
Examples of Applications of  

Higher Order Theorem Proving 



Content 

 Applications of Higher Order Theorem Proving : 
 Verification of distributed algorithms 
 Verification of cryptographic protocols 

 
 Notes: 
 In both the approach is by embedding suitable logics in 

HOL 
 We can handle infinite state space  
 Expect lots of manual proofs.  
 But we can still program heuristics to eliminate trivialities 

and frequently occurring subgoals. 

 Challenges: 
 How to represent in HOL ? 
 How to automate ? 

2 



Embedding a Logic for Distributed 

Systems 



UNITY 

 Based on UNITY, proposed by Chandy and Misra, 1988, 

in Parallel Program Design: a Foundation.  

 

Later, 2001, becomes Seuss, with a bit OO-flavour in: A 

Dicipline of Multiprogramming: Programming Theory for 

Distributed Applications 

 

 Unlike LTL, UNITY defines its logic Axiomatically: 

 more abstract (so easier to understand). 

 more suitable for deductive style of proving 

 with HOL support good for verifying (high level) algorithms 

 not very good to handle models at e.g. Promela level. 

4 



UNITY Program & Execution 

 A program P is (simplified) a pair (Init,A)  
 
    Init  : a predicate specifying allowed initial states 
   A      : a set of concurrent (atomic and guarded) 
actions 

 

 Execution model : 
 
 Each action  is executed atomically. Only when its guard is 

enabled (true),  can be selected for execution. 
 

 A run of P is infinite. At each step an enabled action is non-
deterministically selected for execution. The run has to be weakly 
fair: when an action is continuously enabled, it will eventually be 
selected. When no action is enabled, the system stutters (does a 
skip). 

 However the logic is axiomatic. It will not actually 

construct the runs.  next slides. 5 



Parallel composition 

 Can be expressed straight forwardly : 
 
       

 (Init1, A1)   []   (Init2, A2)     =      (Init1 /\  Init1  ,  A1  A2 ) 

6 



Temporal properties 

 Safety is expressed by this operator: 
 
 
 
 
Whenever p holds the program will either stay in p, or go over to q. 

 

 Embedding this in HOL is straight forward: 
 
 
 
 

 

 

 NOT, AND, OR  lifting ~, /\, \/ to function space, e.g. 
 
 

Recall that we have chosen to represent 

predicates with functions Statebool. 

So e.g. boolean /\ can’t be used to 

conjuct them.  

(Init,A)   |-   p  unless   q   =   A.  { p /\ q }    { p \/ q } 

Define   `unless  (Init,A)  p  q   

               =  

               .  A    HOARE  (p AND NOT q)    (p OR q)` 

Define   `p  AND  q    =    ( s.  p  s  /\ q  s )` 7 



Progress-1 

 A predicate p is transient in P=(Init,A) if there is an action in A that can 

make it false. 

 

 

 

 Now define: 

 

       

 

The weak fairness assumption now forces P to progress from p to q.  

(implying [](p  <>q))   

 

 Also straight forward to embed in HOL, e.g. : 

 

 

(I,A)  |-   transient  p   =   A. { p }    { p } 

(I,A)  |-   p  ensures  q   =     (I,A)  |-  p unless q   

                                             and (I,A)  |-    transient (p /\ q) 

Define   `transient  (Init,A)    =    . A   /\   HOARE  p  (NOT p)` 
8 



Progress-Gen 

 “ensures” only captures progress driven by a single action. More 
general progress is expressed by   |  (leads-to). 
 
It is defined as the smallest relation satisfying: 
 
 
   p ensures q 
---------------------                        // ensures lifting 
      p   |   q 
 
 
  p |  q    ,   q  |  r 
------------------------------             //  transitivity 

                p  |  r 
 
 
  p1 |  q    ,    p2 |  q 
---------------------------------          //  disjunctivity 
         p1 \/ p2  |   q 
 

Acting as the basic rules 

to infer general progress 

But  … how to  

define this  

in HOL? 

9 



Embedding “leads-to” in HOL 

 Define   Elift  P Rel   =   p q.  ensures P p q  Rel p q 

 

 Define   Trans  Rel   =   p q r.  Rel p q  /\  Rel q r   Rel p r 

 

 Define   Disj  Rel     = … 

 

 Define   LeadstoLike  P  Rel     

             =   

             Elift  P Rel   /\   Trans  Rel   /\   Disj  Rel 

 

 

 Define   leadsto  P p  q   

              = 

              Rel.  LeadstoLike  P  Rel      Rel p q 

 True, this definition does not directly give you Elift, Trans, and Disj for leadsto. But you can prove that leadsto 
is also LeadstoLike, hence you can recover Elift, Trans, and Disj!   

Specifying all relations which are ens-

lifting, transitive, and disjunctive. 

A bit indirectly this says that leadsto is the 

smallest Leadsto-like relation. 

10 



Some other (derived) laws 

 | itself is relf, trans, and disj. 

 Progress – Safety  

 

 

 

 

 Bounded progress 

 

 

11 

p  |  q    ,   a  unless b 

-------------------------------------- 

p /\ a   |   (q /\ a) \/  b 

p /\ m=C   |    (p /\ m<C)  \/  q    

---------------------------------------------------- 

p  |  q 

• 0 < m holds innitially 

• 0 < m unless false 



Example 

copy 

copy copy 

min 

Self-stabilizing leader election in a ring. 

 

Problem-1:  Leader Election (LE). 

 

for time to time a ring of processes need to 

appoint a ‘leader’.  A centralized decision is 

undesired. 

 

Problem-2: Self-Stabilizing (SS). 

 

It can start from any state. 

 

 

 

A solution: (see left)  relies on the non-

determinism of concurrency.  

0 

5 

10 

2 

12 



The selection is non-deterministic 

copy 

copy copy 

min 

True, the nodes are not identical. If all nodes are identical (they have 

identical ID and do the same thing) LE is unfortunately impossible. 

0 

0 

0 

0 

(0 mod 4) is selected as the leader. 

copy 

copy copy 

min 

10 

10 

10 

10 

But we can also end up with (10 mod 

4) as the leader. 

5 

10 

2 

13 



Encoding it in HOL 

 node  i   =   x[i-1]  x[i]     x[i] := x[i-1]  
 
 
Guarded assignment. Model in HOL: 
 
      Define  GUARDED g a  =  IF g a SKIP 
 
“enabledness” is not explicitly modeled  a disabled action cannot be 
selected; so its effect is skip. So, we modeled as above. This is ok 
because we don’t have an explicit concept of executions anyway. 
  

 node0  N  =  if  x[N-1] < x[0]  then x[0] := x[N-1]  
 

 

 Define  ring  N    =   { node0 N }   { node i   |   0<i  /\  i<N }  
 

14 



Specification 

copy 

copy copy 

min 

leadsto   (ring N)  (\x. T)   (done N)  

15 

  Define  `done k  =  (\x. (i. 0i<k    (x i = x 0))`  

unless  (ring N)   (done N)   (\x. F)   



Verification 

 In SPIN you would verify this for N = 1,2,3 and then argue that other N 
is just analogous to N=3. 

 

 In HOL you can prove the correctness for all N. 
 
In the proof you will need to come up with a “progress metric” m. Then 
show this : 
 
 
     m=C    |    m < C   \/   done N 
 
 
where “<“ is some well-founded relation over finite domain D. Well-
founded means that every subset of D has a minimum element wrt <. 

 

 In HOL you can also prove general theories about e.g. self-
stabilization, classes of distributed algorithms. 

16 



Verification of Cryptographic Protocols 

with HOL 



Reference 

 Proving Properties of Security Protocols by Induction, 

tech. rep. by Paulson.  

18 



Cryptographic Protocol 

 Having a strong encryption method like RSA is not sufficient in 
order to secure our electronic “transactions”. 

 

 We furthermore need to implement a certain protocol; but this 
protocol is often very error prone. 

 

 Most cryptographic protocols are simple, but surprisingly very 
difficult to verify, due to complex ways a “spy” may interfere. 

 

 Additional aspects may further add complexity:  

 people may accidentally lose old keys 

 authenticity 

 sometimes non-tracability is required 
 

19 



Notation 

 A,B,C : agents, parties involved in the protocols.  

 

Agents can send messages to each other. 

 

 {| M |}       : a message M 

{| M, N |}  : a message containing the tuple M , N 

 

 {| M |}K     : message M, encrypted with the key K 

 

 

 
20 



Notation 

 K                    :   key 

KA    :  A’s  private keys 

pubKA   :  A’s  public keys 

 

 If K is a shared key, then an agent can decrypt {|M|}K 

only if he also has K 

 

 If K is a public key (in private-public key scheme), 

then  {|M|}K can only be decrypted with the 

corresponding private key. 

 

21 



A simple protocol P0 

 A and B want to chat securely. They first  exchange 

a session key. This is a shared key that will be used 

to encrypt the rest of the communication. 

 

 A  B :   {| pubKA |}   // here is my pub-key 

 

B  A :   {| k |}pubKA   // ok , here is a session key 

 

From this point on A and B exchanges messages 

encrypted with the shared key k. 

 

22 



Man-in-the-Middle Attack 

 A  B :   {| pubKA |}  
 
 
// intercepted by Spy ! 
 
Spy  B   :   {| pubKSpy |} 
 
 
B  Spy  :    {| k |}pubKspy 
 
 
Spy  A  :    {| k |}pubKA  
                                           
 
 
A and B now communicate using the session key 
k, unaware that Spy also knows k. 
 

23 



Now A and B try to use a KeyServer 

 There is now a trusted server S : it also knows the private 
keys of A and B. When A want to communicate with B, it 
first requests a session key to S. This key has to be 
securely distributed to A and B.  
 

 A possible way to do it: 
 
A  S :  {| A, B |}    
 
 
S  A :  {| B, k, {| k, A |}KB |} KA  
 
 
A  B :  {| k, A |}KB 

 

 

A prompts S that it wants to start a session with B. 

S generates a seesion key k, send it 

back encrypted to A. It also prepare a 

copy of the key for B, encrypted 

privately for B. 

A  pass on the  encrypted copy of k to B 

However people/application may accidentally lose old session keys. If Spy somehow gets an older  packg in 
step 2, and the corresponding session key k, it can resend that old pckg to A, when A requests S for a new 
session key.  But now k is compromised. Called replay attack. 24 



Needham-Schroeder Protocol 

 Idea: use fresh numbers, so-called nonces, to identify 
each session. So now you can’t replay. 
 
Protocol: 
 
A  S :  {| A, B, A |}  ,  is a nonce 
 
S  A :  {| A, B, k, {| k, A |}KB |} KA 

 
A  B :  {| k, A |}KB 

 
B  A :  {| B |}k 
 
A  B :  {| B  - 1 |}k   

 

Unfortunately... this is not really 

right yet, This part is still vulnerable 

to replay attack. 25 



Some formal approaches 

 Model checking. Model the protocol (and Spy) as 

automatons, then check that every state is safe. 

 
+ Find attacks quickly.  

-  State explosion (forcing simplifying assumptions) 

 

 Belief logic, e.g. Burrows-Abadi-Needham (BAN logic). 

 
+ Short, abstract proofs.  

-  Some variants are complicated & ill-motivated 

 

 Inductive approach  Paulson. Mechanized in 

Isabelle/HOL. 
26 



Inductive Approach 

 Features 
 Seems to be feasible 

 Based on a clear logical framework 

 

 

 Statistics: 
 200 theorems about 10 protocol variants 

(3 × Otway-Rees, 2 × Yahalom, Needham-Schroeder, . . .) 

 110 laws proved concerning messages 

 2–9 minutes CPU time per protocol 

 few hours or days human time per protocol 

 over 1200 proof commands in all 

 

 
27 



Representing Messages 

Use X,Y, … to denote message 

 

Can be easily  

translated to HOL 

data    Agent    =    Server   |   Friend  int   |   Spy 

Use A,B,C … to denote agents. 

data    Msg    =     Agent    A 

                   |      Nonce   N 

                   |      Key       K 

                   |      {| X , Y |} 

                   |      Hash     X 

                   |      Crypt     K    X              //  {|  X  |}K 

28 



Representing Events 

 Protocol steps are represented by events: 

 

  
 

 

Example: 

 

           A  B :      {| k, A |}KB 

 

      is represented by   

 

         Say  A  B  (Crypt  KB  {|  k , A |} ) 

data   Event    =    Say    Agent   Agent   Msg 

29 



Model 

 We maintain a history evs, which is a set of all communication 
events so far. 

 

 Agents are assumed to monitor evs. When an agent B sees an event 
“Say A B X” in evs it knows that there is a message X from him and 
can act accordingly. 
 
( However B does not actually know who sends it (it could be Spy). 
So B can only infer “Say ? B X” from evs. ) 
 

 Spy also has access to evs. 

H 
A 

C 

B spy 

30 



Representing Protocol Steps 

 Every step  of the protocol is a function of type: 
 
     
 
 
such that evs2   evs1  means that evs2 is a possible 
history after executing  on the history evs1. 
 
(So,  can be non-deterministic) 
 

 Add a SPY-step (same type as above). 

 A protocol can be defined by a transition function 
 
       
 
such that evs2  Protocol evs1  iff   this is allowed by one of 
the protocol steps or SPY-step. 

   :   Event set     (Event set ) set 

Protocol   :    Event set   (Event set)  set 

31 



Representing the Protocol Steps 

 

 A  S :  {| A, B |}    
 
 
S  A :  {| B, k, {| k, A |}KB |} KA  
 
 
A  B :  {| k, A |}KB 

Step-1  can be modeled by a function 1 

 

     1  H  =     H      { Say  A  S   {| A, B |}  } 

 

32 



Representing the Protocol Steps 

 

 

2  H  =    

 

   if   Say X S  {| Y, Z |}     evs,  for some X,Y, Z 

   then  

   H    {  Say S  Y   (Crypt  KY  {| Z, k, Crypt KZ {| k, X |}  |} )  } 

                    

   else   H 

33 

A  S :  {| A, B |}    
 
 
S  A :  {| B, k, {| k, A |}KB |} KA  
 
 
A  B :  {| k, A |}KB 



Some concepts 

 Let H be a set of messages. 

 

 parts  H   : all parts of the messages in H, applying  
                  decryption when necessary. 
 
What God can infer from H  
 

 analz  H  :  all parts of messages in H, applying  
                  decryption with keys exposed in H. 
 
What Spy can infer from H. 

 

 synth H    :   all spoof messages Spy can construct  
                    from H. In particular, synth (analz H) is 
        interesting. 34 



Inductive Def. of parts 

Decryption 

More precisely, parts is the smallest predicate satisfying the above rules. We can 

define this in HOL indirectly as we did with the “leadsto” relation in UNITY. 
35 



Analz 

If Spy can infer the key, then it can decrypt. 

36 



Synth Agents’ names are assumed to be public. 

37 



Spy’s steps 

 Spy can extend H with  
 
 
where B is any agent (other than Spy) and  X is any 
spoof message drawn from: 
 
     
 
 
where  
 
 Ini  is Spy’s initial knowledge, e.g. the “names/id” of 

some agents. 

Say  Spy  B  X 

synth ( analz ( H    Ini )) 

38 



Oops rule 

 You may want to model schemes where some agents 
are sometimes careless and lose their past session 
keys. 

 

 This can be modeled by the following “oops” rule. 
 
If a past H contains an event where Server distributes 
a session key k to A, marked with some nonces e.g. 
A and B, and that this nonces belong to past 
sessions, then add this to current H : 
 
 
       
 

Say   A   Spy   {| k , A , B  |} 

39 



Protocol Run 

 The “run” can be defined inductively : 
 
     
 
    run 0  =  possible initial histories, e.g. just { [] } 

 
    run n  = the set of possible histories after n-steps  
                 of the protocol (+spy). 

 

 Security property safe can be defined over run, in the form: 
 
          
 
 
 Can be proven with induction. 

 

run : num   (Events set) set 

n.   H.   H  run n     safe H 

40 



Example of specification 

 First extend the protocol with  
 
        BA : {| o |}k  
 
as the last step, to model the sending of a data message 
encrypted using the exchanged session key. 
 
 

 

 In KeyServer, also allow the oops rule. 

Spec:     o  H 

41 


