
CSP: Communicating Sequential

Processes

Overview

 Computation model and CSP primitives

 Refinement and trace semantics

 Automaton view

 Refinement checking algorithm

 Failures Semantics

2

CSP

 Communicating Sequential Processes, introduced by Hoare,

1978.

 Abstract and formal event-based language to model concurrent

systems. Belong to the “Process Algebra” family.

 Elegant, with refinement based reasoning.

turnOn

turnOff

1C

2C

1W

2W



Senseo = turnOn  Active

Active = (turnOff  Senseo)

 □ (1c  boil  1w  Active)

 □ (2c  boil  2w  Active)

3

boil

boil

References

 Quick info at Wikipedia.

 Communicating Sequential Processes, Hoare, Prentice Hall,
1985.

3rd most cited computer science reference 

Renewed edition by Jim Davies, 2004.

Available free!

 Model Checking CSP, Roscoe, 1994.

4

http://www.usingcsp.com/cspbook.pdf
ftp://ftp.comlab.ox.ac.uk/pub/Packages/FDR/public.info/papers/model-checking.ps.gz

Computation model

 A concurrent system is made of a set of interacting processes.

 Each process sequentially produces events. Each event is

atomic. Examples:

 turnOn, turnOff, Play, Reset

 lockAcquire, lockRelease

 Some events are internals  not observable from outside.

 There is no notion of variables, nor data. A process is abstractly

decribed by the sequences of events that it produces.

5

Computation model

 Multiple processes can synchronize on an event, say

a.

 They will wait each other until all synchronizing processes are

ready to execute a.

 Then they will simultaneously execute a.

 As in :

 a  STOP ||{a} x  a  STOP

The 1st process will have to wait until the 2nd has produced x.
6

Some notation first

 Names :

 A,B,C  alphabets (sets of events)

 a,b,c  events (actions)

 P,Q,R  processes

 Formally for each process we also specify its

alphabet, but here we will usually leave this implicit.

 P denotes the alphabet of P.

7

CSP constructs

 We’ll only consider simplified syntax:

 Process ::= STOP

 | Event  Process

 | Process [] Process

 | Process |¯| Process

 | Process || Process

 | Process / Alphabet

 | ProcessName

 Process definition:

 ProcessName “=“ Process

 8

STOP, sequence, and recursion

 Some simple primitives :

 STOP // as the name says

 a  P // do a, then behave as P

 Recursion is allowed, e.g. :

 Clock = tick  Clock

Recursion must be ‘guarded’ (no left recursion thus).

9

Internal choice

 We also have internal / non-deterministic choice: P |¯| Q, as in :

R1 behave as either:

 aP or bQ

but the choice is decided internally by R1 itself. From outside it is
as if R1 makes a non-deterministic choice.

 R1 may therefore deadlock (e.g. the environment only offers a,
but R1 have decided that it wants to do b instead).

R1 = (a  P) |¯| (b  Q)

10

External choice

 Denoted by P □ Q

Behave as either P or Q. The choice is decided by the
environment.

 Ex:

R2 behaves as either:

 aP or bQ

depending on the actions offered by the environment (e.g. think
a,b as representing actions by a user to push on buttons).

R2 = (a  P) □ (b  Q)

11

External choice

 However, it can degenerate to non-deterministic

choice:

12

R3 = (a  P) □ (a  Q)

Parallel composition

 Denoted by P || Q

This denotes the process that behaves as the interleaving of P
and Q, but synchronizing them on P  Q.

Example:

This produces a process that behaves as either of these :

(Notice the interleaving on a1,a2 and synchronization on b).

R = (a1  b  STOP) || (a2  b  STOP)

13

a1  a2  b  STOP

a2 a1  b  STOP

Hiding (abstraction)

 Denoted by P / A

Hide (internalize) the events in A; so that they are not visible to
the environment.

Example:

 In particular:

 (P || Q) / (P  Q)

is the parallel composition of P and Q, and then we internalize
their synchronized events.

14

R = (a1  b  STOP) || (a2  b  STOP)

R / {b} = (a1  a2) □ (a2  a1)

Specifications and programs have the same

status

 That is, a specification is expressed by another CSP process :

 More precisely, when events not in {1c,1w,2c,2w} are abstracted

away, our Senseo machine should behave as the above

SenseoSpec process. This is expressed by refinement :

SenseoSpec = (1c  1w) □ (2c  2w)  SenseoSpec

SenseoSpec  Senseo / { turnOn, turnOff , boil }

Cannot be conveniently expressed in

temporal logic. Conversely, CSP has

no native temporal logic constructs to

express properties.

Refinement relation: P  Q means that Q is at least as good as P.

What this exactly entails depends on our intent. In any case, we

usually expect a refinement relation to be preorder 

15

Monotonicity

 A relation  (over A) is a preorder if it is reflexive and transitive :

 A function F:AA is monotonic roughly if its value increases if

we increase its argument.

More precisely it is monotonic wrt to a relation  iff

 Analogous definition if F has multiple arguments.

1. P  P

2. P  Q and Q  R implies P  R

P  Q  F(P)  F(Q)

16

Monotonicity & compositionality

 Suppose we have a preorder  over CSP processes, acting as
a refinement relation.

 A monotonic || would give us this result, which you can use to
decompose the verification of a system to component level,
and avoiding, in theory, state explosion:

 1  P , 2  Q
   1 || 2

   P || Q

Many formalisms for concurrent systems do not have

this. CSP monotonicity is mainly due to its level of

abstraction.

  P  express P satisfies the specification 

So, can we find a notion of

refinement such that all CSP

constructs are monotonic ??

17

(note that this presumes we have

the specifications of the

components)

Trace Semantics

 Idea: abstractly consider two processes to be equivalent if they

generate the same traces.

 Introduce traces(P)

 the set of all finite traces (sequences of events) that P

 can produce.

 E.g. traces(a  b  STOP) = { <>, <a> , <a,b> }

 Simple semantics of CSP processes

 But it is oblivious to certain things.

 Still useful to check safety.

 Induce a natural notion of refinement.

18

Trace Semantics

 We can define “traces” inductively over CSP operators.

 traces STOP = { <> }

 traces (a  P) = { <> }  { <a> ^ s | s  traces(P) }

19

Trace Semantics

 If s is a trace, s|A is the trace obtained by throwing away events

not in A.

Pronounced “s restricted to A”.

 Example : <a,b,b,c> | {a,c} = <a,c>

 Now we can define:

 traces (P/A) = { s|(P – A) | s  traces(P) }

20

Trace Semantics

 If A is an alphabet, A* denote the set of all traces over the

events in A. E.g. <a,b,b>  {a,b}*, and <a,b,b>  {a,b,c}*; but

<a,b,b>  {b}*.

 traces (P || Q)

 =

 { s | s  (P  Q)* ,

 s|P  traces(P) and s|Q  traces(Q)

 }

 21

Example

 Consider :

 P = a1  b  STOP // P = {a1,b}

 Q = a2  b  STOP // Q = {a2,b}

 traces(P||Q) = { <> , <a1> , <a1,a2>, <a1,a2,b>, ... }

Notice that e.g. :

 <a1,a2,b> | P  traces(P)

 <a1,a2,b> | Q  traces(Q)

22

Trace Semantics

 traces(P □ Q) = traces(P)  traces(Q)

 traces(P |¯| Q) = traces(P)  traces(Q)

 So in this semantics you can’t distinguish between internal and
external choices.

23

Traces of recursive processes

 Consider

 P = (aaP)  (bP)

 How to compute traces(P) ? According to defs:

 traces(P) = { <>, <a> }

  { <a,a> ^ t | t  traces(P) }

  { ^ t | t  traces(P) }

 Define traces(P) as the smallest solution of the above equation.

24

Trace Semantics

 We can now define refinement as trace inclusion. Let P, Q be
processes over the same alphabet:

which implies that Q won’t produce any ‘unsafe trace’ unless P
itself can produce it.

 Moreover, this relation is obviously a preorder.

 Theorem:

P  Q = traces(P)  traces(Q)

All CSP operators are monotonic wrt this trace-based

refinement relation.

25

Verification

 Because specification is expressed in terms of refinement :

   P

verification in CSP amounts to refinement checking.

 In the trace semantics it amounts to checking:

 traces()  traces(P)

We can’t check this directly since the sets of traces are typically
infinite.

 If we view CSP processes as automata, we can do this checking
with some form of model checking.

26

Automata semantic

 Represent CSP process P with an automaton MP that generates

the same set of traces.

 Such an automaton can be systematically constructed from the

P’s CSP description.

 However, the resulting MP may be non-deterministic.

 Convert it to a deterministic automaton generating the same

traces

 Comparing deterministic automata are easier as we later check

refinement.

 There is a standard procedure to convert to deterministic automaton.

 Things are however more complicated as we later look at

failures semantic.

27

Only finite state processes

 Some CSP processes may have infinite number of states, e.g.

Bird0 below:

 Bird0 = (flyup  Bird1)  (eat  Bird0)

 Birdi+1 = (flyup  Birdi+2)  (flydown  Birdi)

 We will only consider finite state processes.

flyup

flyup

flydown

flydown

eat

..
.

28

Automaton semantics

 P = a  b  P

P

a

b

29

 Senseo = turnOn  Select

 Select = b1  coffee  Select

 

 b2  coffee  coffee  Select

Senseo Select
turnOn

b1

b2

coffee

coffee

coffee

No distinction between ext. and int. choice

 P = (a  STOP) □ (b  P)

a

b

 P = (a  STOP) |¯| (b  P)

a

b





Internal action, representing internal decision in

choosing between a and b.

However, since in trace

semantics we don’t see the

difference between  and

|¯| anyway, so for we define

their automata to be the

same.

30

Converting to deterministic automaton

 P = (a  c  STOP) □ (a  b  P)

s

u a

a

v
c

“□” can still lead to an implicit non-determinism. But this should be indistinguishable in

the trace semantic, so convert it to a deterministic automaton, essentially by merging

end-states with common events. The transformation preserves traces.

t
b

{s} {t,u} a {v} c

b

31

Hiding

 P / {x,y} :

a

b

a

b





convert it to a

deterministic

version.

32

a

b

y

x

 P :

Parallel comp.

 P = a  b  P

0 1

a

b

 Q = (b  Q) □ (c  STOP)

x y c

b

 P || Q , common alphabet is { b } :

0,x 0,y

1,x

a

c

b

c

33

1,y

a

Checking trace refinement

 Formally, we will represent a deterministic automaton M by a

tuple (S,s0,A,R), where:

 S M’s set of states

 s0 the initial state

 A the alphabet (set of events) ; every transition in M

 is labeled by an event.

 R : SApow(S) encoding the transitions in M.

 Deterministic: R s a is either  or a singleton. Else non-deterministic.

 “R s a = {t}” means that M can go from state s to t by producing event a.

 “R s a = ” means that M can’t produce a when it is in state s.

34

Checking trace refinement

 Let MP = (S,s0,A,R) and MQ = (S,t0,B,S) be deterministic (!)

automata representing respectively processes P and Q; they have

the same alphabet. We want to check:

 For sS, let initialsP(s) be the set of P’s possible next events

when it is in the state s:

 Let’s construct MP  MQ  contains all traces which both

automata can do. Check the initials of both at each state.

35

traces(P)  traces(Q)

initialsP(s) = { a | R s a   }

Example

0 1 2

x z

KP :

MQ:

a

a

a
b

b

b

0,x 1,y 0,z
a b

The intersection:

y b

36

initialsP (0) = {a}

initialsQ(x) = {a}

initialsP (1) = {1}

initialsQ(y) = {y}

initialsP (0) = {a}

initialsQ(z) = {b}

Checking trace refinement

 The traces of MQ is a subset of MP iff for all (s,t) in MP  MQ we

have :

 initialsP(s)  initialsQ(t)

 If at some (s,t) this condition is violated  then uc is a counter

example, where u is a trace that leads to the state t, and c is an

event in initialsQ(t) / initialsP(s).

 This gives you an algorithm to check refinement  construct the

intersection automaton, and check the above condition on every

state in the intersection.  you can also construct it lazily.

37

Refinement Checking Algorithm

checked =  ;

pending = { (s0,t0) } ;

while pending   do {

 get and remove an (s,t) from pending ;

 if initials(s)  initials(t) then {

 checked := {(s,t)}  checked }

 pending := pending

 

 ({ (s’,t’) | (a. s’  R s a /\ t’  R t a) } / checked) ;

 else error!

 }

38

More refined semantics?

 Unfortunately, in trace-based semantics these are equivalent :

 P = (a  STOP)  (b  STOP)

 Q = (a  STOP) |¯| (b  STOP)

 But Q may deadlock when we put it with e.g. E = a  STOP;

whereas P won’t.

39

Refusal

 Suppose P = {a,b}, then:

 P = a  STOP

will refuse to synchronize over b.

 Q = (a  STOP)  (b  STOP) will refuse neither a nor b.

 R = (a  STOP) |¯| (b  STOP)

may refuse to sync over a, or b, not over both (if the env can do

either a or b, but leave the choice to P).

40

Refusal

 An offer to P is a set of event choices that the

environment (of P) is offerring to P as the first event to

synchronize; the choice is up to P.

 So we define a refusal of P as an offer that P may fail

to synchronize (due to internal chocies P may come to

a state where it can’t sync over any event in the offer).

 refusals(P) = the set of all P’s refusals.

41

Q = (a  STOP)  (b  STOP) refusals(Q) = {  }

R = (a  STOP) |¯| (b  STOP) refusals(R) = { , {a}, {b} }

Refusals

 Assuming alphabet A

 refusals (STOP) = { X | X  A }

 refusals (a  P) = { X | X  A /\ aX }

42

refuse any offer that does not include a

Refusals

 refusals (P [] Q) = refusals(P)  refusals(Q)

 refusals (P |¯| Q) = refusals(P)  refusals(Q)

In the above example:

 may refuse , {a}, {b}

 won’t refuse {a,b}

43

P = a  ...

Q = b  ...

Assuming alphabet {a,b}

Refusals of ||

 refusals(P || Q) = { X  Y | Xrefusals(P) /\ Yrefusals(Q) }

44

P = a  ...

Q = c  ...

P = {a,b,x}

P||Q = (a  c  ...) [] (c  a  ...)

Q = {c,d,x}

refusals: { b,x } and all its subsets

refusals: {b,d, x } and all its subsets

refusals: { d,x } and all its subsets

refuse common actions or

other Q’s non-common actions.

Refusals of ||

 refusals(P || Q) = { X  Y | Xrefusals(P) /\ Yrefusals(Q) }

45

P = x  ...

Q = x  ...

P||Q = x  ...

refusals: {a,b} + subsets

refusals: {a,b,c,d} + subsets

refusals: {c,d} + subsets

P = {a,b,x}

Q = {c,d,x}

Example

 What is the refusals of this? Assume {a,b,c} as

alphabet.

P = ((aSTOP) [] (bSTOP)) |¯| ((b STOP) [] (cSTOP))

{b,c} + subsets {a,c} + subsets

{  , {c} } {  , {a} }

So, refusals(P) = {  , {a}, {c} }

46

Refusals after s

 Define:

 Example, with alphabet P = {a,b} :

refusals(P/<>) = refusals(P)

refusals(P/) = , {a}

refusals(P/<b,b>) = all substes of P

refusals(P/s) = the refusals of P after producing the trace s.

P = (a  P) |¯| (b  b  STOP)

47

“Failures”

 Define :

(s,X) is a ‘failure’ of P means that P can perform s, afterwhich it may
deadlock when offered alternatives in X.

 E.g. (s,P)  failures(P/s) means after s P may stop.

 If for all X :

 (s,X)  failures(P/s)  aX

this implies that after s P cannot refuse a (implying progress!) .

failures(P) = { (s,X) | s  traces(P) , X  refusals(P/s) }

48

Note that due to non-

determinism, there may be

several possible states

where P may end up after

doing s.

Example

 Consider this P with P = {a,b} :

 P’s failures :

 ( , {a}) , ( , {b}) , ( , )

 (a , {a,b}) ... // and other (a,X) where X is a subset of {a,b}

 (b , {a,b}) ... // and other (b,X) where X is a subset of {a,b}

 Notice the “closure” like property in X and s.

P = (a  STOP) |¯| (b  STOP)

49

Failures Refinement

 We can use failures as our semantics, and define refinement as
follows. Let P and Q to have the same alphabet.

 Also a preorder!

 And it implies trace-refinement, since:

So, it follows that P  Q implies traces(P)  traces(Q).

P  Q = failures(P)  failures(Q)

50

traces(P) = { s | (s,)  failures(P) }

Back to automata again

 As before we want to use automata to check refinement.

 However now we can’t just remove non-determinism, because it

does matter in the failures semantic:

a

b

a

b





s t
a a

{s} {s,t} a

a

Notice that the transformation, although it

preserves traces, it does not preserve refusals.

51

Back to automata

 Still, deterministic automata are attractive because we have

seen how we can check trace inclusion.

 Furthermore, in a deterministic automaton, the end-state u after

producing a trace s is unique.

 Now remember that a ‘failure’ is a pair of (trace,refusal). Since a

trace is identified uniquely by its end-state. this suggests a

strategy to label the states with its refusals.

 Then we can adapt our trace-based refinement checking

algorithm to also check failures.

52

Example

P = a  ((b  P) |¯| (a  B))

B = b  B

 Q = a  b  (Q |¯| STOP)

Assuming {a,b} as alphabet.

So, is P  Q ?

a

a

b

b





 , { a }

 , { b }

 , { a }

 , { b }

 , { a } , { b }

P:

 , { a }

 , { b }

 , { a } , { b }

a a
b

b
P:

53

Example

Q = a  b  (Q |¯| STOP)

P  Q ?

 , { a }

 , { b }

 , { a } , { b }

a a
b

b P:

 , { b }

 , { a }

a b

Q:




all subsets of {a,b}

all subsets of {a,b}  , { a }

a b

Q:
a

all subsets of {a,b}

 , { b }

54

But...

 The procedure doesn’t work well with e.g. :

55

((a  STOP) |¯| (b  STOP)) [] (c  STOP)





a

b

c

{b,c}

{a,c}
{a,b}

??





a

b

c

{b}

{a}

{a}, {b}

c

Normalizing CSP processes

 Normalize your CSP description so that each process has this

form:

 P = (a  Q1) [] (b  Q2) [] ...

 |¯|

 (e  R1) [] (f  R2) [] ...

 ...

 When building the automaton representing such a process, each

state either:

 has outgoing arrows which are all tau-steps

 has outgoing arrows which are all non-tau. 56

// a,b, ... distinct

// e,f, ... distinct

P  (Q |¯| R) = (P  Q) |¯| (P  R)

P |¯| (Q  R) = (P |¯| Q)  (P |¯| R)

Example
P = (a  STOP) [] ((b  P) |¯| (a  B))

B = b  B

 , { a }

 , { b }

all subsets of {a,b}

all subsets of {a,b}  , { b }

 , { a }  , { b }

all subsets of {a,b}

0,1,3

2,4,5,6

6

a
b b b

P = ((a  STOP) [] (b  P))

 |¯|

 (a  (STOP |¯| B))

0

1 2

4 6

a

b

b





P:

3

5

a







After normalizing:

57

Example

So, is PQ, where Q = a  b  (Q |¯| STOP) ?

 , { a }  , { b }

all subsets of {a,b}

0,1,3

2,4,5,6

6

a
b b b P:

 , { a }

a b

Q:
a

all subsets of {a,b}

 , { b }

58

Some notes

 For the sake of simplicity, the algorithm explained

here deviates from the original in Roscoe:

 It’s not necessary to normalize the ‘implementation’ side.

 Roscoe still normalize the specification side.

 We also ignore “divergence”.

 In the worst case, normalization may produce a

process whose size is exponential wrt the original.

 In practice it’s usually not that bad.

 Specification side is usually much simpler than the

implimentation side.

59

