CSP: Communicating Sequential Processes

Overview

- Computation model and CSP primitives
- Refinement and trace semantics
- Automaton view
- Refinement checking algorithm
- Failures Semantics

CSP

- Communicating Sequential Processes, introduced by Hoare, 1978.
- Abstract and formal event-based language to model concurrent systems. Belong to the "Process Algebra" family.
- Elegant, with refinement based reasoning.

References

- Quick info at Wikipedia.
- <u>Communicating Sequential Processes</u>, Hoare, Prentice Hall, 1985.

3rd most cited computer science reference ©

Renewed edition by Jim Davies, 2004.

Available free!

• Model Checking CSP, Roscoe, 1994.

Computation model

- A concurrent system is made of a set of interacting processes.
- Each process sequentially produces events. Each event is atomic. Examples:
 - turnOn, turnOff, Play, Reset
 - lockAcquire, lockRelease
- Some events are internals \rightarrow not observable from outside.
- There is no notion of variables, nor data. A process is abstractly decribed by the sequences of events that it produces.

Computation model

- Multiple processes can synchronize on an event, say a.
 - They will wait each other until all synchronizing processes are ready to execute a.
 - Then they will simultaneously execute a.
 - As in :

$$a \rightarrow STOP \mid\mid_{\{a\}} x \rightarrow a \rightarrow STOP$$

The 1st process will have to wait until the 2nd has produced x.

Some notation first

- Names :
 - A,B,C → alphabets (sets of events)
 - a,b,c → events (actions)
 - ▶ P,Q,R
 → processes
- Formally for each process we also specify its alphabet, but here we will usually leave this implicit.
- αP denotes the alphabet of P.

CSP constructs

We'll only consider simplified syntax:

```
Process ::= STOP

| Event → Process

| Process [] Process

| Process |<sup>-</sup>| Process

| Process || Process

| Process / Alphabet

| ProcessName
```

• *Process definition:*

ProcessName "=" Process

STOP, sequence, and recursion

- Some simple primitives :
 - STOP // as the name says
 - $a \rightarrow P$ // do a, then behave as P
- Recursion is allowed, e.g. :

 $Clock = tick \rightarrow Clock$

Recursion must be 'guarded' (no left recursion thus).

Internal choice

We also have internal / non-deterministic choice: P | Q, as in :

$$R_1 = (a \rightarrow P) |^{-}| (b \rightarrow Q)$$

R₁ behave as either:

 $a \rightarrow P$ or $b \rightarrow Q$

but the choice is decided internally by R_1 itself. From outside it is as if R_1 makes a non-deterministic choice.

 R₁ may therefore *deadlock* (e.g. the environment only offers a, but R₁ have decided that it wants to do b instead).

External choice

Denoted by P
 Q

Behave as either P or Q. The choice is decided by the environment.

• Ex:

$$R_2 = (a \rightarrow P) \Box (b \rightarrow Q)$$

R₂ behaves as either:

 $a \rightarrow P$ or $b \rightarrow Q$

depending on the actions *offered* by the environment (e.g. think a,b as representing actions by a user to push on buttons).

External choice

However, it can degenerate to non-deterministic choice:

$$R_3 = (a \rightarrow P) \Box (a \rightarrow Q)$$

Parallel composition

Denoted by P || Q

This denotes the process that behaves as the *interleaving* of P and Q, but *synchronizing* them on $\alpha P \cap \alpha Q$.

Example:

$$R = (a_1 \rightarrow b \rightarrow STOP) \parallel (a_2 \rightarrow b \rightarrow STOP)$$

This produces a process that behaves as either of these :

$$a_1 \rightarrow a_2 \rightarrow b \rightarrow STOP$$
$$a_2 \rightarrow a_1 \rightarrow b \rightarrow STOP$$

(Notice the interleaving on a_1, a_2 and synchronization on b).

Hiding (abstraction)

Denoted by P / A

Hide (internalize) the events in A; so that they are not visible to the environment.

Example:

$$R = (a_1 \rightarrow b \rightarrow STOP) \parallel (a_2 \rightarrow b \rightarrow STOP)$$

$$R / \{b\} = (a_1 \rightarrow a_2) \square (a_2 \rightarrow a_1)$$

• In particular:

```
(P || Q) / (\alphaP \cap \alphaQ )
```

is the parallel composition of P and Q, and then we internalize their synchronized events.

Specifications and programs have the same status

That is, a specification is expressed by another CSP process :

SenseoSpec = $(1c \rightarrow 1w) \Box (2c \rightarrow 2w) \rightarrow$ SenseoSpec

 More precisely, when events not in {1c,1w,2c,2w} are abstracted away, our Senseo machine should behave as the above SenseoSpec process. This is expressed by *refinement* :

Monotonicity

• A relation ≤ (over A) is a preorder if it is reflexive and transitive :

1.
$$P \le P$$
2. $P \le Q$ and $Q \le R$ implies $P \le R$

 A function F:A→A is monotonic roughly if its value increases if we increase its argument.

More precisely it is monotonic wrt to a relation \leq iff

$$P \leq Q \implies F(P) \leq F(Q)$$

Analogous definition if F has multiple arguments.

Monotonicity & compositionality

Suppose we have a preorder \leq over CSP processes, acting as a refinement relation.

$$\varphi \leq P \rightarrow express P satisfies the specification $\varphi$$$

• A monotonic || would give us this result, which you can use to decompose the verification of a system to component level, and avoiding, in theory, state explosion:

(note that this presumes we have the specifications of the components) So, can we find a notion of refinement such that all CSP constructs are monotonic ??

Many formalisms for concurrent systems do not have this. CSP monotonicity is mainly due to its level of abstraction.

- Idea: abstractly consider two processes to be equivalent if they generate the same traces.
- Introduce traces(P)

the set of all *finite traces* (sequences of events) that P can produce.

- E.g. traces(a → b → STOP) = { <>, <a>, <a,b> }
- Simple semantics of CSP processes
- But it is oblivious to certain things.
- Still useful to check safety.

Induce a natural notion of refinement.

- We can define "traces" inductively over CSP operators.
- **traces** STOP = { <> }
- traces $(a \rightarrow P) = \{ \langle \rangle \} \cup \{ \langle a \rangle \land s \mid s \in traces(P) \}$

 If s is a trace, s|_A is the trace obtained by throwing away events not in A.

Pronounced "s *restricted* to A".

Example : $<a,b,b,c> | \{a,c\} = <a,c>$

• Now we can define:

traces (P/A) = $\{ s|_{(\alpha P - A)} | s \in traces(P) \}$

- If A is an alphabet, A* denote the set of all traces over the events in A. E.g. <a,b,b> ∈ {a,b}*, and <a,b,b> ∈ {a,b,c}*; but <a,b,b> ∉ {b}*.
- traces (P || Q)

=

$$\label{eq:s} \left\{ \begin{array}{l} s \ \mid \ s \in (\alpha \mathsf{P} \cup \alpha \mathsf{Q})^* \ , \\ \\ s|_{\alpha \mathsf{P}} \in \mathsf{traces}(\mathsf{P}) \quad \mathsf{and} \quad s|_{\alpha \mathsf{Q}} \in \mathsf{traces}(\mathsf{Q}) \\ \end{array} \right.$$

Example

• Consider :

$$P = a_1 \rightarrow b \rightarrow STOP \qquad // \alpha P = \{a_1, b\}$$

$$Q = a_2 \rightarrow b \rightarrow STOP \qquad // \alpha Q = \{a_2, b\}$$

traces(P||Q) = { <> , <a₁> , <a₁,a₂>, <a₁,a₂,b>, ... }

Notice that e.g. :

$$\mid_{\alpha P} \in \mathbf{traces}(P)$$

 $\mid_{\alpha Q} \in \mathbf{traces}(Q)$

- **traces**($P \square Q$) = traces(P) \cup traces(Q)
- **traces**($P \mid | Q)$ = traces($P \mid \cup$ traces(Q)
- So in this semantics you can't distinguish between internal and external choices.

Traces of recursive processes

Consider

$$\mathsf{P} = (\mathsf{a} \rightarrow \mathsf{a} \rightarrow \mathsf{P}) \Box \quad (\mathsf{b} \rightarrow \mathsf{P})$$

• How to compute **traces**(P) ? According to defs:

traces(P) = { <>, }

\$\$\cup\$\$
 { ^ t | t \$\in\$ traces\(P\) }
 \$\cup\$ { **^ t | t \$\in\$ traces\(P\) }**

Define traces(P) as the smallest solution of the above equation.

 We can now define refinement as trace inclusion. Let P, Q be processes over the same alphabet:

$$P \leq Q$$
 = $traces(P) \supseteq traces(Q)$

which implies that Q won't produce any 'unsafe trace' unless P itself can produce it.

- Moreover, this relation is obviously a preorder.
- Theorem:

All CSP operators are monotonic wrt this trace-based refinement relation.

Verification

• Because specification is expressed in terms of refinement : $\label{eq:point} \boldsymbol{\phi} \leq \boldsymbol{\mathsf{P}}$

verification in CSP amounts to refinement checking.

In the trace semantics it amounts to checking:

 $traces(\varphi) \supseteq traces(P)$

We can't check this directly since the sets of traces are typically infinite.

 If we view CSP processes as automata, we can do this checking with some form of model checking.

Automata semantic

- Represent CSP process P with an automaton M_P that generates the same set of traces.
- Such an automaton can be systematically constructed from the P's CSP description.
 - However, the resulting M_P may be non-deterministic.
 - Convert it to a deterministic automaton generating the same traces
 - Comparing deterministic automata are easier as we later check refinement.
 - There is a standard procedure to convert to deterministic automaton.
- Things are however more complicated as we later look at failures semantic.

Only finite state processes

 Some CSP processes may have infinite number of states, e.g. Bird₀ below:

$$Bird_0 = (flyup \rightarrow Bird_1) \square (eat \rightarrow Bird_0)$$

 $Bird_{i+1} = (flyup \rightarrow Bird_{i+2}) \square (flydown \rightarrow Bird_i)$

We will only consider finite state processes.

No distinction between ext. and int. choice

However, since in trace semantics we don't see the difference between \square and $|^{-}|$ anyway, so for we define their automata to be the same.

Internal action, representing internal decision in choosing between a and b.

Converting to deterministic automaton

"□" can still lead to an implicit non-determinism. But this should be indistinguishable in the trace semantic, so convert it to a deterministic automaton, essentially by merging end-states with common events. The transformation preserves traces.

$$P = (a \rightarrow c \rightarrow STOP) \Box \quad (a \rightarrow b \rightarrow P)$$

Parallel comp.

$$P = a \rightarrow b \rightarrow P$$

$$Q = (b \rightarrow Q) \Box (c \rightarrow STOP)$$

P || Q , common alphabet is { b } :

Checking trace refinement

- Formally, we will represent a *deterministic* automaton M by a tuple (S,s₀,A,R), where:
 - S M's set of states
 - s₀ the initial state
 - A the alphabet (set of events) ; every transition in M is labeled by an event.
 - $R : S \rightarrow A \rightarrow pow(S)$ encoding the transitions in M.
 - *Deterministic*: R s a is either \emptyset or a singleton. Else non-deterministic.
 - "R s a = {t}" means that M can go from state s to t by producing event a.
 - "R s a = \emptyset " means that M can't produce a when it is in state s.

Checking trace refinement

Let $M_P = (S,s_0,A,R)$ and $M_Q = (S,t_0,B,S)$ be deterministic (!) automata representing respectively processes P and Q; they have the same alphabet. We want to check:

 $traces(\mathsf{P}) \supseteq traces(\mathsf{Q})$

 For s∈S, let initials_P(s) be the set of P's possible next events when it is in the state s:

 Let's construct M_P ∩ M_Q → contains all traces which both automata can do. Check the initials of both at each state.

Example

Checking trace refinement

The traces of M_Q is a subset of M_P iff for all (*s*,*t*) in $M_P \cap M_Q$ we have :

initials_P(s) \supseteq initials_Q(t)

- If at some (s,t) this condition is violated → then uc is a counter example, where u is a trace that leads to the state t, and c is an event in initials_Q(t) / initials_P(s).
- This gives you an algorithm to check refinement → construct the intersection automaton, and check the above condition on every state in the intersection. → you can also construct it lazily.

Refinement Checking Algorithm

checked = \emptyset ;

```
pending = { (s_0, t_0) };
```

```
while pending \neq \emptyset do {
```

get and remove an (s,t) from pending ;

```
if initials(s) \supseteq initials(t) then {
```

```
checked := \{(s,t)\} \cup checked \}
```

```
pending := pending

\cup

({(s',t') | (\exists a. s' \in R \ s \ a \ \land t' \in R \ t \ a)}/ checked);

else error!
```

}

More refined semantics?

Unfortunately, in trace-based semantics these are equivalent :

$$\mathsf{P} = (\mathsf{a} \to \mathsf{STOP}) \Box (\mathsf{b} \to \mathsf{STOP})$$

- Q = $(a \rightarrow \text{STOP}) / (b \rightarrow \text{STOP})$
- But Q may deadlock when we put it with e.g. E = a → STOP; whereas P won't.

Refusal

• Suppose $\alpha P = \{a,b\}$, then:

 $P = a \rightarrow STOP$

will refuse to synchronize over b.

- $Q = (a \rightarrow STOP) \square (b \rightarrow STOP)$ will refuse neither a nor b.
- $R = (a \rightarrow STOP) / (b \rightarrow STOP)$

may refuse to sync over a, or b, not over both (if the env can do either a or b, but leave the choice to P).

Refusal

- An offer to P is a set of event choices that the environment (of P) is offerring to P as the first event to synchronize; the choice is up to P.
- So we define a *refusal* of P as an offer that P may fail to synchronize (due to internal chocies P may come to a state where it can't sync over any event in the offer).
- **refusals**(P) = the set of all P's refusals.

Q = (a
$$\rightarrow$$
 STOP) \Box (b \rightarrow STOP)refusals(Q) = { \varnothing }R = (a \rightarrow STOP) /⁻/ (b \rightarrow STOP)refusals(R) = { \emptyset , {a}, {b} }

Refusals

- Assuming alphabet A
- refusals (STOP) = $\{X \mid X \subseteq A\}$
- refusals $(a \rightarrow P) = \{ X \mid X \subseteq A \land a \notin X \}$

refuse any offer that does not include a

Refusals

• refusals (P [] Q) = refusals(P) \cap refusals(Q)

refusals (P |[−] | Q) = refusals(P) ∪ refusals(Q)

In the above example:

- may refuse ∅, {a}, {b}
- won't refuse {a,b}

Refusals of ||

• refusals(P || Q) = { X ∪ Y | X∈refusals(P) ∧ Y∈refusals(Q) }

refusals: {b,d, x } and all its subsets

Refusals of ||

• refusals(P || Q) = { $X \cup Y$ | $X \in refusals(P) \land Y \in refusals(Q)$ }

Example

 What is the refusals of this? Assume {a,b,c} as alphabet.

Refusals after s

• Define:

refusals(P/s) = the refusals of P after producing the trace s.

• Example, with alphabet $\alpha P = \{a,b\}$:

$$P = (a \rightarrow P) / / (b \rightarrow b \rightarrow STOP)$$

refusals(P/<>) = refusals(P)

refusals(P/)

refusals(P/<b,b>)

- = ∅, {a}
- = all substes of αP

"Failures"

Define :

Note that due to nondeterminism, there may be several possible states where P may end up after doing s.

failures(P) = { (s,X) / $s \in traces(P)$, $X \in refusals(P/s)$ }

(s,X) is a '*failure*' of P means that P can perform s, afterwhich it may deadlock when offered alternatives in X.

- E.g. $(s, \alpha P) \in failures(P/s)$ means after s P may stop.
- If for all X :

$$(s,X) \in failures(P/s) \implies a \notin X$$

this implies that after s P cannot refuse a (implying progress!) .

Example

• Consider this P with $\alpha P = \{a,b\}$:

$$P = (a \rightarrow STOP) |^{-}| (b \rightarrow STOP)$$

- P's failures :
 - (ϵ , {a}) , (ϵ , {b}) , (ϵ , \emptyset)
 - (a, {a,b}) ... // and other (a,X) where X is a subset of {a,b}
 - (b, {a,b}) ... // and other (b,X) where X is a subset of {a,b}
- Notice the "closure" like property in X and s.

Failures Refinement

 We can use failures as our semantics, and define refinement as follows. Let P and Q to have the same alphabet.

$$P \leq Q$$
 = failures(P) \supseteq failures(Q)

- Also a preorder!
- And it implies trace-refinement, since:

traces(P) = { s | $(s, \emptyset) \in failures(P)$ }

So, it follows that $P \leq Q$ implies traces(P) \supseteq traces(Q).

Back to automata again

- As before we want to use automata to check refinement.
- However now we can't just remove non-determinism, because it does matter in the failures semantic:

Back to automata

- Still, deterministic automata are attractive because we have seen how we can check trace inclusion.
- Furthermore, in a deterministic automaton, the end-state u after producing a trace s is unique.
- Now remember that a 'failure' is a pair of (trace, refusal). Since a trace is identified uniquely by its end-state. this suggests a strategy to label the states with its refusals.
- Then we can adapt our trace-based refinement checking algorithm to also check failures.

Example

$$P = a \rightarrow ((b \rightarrow P) \mid \bar{} \mid (a \rightarrow B))$$
$$B = b \rightarrow B$$
$$Q = a \rightarrow b \rightarrow (Q \mid \bar{} \mid STOP)$$

Assuming {a,b} as alphabet.

So, is
$$P \leq Q$$
?

But...

The procedure doesn't work well with e.g. :

Normalizing CSP processes $P \square (Q \upharpoonright R) = (P \square Q) \upharpoonright (P \square R)$ $P \upharpoonright Q \square R = (P \upharpoonright Q) \square (P \upharpoonright R)$

Normalize your CSP description so that each process has this form:

$$P = (a \rightarrow Q_1) [] (b \rightarrow Q_2) [] \dots \qquad // a,b, \dots \text{ distinct}$$

$$|^-|$$

$$(e \rightarrow R_1) [] (f \rightarrow R_2) [] \dots \qquad // e,f, \dots \text{ distinct}$$

- When building the automaton representing such a process, each state either:
 - has outgoing arrows which are all tau-steps
 - has outgoing arrows which are all non-tau.

56

Example

$$P = (a \rightarrow STOP) [] ((b \rightarrow P) |^{-}| (a \rightarrow B))$$
$$B = b \rightarrow B$$

After normalizing:

$$P = ((a \rightarrow STOP) [] (b \rightarrow P))$$
$$|^{-}|$$
$$(a \rightarrow (STOP |^{-}|B))$$

Example

So, is P≤Q, where $Q = a \rightarrow b \rightarrow (Q |^{-}|STOP)$?

Some notes

- For the sake of simplicity, the algorithm explained here deviates from the original in Roscoe:
 - It's not necessary to normalize the 'implementation' side.
 - Roscoe still normalize the specification side.
 - We also ignore "divergence".
- In the worst case, normalization may produce a process whose size is exponential wrt the original.
 - In practice it's usually not that bad.
 - Specification side is usually much simpler than the implimentation side.