
[Faculty of Science
Information and Computing Sciences]

APA
Administration, Introduction, Motivation

Jurriaan Hage
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

April 20, 2012



[Faculty of Science
Information and Computing Sciences]

2

1. Administration



[Faculty of Science
Information and Computing Sciences]

3

Organizational information §1

I Did you register in Osiris?
I If not, then do so

I APA course home page: http://www.cs.uu.nl/wiki/Apa/

I It has the current state of the schedule

I Also, check it out for grading information, links,
assignments, deadlines and so on

I Please, do this before asking me questions

I Feedback about the course always appreciated



[Faculty of Science
Information and Computing Sciences]

4

Material for the course §1

I Formerly, I used Nielson, Nielson and Hankin. (Section
1.1-1.5, Section 2.1-2.5, Section 3.1,3.3-3.5, Section
4.2-4.4 and Section 5.1-5.5)

I The book is still recommended, and many of the slides are
based upon it

I Use the slides as a guide

I The website will have links to more reading material

I Particularly work we did ourselves



[Faculty of Science
Information and Computing Sciences]

5

What is expected of you? §1

I Study the slides, study the papers

I Discuss, discuss
I Do the assignments/project(s)

I Feel free to contribute ideas.

I Possibly, a short oral examination at the end of the course

I Give feedback about the course!



[Faculty of Science
Information and Computing Sciences]

6

2. Introduction



[Faculty of Science
Information and Computing Sciences]

7

What is program analysis? §2

Program analysis
=

deriving information about the behaviour of computer programs.



[Faculty of Science
Information and Computing Sciences]

8

Why do program analysis? §2

I optimization
I dead code removal, strict evaluation, avoiding run-time

type checks

I validation
I type checking, security analysis, soft typing

I comprehension
I maintainability monitoring, reverse engineering, architecture

detection



[Faculty of Science
Information and Computing Sciences]

9

Static or dynamic §2

I Dynamic: testing, run-time instrumentation, profiling
I Very precise for observed executions

I Not the subject of this course

I Static: analysis on the inputs of the compilation

I Often as part of a compiler

I Even for programs with infinite executions, compilation
should terminate.

I Analysis must be valid for all executions.

I The two forms can complement each other.



[Faculty of Science
Information and Computing Sciences]

9

Static or dynamic §2

I Dynamic: testing, run-time instrumentation, profiling
I Very precise for observed executions

I Not the subject of this course

I Static: analysis on the inputs of the compilation

I Often as part of a compiler

I Even for programs with infinite executions, compilation
should terminate.

I Analysis must be valid for all executions.

I The two forms can complement each other.



[Faculty of Science
Information and Computing Sciences]

9

Static or dynamic §2

I Dynamic: testing, run-time instrumentation, profiling
I Very precise for observed executions

I Not the subject of this course

I Static: analysis on the inputs of the compilation

I Often as part of a compiler

I Even for programs with infinite executions, compilation
should terminate.

I Analysis must be valid for all executions.

I The two forms can complement each other.



[Faculty of Science
Information and Computing Sciences]

10

Optimization §2

I Optimizations are silenty applied by a compiler,

I based on information discovered during program analysis.

I Optimizing analysis should never lead to failure to compile.

I Information should be valid for all executions.

I We must be able to trust the results of analysis.

I Program analysis must be sound (safe) with respect to the
language semantics.

I The analyzer may only err on the safe side

I So prove it.
I Case study: uniqueness typing.

I Something marked as unique, but used twice, may have
been GC’ed away.



[Faculty of Science
Information and Computing Sciences]

10

Optimization §2

I Optimizations are silenty applied by a compiler,

I based on information discovered during program analysis.

I Optimizing analysis should never lead to failure to compile.

I Information should be valid for all executions.

I We must be able to trust the results of analysis.
I Program analysis must be sound (safe) with respect to the

language semantics.
I The analyzer may only err on the safe side

I So prove it.
I Case study: uniqueness typing.

I Something marked as unique, but used twice, may have
been GC’ed away.



[Faculty of Science
Information and Computing Sciences]

11

Validation §2

I Verify that a program is type correct

I Verify that a highly secure value does not end up in a lowly
secure variable

I Some programs will fail to compile

I This raises the issue of feedback

I Case study: type inferencing/checking, pattern match
analysis, security analysis



[Faculty of Science
Information and Computing Sciences]

12

Comprehension §2

I Software analysis is often coined as the term here.

I Analysis need not be sound, need not be complete.

I Validation not by proof, but empirical validation.
I Metrics are a typical example:

I McCabe’s Cyclomatic Complexity.
I The higher the value, the more complex the code
I Above 50 implies unmaintainable.

I Typically, you can always find examples where metrics do
not predict well, but they work very well in practice.

I Cheap to compute.



[Faculty of Science
Information and Computing Sciences]

13

The setting §2

Typically,

I a compiler validates a program and generates code.

I For any program, it has to do this in finite time.

I Running the program for all possible inputs is out of the
question.

I Halting Problem is undecidable.
I Decide for any given program and given input whether the

program will terminate for that input.

I Every behavioural property of programs is undecidable.
I Rice’s Theorem

I What can we do?



[Faculty of Science
Information and Computing Sciences]

14

Possible solutions §2

Verify properties by

I Program verification: verify properties by using
(interactive) proof tools.

I Model checking: exhaustively test the property for all
reachable states.

I Automatic program analysis: allow (safe) approximate
answers, but keep it automatic and efficient.

I We consider the latter possibility and hope our solutions
are not too approximate to be of use.

These three areas do overlap in many ways.



[Faculty of Science
Information and Computing Sciences]

15

Two dimensions of complexity §2

I Properties of the language:
I parametric polymorphism
I higher-order, higher-ranked, polymorphic recursion
I subtyping
I by-value (strict) or by-need (lazy) evaluation
I strictness and other annotations,

I More complex implies more flexibility for programmer.
I Properties of the analysis:

I subtyping, subeffecting, or poisoning
I monovariant, polyvariant, higher-ranked
I flow-sensitive versus flow-insensitive
I minimal or most general (Holdermans and Hage)
I whole program or modular

I More complex implies more precision and more expensive.



[Faculty of Science
Information and Computing Sciences]

16

Make note §2

I Program analysis is not always restricted to programming
languages.

I Can be applied in other places as well:
I FIRST and FOLLOW for parsing LL(k) languages.

I Admittedly, general recursion/while loops provide most of
the essential complications

I Still, even SQL can profit from optimizations.



[Faculty of Science
Information and Computing Sciences]

17

Program properties §2

I In dependently typed programming and contract checking,
static properties are encoded in the language itself.

I Programmer-driven static analysis

I In static analysis we tend to not leave this to the
programmer.

I The truth is probably somewhere in the middle.

I Contracts and dependently typed programming establish
only properties of values, not of the computations.

I Static analysis often addresses issues relating to how
something is computed.



[Faculty of Science
Information and Computing Sciences]

18

Safe and sound §2

I Strong typing (Haskell, Java,...)
I Programs are guaranteed not to go wrong.
I Intended optimization: avoiding run-time checks and

validation
I Conservative: sometimes disallows programs that would go

right.

I Soft typing (on languages like Scheme, Perl, Ruby, PHP,
Python)

I Allow all programs that might go right.
I Intended optimization: avoiding run-time checks, some

validation
I Liberal: some programs may go wrong.
I Add run-time checks/generate warnings

I It all depends on how you will use the analysis results.



[Faculty of Science
Information and Computing Sciences]

19

Some example analyses §2

I Dead-code elimination
I Strictness analysis in lazy functional languages

I Which arguments to a function will always be evaluated at
some point?

I Liveness of variables
I which variables may still be used?

I Available expressions
I eliminating double computations

I Dynamic dispatch problem
I dead code with functions being first class citizens



[Faculty of Science
Information and Computing Sciences]

20

More examples §2

I Shape analysis
I for avoiding garbage collect

I Binding-time analysis
I partial evaluation

I Uncaught exceptions in Java

I Weak circularity test in attribute grammars
I Escape analysis

I What does not escape may be allocated on the stack
instead of the heap.

I Binding-time analysis
I What can be evaluated at compile-time.

I And many, many more...



[Faculty of Science
Information and Computing Sciences]

21

Topic overview I §2

I Dataflow analysis of While language

I Monotone frameworks

I Relation to Abstract Interpretation

I Literature: Chapter 2 of Nielson, Nielson and Hankin

I Project I: soft typing dynamic languages, slicing, dataflow
analysis, ...



[Faculty of Science
Information and Computing Sciences]

22

Topic overview II §2

I Type inferencing
I Type and effect systems

I control-flow analysis
I binding-time analysis
I usage analysis
I minimal typing derivations
I strictness analysis

I Meta-theory: soundness, conservative extensions

I Algorithmic issues.

I Project II: pattern match analysis, security analysis, usage,
...



[Faculty of Science
Information and Computing Sciences]

23

Additional subjects §2

I Type error feedback for Haskell
I Scripting the type inferencer

I Security analysis

I Plagiarism detection

I Slicing (Amir Saeidi)

I Software analysis/code querying


	Administration
	Introduction

