
HOL, Part 2 



More involved manipulation of goals 

 Imagine  A,B  ?-   hyp 

 

 I want to : 

 Rewrite hyp using A       // ok 

 I know A implies A’ ; I want to use A’ to reduce hyp 

 Rewrite B  

 

 I only want to rewrite some part of the hypothesis 
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Theorem Continuation 
(Old Desc 10.5) 

 Is an (ML) function of the form: 

 

 

 
 
            
 
 
 

 

 Useful when we need a finer control on using or 
transforming specific assumptions of the goal. 

 

tc  :  (thm  tactic)  tactic 

tc  f  typically takes one of the goal’s assumptions (e.g. the first in 

the list), ASSUMEs it to a theorem t, and gives t to f. The latter 

inspects t, and uses the knowledge to produce a new tactic, which 

is then applied to the original goal. 

3 



Example 

FIRST_ASSUM  :  (thm  tactic)  tactic  

Goal:          assumptions   ?-     ok 10 

Contain   “(n.  P n  ok n)”    
 

So, by MP we should be able to reduce 

to the one on the right: 

 

But how??  With the tactic below: 

 FIRST_ASSUM    MATCH_MP_TAC  

 

                             “ assumptions   ?-     ok 10” 

 assumptions   ?-     P 10 

MATCH_MP_TAC  :  thm  tactic 
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Some other theorem continuations 

 POP_ASSUM  : (thm  tactic)  tactic 

 

 ASSUM_LIST : (thm list  tactic)  tactic 

 

 EVERY_ASSUM : (thm  tactic)  tactic   

 

 etc 
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Variations 

 In general, exploiting higher order functions allows 

flexible programming of tactics. Another example: 

 

 

 

 

 

 Example: 

 RULE_ASSUM_TAC   (fn   thm =>    SYM  thm   handle _ => thm) 

RULE_ASSUM_TAC :   (thmthm)   tactic 

RULE_ASSUM f maps f on all assumptions of the target goal; it fails if f fails 

on one asm. 
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Conversion 
(Old Desc Ch 9) 

 Is a function to generate equality theorem   

 

 Type:                                          such that if  c:conv 
 
      
then   c t   can produce     
 
 

 We have seen one: BETA_CONV; but HOL has lots of 
conversions in its library. 

 Used e.g. in rewrites, in particular rewrites on a 
specific part of the goal. 

 

 

|-  t=u 

conv  =  term  thm 

|-  t = something 
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Examples 

 BETA_CONV     “( \x.  x )   0”              
 
 

 

 COOPER_CONV    “1>0                                 
 

 

 FUN_EQ_CONV    “f=g”             

|-    (\x.  x )    0   =   0 

|-   1>0    =   T 

|-    (f=g)   =     (!x.  f x  =  g x ) 
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Composing conversions 

 The unit and zero:   ALL_CONV,  NO_CONV 

 

 Sequencing:  
 
 
If  c  produces  |-  u=v,  d will take v; if d v  then produces |- v=w, the 
whole conversion will produce |- u=w. 

 

u |-  u  =  v |-  v = w 
c d 

|-  u  =  w c   THENC   d 

c   THENC   d 
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Composing conversions 

 Try c; but if it fails then use d. 
 
 
 

 

 Repeatedly apply c until it fails: 

 

 

 

 

 

c   ORELSEC   d  

REPEATC    c  
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And tree walking combinators ... 

 Allows conversion to be applied to specific 
subtrees instead of the whole tree:  
 
        
 
 
RAND_CONV c t   applies  c  to the ‘operand’ side of  t. 

 

 Similarly we also have RATOR_CONV    apply 
c to the ‘operator’ side of t 
 

 You can get to any part of a term by combining 
these kind of combinators. 

 

RAND_CONV : conv  conv 
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Example 

|-   (p  \/  (0=0) )    =     (p \/  T)  

RAND_CONV    COOPER_CONV 

p   \/   (0 = 0) 

RAND would apply COOPER_CONV to this 

part of the target term. 

|- (0=0) = T 

COOPER_CONV 
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Tree walking combinators 

 We also have combinators that operates a bit like in 
strategic programming  

 

 Example: 
 
  
DEPTH_CONV c t  will walk the tree t  (bottom up, once, left to right) and 
repeatedly applies c on each node. 

 
 

 Variant: ONCE_DEPTH_CONV 

 

 Not enough? Write your own? 
 
 

DEPTH_CONV  :  conv   conv 
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Examples 

 DEPTH_CONV   BETA_CONV    t      
 
 
   would do BETA-reduction on every node of  t 
 
 
 

 DEPTH_CONV   COOPER_CONV    t 
   
 
  use COOPER to simplify every arithmetics subexpression of t  
 
              e.g.   
 
 
Though in this case it actually does not terminate because 
COOPER_CONV on “T” produces “|- T=T” 
 
Can be solved with CHANGED_CONV. 

1>0 /\ p  |-  1>0 /\ p  =  T /\ p 
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Turning a conversion to a tactic 

 You can lift a conv to a rule or a tactic  
 
     
 
     
 
 

 CONV_TAC   c   “A ? t”  
 
would apply c on t; suppose this produces  |-  t=u , this this theorem will be used to 
rewrite the goal to A ? u. 

 

 Example:     
 
To expand the inner functional equality to point-wise 
equality do: 
 
 

CONV_RULE : conv  rule 

CONV_TAC   : conv  tactic 

?-    ~ ( f = g ) 

CONV_TAC (RAND_CONV FUN_EQ_CONV) 
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Primitive HOL 



Implementing HOL 

 An obvious way would be to start with an implementation 

of the predicate logic, e.g. along this line: 

 

 data  Term  =  VAR  String 

          |  OR     Term  Term 

          |  NOT   Term 

          |  EXISTS   String   Term 

          |  ... 

 

 But want/need more:  

 We want terms to be typed. 

 We want to have more operators 

 We want to have functions. 
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Building ontop (typed) - calculus 

 It’s a clean and minimalistic formal system. 

 It comes with a very natural and simple type system. 

 Because of its simplicity, you can trust it. 

 Straight forward to implement. 

 You can express functions and higher order functions 

very naturally.  

 We’ll build our predicate logic ontop of it; so we get all 

the benefit of -calculus for free. 
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- calculus 

 Grammar: 
 
 
 
 
 
 

 

 The terms are typed; allowed types: 
 
 
 
 
 
 
 
 
 

term  ::=  var 

                  |  const 

                  |  term   term               // e.g.  (x. x)  0     

                  |  \var.  term                // e.g.   (x. x) 

type  ::=   tyvar                                       // e.g.   ‘a 

                  |   tyconst       // e.g.   bool 

                  |   (type,...,type) tyop     // e.g.   bool  list 

                  |   type  type 
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- calculus computation rule 

 One single rule called -reduction  

 

  

 

 However in theorem proving we’re more interested in 

concluding whether two terms are ‘equivalent’, e.g. that: 

 

  (x. t)  u  =   t[u/x] 

 

 So we add the type “bool” and the constant “=“ of type: 

 

 ‘a  ‘a  bool 

(x. t)  u            t[u/x] 
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HOL Primitive logic 
(Desc 1.7) 

 These inference rules are then the minimum you 

need to add (implemented as ML functions): 

BETA_CONV    “(\x. t)  u”    
 
        =    
 
        |-    (\x. t) u   =   t[u/x] 

ASSUME   (t:bool)      =        [ t ]   |-  t 

REFL   t    =      |-  t=t 
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HOL Primitive logic 

SUBST    “|- x=u”    t     =      |-  t = t[u/x] 

ABS  “|- t=u”      =       |-   (\x. t)  =  (\x. u) 

INST_TYPE   (,)   “|- t”   =     |-  t[/]   
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HOL Primitive logic 

ETA_AX:      |- f.    (x. f x)   =   f 

In -calculus you also have the -conversion that says: 

 

 f = g   iff   (x. f x = g x) 

 

This is formalized indirectly by, later, this axiom: 
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HOL Primitive logic 

 We’ll also add the constant “”, whose logical 

properties are captured by the following rules: 

DISCH     “t, A  |-  u”        =         A |-  t  u 

MP  thm1 thm2     implementing the modus ponens rule 
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Predicate logic 
(Desc 3.2) 

 So far the logic is just a logic about equalities of -calculus 

terms. 

 

 Next we want to add predicate logic, but preferably we 

build it in terms of -calculus, rather than implementing it 

as a hard-wired extension to the -calculus. 

 

 Let’s start by declaring two constants T,F of type bool with 

the obvious intent. Now find a way to encode the  intent of 

“T” in -calculus  captured by this definition:  

T_DEF:    |-    T    =     ((x:bool.  x)   =  (x. x)) 
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Encoding Predicate Logic 
(Desc 3.2) 

 Introduce constant “ “of type (‘abool)bool, 

defined as follows: 

 

 

 

 

 Now we define “F” as follows: 

 

 

 

 Puzzle for you: prove just using HOL primitive rules 

(more later) that (T = F). 

 

FORALL_DEF :    |-   P    =   (P =  (x. T )) 

which HOL pretty prints as  (x. P x) 

F_DEF :     |-  F   =  t:bool. t 
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Encoding Predicate Logic 

 NOT_DEF :     |-  p.   ~p    =     p  F 

 

 AND_DEF:      |-   p q.     p /\ q     =       ~(p  ~q) 

 

 OR_DEF ... 

 

 

 SELECT_AX:      |-  P x.    P x      P  (@P)  

 

 

 EXISTS_DEF :     |-   (x.  P)    =    P @P 
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And some axioms ... 

 BOOL_CASES_AX:              |-  b.  (b=T) \/ (b=F) 

 

 IMP_ANTISYM: 

 

             |- b1 b2.  (b1  b2)  (b2  b1)    (b1=b2) 
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And this infinity axiom... 

One One f = x y. (f x = f y)   (x = y)      // every point in rng f has at most 1 source 

Onto f = y. x. y = f x  .                            //  every point in rng f has at least 1 source 

// also keep in mind that all function sin HOL are total   

INFINITY_AX : 

 

         |-  f:indind.   One_One f   /\   ~ Onto f  

 

This indirect says that there “ind” is a type with infinitely many elements! 

We declare a type called “ind”, and impose this axiom: 
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Examples of building a derived rules 

UNDISCH   “A  |-  t  u”    =     t,A   |-    u 

fun UNDISCH thm1   =   //  A   |-   t  u 

   let  

   thm2  =  ASSUME  t    //   t   |-   t  

 

   thm3  =  MP thm1 thm2  // t,A    |-    u  

    

   in  thm3  end 

Note: this is just a pseudo code; not a real ML code. 30 



Examples of building a derived rules 

SYM  “A  |-  t = u”    =     A   |-  u = t 

fun   SYM  thm1  =       //  A   |-   t = u  

 

   let 

   thm2  =  REFL t      //  |-   t = t  

 

   thm3  =  SUBST { “x”  thm1 } “x=c”  thm2 // A   |-   u=t 

    

   in  thm3   end 
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Proving ~(T = F) 

thm1   =   REFL “(x. x)”    //   |- (x. x) = (x. x) 

 

TRUTH   =   SUBST ... (SYM T_DEF)  thm1 //  |- T 

 

thm2   =   ASSUME   “T=F”             //   T=F  |-  T=F  

 

thm3   =   SUBST ... thm2 TRUTH              //  T=F  |-  F  

 

thm4   =   DISCH  “T=F” thm3       //  |- (T=F)  F  

 

thm5   =   SUBST ... (SYM … NOT_DEF)  thm4  //  |-  ~(T=F)   
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extending HOL with new types 



Extending HOL with your own types 

 The easiest way to do it is by using the ML function 

HOL_datatype, e.g. : 

 

 

 

 

 

 

which will make the new type for you, and magically also 

conjure a bunch of ‘axioms’ about this new type . 

 

 We’ll take a closer look at the machinery behind this. 

Hol_datatype    `RGB  =  RED | GREEN | BLUE` 

Hol_datatype    `MyBinTree = Leaf   int   |  Node   MyBinTree   MyBinTree 
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Defining your own type, from scratch. 

 To do it from scratch we do: 

 

 

  and then declare these constants: 

 

 

 

 

 Is this ok now ?  

  new_type   (“RGB”,0) ;  

new_constant  (“RED”, Type `:RGB`) ; 

new_constant  (“GREEN”, Type `:RGB`) ; 

new_constant  (“BLUE”, Type `:RGB`) ; 
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To make it exactly as you expected, you will need to impose 

some axionms on RGB… 

new_axiom(“Axiom1", 

--` 

    ~(RED= GREEN) /\ ~(RED = BLUE) ... 

`--) ; 

(c:RGB.  (c=RED)  \/  (c=GREEN) \/   (c = BLUE) ) 
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(basically, we need to make sure that RGB is isomorphic to {RED,GREEN,BLUE}) 



Defining a recursive type, e.g. “num” 

 We declare a new type “num”, and declare its constructors: 
 
 

 

 

 Add sufficient axioms, we’ll use Peano’s axiomatization: 
 

 

   0 : num 
   SUC : num num 

(n.   0      SUC n ) (n.   (n=0)   \/   (k. n = SUC k)) 

(P.  P 0   /\   (n. P n  P (SUC n) )   

           

         (n. P n) ) 
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Defining “num” 

 And this axiom too: 

 

 

 

 

 

 which implies that equations like: 

 

 

 

 

define a function with exactly the above properties. 

 

(e .    

             (f.   (f  0 = e)    /\      (n. f (SUC n) =  n   (f n)) 

) 

sum 0 = 0 

sum (SUC n)  =  n + (sum n) 
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But ... 

 Just adding axioms can be dangerous. If they’re inconsistent 

(contradicting) the whole HOL logic will break down. 

 

 Contradicting type axioms imply that your type  is actually 

empty. So, e.g. -reduction should not be possible: 

 

       |-  (x:.  P)  e   =   P[e/x] 

 

However HOL requires types to be non-empty; its -reduction 

will always succeed. 
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Definitional extension 

 A safer way is to define a ‘bijection’ between your new 

type and an existing type. 

 At the moment the only candidate is “ind” (“bool” would be 

too small  ). 

 

 

 

 

 

 

 Now try to prove the type axioms from this bijection  

safer! 

num 
 

REP 

ABS 

ind 
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First characterize the  part… 

 First, define REPSUC as the function f:indind that 

INFINITY_AX says to exist. That is, f satisfies: 

 

  

 

 “REPSUC” is the model of “SUC” at the ind-side.  

 Similarly, define REP0 as the model of 0: 

 

 

ONE_ONE  f    /\   ~ONTO  f 

REP0 = @(z:ind. ~(x. z = REPSUC x)) 

So, REP0 is some member of “ind” who has no f-source (or REPSUC source). 
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The   part 

 Define  as a subset of ind that admits num-induction. 

 

We’ll encode  as a predicate indbool: 

 

 

 

 

 

So, x:ind represents a num, iff: 

 

for any P satisfying num-induction’s premises, P holds on x. 

 

 

 x    =    (P.  P  REP0  /\  (y. P y  P (REPSUC y))   P x) 

42 



Defining “num” 

 Now postulate that num can be obtained from  by a the following 

bijection. First declare these constants: 

 

 

 

 

 Then add these axioms: 

 

 

rep : num  ind 

abs : ind  num 

(x:ind.   x    rep(abs x) = x ) (n:num.  abs(rep n)  = n ) 

(n:num.   (rep n) ) rep is injective 

rep 0              =    REP0 

rep (SUC n)   =    REPSUC  (rep n) 
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Now you can actually prove the orgininal axioms of 

num 

 E.g. to prove 0  SUC n; we prove this with contradiction: 

        0 = SUC n 

 

        rep 0  =  rep (SUC n) 

 

=  // with axioms defining reps of 0 and SUC  

 

        REP0    =   REPSUC  (rep n) 

 

 // def. REP0 

 

        F 

44 



Automated 

 Fortunately all these steps are automated when you make 

a new type using the function Hol_datatype. E.g. : 

 

 

 

 

will generate the 4 axioms you saw before. e.g : 

 

 

Hol_datatype `NaturalNumber = ZERO  |  NEXT of NaturalNumber 

NaturalNumber_distinct :    |-  n. ~(ZERO = NEXT n) 

NaturalNumber_induction : 

 

      |- P.   P ZERO /\ (n. P n    P (NEXT n))   (n. P n))] 
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