \rightarrow conv$

DEPTH_CONV c t will walk the tree t (bottom up, once, left to right) and repeatedly applies c on each node.

- Variant: ONCE_DEPTH_CONV
- Not enough? Write your own?



Turning a conversion to a tactic

• You can lift a conv to a rule or a tactic 🙂

 $CONV_RULE : conv \rightarrow rule$

 $CONV_TAC : conv \rightarrow tactic$

•
$$CONV_TAC \ c \ "A ? t"$$

would apply c on t; suppose this produces /-t=u, this theorem will be used to rewrite the goal to A? u.

• Example: $?- \sim (f = g)$

To expand the inner functional equality to point-wise equality do:

CONV_TAC (RAND_CONV FUN_EQ_CONV)

Primitive HOL

Implementing HOL

 An obvious way would be to start with an implementation of the predicate logic, e.g. along this line:

```
data Term = VAR String
| OR Term Term
| NOT Term
| EXISTS String Term
| ...
```

- But want/need more:
 - We want terms to be typed.
 - We want to have more operators
 - We want to have functions.

Building ontop (typed) λ - calculus

- It's a clean and minimalistic formal system.
- It comes with a very natural and simple type system.
- Because of its simplicity, you can trust it.
- Straight forward to implement.
- You can express functions and higher order functions very naturally.
- We'll build our predicate logic ontop of it; so we get all the benefit of λ-calculus for free.

 λ - calculus

Grammar:

term ::= var / const / term term // e.g. $(\lambda x. x) 0$ / $\langle x x. x \rangle$

• The terms are typed; allowed types:

type ::= tyvar// e.g. 'a/ tyconst// e.g. bool/ (type,...,type) tyop// e.g. bool list/ type \rightarrow type

λ - calculus computation rule

One single rule called β-reduction

$$(\lambda x. t) u \rightarrow t[u/x]$$

 However in theorem proving we're more interested in concluding whether two terms are 'equivalent', e.g. that:

 $(\lambda x. t) u = t[u/x]$

So we add the type "bool" and the constant "=" of type:

 $a \rightarrow a \rightarrow bool$

HOL Primitive logic (Desc 1.7)

• These inference rules are then the minimum you need to add (implemented as ML functions):

$$ASSUME (t:bool) = [t] /-t$$

$$REFL t = /- t = t$$

$$BETA_CONV \quad ``(\langle x. t \rangle u ")$$

$$=$$

$$/- \quad (\langle x. t \rangle u = t[u/x]$$

HOL Primitive logic

$$ABS "|-t=u" = |-(\langle x, t \rangle) = (\langle x, u \rangle)$$

$$SUBST "|-x=u" t = |-t=t[u/x]$$

$$INST_TYPE (\alpha, \tau) "|-t" = |-t[\tau/\alpha]$$

HOL Primitive logic

In λ -calculus you also have the η -conversion that says:

$$f = g$$
 iff $(\forall x. f x = g x)$

This is formalized indirectly by, later, this axiom:

ETA_AX:
$$| - \forall f$$
. $(\lambda x. f x) = f$

HOL Primitive logic

 We'll also add the constant "⇒", whose logical properties are captured by the following rules:

DISCH "t,
$$A \mid -u$$
" = $A \mid -t \Rightarrow u$

MP $thm_1 thm_2 \rightarrow implementing the modus ponens rule$

Predicate logic (Desc 3.2)

- So far the logic is just a logic about equalities of λ-calculus terms.
- Next we want to add predicate logic, but preferably we build it in terms of λ-calculus, rather than implementing it as a hard-wired extension to the λ-calculus.
- Let's start by declaring two constants T,F of type bool with the obvious intent. Now find a way to encode the intent of "T" in λ-calculus → captured by this definition:

 $T_DEF: \ /- \ T = ((\lambda x:bool. \ x) = (\lambda x. \ x))$

Encoding Predicate Logic (Desc 3.2)

Introduce constant " \forall "of type ('a \rightarrow bool) \rightarrow bool, defined as follows:

FORALL_DEF: /-
$$\forall P = (P = (\lambda x. T))$$

which HOL pretty prints as $(\forall x. P x)$

• Now we define "F" as follows:

 $F_DEF:$ /- $F = \forall t:bool. t$

• Puzzle for you: prove just using HOL primitive rules (more later) that \neg (T = F).

Encoding Predicate Logic

- NOT_DEF: /- $\forall p. \sim p = p \Rightarrow F$
- AND_DEF: /- $\forall p q$. $p \land q = \sim (p \Rightarrow \sim q)$
- *OR_DEF* ...

• SELECT_AX: /- $\forall P x$. $P x \implies P (@P)$

• $EXISTS_DEF:$ /- $(\exists x. P) = P @ P$

27

And some axioms ...

- BOOL_CASES_AX: /- $\forall b. (b=T) \lor (b=F)$
- *IMP_ANTISYM*:

 $/- \forall b_1 b_2. \ (b_1 \Rightarrow b_2) \Rightarrow (b_2 \Rightarrow b_1) \Rightarrow (b_1 = b_2)$

And this infinity axiom...

We declare a type called "ind", and impose this axiom:

INFINITY_AX :

 $|- \exists f: ind \rightarrow ind. One_One f \land \sim Onto f$

This indirect says that there "ind" is a type with infinitely many elements!

One One $f = \forall x \ y$. (f $x = f \ y$) \Rightarrow (x = y) // every point in rng f has at most 1 source Onto $f = \forall y$. $\exists x. \ y = f \ x$. // every point in rng f has at least 1 source // also keep in mind that all function sin HOL are total

Examples of building a derived rules

UNDISCH "A /- $t \Rightarrow u$ " = t,A /- u

fun UNDISCH thm₁ = // $A /- t \Rightarrow u$ let thm₂ = ASSUME t // t /- tthm₃ = MP thm₁ thm₂ // t,A /- u

in thm_3 end

Note: this is just a pseudo code; not a real ML code.

Examples of building a derived rules

SYM "A /- t = u" = A |- u = t

fun SYM thm₁ = // A /- t = u

let thm₂ = REFL t // /- t = t

thm₃ = SUBST { " $x^{"} \rightarrow thm_1$ } " $x=c^{"} thm_2$ // A /- u=t

in thm₃ end

Proving \sim (T = F)

thm₁ = REFL " $(\lambda x. x)$ " // /- $(\lambda x. x) = (\lambda x. x)$ TRUTH = SUBST ... (SYM T_DEF) thm₁ // /- T thm₂ = ASSUME "T=F" // T=F /- T=F thm₃ = SUBST ... thm₂ TRUTH // T=F /- F thm₄ = DISCH "T=F" thm₃ // /- $(T=F) \Rightarrow F$ thm₅ = SUBST ... (SYM ... NOT_DEF) thm₄ // /- (T=F)

extending HOL with new types

Extending HOL with your own types

 The easiest way to do it is by using the ML function HOL_datatype, e.g. :

Hol_datatype `RGB = RED | GREEN | BLUE`

Hol_datatype `MyBinTree = Leaf int | Node MyBinTree MyBinTree

which will make the new type for you, and *magically* also conjure a bunch of 'axioms' about this new type ③.

We'll take a closer look at the machinery behind this.

Defining your own type, from scratch.

• To do it from scratch we do:

new_type ("RGB",0);

and then declare these constants:

```
new_constant ("RED", Type `:RGB`);
new_constant ("GREEN", Type `:RGB`);
new_constant ("BLUE", Type `:RGB`);
```

Is this ok now ?

To make it exactly as you expected, you will need to impose some axionms on RGB...

$(\forall c:RGB. (c=RED) \lor (c=GREEN) \lor (c=BLUE))$

(basically, we need to make sure that RGB is isomorphic to {RED,GREEN,BLUE})

Defining a recursive type, e.g. "num"

We declare a new type "num", and declare its constructors:

0 : num
 SUC : num→ num

Add sufficient axioms, we'll use Peano's axiomatization:

$$(\forall n. 0 \neq SUC n)$$

$$(\forall n. (n=0) \lor (\exists k. n = SUC k))$$

$$(\forall P. P 0 \land (\forall n. P n \Longrightarrow P(SUC n))$$
$$\Rightarrow$$
$$(\forall n. P n))$$

Defining "num"

• And this axiom too:

$$(\forall e \oplus .$$

 $(\exists f. (f \ 0 = e) \land (\forall n. f(SUC \ n) = n \oplus (f \ n))))$

• which implies that equations like:

$$sum 0 = 0$$

sum (SUC n) = n + (sum n)

define a function with exactly the above properties.

But ...

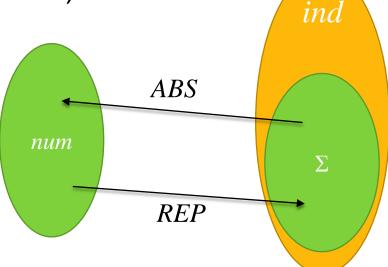
- Just adding axioms can be dangerous. If they're inconsistent (contradicting) the whole HOL logic will break down.
- Contradicting type axioms imply that your type τ is actually empty. So, e.g. β -reduction should <u>not</u> be possible:

$$|-(\lambda x:\tau, P) e = P[e/x]$$

However HOL requires types to be non-empty; its β -reduction will always succeed.

Definitional extension

- A safer way is to define a 'bijection' between your new type and an existing type.
- At the moment the only candidate is "ind" ("bool" would be too small (2).



 Now try to prove the type axioms from this bijection → safer!

First characterize the Σ part...

 First, define REP_{SUC} as the function f:ind→ind that INFINITY_AX says to exist. That is, f satisfies:

$$ONE_ONE f \land ~ONTO f$$

- "REP_{SUC}" is the model of "SUC" at the ind-side.
- Similarly, define REP₀ as the model of 0:

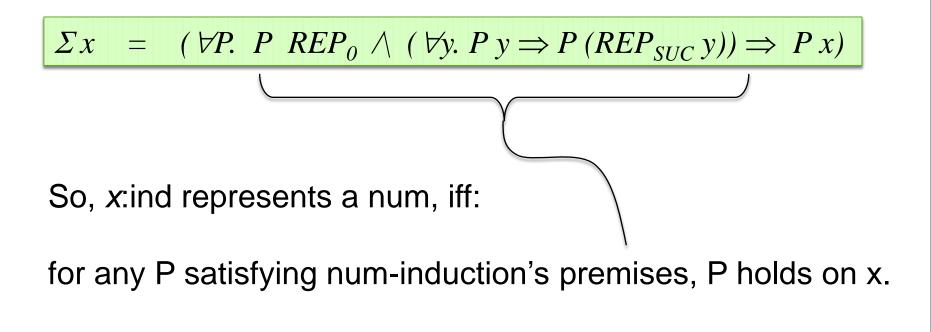
 $REP_0 = @(\lambda z:ind. \sim (\exists x. z = REP_{SUC} x))$

So, REP_0 is some member of "ind" who has no f-source (or REP_{SUC} source).

The Σ part

• Define Σ as a subset of ind that admits num-induction.

We'll encode Σ as a predicate ind \rightarrow bool:



Defining "num"

 Now postulate that num can be obtained from Σ by a the following bijection. First declare these constants:

 $rep: num \to ind$ $abs: ind \to num$

• Then add these axioms:

rep is injective $(\forall n:num. \Sigma(rep n))$

 $(\forall n:num. abs(rep n) = n)$

(
$$\forall x:ind. \ \Sigma x \implies rep(abs x) = x$$
)

$$rep 0 = REP_0$$

$$rep (SUC n) = REP_{SUC} (rep n)$$

Now you can actually prove the orgininal axioms of num

• E.g. to prove $0 \neq$ SUC n; we prove this with contradiction:

$$0 = SUC n$$

$$\Rightarrow rep 0 = rep (SUC n)$$

$$= // with axioms defining reps of 0 and SUC$$

$$REP_0 = REP_{SUC} (rep n)$$

$$\Rightarrow // def. REP_0$$

$$F$$

Automated

 Fortunately all these steps are automated when you make a new type using the function Hol_datatype. E.g. :

Hol_datatype `*NaturalNumber* = *ZERO* / *NEXT of NaturalNumber*

will generate the 4 axioms you saw before. e.g :

NaturalNumber_distinct : $/- \forall n. \sim (ZERO = NEXT n)$

NaturalNumber_induction :

 $/- \forall P. P ZERO \land (\forall n. P n \Rightarrow P(NEXT n)) \Rightarrow (\forall n. P n))]$