CSP: Communicating Sequential

Processes

(Overview

Computation model and CSP primitives
Refinement and trace semantics
Automaton view

Refinement checking algorithm
Failures Semantics

| csp

1978.

Senseo = turnOn — Active

Active = (turnOff — Senseo)
o (1c — boil - 1w — Active)
o (2¢ — boil - 2w — Active)

turnOff

Communicating Sequential Processes, introduced by Hoare,

Abstract and formal event-based language to model concurrent
systems. Belong to the “Process Algebra” family.

Elegant, with refinement based reasoning.

v

1W

boil

(References

Quick info at Wikipedia.

Communicating Sequential Processes, Hoare, Prentice Hall,
1985.

3rd most cited computer science reference ©
Renewed edition by Jim Davies, 2004.

Avalilable free!

Viodel Checking CSP, Roscoe, 1994.

http://www.usingcsp.com/cspbook.pdf
ftp://ftp.comlab.ox.ac.uk/pub/Packages/FDR/public.info/papers/model-checking.ps.gz

(Computation model

A concurrent system is made of a set of interacting processes.

Each process sequentially produces events. Each event is
atomic. Examples:

e turnOn, turnOff, Play, Reset
e lockAcquire, lockRelease

Some events are internals - not observable from outside.

There Is no notion of variables, nor data. A process is abstractly
decribed by the sequences of events that it produces.

(Computation model

Multiple processes can synchronize on an event, say
a.

e They will wait each other until all synchronizing processes are
ready to execute a.

e Then they will simultaneously execute a.

e Asin:
a—> STOP ||, Xx—>a—> STOP

The 15t process will have to wait until the 2" has produced x.

(Some notation first

Names :

* AB,C - alphabets (sets of events)
° a,b,C - events (actions)

* PQ,R - processes

Formally for each process we also specify its
alphabet, but here we will usually leave this implicit.

oP denotes the alphabet of P.

CSP constructs

We'll only consider simplified syntax:

Process ;= STOP

Event — Process
Process [] Process
Process | | Process
Process || Process
Process / Alphabet
ProcessName
Process definition:
ProcessName “=“ Process

(STOP, sequence, and recursion
Some simple primitives :

* STOP I/ as the name says
ca—>P /I do a, then behave as P

Recursion is allowed, e.q. :
Clock = tick —» Clock

Recursion must be ‘guarded’ (no left recursion thus).

(Internal choice

We also have internal / non-deterministic choice: P| | Q, asin:

R, = @->P) || (b—>Q)

R, behave as either:
a—P or b—-Q

but the choice Is decided internally by R, itself. From outside it is
as if R, makes a non-deterministic choice.

R, may therefore deadlock (e.g. the environment only offers a,
but R, have decided that it wants to do b instead).

(External choice

Denoted by Po Q

Behave as either P or Q. The choice is decided by the
environment.

EX:
R, = (a—>P)o (b—>Q)

R, behaves as either:
a—P or b—Q

depending on the actions offered by the environment (e.g. think
a,b as representing actions by a user to push on buttons).

(External choice

However, it can degenerate to non-deterministic
choice:

R, = (@a—>P)o (a—Q)

(Parallel composition

Denoted by P || Q

This denotes the process that behaves as the interleaving of P
and Q, but synchronizing them on aP mn aQ.

Example:

R = (@,>b—>STOP) || (a,>b—> STOP)

This produces a process that behaves as either of these :

a, >a,—>hb—->STOP

a,— a,; > b —> STOP

(Notice the interleaving on a,,a, and synchronization on b).

(Hiding (abstraction)

Denoted by P/ A

Hide (internalize) the events in A; so that they are not visible to
the environment.

Example:

R = (@a,>b—>STOP) || (a,>b—> STOP)

R/{b} = (a,>a)o(a,—>a)

In particular:

(P1IQ) / (aP naQ)

Is the parallel composition of P and Q, and then we internalize
G their synchronized events.

Specifications and programs have the same A
status

That Is, a specification is expressed by another CSP process :

SenseoSpec (1c —> 1w) o (2c — 2w) — SenseoSpec

More precisely, when events not in {1c,1w,2c,2w} are abstracted
away, our Senseo machine should behave as the above
SenseoSpec process. This is expressed by refinement :

SenseoSpec < Senseo / { turnOn, turnOff , boil }

Cannot be conveniently expressed in Refinement relation: P _<Q means that Q Is at least as gOOd as P.
temporal logic. Conversely, CSP has What this exactly entails depends on our intent. In any case, we
no native temporal logic constructs to usually expect a refinement relation to be preorder @

express properties.

(Monotonicity

Arelation < (over A) is a preorder if it is reflexive and transitive :

1. P<P
2. P<Q and Q<R implies P<R

A function F:A—A is monotonic roughly if its value increases if
we Iincrease Iits argument.

More precisely it is monotonic wrt to a relation < iff

P<Q = F(P) < FQ)

Analogous definition if F has multiple arguments.

Monotonicity & compositionality

Suppose we have a preorder < over CSP processes, acting as
a refinement relation.

o <P - express P satisfies the specification ¢

A monotonic || would give us this result, which you can use to
decompose the verification of a system to component level,
and avoiding, in theory, state explosion:

) P11 @, < Q So, can we find a notion of

o < ol o refinement such that all CSP

__________________________________ constructs are monotonic ??
<
il i ” Q Many formalisms for concurrent systems do not have
this. CSP monotonicity is mainly due to its level of
(note that this presumes we have abstraction.
the specifications of the

components)

/

(Trace Semantics

ldea: abstractly consider two processes to be equivalent if they
generate the same traces.

Introduce traces(P)

the set of all finite traces (sequences of events) that P
can produce.

E.g. traces(a—> b —> STOP) = { <>, <a>, <a,b>}

Simple semantics of CSP processes
But it is oblivious to certain things.
Still useful to check safety.

Induce a natural notion of refinement.

(Trace Semantics

We can define “traces” inductively over CSP operators.
traces STOP = {<>}

traces (a—P) = {<>} u {<a>"s | s e traces(P)}

(Trace Semantics

If s is a trace, s|, Is the trace obtained by throwing away events
not in A.

Pronounced “s restricted to A”.

Example : <a,b,b,c>|{a,c} = <a,c>

Now we can define:

traces (P/A) = {S|up_a | s € traces(P) }

(Trace Semantics

If Alis an alphabet, A* denote the set of all traces over the
events in A. E.g. <a,b,b> € {a,b}*, and <a,b,b> < {a,b,c}*; but
<a,b,b> ¢ {b}*.

traces (P || Q)

{s| se(@aPuaaQ)*,

s|l,p € traces(P) and s|,q € traces(Q)

(Example

Consider :

a, >b > STOP
a, > b > STOP

P
Q

traces(P||Q) = { <>, <a,>, <a;,a,>, <a;,a,,b>, ... }
Notice that e.q. :
<a,a,,b> | , € traces(P)

<a;,a,b> | o € traces(Q)

(Trace Semantics

traces(Po Q) = traces(P) u traces(Q)

traces(P| | Q) = traces(P) u traces(Q)

So in this semantics you can'’t distinguish between internal and
external choices.

(Traces of recursive processes

Consider

P= (a»a—>P) O (b—>P)

How to compute traces(P) ? According to defs:
traces(P) = {<>, <a>}

U {<a,a>"t| t e traces(P) }
U {"t | t etraces(P)}

Define traces(P) as the smallest solution of the above equation.

Trace Semantics

We can now define refinement as trace inclusion. Let P, Q be
processes over the same alphabet:

P<Q = traces(P) o traces(Q)

which implies that Q won’t produce any ‘unsafe trace’ unless P
itself can produce it.

Moreover, this relation is obviously a preorder.

Theorem:

All CSP operators are monotonic wrt this trace-based
refinement relation.

Verification

Because specification is expressed in terms of refinement :

o<P

verification in CSP amounts to refinement checking.

In the trace semantics it amounts to checking:

traces(p) o traces(P)
er can’t check this directly since the sets of traces are typically
Infinite.

If we view CSP processes as automata, we can do this checking
with some form of model checking.

(Automata semantic

Represent CSP process P with an automaton M; that generates
the same set of traces.

Such an automaton can be systematically constructed from the
P’s CSP description.

* However, the resulting M, may be non-deterministic.

e Convert it to a deterministic automaton generating the same
traces

Comparing deterministic automata are easier as we later check
refinement.

There is a standard procedure to convert to deterministic automaton.

Things are however more complicated as we later look at
failures semantic.

(Only finite state processes

Some CSP processes may have infinite number of states, e.g.
Bird, below:

Bird, = (flyup — Bird,) O (eat — Bird,)

Bird,, = (flyup —» Bird,,,) O (flydown — Bird))

flydown flyup

flydown flyup

eat

We will only consider finite state processes.

e

Automaton semantics

P=a—->b-> P

Senseo

= turnOn — Select

b

Select =

bl —» coffee —» Select
n
b2 —» coffee —» coffee —» Select

turnOn

e

™~

No distinction between ext. and int. choice

P = (a—>STOP) o (b—>P)
Q.
A a
= (@—>STOP) || (b—>P)

Internal action, representing internal decision in
choosing between a and b.

However, since in trace
semantics we don’t see the
difference between [7and

| | anyway, so for we define
their automata to be the
same.

4 N
Converting to deterministic automaton

“0” can still lead to an implicit non-determinism. But this should be indistinguishable in
the trace semantic, so convert it to a deterministic automaton, essentially by merging
end-states with common events. The transformation preserves traces.

P = (a—>c—>STOP) o (a—>b—->P)

C)

X0 :

— —’ c
T
____/

CQ-O
convertittoa - a

deterministic
version.

e

Parallel comp.

P=a—->b->P Q

= (b>Q) o (c—>STOP)

b
o o
a

b
¥ OR

P|| Q , common alphabetis{b}:

(Checking trace refinement

Formally, we will represent a deterministic automaton M by a
tuple (S,s5,AR), where:

e S M’s set of states
° S, the initial state
e A the alphabet (set of events) ; every transition in M

IS labeled by an event.
e R:S—>A—-pow(S) encoding the transitions in M.

Deterministic: R s a is either & or a singleton. Else non-deterministic.
‘R s a = {t}” means that M can go from state s to t by producing event a.
‘R sa=¢" meansthat M can’t produce a when it is in state s.

(Checking trace refinement

Let Mp = (S,s0,A,R) and Mg = (S,1,,B,S) be deterministic (!)
automata representing respectively processes P and Q; they have
the same alphabet. We want to check:

traces(P) o traces(Q)

For seS, let initialsp(s) be the set of P’s possible next events
when it is in the state s:

Initialsp(s) = {a | Rsazxd }

Let's construct M, N My = contains all traces which both
automata can do. Check the initials of both at each state.

The intersection:

initials, (0) = {a}
initials(x) = {a}
initials, (1) = {1}
initialsq(y) = {y}

initials, (0) = {a}
initialsq(z) = {b}

(Checking trace refinement

The traces of My Is a subset of M, iff for all (s,t) in M, N Mgy we
have :

initialsp(s) o initialsy(t)

If at some (s,t) this condition is violated - then uc is a counter
example, where u is a trace that leads to the state t, and c is an
event in initialsy(t) / initialsp(s).

This gives you an algorithm to check refinement - construct the
Intersection automaton, and check the above condition on every
state in the intersection. = you can also construct it lazily.

e

Refinement Checking Algorithm

checked = ;
pending = { (Sp,to) } ;
while pending # < do {
get and remove an (s,t) from pending ;
If initials(s) o initials(t) then {
checked .= {(s,t{)} u checked }
pending = pending

Y
({(s\t) | Ga.sse Rsa NteRta) }/ checked);
else error!

(I\/Iore refined semantics?

Unfortunately, in trace-based semantics these are equivalent :
P = (a—> STOP)O (b » STOP)

Q= (a—>STOP)| | (b > STOP)

But Q may deadlock when we put it with e.g. E = a — STOP;
whereas P won't.

(Refusal

Suppose oP = {a,b}, then:
P=a—> STOP

will refuse to synchronize over b.

Q=(a—> STOP) O (b —> STOP) will refuse neither a nor b.

R =(a—> STOP) [| (b — STOP)

may refuse to sync over a, or b, not over both (if the env can do
either a or b, but leave the choice to P).

(Refusal

An offer to P Is a set of event choices that the

environment (of P) is offerring to P as the first event to
synchronize; the choice is up to P.

So we define a refusal of P as an offer that P may fall
to synchronize (due to internal chocies P may come to
a state where it can’t sync over any event in the offer).

refusals(P) = the set of all P’s refusals.

Q=(a— STOP) O (b »> STOP) refusals(Q) = {J }

R=(a—> STOP)| | (b » STOP) refusals(R) = { I, {a}, {b} }

& /

(Refusals

Assuming alphabet A
refusals (STOP) = { X| X cA}

refusals (@ —>P) ={X|XcA N\ agX}

refuse any offer that does not include a

(Refusals

refusals (P[] Q) = refusals(P) n refusals(Q)

Pl =l Al s 1! Assuming alphabet {a,b}
Q= b-o..
refusals (P| | Q) = refusals(P) u refusals(Q)

In the above example:

* may refuse O, {a}, {b}
e won't refuse {a,b}

(Refusals of ||

aoP = {a,b,x} PRI @] > [

refusals(P || Q) ={XuY | Xerefusals(P) N Yerefusals(Q) }

- refusals: { b,x} and all its subsets

/ refusals: {d,x} and all its subsets

aQ = {c,d,x} D= ek

refuse common actions or
other Q’'s non-common actions.

PIIQ = (@a—>c—>..)[]] c>a—..)

refusals: {b,d, x} and all its subsets

(Refusals of ||

refusals(P || Q) ={XuY | Xerefusals(P) N Yerefusals(Q) }

aoP = {a,b,x} = X—)..J
| refusals: {a,b}+ subsets

/ refusals: {c,d} + subsets

aQ = {c,d,x} D=

PlI[Q = x— ..

refusals: {a,b,c,d} + subsets

(Example

alphabet.

What is the refusals of this? Assume {a,b,c} as

P = ((@a>STOP) [(b>STOP)) || ((b—> STOP)[] (c—>STOP))

|

{b,c} + subsets

e

|

J

{a,c} + subsets

1 9,{c}}

19,18} }

So, refusals(P)

= { ©,1{a} {c}}

(Refusals after s

Define:

refusals(P/s) = the refusals of P after producing the trace s.

Example, with alphabet aP = {a,b} :

P=(@>P) || (b>b—STOP)
refusals(P/<>) = refusals(P)
refusals(P/) = ¢, {a}

refusals(P/<b,b>) all substes of aP

G Fa I | u res” Note that due to non-
determinism, there may be
several possible states

where P may end up after
doing s.

Define :

faillures(P) = {(s,X) | s e traces(P) , X e refusals(P/s) }

(s,X) is a ‘failure’ of P means that P can perform s, afterwhich it may
deadlock when offered alternatives in X.

E.g. (s,aP) € failures(P/s) means after s P may stop.

If for all X :

(s,X) € failures(P/s) = agX

this implies that after s P cannot refuse a (implying progress!) .

(Example

&

Consider this P with oP = {a,b} :

P = (@—>STOP) || (b— STOP)

P’s failures :

° (e.{@) , (e,{b}) , (¢,9)

e (a,{a,b}) ... /land other (a,X) where X is a subset of {a,b}

e (b,{a,b}) ... //andother (b,X)where X is a subset of {a,b}

Notice the “closure” like property in X and s.

(Faillures Refinement

We can use failures as our semant

Ics, and define refinement as

follows. Let P and Q to have the same alphabet.

P<Q = failures(P)

> failures(Q)

Also a preorder!

And it implies trace-refinement, since:

traces(P) = {s | (s,9) e failures(P) }

So, it follows that P < Q implies

traces(P) o traces(Q).

Back to automata again

As before we want to use automata to check refinement.

However now we can’t just remove non-determinism, because it
does matter in the failures semantic:

4 S

Notice that the transformation, although it
preserves traces, it does not preserve refusals.

O@_@ 54!> /

(Back to automata

Still, deterministic automata are attractive because we have
seen how we can check trace inclusion.

Furthermore, in a deterministic automaton, the end-state u after
producing a trace s is unique.

Now remember that a ‘failure’ is a pair of (trace,refusal). Since a
trace is identified uniquely by its end-state. this suggests a
strategy to label the states with its refusals.

Then we can adapt our trace-based refinement checking
algorithm to also check failures.

e

Example
P = a—>({(b->P)]|| (@a—>B) Assuming {a,b} as alphabet.
Billi=ib=—B So,iIsP<Q?
Q=a—>b—->(Q | |STOP)
 ,
N . {a}
,{b}
. (b} |2, (a} 2,12}

2.{a},{b) 2.a).4b)

e

Example

J,{a},{b}

J,{a}

Q=a->b—->(Q

| | STOP)

all subsets of {a,b}

all subsets of {a,b}

P<Q?

all subsets of {a,b}

—><‘> a b
J,{b} T
{

(But...

The procedure doesn’t work well with e.g. :

(@—> STOP) | | (b > STOP)) [] (c—> STOP)

b,c}

{b}

1a}, {b}

(Normalizing CSP processes

&

PO@[|IR) = (POQI | (POR)

Pl11QO (P[] [R)

P11 (QOR)

Normalize your CSP description so that each process has this
form:

P = (E' —>Q)[b—->0Q,)]] .. /l a,b, ... distinct
| |
e—>R)IOFE->RYI ... /lef, ... distinct

When building the automaton representing such a process, each

state either:
e has outgoing arrows which are all tau-steps

e has outgoing arrows which are all non-tau.

/Example

B = o= B

P = (a—STOP)[] (b—P) [(a— B))

After normalizing:

P = ((@a>STOP)[] (b—P))
||
(@— (STOP || B))

%)

all subsets of {a,b}

@ @ ,{b} | | all subsets of {a,b}

J,{a}

all subsets of {a,b}

: Example

So,isP<Q,where Q =a—>b—>(Q | | STOP) ?

J,{a}

all subsets of {a,b}

all subsets of {a,b}

J,{b}

J,{a}

(Some notes

For the sake of simplicity, the algorithm explained
here deviates from the original in Roscoe:

e |[t's not necessary to normalize the ‘implementation’ side.
e Roscoe still normalize the specification side.
* We also ignore “divergence”.

In the worst case, normalization may produce a
process whose size Is exponential wrt the original.
e |[n practice it's usually not that bad.

e Specification side is usually much simpler than the
Implimentation side.

