
1

SPIN modechecker 152

Model-Checker SPIN

• For proving correctness of process interactions

• These are specified using buffered channels, shared
variables, or a combination

• Focus - asynchronous control in software systems

• has program-like notation for specifying design choices
(Promela)

– models are bounded and have countably many distinct
behaviors

• powerful notation for expressing general correctness
requirements (LTL)

• methodology for establishing logical consistency of the
design choices against correctness requirements (model-
checker SPIN)

SPIN modechecker 153

Structure of SPIN simulation and
ver ification

Fig 1, p. 2 of TSE paper

2

SPIN modechecker 154

Overview of Promela/SPIN
• Intro to Promela
• SPIN

– random simulations of the system’s exection
– generate a C program that performs an efficient online

verification of the system’s correctness properties
– check for absence of deadlock, unspecified receptions,

and unreachable code
– verify correctness of system invariants, check user-

inserted assertions, and verify correctness of LTL
properties

• Some details
– Expressing LTL
– algorithm optimizations

• Some examples

SPIN modechecker 155

Promela (Process Meta Language)

• Model and verify relevant behavior
• construct increasingly more detailed Promela models,

verified under different assumptions about the environment
• once correctness has been established, it can be used in

verification of subsequent models
– programs consist of processes, message channels and

variables
– every statement is guarded by a condition. It is

executable when the condition is true. Otherwise, it
blocks until condition becomes true

whi l e (a ! = b)

ski p / * wai t f or a == b * /

vs
(a == b)

3

SPIN modechecker 156

Process Types

• State of variable or message channel can only be changed
or inspected by processes (defined using pr oct ype)

• ; and - > are statement separators with same semantics.
- > is used informally to indicate causal relation between
statements

Example:
byt e st at e = 2;

pr oct ype A()
{ (st at e == 1) - > st at e = 3
}
pr oct ype B()
{ st at e = st at e - 1

}

• State here is a global variable

SPIN modechecker 157

Process Instantiation

• Need to execute processes (pr oct ype only defines them)

• By default, process of type i ni t always executes.

• r un starts processes

• processes can receive parameters: all basic data types and
message channels. Data arrays and process types are not
allowed.

Example:
pr oct ype A(byt e st at e; shor t f oo)

{ (st at e == 1) - > st at e = f oo

}

i ni t

{ r un A(1, 3)

}

4

SPIN modechecker 158

Process Instantiation (Cont’d)

• If have several processes allowed to read and write the value
of a shared variable, have necessity for mutual exclusion.
Here is one solution:
#def i ne t r ue 1
#def i ne f al se 0
#def i ne At ur n f al se
#def i ne Bt ur n t r ue
bool x, y, t ;
pr oct ype A() pr oct ype B()
{ x = t r ue; { y = t r ue;

t = Bt ur n; t = At ur n;
(y == f al se | | t == At ur n) ; (x == f al se) | |
/ * cr i t i cal sect i on * / (t == Bt ur n) ;
x = f al se / * cr i t i cal sect i on * /

} y = f al se }
i ni t
{ r un A() ; r un B() }

SPIN modechecker 159

Atomic Sequences

• Keyword at omi c takes care of the test and set problem

• this prohibits interleaving during this operation and
reduces complexity of verification model

Example:
byt e st at e = 1;
pr oct ype A() {

at omi c {
 (st at e==1) - > st at e = st at e+1

 }
}
pr oct ype B() {

at omi c {
 (st at e == 1) - > st at e = st at e- 1
}

}

i ni t { r un A() ; r un B() }

5

SPIN modechecker 160

Message Passing

chan qname = [16] of { shor t } - declaration

qname! expr - writing (appending) to the channel

qname?expr - reading (from head) of the channel

qname! expr 1, expr 2, expr 3 - writing several vars

qname?var 1, var 2, var 3 - reading several vars

qname! expr 1(expr 2, expr 3) - message type and

qname?var 1(var 2, var 3) params

qname?cons1, var 2, cons2 - can send constants

• less parameters sent than received - others are undefined

• more parameters sent - remaining values are lost

• constants sent must match with constants received

SPIN modechecker 161

Message Passing - Example
pr oct ype A(chan q1)
{ chan q2;

q1?q2;
q2! 123

}
pr oct ype B(chan qf or b)
{ i nt x;

qf or b?x;
pr i nt f (“ x=%d\ n” , x)

}
i ni t {

chan qname = [1] of { chan } ;
chan qf or b = [1] of { i nt } ;
r un A(qname) ;
r un B(qf or b) ;
qname! qf or b

}

this prints 123

6

SPIN modechecker 162

Rendez-Vous Communications

• Buffers of size 0 - can pass but not store messages

• these message interactions are by definition synchronous

• defined only on two processes, a sender and a receiver

Example:
#def i ne msgt ype 33
chan name = [0] of { byt e, byt e } ;
pr oct ype A()
{ name! msgt ype(124) ;

name! msgt ype(121) ; / * non- execut abl e * /
}
pr oct ype B()
{ byt e st at e;

name?msgt ype(st at e)
}
i ni t
{ at omi c { r un A() ; r un B() }
}

SPIN modechecker 163

Rendez-Vous Communications
(Cont’d)

• If channel name has zero buffer capacity:

handshake on message msgt ype and transfer of value
123 to variable st at e. The second statement in A
will be unexecutable since no matching receive
operation in B

• If channel name has size 1:

process A can complete its first send, but blocks on
second since channel is filled. B can retrieve the first
message and complete. Then A completes, leaving its
last message as a residual in the channel

• If channel name has size 2 or more:

A can finish its execution before B even starts

7

SPIN modechecker 164

Example using Control-Flow:
Dijkstra Semaphore using rendezvous

#def i ne p 0
#def i ne v 1
chan sema = [0] of { bi t } ;

pr oct ype di j kst r a()
{ byt e count = 1;

do
: : (count == 1) - > sema! p; count = 0
: : (count == 0) - > sema? v; count = 1
od

}
pr oct ype user ()
{ do

: : sema? p;
/ * cr i t . sect * /
sema! v;
/ * non- cr i t . sect . * /

od
}
i ni t
{ r un di j kst r a() ; r un user () ;

r un user () ; r un user ()
}

SPIN modechecker 165

Other Promela Features

• Can model procedures and recursion

• all sorts of control flow (loops, cases, ifs, breaks, gotos)

• timeouts

• assertions

• message type definitions

• pseudo statements

See Web pages (Promela.html) for more description

8

SPIN modechecker 166

Example - protocol

• Channels Ai n and Bi n are to be filled in with token
messages of type next and arbitrary values (ASCII
chars) by unspecified background processes: the users of
the transfer service.

• These users can also read received data from the channels
Aout and Bout .

• The channels are initialized in a single atomic statement,
and started with the dummy er r message.

SPIN modechecker 167

Another Example

mt ype = { ack, nak, er r , next , accept } ;
pr oct ype t r ansf er (chan i n, out , chi n, chout)
{ byt e o, I ;

i n?next (o) ;
do
: : chi n?nak(I) - >

out ! accept (I) ;
chout ! ack(o)

: : chi n?ack(I) - >

out ! accept (I) ;
i n?next (o) ;
chout ! ack(o)

: : chi n?er r (I) - >
chout ! nak(o)

od
}

9

SPIN modechecker 168

Example (Cont’d)

I ni t
{ chan At oB = [1] of { mt ype, byt e } ;

chan Bt oA = [1] of { mt ype, byt e } ;

chan Ai n = [2] of { mt ype, byt e } ;
chan Bi n = [2] of { mt ype, byt e } ;

chan Aout = [2] of { mt ype, byt e } ;
chan Bout = [2] of { mt ype, byt e } ;

at omi c {
r un t r ansf er (Ai n, Aout , At oB, Bt oA) ;
r un t r ansf er (Bi n, Bout , Bt oA, At oB) ;

} ;

At oB! er r (0)
}

SPIN modechecker 169

LTL and Buchi Automata
• Can use LTL to express safety and liveness properties

• Syntax:
– [] - “always”
– <> - “eventually”
– U - “until”
– | | - “or”
– & - “and”
– ~ - “not”

• Cannot use “next” without recompiling spin: problems
with closure under stuttering (see later this lecture)

• Automatically converts LTL formulae into Buchi
automata. Can view the result with
$ spi n - f “ [] <>(p | | q)

10

SPIN modechecker 170

Nested Depth-First Search

• Problem: need to determine cycles. And the method needs
to be compatible with all modes of verification

• Solution (Tarjan) - construct strongly-connected
components in linear time by adding 2 integers: dfs-
number and lowlink-number (32 bits of storage each
because of huge state space)

• Idea: visit each state twice, but storing every state only
once. Only 2 bits of overhead instead of 64 by using
encoding

• For an accepting cycle to exist in the reachability graph, at
least one accepting state must be both reachable from the
initial system state (root) and must be reachable from itself

SPIN modechecker 171

Nested Depth-First Search (Cont’d)

Using depth-first search find accepting states reachable from
the root.

For each such state
use depth-first search to see if this state is reachable from

itself
if so, we found an acceptance cycle: a counter-example to

a user-defined correctness claim
• can only generate one acceptance cycle, not all, but will

always find at least one if it exists
• can also extend the algorithm with weak fairness

constraint: every process that contains at least one
transition that remains enabled infinitely long, is
guaranteed to execute that transition within finite time

11

SPIN modechecker 172

Partial Order Reduction

• Idea: validity of an LTL formula is often insensitive to the
order in which concurrent and independently executed
events are interleaved in the depth-first search

• Thus can generate a state-space with only representatives
of classes of execution sequences that are indistinguishable
for a given correctness property

• In a typical case, the reduction in the state space size and in
the memory requirements are linear in the size of the
model, yielding savings in memory and runtime from 10 to
90 percent.

• This method cannot lead to noticeable increase in memory
requirements

• Method not sensitive to decisions about process or variable
orderings (unlike BDDs)

SPIN modechecker 173

Memory Management

• Size of interleaving product can grow exponentially with
the number of processes!

• For LTL properties, the verification time in the worst case
is exponential in the number of temporal operators (unlike
branching-time logic!)

• Goal: create algorithms that can economize the memory
requirement of a reachability analysis, without incurring
unrealistic increases in runtime requirements.

• Examples: state compression and bit-state hashing

12

SPIN modechecker 174

State Compression

• About 10-20 percent run-time overhead in return for 60-70
percent reduction in memory utilization

• Every process and every channel in a PROMELA
specification has only relatively small number of unique
local states - so store them separately and use unique
indices into the local state tables

• So, 256 distinct local states = 1 byte of memory within the
global state descriptor. 256 and fever - 8 bits.

• User can set up this information (size of index) to 1, 2, 3,
or 4 bytes.

SPIN modechecker 175

Bit-State Hashing

• Sometimes cannot have exhaustive verification, so all
other techniques stop when they run out of memory.

• With amount of memory M and number of states R and S
bytes to store each state, the checker exhausts memory
after M/S states. Problem coverage is M/(R * S).

Example: with 64 bytes of memory to encode each state
and total of 2 Mb, we can store 32,768 states.

• Bit-state hashing usually does much better than that.
• Each reachable state is stored using two bits of information
• command line:

cc - DBI TSTATE - o r un pan. c

• Can specify amount of available (non-virtual) memory
directly, using - w N option, e.g., - w27 means that we
have 128 Mb of memory.

13

SPIN modechecker 176

Bit-Size Hashing

• Exact algorithm could not be determined, but here is an
example:
$ r un
asser t i on v i ol at ed (I == ((l ast _I + 1))
pan: abor t ed
sear ch i nt er r upt ed
…
hash f act or : 67650. 064516
(si ze 2^22 st at es, st ack f r ames: 0/ 5)

• Hash factor: maximum number of states/actual number

• Maximum number of states is 222 bytes or about 32 million
bits = states

• Hash factor > 100 - coverage around 100%

• Hash factor = 1 -> coverage approaches 0%

SPIN modechecker 177

Ver ification example 1: mutual
exclusion

1 bool want [2] ; / * Bool ar r ay b * /
2 bool t ur n; / * i nt eger k * /
3
4 pr oct ype P(bool I)
5 {
6 want [I] = 1;
7 do
8 : : (t ur n ! = I) - >
9 (! want [1- I]) ;
10 t ur n = I
11 : : (t ur n == I) - >
12 br eak
13 od
14 ski p; / * cr i t i cal sect i on * /
15 want [I] = 0
16 }
17
18 i ni t { r un P(0) ; r un P(1) }

14

SPIN modechecker 178

Mutual Exclusion (Cont’d)

• Generate, compile and run the verifier to check for
deadlock and other major problems. Result:
$ spi n - a hyman0
$ cc - o pan pan. c
$ pan
f ul l st at espace sear ch f or :
asser t i on v i ol at i ons and i nval i d endst at es
vect or 20 byt es, dept h r eached 19, er r or s: 0

79 st at es, st or ed
0 st at es, l i nked

 38 st at es, mat ched t ot al : 117
hash conf l i ct s: 4 (r esol ved)
(s i ze 2^18 st at es, st ack f r ames: 3/ 0)
unr eached code _i ni t (pr oc 0) :

r eached al l 3 st at es
unr eached code P (pr oc 1) :

r eached al l 12 st at es

SPIN modechecker 179

Mutual exclusion (Cont’d)

• Want to check mutual exclusion.
1 bool want [2] ; / * Bool ar r ay b * /
2 bool t ur n; / * i nt eger k * /
3 byt e cnt ;
4 pr oct ype P(bool I)
5 {
6 want [I] = 1;
7 do
8 : : (t ur n ! = I) - >
9 (! want [1- I]) ;
10 t ur n = I
11 : : (t ur n == I) - >
12 br eak
13 od
14 ski p; / * cr i t i cal sect i on * /
15 cnt = cnt +1;
16 asser t (cnt == 1) ;
17 cnt = cnt - 1
18 want [I] = 0
19 }
20 i ni t { r un P(0) ; r un P(1) }

15

SPIN modechecker 180

Mutual Exclusion (Cont’d)

• Verifier says that assertion can be violated, and we can use
options -t -p to find out the trace (or do the same thing
using Xspin’s nice graphic capabilities)

• Another way of catching the error : having another process
with the assertion, allowing all possible relative timings of
the processes.

• This is an elegant way to check the validity of a system
invariant

SPIN modechecker 181

Mutual Exclusion (Cont’d)
1 bool want [2] ; / * Bool ar r ay b * /
2 bool t ur n; / * i nt eger k * /
3 byt e cnt ;
4 pr oct ype P(bool I)
5 {
6 want [I] = 1;
7 do
8 : : (t ur n ! = I) - >
9 (! want [1- I]) ;
10 t ur n = I
11 : : (t ur n == I) - >
12 br eak
13 od
14 cnt = cnt +1;
15 ski p; / * cr i t i cal sect i on * /
16 cnt = cnt - 1;
17 want [I] = 0
18 }
19 pr oct ype moni t or ()
20 { asser t (cnt == 0 | | cnt == 1) }
21 i ni t { r un P(0) ; r un P(1) ; r un moni t or () }

16

SPIN modechecker 182

Ver ification Example 2: Leader
Election

• Leader election in a unidirectional ring. All processes
participate in the election (cannot join in after the
execution started)

• Global property: it should not be possible for more than
one process to declare to be the leader of the ring

• To check this property, either specify it using LTL:
[] (nr _l eader s <= 1)

• Or (much more efficiently) use assertion (line 57)
asser t (nr _l eader s == 1)

• Also want to specify that eventually a leader is elected:
<>[] (nr _l eader s == 1)

SPIN modechecker 183

Ver ification Model of Leader Election
1 #def i ne N 5 / * nr of pr ocesses * /
2 #def i ne I 3 / * node gi ven t he smal l est number * /
3 #def i ne L 10 / * si ze of buf f er (>= 2* N) * /
4
5 mt ype = { one, t wo, wi nner } ; / * symb. Msg. Names * /
6 chan q[N] = [L] of { mt ype, byt e} / * assynch. Chnl * /
7
8 byt e nr _l eader s = 0; / * count t he number of pr ocess
9 t hat t hi nk t hey ar e l eader of t he r i ng * /
10 pr oct ype node (chan i n, out ; byt e mynumber)
11 { bi t Act i ve = 1, know_wi nner = 0;
12 byt e nr , maxi mum = mynumber , nei ghbour R;
13
14 xr i n; / * cl ai m excl usi ve r ecv access t o i n * /
15 xs out ; / * cl ai m excl usi ve send access t o out * /
16
17 pr i nt f (“ MSC: %d\ n” , mynumber) ;
18 out ! one(mynumber) / * send msg of t ype one * /
19 end: do
20 : : i n?one(nr) - > / * r ecei ve msg of t ype one * /

17

SPIN modechecker 184

Ver ification Model of Leader Election
(Cont’d)

21 i f
22 : : Act i ve - >
23 i f
24 : : nr ! = maxi mum - >
25 out ! t wo(nr) ;
26 nei ghbour R = nr ;
27 : : el se - >
28 / * max i s t he gr eat est number * /
29 asser t (nr == N) ;
30 know_wi nner = 1;
31 out ! wi nner (nr) ;
32 f i
33 : : el se - >
34 out ! one(nr)
35 f i
36
37 : : i n?t wo(nr) - >
38 i f
39 : : Act i ve - >
40 i f

SPIN modechecker 185

Ver ification Model of Leader Election (Cont’d)
41 _ : : nei ghbour R > nr && nei ghbour R > maxi mum
42 maxi mum = nei ghbour R;
43 out ! one(nei ghbour R)
44 : : el se - >
45 Act i ve = 0
46 f i
47 : : el se - >
48 out ! t wo(nr)
49 f i
50 : : i n?wi nner (nr) - >
51 i f
52 : : nr ! = mynumber - >
53 pr i nt f (“ MSC: LOST\ n”) ;
54 : : el se - >
55 pr i nt f (“ MSC: LEADER\ n”) ;
56 nr _l eader s++;
57 asser t (nr _l eader s == 1)
58 f i
59 i f
60 : : know_wi nner
61 : : el se - > out ! wi nner (nr)

18

SPIN modechecker 186

Ver ification Model of Leader Election
(Cont’d)

62 f i ;
63 br eak
64 od
65 }
66
67 i ni t {
68 byt e pr oc;
69 at omi c { / * act i vat e N copi es of pr oc t empl at e * /
70 pr oc = 1;
71 do
72 : : pr oc <= N - >
73 r un node (q[pr oc- 1] , q[pr oc % N] ,
74 (N+I - pr oc) % N+1) ;
75 pr oc++
76 : : pr oc > N - >
77 br eak
78 od
79 }
80 }

SPIN modechecker 187

Conclusion

• Distinction between behavior and requirements on behavior
(invariants, deadlock-detection, LTL formulae)

• Requirements and behavior s are checked for both their
internal and their mutual consistency

• Design is revised until its critical correctness properties can be
successfully proven. Then can refine the design decisions
further toward a full systems implementation (PROMELA is
not a full programming language - no data structures, for
example)

• Can also simulate the design before the verification starts, to
make sure that the design “seems” correct - no change for
“vacuous” verification as in SMV.

• What is the difference between asserts and LTL properties?

