
CSP: Communicating Sequential 

Processes 



Overview 

 Computation model and CSP primitives 

 Refinement and trace semantics 

 Automaton view 

 Refinement checking algorithm 

 Failures Semantics 

 

2 



CSP 

 Communicating Sequential Processes, introduced by Hoare, 

1978. 

 Abstract and formal event-based language to model concurrent 

systems. Belong to the “Process Algebra” family. 

 Elegant, with refinement based reasoning. 

 

turnOn 

turnOff 

1C 

2C 

1W 

2W 

 

Senseo  =  turnOn    Active 

 

Active    = (turnOff   Senseo)   

                  □ (1c   boil  1w  Active)  

                  □ (2c   boil  2w  Active) 

3 

boil 

boil 



References 

 Quick info at Wikipedia. 

 

 Communicating Sequential Processes, Hoare, Prentice Hall, 
1985.  
 
3rd most cited computer science reference  
 
Renewed edition by Jim Davies, 2004. 
 
Available free! 
 

 Model Checking CSP, Roscoe, 1994.  

4 

http://www.usingcsp.com/cspbook.pdf
ftp://ftp.comlab.ox.ac.uk/pub/Packages/FDR/public.info/papers/model-checking.ps.gz


Computation model 

 A concurrent system is made of a set of interacting processes. 

 

 Each process sequentially produces events. Each event is 

atomic.  Examples:  

 

 turnOn, turnOff, Play, Reset 

 lockAcquire, lockRelease 

 

 Some events are internals  not observable from outside. 

 

 There is no notion of variables, nor data. A process is abstractly 

decribed by the sequences of events that it produces. 

5 



Computation model 

 Multiple processes can synchronize on an event, say 

a. 

 

 They will wait each other until all synchronizing processes are 

ready to execute a. 

 

 Then they will simultaneously execute a. 

 

 As in : 

 

  a  STOP   ||{a}   x  a  STOP 

 

The 1st process will have to wait until the 2nd has produced x. 
6 



Some notation first 

 Names : 

 

 A,B,C           alphabets (sets of events) 

 a,b,c             events (actions) 

 P,Q,R            processes 

 

 Formally for each process we also specify its 

alphabet, but here we will usually leave this implicit. 

 

 P denotes the alphabet of P. 

7 



CSP constructs 

 We’ll only consider simplified syntax: 

 

 Process  ::=  STOP 

  |  Event     Process 

  |  Process   []   Process 

  |  Process   |¯|   Process 

  |  Process   ||   Process 

  |  Process / Alphabet 

  |  ProcessName 

 

 Process definition: 

 

 ProcessName  “=“  Process  

 

  8 



STOP, sequence, and recursion 

 Some simple primitives : 

 

 STOP                              // as the name says 

 

 a  P                              // do a, then behave as P 

 

 Recursion is allowed, e.g. : 

 

 Clock  =  tick  Clock 

 

Recursion must be ‘guarded’ (no left recursion thus).  

9 



Internal choice 

 We also have internal / non-deterministic choice: P |¯| Q, as in : 
 
  
 
 
R1 behave as either: 
 
 aP   or   bQ 
 
but the choice is decided internally by R1 itself. From outside it is 
as if R1 makes a non-deterministic choice. 

 

 R1 may therefore deadlock (e.g. the environment only offers a, 
but R1 have decided that it wants to do b instead). 

R1   =   (a  P)   |¯|   (b  Q ) 

10 



External choice 

 Denoted by  P □ Q 
 
Behave as either P or Q. The choice is decided by the 
environment. 
 

 Ex:     
 
  
 
 
R2 behaves as either: 
 
 aP   or   bQ 
 
depending on the actions offered by the environment (e.g. think 
a,b as representing actions by a user to push on buttons). 

 

R2    =    (a  P)  □    (b  Q) 

11 



External choice  

 However, it can degenerate to non-deterministic 

choice: 

12 

R3    =    (a  P)  □    (a  Q) 



Parallel composition 

 Denoted by  P || Q 
 
This denotes the process that behaves as the interleaving of P 
and Q, but synchronizing them on P  Q. 
 
Example:       
 
 
 
 
This produces a process that behaves as either of these : 
 
  
 
 
 
 
 
(Notice the interleaving on a1,a2 and synchronization on b). 
 

 

R    =   (a1  b  STOP )  ||  ( a2  b  STOP ) 

13 

a1  a2  b  STOP 

 

a2 a1  b  STOP 



Hiding (abstraction) 

 Denoted by P / A 
 
Hide (internalize) the events in A; so that they are not visible to 
the environment. 
 
Example:     
 
 
 
 
  
 

 

 In particular:  
 
 (P || Q)  /  (P  Q ) 
 
is the parallel composition of P and Q, and then we internalize 
their synchronized events. 

 

14 

R    =   (a1  b  STOP )  ||  ( a2  b  STOP ) 

R  /  {b} =   (a1  a2) □ (a2  a1) 



Specifications and programs have the same 

status 

 That is, a specification is expressed by another CSP process : 

 

 

 

 More precisely, when events not in {1c,1w,2c,2w} are abstracted 

away, our Senseo machine should behave as the above 

SenseoSpec process. This is expressed by refinement : 

SenseoSpec   =    ( 1c  1w) □  ( 2c  2w)    SenseoSpec 

SenseoSpec     Senseo / { turnOn, turnOff , boil } 

Cannot be conveniently expressed in 

temporal logic. Conversely, CSP has 

no native temporal logic constructs to 

express properties. 

Refinement relation:  P  Q means that Q is at least as good as P. 

What this exactly entails depends on our intent. In any case, we 

usually expect a refinement relation to be preorder  

15 



Monotonicity 

 A relation  (over A) is a preorder if it is reflexive and transitive : 

 

 

 

 A function F:AA is monotonic roughly if its value increases if 

we increase its argument. 

 

More precisely it is monotonic wrt to a relation  iff 

 

 

 

 Analogous definition if F has multiple arguments. 

 

1. P  P 

2. P  Q  and  Q  R    implies  P  R 

P  Q          F(P)    F(Q) 

16 



Monotonicity & compositionality 

 Suppose we have a preorder  over CSP processes, acting as 
a refinement relation. 
 
 

 

 A monotonic || would give us this result, which you can use to 
decompose the verification of a system to component level, 
and avoiding, in theory, state explosion: 
 
 

   1   P     ,     2   Q 
                  1 ||  2 
 ---------------------------------- 
                P || Q 

Many formalisms for concurrent systems do not have 

this. CSP monotonicity is mainly due to its level of 

abstraction. 

    P              express P satisfies the specification  

So, can we find a notion of 

refinement such that all CSP 

constructs are monotonic ?? 

17 

(note that this presumes we have 

the specifications of the 

components) 



Trace Semantics 

 Idea: abstractly consider two processes to be equivalent if they 

generate the same traces. 

 

 Introduce traces(P)  

 

 the set of all finite traces (sequences of events) that P 

 can produce. 

 

 E.g.  traces( a  b  STOP) =  { <>, <a> , <a,b> } 

 

 Simple semantics of CSP processes 

 But it is oblivious to certain things. 

 Still useful to check safety. 

 Induce a natural notion of refinement. 

 

 

18 



Trace Semantics 

 We can define “traces” inductively over CSP operators. 

 

 traces STOP  =  { <> } 

 

 traces  (a  P)    =    { <> }    { <a> ^ s  |  s  traces(P) } 

19 



Trace Semantics 

 If s is a trace, s|A is the trace obtained by throwing away events 

not in A. 

 

Pronounced “s restricted to A”. 

 

 Example :  <a,b,b,c> | {a,c}  =   <a,c> 

 

 Now we can define: 

 

 traces (P/A)      =    { s|(P – A)  |  s  traces(P) } 

 

 

 

 
20 



Trace Semantics 

 If A is an alphabet,  A* denote the set of all traces over the 

events in A.  E.g. <a,b,b>  {a,b}*,  and <a,b,b>  {a,b,c}*; but 

<a,b,b>  {b}*. 

 

 traces (P || Q) 

  

     =  

 

     {  s  |  s  (P  Q)* ,   

 

  s|P  traces(P)    and   s|Q  traces(Q)   

 } 

 

 

 21 



Example 

 Consider : 

 

 P    =  a1  b   STOP  // P = {a1,b} 

 Q    =  a2  b  STOP  // Q = {a2,b} 

 

 

 traces(P||Q) = { <> , <a1> , <a1,a2>, <a1,a2,b>, ... } 

 

Notice that e.g. : 

 

 <a1,a2,b>  | P    traces(P) 

 

 <a1,a2,b>  | Q    traces(Q) 

 
22 



Trace Semantics 

 traces(P □ Q)     =    traces(P)  traces(Q) 

 

 traces(P |¯| Q)   =    traces(P)  traces(Q) 

 

 So in this semantics you can’t distinguish between internal and 
external choices. 

 

 

23 



Traces of recursive processes 

 Consider  

 

 P =  (aaP)     (bP)  

 

 How to compute traces(P) ? According to defs: 

 

 traces(P)  =  { <>, <a> }  

                             { <a,a> ^ t |  t  traces(P) } 

                             { <b> ^ t    |  t  traces(P) } 

 

 Define traces(P) as the smallest solution of the above equation.  

24 



Trace Semantics 

 We can now define refinement as trace inclusion. Let P, Q be 
processes over the same alphabet: 
 
 
 
 
which implies that  Q  won’t produce any ‘unsafe trace’ unless P 
itself can produce it.  

 

 Moreover, this relation is obviously a preorder. 
 

 Theorem: 
 
 
 

P   Q      =    traces(P)    traces(Q) 

All CSP operators are monotonic wrt this trace-based 

refinement relation. 

25 



Verification 

 Because specification is expressed in terms of refinement : 
 
           P 
 
verification in CSP amounts to refinement checking. 

 

 In the trace semantics it amounts to checking: 
 
         traces()    traces(P) 
 
We can’t check this directly since the sets of traces are typically 
infinite. 

 

 If we view CSP processes as automata, we can do this checking 
with some form of model checking.  

 

26 



Automata semantic 

 Represent CSP process P with an automaton MP that generates 

the same set of traces. 

 

 Such an automaton can be systematically constructed from the 

P’s CSP description. 

 However, the resulting MP may be non-deterministic. 

 Convert it to a deterministic automaton generating the same 

traces 

 Comparing deterministic automata are easier as we later check 

refinement. 

 There is a standard procedure to convert to deterministic automaton. 

 

 Things are however more complicated as we later look at 

failures semantic. 

 

 

27 



Only finite state processes 

 Some CSP processes may have infinite number of states, e.g. 

Bird0  below: 

 

 Bird0  =  (flyup  Bird1)   (eat  Bird0) 

 

 Birdi+1  =  (flyup  Birdi+2)   (flydown  Birdi) 

 

 

 

 

 

 

 We will only consider finite state processes. 

 

 

   

flyup 

flyup 

flydown 

flydown 

eat 

..
. 

28 



Automaton semantics 

 P  =   a  b   P  

P 

a 

b 

29 

 Senseo  =   turnOn  Select  

 Select  =   b1   coffee  Select 

                     

                   b2   coffee  coffee  Select 

Senseo Select 
turnOn 

b1 

b2 

coffee 

coffee 

coffee 



No distinction between ext. and int. choice 

 P   =    ( a  STOP )  □  ( b  P  ) 

a 

b 

 P    =    (a  STOP )   |¯|    (b  P ) 

a 

b 

 

 

Internal action, representing internal decision in 

choosing between a and b. 

However, since in trace 

semantics we don’t see the 

difference between  and 

|¯| anyway, so for we define 

their automata to be the 

same. 

30 



Converting to deterministic automaton 

 P   =    ( a  c  STOP  )  □    ( a  b  P )   

s 

u a 

a 

v 
c 

“□” can still lead to an implicit non-determinism. But this should be indistinguishable in 

the trace semantic, so convert it to a deterministic automaton, essentially by merging 

end-states with common events. The transformation preserves traces. 

t 
b 

{s} {t,u} a {v} c 

b 

31 



Hiding 

 P / {x,y}  :  

a 

b 

a 

b 

 

 

convert it to a 

deterministic  

version. 

32 

a 

b 

y 

x 

 P : 



Parallel comp. 

 P  =   a  b  P  

0 1 

a 

b 

 Q   =    ( b  Q )   □   ( c  STOP ) 

x y c 

b 

 P || Q  , common alphabet is { b } : 

0,x 0,y 

1,x 

a 

c 

b 

c 

33 

1,y 

a 



Checking trace refinement 

 Formally, we will represent a deterministic automaton M by a 

tuple (S,s0,A,R), where: 

 

 S  M’s set of states 

 s0  the initial state 

 A  the alphabet (set of events) ; every transition in M  

  is labeled by an event. 

 

 R : SApow(S)   encoding the transitions in M. 

 

 Deterministic:  R s a  is either  or a singleton. Else non-deterministic. 

 “R s a = {t}” means that M can go from state s to t by producing event a. 

 “R s a = ” means that M can’t produce a when it is in state s. 

34 



Checking trace refinement 

 Let  MP = (S,s0,A,R)  and MQ = (S,t0,B,S)  be deterministic (!) 

automata representing respectively processes P and Q; they have 

the same alphabet. We want to check: 

 

  

 

 For sS, let  initialsP(s) be the set of P’s possible next events 

when it is in the state s: 

 

 

 

 Let’s construct MP  MQ  contains all traces which both 

automata can do.  Check the initials of both at each state. 

35 

traces(P)  traces(Q) 

initialsP(s)    =    { a  |  R s a     } 



Example 

0 1 2 

x z 

KP : 

MQ: 

a 

a 

a 
b 

b 

b 

0,x 1,y 0,z 
a b 

The intersection: 

y b 

36 

initialsP (0)  =  {a} 

initialsQ(x)   =  {a} 

initialsP (1)  =  {1} 

initialsQ(y)   =  {y} 

initialsP (0)  =  {a} 

initialsQ(z)   =  {b} 



Checking trace refinement 

 The traces of MQ is a subset of MP iff for all (s,t) in MP  MQ we 

have : 

 

  initialsP(s)   initialsQ(t)  

 

 If at some (s,t) this condition is violated  then uc is a counter 

example, where u is a trace that leads to the state t, and c is an 

event in  initialsQ(t) / initialsP(s). 

 

 This gives you an algorithm to check refinement  construct the 

intersection automaton, and check the above condition on every 

state in the intersection.  you can also construct it lazily. 

 

37 



Refinement Checking Algorithm 

checked  =   ; 

 

pending = { (s0,t0) } ; 

 

while  pending    do  { 

 

        get and remove an (s,t)  from pending ;  

 

         if    initials(s)  initials(t)  then { 

 

                checked :=   {(s,t)}      checked  }  

 

               pending  :=   pending    

                                       

                                    ( { (s’,t’)  |  (a. s’  R s a   /\  t’  R t a )  } /  checked ) ; 

        else  error!  

 } 

38 



More refined semantics? 

 Unfortunately, in trace-based semantics these are equivalent : 

 

 P   =  (a  STOP)  (b  STOP)  

 

 Q  =   (a  STOP) |¯| (b  STOP)  

 

 But Q may deadlock when we put it with e.g. E = a  STOP; 

whereas P won’t. 

 

39 



Refusal 

 Suppose P = {a,b}, then: 

 

 P = a  STOP 

 

will refuse to synchronize over b. 

 

 Q = (a  STOP)   (b  STOP)     will refuse neither a nor b. 

 

 R = (a  STOP) |¯| (b  STOP)       

 

may refuse to sync over a, or b, not over both (if the env  can do 

either a or b, but leave the choice to P).   

 

40 



Refusal 

 An offer to P is a set of event choices that the 

environment (of P) is offerring to P as the first event to 

synchronize; the choice is up to P. 

 So we define a refusal of P as an offer that P may fail 

to synchronize (due to internal chocies P may come to 

a state where it can’t sync over any event in the offer). 

 refusals(P)  = the set of all P’s refusals. 

 

 

41 

Q = (a  STOP)   (b  STOP) refusals(Q) =  {   } 

R = (a  STOP) |¯| (b  STOP)  refusals(R) =  { , {a}, {b}  } 



Refusals 

 Assuming alphabet  A 

 

 refusals (STOP)  =  { X | X  A } 

 

 refusals (a  P)  = { X | X  A  /\  aX } 

 

42 

refuse any offer that does not include a 



Refusals 

 refusals (P [] Q)  =  refusals(P)    refusals(Q) 

 

 

 

 

 

 refusals (P |¯| Q)   =   refusals(P)  refusals(Q) 

 

In the above example: 

 

 may refuse , {a}, {b} 

 won’t refuse {a,b} 

 

 

 

43 

P  =   a  ... 

Q  =   b  ... 

Assuming alphabet  {a,b} 



Refusals  of  || 

 refusals(P || Q) = { X  Y   |   Xrefusals(P)   /\   Yrefusals(Q) }  

 

 

44 

P  =   a  ... 

Q  =   c  ... 

P = {a,b,x} 

P||Q  =   (a  c  ...) []  (c  a  ...)    

Q = {c,d,x} 

refusals:  { b,x }  and all its subsets 

refusals: {b,d, x }  and all its subsets 

refusals:  { d,x }  and all its subsets 

refuse common actions or 

other Q’s non-common actions. 



Refusals  of  || 

 refusals(P || Q) = { X  Y   |   Xrefusals(P)   /\   Yrefusals(Q) }  

 

 

45 

P  =   x  ... 

Q  =   x  ... 

P||Q  =   x  ...    

refusals:  {a,b} + subsets 

refusals: {a,b,c,d} + subsets 

refusals:  {c,d} + subsets 

P = {a,b,x} 

Q = {c,d,x} 



Example 

 What is the refusals of this? Assume {a,b,c} as 

alphabet. 

 

  
P   =    ((aSTOP) [] (bSTOP))   |¯|   ((b STOP) [] (cSTOP) )  

{b,c} + subsets {a,c} + subsets 

{   , {c} } {   , {a} } 

So, refusals(P)    =   {   , {a}, {c} } 

46 



Refusals after s 

 Define: 
 
     
 
 
 

 Example, with alphabet P = {a,b} : 
 
            
 
 
refusals(P/<>)     =  refusals(P) 
 
refusals(P/<b>)     =  , {a} 
 
refusals(P/<b,b>)  =  all substes of P 

 

 

 

 

refusals(P/s)    =   the refusals of P after producing the trace s. 

P   =   (a  P)   |¯|   (b  b  STOP)  

47 



“Failures” 

 Define : 
 
     
 
 
(s,X) is a ‘failure’ of P means that P can perform s, afterwhich it may 
deadlock when offered alternatives in X. 
 

 E.g. (s,P)  failures(P/s)  means after s  P may stop.  

 

 If  for all X : 

 
      (s,X)  failures(P/s)      aX 
 
this implies that after s  P cannot refuse a (implying progress!) . 
 

 
 

failures(P)    =   { (s,X)   |   s  traces(P)  ,  X  refusals(P/s)  }  

48 

Note that due to non-

determinism, there may be 

several possible states 

where P may end up after 

doing s. 



Example 

  Consider this P with P = {a,b} : 

 

 

 

 P’s failures : 

 
 ( , {a})   ,    ( , {b})  ,   ( , )    

  

 (a , {a,b})  ...   // and other (a,X) where X is a subset of {a,b} 

 

 (b , {a,b}) ...    // and other (b,X) where X is a subset of {a,b} 

 

 Notice the “closure” like property in X and s. 

 

P   =    (a  STOP )  |¯|   (b  STOP) 

49 



Failures Refinement 

 We can use failures as our semantics, and define refinement as 
follows. Let P and Q to have the same alphabet. 
 
        
 

 

 

 Also a preorder!  
 

 And it implies trace-refinement, since: 
 
    
 
 
So, it follows that  P  Q  implies    traces(P)     traces(Q).  
 

P  Q     =     failures(P)      failures(Q) 

50 

traces(P)   =  { s  |  (s,)  failures(P)  } 



Back to automata again 

 As before we want to use automata to check refinement. 

 However now we can’t just remove non-determinism, because it 

does matter in the failures semantic: 

a 

b 

a 

b 

 

 

s t 
a a 

{s} {s,t} a 

a 

Notice that the transformation, although it 

preserves traces, it does not preserve refusals. 

51 



Back to automata 

 Still, deterministic automata are attractive because we have 

seen how we can check trace inclusion. 

 

 Furthermore, in a deterministic automaton, the end-state u after 

producing a trace s is unique. 

 

 Now remember that a ‘failure’ is a pair of (trace,refusal). Since a 

trace is identified uniquely by its end-state. this suggests a 

strategy to label the states with its refusals. 

 

 Then we can adapt our trace-based refinement checking 

algorithm to also check failures. 

52 



Example 

P   =    a  (( b  P )  |¯|   (a  B)) 

 

B   =    b  B 

 

 Q  =  a  b  (Q  |¯| STOP) 

Assuming {a,b} as alphabet. 

 

So, is P  Q ? 

a 

a 

b 

b 

 

 

 , { a } 

 , { b } 

 , { a } 

 , { b } 

 , { a } , { b } 

P: 

 , { a } 

 , { b } 

 , { a } , { b } 

a a 
b 

b 
P: 

53 



Example 

Q  =  a  b  (Q  |¯| STOP) 

P  Q ? 

 , { a } 

 , { b } 

 , { a } , { b } 

a a 
b 

b P: 

 , { b } 

 , { a } 

a b 

Q: 
 

 

all subsets of {a,b} 

all subsets of {a,b}  , { a } 

a b 

Q: 
a 

all subsets of {a,b} 

 , { b } 

54 



But... 

 The procedure doesn’t work well with e.g. : 

 

55 

((a  STOP) |¯| (b  STOP))   []    (c  STOP)  

 

 

a 

b 

c 

{b,c} 

{a,c} 
{a,b} 

?? 

 

 

a 

b 

c 

{b} 

{a} 

{a}, {b} 

c 



Normalizing CSP processes 

 Normalize your CSP description so that each process has this 

form: 

 

 P = (a  Q1) [] (b  Q2) [] ... 

              |¯|  

       (e  R1) [] (f  R2) [] ... 

              ... 

 When building the automaton representing such a process, each 

state either: 

 has outgoing arrows which are all tau-steps 

 has outgoing arrows which are all non-tau. 56 

// a,b, ... distinct 

// e,f, ... distinct 

P    (Q |¯| R)    =   (P  Q) |¯|  (P  R)  

P  |¯|  (Q  R)    =   (P |¯| Q)   (P |¯| R)  



Example 
P   =    (a  STOP) []  (( b  P )  |¯|   (a  B)) 

 

B   =  b  B 

 , { a } 

 , { b } 

all subsets of {a,b} 

all subsets of {a,b}  , { b } 

 , { a }  , { b } 

all subsets of {a,b} 

0,1,3 

2,4,5,6 

6 

a 
b b b 

P   =    ((a  STOP) []  ( b  P )) 

            |¯| 

            (a  (STOP  |¯| B)) 

0 

1 2 

4 6 

a 

b 

b 

 

 

P: 

3 

5 

a 

 

 

  

After normalizing: 

57 



Example 

So, is PQ, where  Q  =  a  b  (Q  |¯| STOP)  ? 

 , { a }  , { b } 

all subsets of {a,b} 

0,1,3 

2,4,5,6 

6 

a 
b b b P: 

 , { a } 

a b 

Q: 
a 

all subsets of {a,b} 

 , { b } 

58 



Some notes 

 For the sake of simplicity, the algorithm explained 

here deviates from the original in Roscoe: 

 It’s not necessary to normalize the ‘implementation’ side. 

 Roscoe still normalize the specification side. 

 We also ignore “divergence”. 

 

 In the worst case, normalization may produce a 

process whose size is exponential wrt the original. 

 In practice it’s usually not that bad. 

 Specification side is usually much simpler than the 

implimentation side. 

59 


