
CSP: Communicating Sequential 

Processes 



Overview 

 Computation model and CSP primitives 

 Refinement and trace semantics 

 Automaton view 

 Refinement checking algorithm 

 Failures Semantics 
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CSP 

 Communicating Sequential Processes, introduced by Hoare, 

1978. 

 Abstract and formal event-based language to model concurrent 

systems. Belong to the “Process Algebra” family. 

 Elegant, with refinement based reasoning. 

 

turnOn 

turnOff 

1C 

2C 

1W 

2W 

 

Senseo  =  turnOn    Active 

 

Active    = (turnOff   Senseo)   

                  □ (1c   boil  1w  Active)  

                  □ (2c   boil  2w  Active) 
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boil 



References 

 Quick info at Wikipedia. 

 

 Communicating Sequential Processes, Hoare, Prentice Hall, 
1985.  
 
3rd most cited computer science reference  
 
Renewed edition by Jim Davies, 2004. 
 
Available free! 
 

 Model Checking CSP, Roscoe, 1994.  
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Computation model 

 A concurrent system is made of a set of interacting processes. 

 

 Each process sequentially produces events. Each event is 

atomic.  Examples:  

 

 turnOn, turnOff, Play, Reset 

 lockAcquire, lockRelease 

 

 Some events are internals  not observable from outside. 

 

 There is no notion of variables, nor data. A process is abstractly 

decribed by the sequences of events that it produces. 
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Computation model 

 Multiple processes can synchronize on an event, say 

a. 

 

 They will wait each other until all synchronizing processes are 

ready to execute a. 

 

 Then they will simultaneously execute a. 

 

 As in : 

 

  a  STOP   ||{a}   x  a  STOP 

 

The 1st process will have to wait until the 2nd has produced x. 
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Some notation first 

 Names : 

 

 A,B,C           alphabets (sets of events) 

 a,b,c             events (actions) 

 P,Q,R            processes 

 

 Formally for each process we also specify its 

alphabet, but here we will usually leave this implicit. 

 

 P denotes the alphabet of P. 
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CSP constructs 

 We’ll only consider simplified syntax: 

 

 Process  ::=  STOP 

  |  Event     Process 

  |  Process   []   Process 

  |  Process   |¯|   Process 

  |  Process   ||   Process 

  |  Process / Alphabet 

  |  ProcessName 

 

 Process definition: 

 

 ProcessName  “=“  Process  
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STOP, sequence, and recursion 

 Some simple primitives : 

 

 STOP                              // as the name says 

 

 a  P                              // do a, then behave as P 

 

 Recursion is allowed, e.g. : 

 

 Clock  =  tick  Clock 

 

Recursion must be ‘guarded’ (no left recursion thus).  
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Internal choice 

 We also have internal / non-deterministic choice: P |¯| Q, as in : 
 
  
 
 
R1 behave as either: 
 
 aP   or   bQ 
 
but the choice is decided internally by R1 itself. From outside it is 
as if R1 makes a non-deterministic choice. 

 

 R1 may therefore deadlock (e.g. the environment only offers a, 
but R1 have decided that it wants to do b instead). 

R1   =   (a  P)   |¯|   (b  Q ) 
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External choice 

 Denoted by  P □ Q 
 
Behave as either P or Q. The choice is decided by the 
environment. 
 

 Ex:     
 
  
 
 
R2 behaves as either: 
 
 aP   or   bQ 
 
depending on the actions offered by the environment (e.g. think 
a,b as representing actions by a user to push on buttons). 

 

R2    =    (a  P)  □    (b  Q) 
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External choice  

 However, it can degenerate to non-deterministic 

choice: 
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R3    =    (a  P)  □    (a  Q) 



Parallel composition 

 Denoted by  P || Q 
 
This denotes the process that behaves as the interleaving of P 
and Q, but synchronizing them on P  Q. 
 
Example:       
 
 
 
 
This produces a process that behaves as either of these : 
 
  
 
 
 
 
 
(Notice the interleaving on a1,a2 and synchronization on b). 
 

 

R    =   (a1  b  STOP )  ||  ( a2  b  STOP ) 
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a1  a2  b  STOP 

 

a2 a1  b  STOP 



Hiding (abstraction) 

 Denoted by P / A 
 
Hide (internalize) the events in A; so that they are not visible to 
the environment. 
 
Example:     
 
 
 
 
  
 

 

 In particular:  
 
 (P || Q)  /  (P  Q ) 
 
is the parallel composition of P and Q, and then we internalize 
their synchronized events. 

 

14 

R    =   (a1  b  STOP )  ||  ( a2  b  STOP ) 

R  /  {b} =   (a1  a2) □ (a2  a1) 



Specifications and programs have the same 

status 

 That is, a specification is expressed by another CSP process : 

 

 

 

 More precisely, when events not in {1c,1w,2c,2w} are abstracted 

away, our Senseo machine should behave as the above 

SenseoSpec process. This is expressed by refinement : 

SenseoSpec   =    ( 1c  1w) □  ( 2c  2w)    SenseoSpec 

SenseoSpec     Senseo / { turnOn, turnOff , boil } 

Cannot be conveniently expressed in 

temporal logic. Conversely, CSP has 

no native temporal logic constructs to 

express properties. 

Refinement relation:  P  Q means that Q is at least as good as P. 

What this exactly entails depends on our intent. In any case, we 

usually expect a refinement relation to be preorder  
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Monotonicity 

 A relation  (over A) is a preorder if it is reflexive and transitive : 

 

 

 

 A function F:AA is monotonic roughly if its value increases if 

we increase its argument. 

 

More precisely it is monotonic wrt to a relation  iff 

 

 

 

 Analogous definition if F has multiple arguments. 

 

1. P  P 

2. P  Q  and  Q  R    implies  P  R 

P  Q          F(P)    F(Q) 
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Monotonicity & compositionality 

 Suppose we have a preorder  over CSP processes, acting as 
a refinement relation. 
 
 

 

 A monotonic || would give us this result, which you can use to 
decompose the verification of a system to component level, 
and avoiding, in theory, state explosion: 
 
 

   1   P     ,     2   Q 
                  1 ||  2 
 ---------------------------------- 
                P || Q 

Many formalisms for concurrent systems do not have 

this. CSP monotonicity is mainly due to its level of 

abstraction. 

    P              express P satisfies the specification  

So, can we find a notion of 

refinement such that all CSP 

constructs are monotonic ?? 
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(note that this presumes we have 

the specifications of the 

components) 



Trace Semantics 

 Idea: abstractly consider two processes to be equivalent if they 

generate the same traces. 

 

 Introduce traces(P)  

 

 the set of all finite traces (sequences of events) that P 

 can produce. 

 

 E.g.  traces( a  b  STOP) =  { <>, <a> , <a,b> } 

 

 Simple semantics of CSP processes 

 But it is oblivious to certain things. 

 Still useful to check safety. 

 Induce a natural notion of refinement. 
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Trace Semantics 

 We can define “traces” inductively over CSP operators. 

 

 traces STOP  =  { <> } 

 

 traces  (a  P)    =    { <> }    { <a> ^ s  |  s  traces(P) } 
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Trace Semantics 

 If s is a trace, s|A is the trace obtained by throwing away events 

not in A. 

 

Pronounced “s restricted to A”. 

 

 Example :  <a,b,b,c> | {a,c}  =   <a,c> 

 

 Now we can define: 

 

 traces (P/A)      =    { s|(P – A)  |  s  traces(P) } 
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Trace Semantics 

 If A is an alphabet,  A* denote the set of all traces over the 

events in A.  E.g. <a,b,b>  {a,b}*,  and <a,b,b>  {a,b,c}*; but 

<a,b,b>  {b}*. 

 

 traces (P || Q) 

  

     =  

 

     {  s  |  s  (P  Q)* ,   

 

  s|P  traces(P)    and   s|Q  traces(Q)   

 } 
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Example 

 Consider : 

 

 P    =  a1  b   STOP  // P = {a1,b} 

 Q    =  a2  b  STOP  // Q = {a2,b} 

 

 

 traces(P||Q) = { <> , <a1> , <a1,a2>, <a1,a2,b>, ... } 

 

Notice that e.g. : 

 

 <a1,a2,b>  | P    traces(P) 

 

 <a1,a2,b>  | Q    traces(Q) 
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Trace Semantics 

 traces(P □ Q)     =    traces(P)  traces(Q) 

 

 traces(P |¯| Q)   =    traces(P)  traces(Q) 

 

 So in this semantics you can’t distinguish between internal and 
external choices. 
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Traces of recursive processes 

 Consider  

 

 P =  (aaP)     (bP)  

 

 How to compute traces(P) ? According to defs: 

 

 traces(P)  =  { <>, <a> }  

                             { <a,a> ^ t |  t  traces(P) } 

                             { <b> ^ t    |  t  traces(P) } 

 

 Define traces(P) as the smallest solution of the above equation.  
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Trace Semantics 

 We can now define refinement as trace inclusion. Let P, Q be 
processes over the same alphabet: 
 
 
 
 
which implies that  Q  won’t produce any ‘unsafe trace’ unless P 
itself can produce it.  

 

 Moreover, this relation is obviously a preorder. 
 

 Theorem: 
 
 
 

P   Q      =    traces(P)    traces(Q) 

All CSP operators are monotonic wrt this trace-based 

refinement relation. 
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Verification 

 Because specification is expressed in terms of refinement : 
 
           P 
 
verification in CSP amounts to refinement checking. 

 

 In the trace semantics it amounts to checking: 
 
         traces()    traces(P) 
 
We can’t check this directly since the sets of traces are typically 
infinite. 

 

 If we view CSP processes as automata, we can do this checking 
with some form of model checking.  
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Automata semantic 

 Represent CSP process P with an automaton MP that generates 

the same set of traces. 

 

 Such an automaton can be systematically constructed from the 

P’s CSP description. 

 However, the resulting MP may be non-deterministic. 

 Convert it to a deterministic automaton generating the same 

traces 

 Comparing deterministic automata are easier as we later check 

refinement. 

 There is a standard procedure to convert to deterministic automaton. 

 

 Things are however more complicated as we later look at 

failures semantic. 
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Only finite state processes 

 Some CSP processes may have infinite number of states, e.g. 

Bird0  below: 

 

 Bird0  =  (flyup  Bird1)   (eat  Bird0) 

 

 Birdi+1  =  (flyup  Birdi+2)   (flydown  Birdi) 

 

 

 

 

 

 

 We will only consider finite state processes. 

 

 

   

flyup 

flyup 

flydown 

flydown 

eat 

..
. 

28 



Automaton semantics 

 P  =   a  b   P  

P 

a 

b 

29 

 Senseo  =   turnOn  Select  

 Select  =   b1   coffee  Select 

                     

                   b2   coffee  coffee  Select 

Senseo Select 
turnOn 

b1 

b2 

coffee 

coffee 

coffee 



No distinction between ext. and int. choice 

 P   =    ( a  STOP )  □  ( b  P  ) 

a 

b 

 P    =    (a  STOP )   |¯|    (b  P ) 

a 

b 

 

 

Internal action, representing internal decision in 

choosing between a and b. 

However, since in trace 

semantics we don’t see the 

difference between  and 

|¯| anyway, so for we define 

their automata to be the 

same. 
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Converting to deterministic automaton 

 P   =    ( a  c  STOP  )  □    ( a  b  P )   

s 

u a 

a 

v 
c 

“□” can still lead to an implicit non-determinism. But this should be indistinguishable in 

the trace semantic, so convert it to a deterministic automaton, essentially by merging 

end-states with common events. The transformation preserves traces. 

t 
b 

{s} {t,u} a {v} c 

b 
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Hiding 

 P / {x,y}  :  

a 

b 

a 

b 

 

 

convert it to a 

deterministic  

version. 
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a 

b 

y 

x 

 P : 



Parallel comp. 

 P  =   a  b  P  

0 1 

a 

b 

 Q   =    ( b  Q )   □   ( c  STOP ) 

x y c 

b 

 P || Q  , common alphabet is { b } : 

0,x 0,y 

1,x 

a 

c 

b 

c 
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1,y 

a 



Checking trace refinement 

 Formally, we will represent a deterministic automaton M by a 

tuple (S,s0,A,R), where: 

 

 S  M’s set of states 

 s0  the initial state 

 A  the alphabet (set of events) ; every transition in M  

  is labeled by an event. 

 

 R : SApow(S)   encoding the transitions in M. 

 

 Deterministic:  R s a  is either  or a singleton. Else non-deterministic. 

 “R s a = {t}” means that M can go from state s to t by producing event a. 

 “R s a = ” means that M can’t produce a when it is in state s. 
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Checking trace refinement 

 Let  MP = (S,s0,A,R)  and MQ = (S,t0,B,S)  be deterministic (!) 

automata representing respectively processes P and Q; they have 

the same alphabet. We want to check: 

 

  

 

 For sS, let  initialsP(s) be the set of P’s possible next events 

when it is in the state s: 

 

 

 

 Let’s construct MP  MQ  contains all traces which both 

automata can do.  Check the initials of both at each state. 

35 

traces(P)  traces(Q) 

initialsP(s)    =    { a  |  R s a     } 



Example 

0 1 2 

x z 

KP : 

MQ: 

a 

a 

a 
b 

b 

b 

0,x 1,y 0,z 
a b 

The intersection: 

y b 
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initialsP (0)  =  {a} 

initialsQ(x)   =  {a} 

initialsP (1)  =  {1} 

initialsQ(y)   =  {y} 

initialsP (0)  =  {a} 

initialsQ(z)   =  {b} 



Checking trace refinement 

 The traces of MQ is a subset of MP iff for all (s,t) in MP  MQ we 

have : 

 

  initialsP(s)   initialsQ(t)  

 

 If at some (s,t) this condition is violated  then uc is a counter 

example, where u is a trace that leads to the state t, and c is an 

event in  initialsQ(t) / initialsP(s). 

 

 This gives you an algorithm to check refinement  construct the 

intersection automaton, and check the above condition on every 

state in the intersection.  you can also construct it lazily. 
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Refinement Checking Algorithm 

checked  =   ; 

 

pending = { (s0,t0) } ; 

 

while  pending    do  { 

 

        get and remove an (s,t)  from pending ;  

 

         if    initials(s)  initials(t)  then { 

 

                checked :=   {(s,t)}      checked  }  

 

               pending  :=   pending    

                                       

                                    ( { (s’,t’)  |  (a. s’  R s a   /\  t’  R t a )  } /  checked ) ; 

        else  error!  

 } 
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More refined semantics? 

 Unfortunately, in trace-based semantics these are equivalent : 

 

 P   =  (a  STOP)  (b  STOP)  

 

 Q  =   (a  STOP) |¯| (b  STOP)  

 

 But Q may deadlock when we put it with e.g. E = a  STOP; 

whereas P won’t. 

 

39 



Refusal 

 Suppose P = {a,b}, then: 

 

 P = a  STOP 

 

will refuse to synchronize over b. 

 

 Q = (a  STOP)   (b  STOP)     will refuse neither a nor b. 

 

 R = (a  STOP) |¯| (b  STOP)       

 

may refuse to sync over a, or b, not over both (if the env  can do 

either a or b, but leave the choice to P).   
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Refusal 

 An offer to P is a set of event choices that the 

environment (of P) is offerring to P as the first event to 

synchronize; the choice is up to P. 

 So we define a refusal of P as an offer that P may fail 

to synchronize (due to internal chocies P may come to 

a state where it can’t sync over any event in the offer). 

 refusals(P)  = the set of all P’s refusals. 
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Q = (a  STOP)   (b  STOP) refusals(Q) =  {   } 

R = (a  STOP) |¯| (b  STOP)  refusals(R) =  { , {a}, {b}  } 



Refusals 

 Assuming alphabet  A 

 

 refusals (STOP)  =  { X | X  A } 

 

 refusals (a  P)  = { X | X  A  /\  aX } 
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refuse any offer that does not include a 



Refusals 

 refusals (P [] Q)  =  refusals(P)    refusals(Q) 

 

 

 

 

 

 refusals (P |¯| Q)   =   refusals(P)  refusals(Q) 

 

In the above example: 

 

 may refuse , {a}, {b} 

 won’t refuse {a,b} 
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P  =   a  ... 

Q  =   b  ... 

Assuming alphabet  {a,b} 



Refusals  of  || 

 refusals(P || Q) = { X  Y   |   Xrefusals(P)   /\   Yrefusals(Q) }  
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P  =   a  ... 

Q  =   c  ... 

P = {a,b,x} 

P||Q  =   (a  c  ...) []  (c  a  ...)    

Q = {c,d,x} 

refusals:  { b,x }  and all its subsets 

refusals: {b,d, x }  and all its subsets 

refusals:  { d,x }  and all its subsets 

refuse common actions or 

other Q’s non-common actions. 



Refusals  of  || 

 refusals(P || Q) = { X  Y   |   Xrefusals(P)   /\   Yrefusals(Q) }  

 

 

45 

P  =   x  ... 

Q  =   x  ... 

P||Q  =   x  ...    

refusals:  {a,b} + subsets 

refusals: {a,b,c,d} + subsets 

refusals:  {c,d} + subsets 

P = {a,b,x} 

Q = {c,d,x} 



Example 

 What is the refusals of this? Assume {a,b,c} as 

alphabet. 

 

  
P   =    ((aSTOP) [] (bSTOP))   |¯|   ((b STOP) [] (cSTOP) )  

{b,c} + subsets {a,c} + subsets 

{   , {c} } {   , {a} } 

So, refusals(P)    =   {   , {a}, {c} } 
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Refusals after s 

 Define: 
 
     
 
 
 

 Example, with alphabet P = {a,b} : 
 
            
 
 
refusals(P/<>)     =  refusals(P) 
 
refusals(P/<b>)     =  , {a} 
 
refusals(P/<b,b>)  =  all substes of P 

 

 

 

 

refusals(P/s)    =   the refusals of P after producing the trace s. 

P   =   (a  P)   |¯|   (b  b  STOP)  
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“Failures” 

 Define : 
 
     
 
 
(s,X) is a ‘failure’ of P means that P can perform s, afterwhich it may 
deadlock when offered alternatives in X. 
 

 E.g. (s,P)  failures(P/s)  means after s  P may stop.  

 

 If  for all X : 

 
      (s,X)  failures(P/s)      aX 
 
this implies that after s  P cannot refuse a (implying progress!) . 
 

 
 

failures(P)    =   { (s,X)   |   s  traces(P)  ,  X  refusals(P/s)  }  

48 

Note that due to non-

determinism, there may be 

several possible states 

where P may end up after 

doing s. 



Example 

  Consider this P with P = {a,b} : 

 

 

 

 P’s failures : 

 
 ( , {a})   ,    ( , {b})  ,   ( , )    

  

 (a , {a,b})  ...   // and other (a,X) where X is a subset of {a,b} 

 

 (b , {a,b}) ...    // and other (b,X) where X is a subset of {a,b} 

 

 Notice the “closure” like property in X and s. 

 

P   =    (a  STOP )  |¯|   (b  STOP) 
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Failures Refinement 

 We can use failures as our semantics, and define refinement as 
follows. Let P and Q to have the same alphabet. 
 
        
 

 

 

 Also a preorder!  
 

 And it implies trace-refinement, since: 
 
    
 
 
So, it follows that  P  Q  implies    traces(P)     traces(Q).  
 

P  Q     =     failures(P)      failures(Q) 
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traces(P)   =  { s  |  (s,)  failures(P)  } 



Back to automata again 

 As before we want to use automata to check refinement. 

 However now we can’t just remove non-determinism, because it 

does matter in the failures semantic: 

a 

b 

a 

b 

 

 

s t 
a a 

{s} {s,t} a 

a 

Notice that the transformation, although it 

preserves traces, it does not preserve refusals. 
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Back to automata 

 Still, deterministic automata are attractive because we have 

seen how we can check trace inclusion. 

 

 Furthermore, in a deterministic automaton, the end-state u after 

producing a trace s is unique. 

 

 Now remember that a ‘failure’ is a pair of (trace,refusal). Since a 

trace is identified uniquely by its end-state. this suggests a 

strategy to label the states with its refusals. 

 

 Then we can adapt our trace-based refinement checking 

algorithm to also check failures. 
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Example 

P   =    a  (( b  P )  |¯|   (a  B)) 

 

B   =    b  B 

 

 Q  =  a  b  (Q  |¯| STOP) 

Assuming {a,b} as alphabet. 

 

So, is P  Q ? 

a 

a 

b 

b 

 

 

 , { a } 

 , { b } 

 , { a } 

 , { b } 

 , { a } , { b } 

P: 

 , { a } 

 , { b } 

 , { a } , { b } 

a a 
b 

b 
P: 
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Example 

Q  =  a  b  (Q  |¯| STOP) 

P  Q ? 

 , { a } 

 , { b } 

 , { a } , { b } 

a a 
b 

b P: 

 , { b } 

 , { a } 

a b 

Q: 
 

 

all subsets of {a,b} 

all subsets of {a,b}  , { a } 

a b 

Q: 
a 

all subsets of {a,b} 

 , { b } 
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But... 

 The procedure doesn’t work well with e.g. : 

 

55 

((a  STOP) |¯| (b  STOP))   []    (c  STOP)  

 

 

a 

b 

c 

{b,c} 

{a,c} 
{a,b} 

?? 

 

 

a 

b 

c 

{b} 

{a} 

{a}, {b} 

c 



Normalizing CSP processes 

 Normalize your CSP description so that each process has this 

form: 

 

 P = (a  Q1) [] (b  Q2) [] ... 

              |¯|  

       (e  R1) [] (f  R2) [] ... 

              ... 

 When building the automaton representing such a process, each 

state either: 

 has outgoing arrows which are all tau-steps 

 has outgoing arrows which are all non-tau. 56 

// a,b, ... distinct 

// e,f, ... distinct 

P    (Q |¯| R)    =   (P  Q) |¯|  (P  R)  

P  |¯|  (Q  R)    =   (P |¯| Q)   (P |¯| R)  



Example 
P   =    (a  STOP) []  (( b  P )  |¯|   (a  B)) 

 

B   =  b  B 

 , { a } 

 , { b } 

all subsets of {a,b} 

all subsets of {a,b}  , { b } 

 , { a }  , { b } 

all subsets of {a,b} 

0,1,3 

2,4,5,6 

6 

a 
b b b 

P   =    ((a  STOP) []  ( b  P )) 

            |¯| 

            (a  (STOP  |¯| B)) 

0 

1 2 

4 6 

a 

b 

b 

 

 

P: 

3 

5 

a 

 

 

  

After normalizing: 
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Example 

So, is PQ, where  Q  =  a  b  (Q  |¯| STOP)  ? 

 , { a }  , { b } 

all subsets of {a,b} 

0,1,3 

2,4,5,6 

6 

a 
b b b P: 

 , { a } 

a b 

Q: 
a 

all subsets of {a,b} 

 , { b } 
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Some notes 

 For the sake of simplicity, the algorithm explained 

here deviates from the original in Roscoe: 

 It’s not necessary to normalize the ‘implementation’ side. 

 Roscoe still normalize the specification side. 

 We also ignore “divergence”. 

 

 In the worst case, normalization may produce a 

process whose size is exponential wrt the original. 

 In practice it’s usually not that bad. 

 Specification side is usually much simpler than the 

implimentation side. 
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