
HOL, Part 2 



More involved manipulation of goals 

 Imagine  A,B  ?-   hyp 

 

 I want to : 

 Rewrite hyp using A       // ok 

 I know A implies A’ ; I want to use A’ to reduce hyp 

 Rewrite B  

 

 I only want to rewrite some part of the hypothesis 
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Theorem Continuation 
(Old Desc 10.5) 

 Is an (ML) function of the form: 

 

 

 
 
            
 
 
 

 

 Useful when we need a finer control on using or 
transforming specific assumptions of the goal. 

 

tc  :  (thm  tactic)  tactic 

tc  f  typically takes one of the goal’s assumptions (e.g. the first in 

the list), ASSUMEs it to a theorem t, and gives t to f. The latter 

inspects t, and uses the knowledge to produce a new tactic, which 

is then applied to the original goal. 
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Example 

FIRST_ASSUM  :  (thm  tactic)  tactic  

Goal:          assumptions   ?-     ok 10 

Contain   “(n.  P n  ok n)”    
 

So, by MP we should be able to reduce 

to the one on the right: 

 

But how??  With the tactic below: 

 FIRST_ASSUM    MATCH_MP_TAC  

 

                             “ assumptions   ?-     ok 10” 

 assumptions   ?-     P 10 

MATCH_MP_TAC  :  thm  tactic 
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Some other theorem continuations 

 POP_ASSUM  : (thm  tactic)  tactic 

 

 ASSUM_LIST : (thm list  tactic)  tactic 

 

 EVERY_ASSUM : (thm  tactic)  tactic   

 

 etc 
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Variations 

 In general, exploiting higher order functions allows 

flexible programming of tactics. Another example: 

 

 

 

 

 

 Example: 

 RULE_ASSUM_TAC   (fn   thm =>    SYM  thm   handle _ => thm) 

RULE_ASSUM_TAC :   (thmthm)   tactic 

RULE_ASSUM f maps f on all assumptions of the target goal; it fails if f fails 

on one asm. 
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Conversion 
(Old Desc Ch 9) 

 Is a function to generate equality theorem   

 

 Type:                                          such that if  c:conv 
 
      
then   c t   can produce     
 
 

 We have seen one: BETA_CONV; but HOL has lots of 
conversions in its library. 

 Used e.g. in rewrites, in particular rewrites on a 
specific part of the goal. 

 

 

|-  t=u 

conv  =  term  thm 

|-  t = something 

7 



Examples 

 BETA_CONV     “( \x.  x )   0”              
 
 

 

 COOPER_CONV    “1>0                                 
 

 

 FUN_EQ_CONV    “f=g”             

|-    (\x.  x )    0   =   0 

|-   1>0    =   T 

|-    (f=g)   =     (!x.  f x  =  g x ) 
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Composing conversions 

 The unit and zero:   ALL_CONV,  NO_CONV 

 

 Sequencing:  
 
 
If  c  produces  |-  u=v,  d will take v; if d v  then produces |- v=w, the 
whole conversion will produce |- u=w. 

 

u |-  u  =  v |-  v = w 
c d 

|-  u  =  w c   THENC   d 

c   THENC   d 
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Composing conversions 

 Try c; but if it fails then use d. 
 
 
 

 

 Repeatedly apply c until it fails: 

 

 

 

 

 

c   ORELSEC   d  

REPEATC    c  
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And tree walking combinators ... 

 Allows conversion to be applied to specific 
subtrees instead of the whole tree:  
 
        
 
 
RAND_CONV c t   applies  c  to the ‘operand’ side of  t. 

 

 Similarly we also have RATOR_CONV    apply 
c to the ‘operator’ side of t 
 

 You can get to any part of a term by combining 
these kind of combinators. 

 

RAND_CONV : conv  conv 
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Example 

|-   (p  \/  (0=0) )    =     (p \/  T)  

RAND_CONV    COOPER_CONV 

p   \/   (0 = 0) 

RAND would apply COOPER_CONV to this 

part of the target term. 

|- (0=0) = T 

COOPER_CONV 
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Tree walking combinators 

 We also have combinators that operates a bit like in 
strategic programming  

 

 Example: 
 
  
DEPTH_CONV c t  will walk the tree t  (bottom up, once, left to right) and 
repeatedly applies c on each node. 

 
 

 Variant: ONCE_DEPTH_CONV 

 

 Not enough? Write your own? 
 
 

DEPTH_CONV  :  conv   conv 
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Examples 

 DEPTH_CONV   BETA_CONV    t      
 
 
   would do BETA-reduction on every node of  t 
 
 
 

 DEPTH_CONV   COOPER_CONV    t 
   
 
  use COOPER to simplify every arithmetics subexpression of t  
 
              e.g.   
 
 
Though in this case it actually does not terminate because 
COOPER_CONV on “T” produces “|- T=T” 
 
Can be solved with CHANGED_CONV. 

1>0 /\ p  |-  1>0 /\ p  =  T /\ p 
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Turning a conversion to a tactic 

 You can lift a conv to a rule or a tactic  
 
     
 
     
 
 

 CONV_TAC   c   “A ? t”  
 
would apply c on t; suppose this produces  |-  t=u , this this theorem will be used to 
rewrite the goal to A ? u. 

 

 Example:     
 
To expand the inner functional equality to point-wise 
equality do: 
 
 

CONV_RULE : conv  rule 

CONV_TAC   : conv  tactic 

?-    ~ ( f = g ) 

CONV_TAC (RAND_CONV FUN_EQ_CONV) 
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Primitive HOL 



Implementing HOL 

 An obvious way would be to start with an implementation 

of the predicate logic, e.g. along this line: 

 

 data  Term  =  VAR  String 

          |  OR     Term  Term 

          |  NOT   Term 

          |  EXISTS   String   Term 

          |  ... 

 

 But want/need more:  

 We want terms to be typed. 

 We want to have more operators 

 We want to have functions. 
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Building ontop (typed) - calculus 

 It’s a clean and minimalistic formal system. 

 It comes with a very natural and simple type system. 

 Because of its simplicity, you can trust it. 

 Straight forward to implement. 

 You can express functions and higher order functions 

very naturally.  

 We’ll build our predicate logic ontop of it; so we get all 

the benefit of -calculus for free. 
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- calculus 

 Grammar: 
 
 
 
 
 
 

 

 The terms are typed; allowed types: 
 
 
 
 
 
 
 
 
 

term  ::=  var 

                  |  const 

                  |  term   term               // e.g.  (x. x)  0     

                  |  \var.  term                // e.g.   (x. x) 

type  ::=   tyvar                                       // e.g.   ‘a 

                  |   tyconst       // e.g.   bool 

                  |   (type,...,type) tyop     // e.g.   bool  list 

                  |   type  type 
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- calculus computation rule 

 One single rule called -reduction  

 

  

 

 However in theorem proving we’re more interested in 

concluding whether two terms are ‘equivalent’, e.g. that: 

 

  (x. t)  u  =   t[u/x] 

 

 So we add the type “bool” and the constant “=“ of type: 

 

 ‘a  ‘a  bool 

(x. t)  u            t[u/x] 
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HOL Primitive logic 
(Desc 1.7) 

 These inference rules are then the minimum you 

need to add (implemented as ML functions): 

BETA_CONV    “(\x. t)  u”    
 
        =    
 
        |-    (\x. t) u   =   t[u/x] 

ASSUME   (t:bool)      =        [ t ]   |-  t 

REFL   t    =      |-  t=t 
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HOL Primitive logic 

SUBST    “|- x=u”    t     =      |-  t = t[u/x] 

ABS  “|- t=u”      =       |-   (\x. t)  =  (\x. u) 

INST_TYPE   (,)   “|- t”   =     |-  t[/]   
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HOL Primitive logic 

ETA_AX:      |- f.    (x. f x)   =   f 

In -calculus you also have the -conversion that says: 

 

 f = g   iff   (x. f x = g x) 

 

This is formalized indirectly by, later, this axiom: 
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HOL Primitive logic 

 We’ll also add the constant “”, whose logical 

properties are captured by the following rules: 

DISCH     “t, A  |-  u”        =         A |-  t  u 

MP  thm1 thm2     implementing the modus ponens rule 
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Predicate logic 
(Desc 3.2) 

 So far the logic is just a logic about equalities of -calculus 

terms. 

 

 Next we want to add predicate logic, but preferably we 

build it in terms of -calculus, rather than implementing it 

as a hard-wired extension to the -calculus. 

 

 Let’s start by declaring two constants T,F of type bool with 

the obvious intent. Now find a way to encode the  intent of 

“T” in -calculus  captured by this definition:  

T_DEF:    |-    T    =     ((x:bool.  x)   =  (x. x)) 
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Encoding Predicate Logic 
(Desc 3.2) 

 Introduce constant “ “of type (‘abool)bool, 

defined as follows: 

 

 

 

 

 Now we define “F” as follows: 

 

 

 

 Puzzle for you: prove just using HOL primitive rules 

(more later) that (T = F). 

 

FORALL_DEF :    |-   P    =   (P =  (x. T )) 

which HOL pretty prints as  (x. P x) 

F_DEF :     |-  F   =  t:bool. t 
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Encoding Predicate Logic 

 NOT_DEF :     |-  p.   ~p    =     p  F 

 

 AND_DEF:      |-   p q.     p /\ q     =       ~(p  ~q) 

 

 OR_DEF ... 

 

 

 SELECT_AX:      |-  P x.    P x      P  (@P)  

 

 

 EXISTS_DEF :     |-   (x.  P)    =    P @P 
27 



And some axioms ... 

 BOOL_CASES_AX:              |-  b.  (b=T) \/ (b=F) 

 

 IMP_ANTISYM: 

 

             |- b1 b2.  (b1  b2)  (b2  b1)    (b1=b2) 
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And this infinity axiom... 

One One f = x y. (f x = f y)   (x = y)      // every point in rng f has at most 1 source 

Onto f = y. x. y = f x  .                            //  every point in rng f has at least 1 source 

// also keep in mind that all function sin HOL are total   

INFINITY_AX : 

 

         |-  f:indind.   One_One f   /\   ~ Onto f  

 

This indirect says that there “ind” is a type with infinitely many elements! 

We declare a type called “ind”, and impose this axiom: 
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Examples of building a derived rules 

UNDISCH   “A  |-  t  u”    =     t,A   |-    u 

fun UNDISCH thm1   =   //  A   |-   t  u 

   let  

   thm2  =  ASSUME  t    //   t   |-   t  

 

   thm3  =  MP thm1 thm2  // t,A    |-    u  

    

   in  thm3  end 

Note: this is just a pseudo code; not a real ML code. 30 



Examples of building a derived rules 

SYM  “A  |-  t = u”    =     A   |-  u = t 

fun   SYM  thm1  =       //  A   |-   t = u  

 

   let 

   thm2  =  REFL t      //  |-   t = t  

 

   thm3  =  SUBST { “x”  thm1 } “x=c”  thm2 // A   |-   u=t 

    

   in  thm3   end 
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Proving ~(T = F) 

thm1   =   REFL “(x. x)”    //   |- (x. x) = (x. x) 

 

TRUTH   =   SUBST ... (SYM T_DEF)  thm1 //  |- T 

 

thm2   =   ASSUME   “T=F”             //   T=F  |-  T=F  

 

thm3   =   SUBST ... thm2 TRUTH              //  T=F  |-  F  

 

thm4   =   DISCH  “T=F” thm3       //  |- (T=F)  F  

 

thm5   =   SUBST ... (SYM … NOT_DEF)  thm4  //  |-  ~(T=F)   
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extending HOL with new types 



Extending HOL with your own types 

 The easiest way to do it is by using the ML function 

HOL_datatype, e.g. : 

 

 

 

 

 

 

which will make the new type for you, and magically also 

conjure a bunch of ‘axioms’ about this new type . 

 

 We’ll take a closer look at the machinery behind this. 

Hol_datatype    `RGB  =  RED | GREEN | BLUE` 

Hol_datatype    `MyBinTree = Leaf   int   |  Node   MyBinTree   MyBinTree 

34 



Defining your own type, from scratch. 

 To do it from scratch we do: 

 

 

  and then declare these constants: 

 

 

 

 

 Is this ok now ?  

  new_type   (“RGB”,0) ;  

new_constant  (“RED”, Type `:RGB`) ; 

new_constant  (“GREEN”, Type `:RGB`) ; 

new_constant  (“BLUE”, Type `:RGB`) ; 
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To make it exactly as you expected, you will need to impose 

some axionms on RGB… 

new_axiom(“Axiom1", 

--` 

    ~(RED= GREEN) /\ ~(RED = BLUE) ... 

`--) ; 

(c:RGB.  (c=RED)  \/  (c=GREEN) \/   (c = BLUE) ) 
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(basically, we need to make sure that RGB is isomorphic to {RED,GREEN,BLUE}) 



Defining a recursive type, e.g. “num” 

 We declare a new type “num”, and declare its constructors: 
 
 

 

 

 Add sufficient axioms, we’ll use Peano’s axiomatization: 
 

 

   0 : num 
   SUC : num num 

(n.   0      SUC n ) (n.   (n=0)   \/   (k. n = SUC k)) 

(P.  P 0   /\   (n. P n  P (SUC n) )   

           

         (n. P n) ) 
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Defining “num” 

 And this axiom too: 

 

 

 

 

 

 which implies that equations like: 

 

 

 

 

define a function with exactly the above properties. 

 

(e .    

             (f.   (f  0 = e)    /\      (n. f (SUC n) =  n   (f n)) 

) 

sum 0 = 0 

sum (SUC n)  =  n + (sum n) 
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But ... 

 Just adding axioms can be dangerous. If they’re inconsistent 

(contradicting) the whole HOL logic will break down. 

 

 Contradicting type axioms imply that your type  is actually 

empty. So, e.g. -reduction should not be possible: 

 

       |-  (x:.  P)  e   =   P[e/x] 

 

However HOL requires types to be non-empty; its -reduction 

will always succeed. 
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Definitional extension 

 A safer way is to define a ‘bijection’ between your new 

type and an existing type. 

 At the moment the only candidate is “ind” (“bool” would be 

too small  ). 

 

 

 

 

 

 

 Now try to prove the type axioms from this bijection  

safer! 

num 
 

REP 

ABS 

ind 
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First characterize the  part… 

 First, define REPSUC as the function f:indind that 

INFINITY_AX says to exist. That is, f satisfies: 

 

  

 

 “REPSUC” is the model of “SUC” at the ind-side.  

 Similarly, define REP0 as the model of 0: 

 

 

ONE_ONE  f    /\   ~ONTO  f 

REP0 = @(z:ind. ~(x. z = REPSUC x)) 

So, REP0 is some member of “ind” who has no f-source (or REPSUC source). 
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The   part 

 Define  as a subset of ind that admits num-induction. 

 

We’ll encode  as a predicate indbool: 

 

 

 

 

 

So, x:ind represents a num, iff: 

 

for any P satisfying num-induction’s premises, P holds on x. 

 

 

 x    =    (P.  P  REP0  /\  (y. P y  P (REPSUC y))   P x) 
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Defining “num” 

 Now postulate that num can be obtained from  by a the following 

bijection. First declare these constants: 

 

 

 

 

 Then add these axioms: 

 

 

rep : num  ind 

abs : ind  num 

(x:ind.   x    rep(abs x) = x ) (n:num.  abs(rep n)  = n ) 

(n:num.   (rep n) ) rep is injective 

rep 0              =    REP0 

rep (SUC n)   =    REPSUC  (rep n) 
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Now you can actually prove the orgininal axioms of 

num 

 E.g. to prove 0  SUC n; we prove this with contradiction: 

        0 = SUC n 

 

        rep 0  =  rep (SUC n) 

 

=  // with axioms defining reps of 0 and SUC  

 

        REP0    =   REPSUC  (rep n) 

 

 // def. REP0 

 

        F 
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Automated 

 Fortunately all these steps are automated when you make 

a new type using the function Hol_datatype. E.g. : 

 

 

 

 

will generate the 4 axioms you saw before. e.g : 

 

 

Hol_datatype `NaturalNumber = ZERO  |  NEXT of NaturalNumber 

NaturalNumber_distinct :    |-  n. ~(ZERO = NEXT n) 

NaturalNumber_induction : 

 

      |- P.   P ZERO /\ (n. P n    P (NEXT n))   (n. P n))] 
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