
Soft Typing for JavaScript

Liewe Thomas van Binsbergen João Paulo Pizani Flor
Pepijn Kokke

June 3rd, 2013

Parsing JavaScript

Using Language.JavaScript1

We started out using the Language.JavaScript package, after it was approved
with the remark that with all the clutter of lexical information the AST made
the parser look more like a lexer than an actual parser.

Sadly, this turned out to be closer to the truth than we originally imagined.
After the creation of a module that removed all the lexical clutter from the AST2,
the tree we ended up with contained many structures such as the following.

data JSNode = ...
| JSExpression [JSNode] -- contains operator tokens,
| ... -- expressions, etc

These structures would require a parser of their own to interpret into sensible
expressions—an issue that will only show once you try to use the JavaScript
AST. However, since the objective of Language.JavaScript was to create a
valid JavaScript parser in Haskell, this was probably never noticed.

For this reason we decided to move to a parser that, while it hasn’t been worked
on in quite some time, was actually used to write a JavaScript interpreter.

Using the HJS Parser3

The HJS parser—as opposed to Language.JavaScript—does group expressions
according to their semantics. This means, for instance, that the assignment

1See http://hackage.haskell.org/package/language-javascript-0.5.7.
2This module is no longer part of the package, but may be found in the histories of our git

commit logs.
3See http://hackage.haskell.org/package/hjs-0.2.1.

1

http://hackage.haskell.org/package/language-javascript-0.5.7
http://hackage.haskell.org/package/hjs-0.2.1

operators are no longer represented as generic binary operators, but as a different
class of statements.

This made the interpretation of the HJS AST much, much simpler, and in mere
hours we were able to make more progress that we had made in the weeks before.

However, the semantic separation that HJS imposes causes the AST to become
much more complex, as it makes distinctions such as effectful and non-effectful,
prefix or postfix, etc. . .

We were able to convert a large number of these expressions to our analysis
language: Simpl.4

The Simpl Language

The Simpl language is defined as follows. The two basic type definitions are
identifiers and labels—which are used to identify expressions in the analysis
framework.

type Ident = String
type Label = Int

The most primitve expressions then are Atoms which, as in JavaScript, can be
numbers, strings, regular expressions, booleans, identifiers—for variables—and
the two values null and undefined.

data Atom = IntegerLit Int
| StringLit String
| RegexLit String String
| BoolLit Bool
| Ident Ident
| NullLit
| UndefinedLit

Then we have expressions, which can represent all JavaScript’s operators, and
atomic expressions.

data Exp
-- * arithmetic expressions
= Add Exp Exp | Sub Exp Exp
| Mul Exp Exp | Div Exp Exp
| Mod Exp Exp | Neg Exp

4The implementation of the HJS to Simpl conversion algorithm can be found in the module
Language.Javascript.Hjs2Simpl.

2

-- * boolean expressions
| And Exp Exp | Or Exp Exp
| Not Exp | Ter Exp Exp Exp
-- * comparison operators
| Eq Exp Exp | Neq Exp Exp
| SEq Exp Exp | SNeq Exp Exp
| Gt Exp Exp | Gte Exp Exp
| Lt Exp Exp | Lte Exp Exp
-- * bitwise operators
| BAnd Exp Exp | BOr Exp Exp
| BXor Exp Exp | BNot Exp
| BLs Exp Exp | BRs0 Exp Exp
| BRs1 Exp Exp
-- * atomic expressions
| Atom Atom

Expressions can be combined in “code”, which represents expressions that can
optionally have side-effects. Code instances are labelled.

data Code
= Expr Label Exp -- ^ effect-free expressions
| Assign Label Ident Code -- ^ effectful assignments
| Call Label Label Ident [Code] -- ^ function calls
| Skip Label -- ^ a nop expression

Code instances can be further combined in statements, which contains all control-
flow effecting expressions (aside from function calls).

data Stmt
= Code Code -- ^ simple code expressions
| Seq Stmt Stmt -- ^ sequential composition
| If Code Stmt Stmt -- ^ if-then-else structure
| While Code Stmt -- ^ simple while loops
| Return Code -- ^ returns

Finally, statements—together with function declarations—compose a program.

data Decl = Decl Ident [Ident] Label Stmt Label
data Program = Program [Decl] [Stmt]

Note that because of this architecture, many JavaScript structures such as
e.g. nested function declarations, functions-as-values, objects, etc. . . are unsup-
ported.

3

Analysing Simpl

4

	Parsing JavaScript
	Using Language.JavaScript
	Using the HJS Parser

	The Simpl Language
	Analysing Simpl

