

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

APA Dataflow analysis

Jurriaan Hage e-mail: jur@cs.uu.nl homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

April 15, 2013

Roadmap

- First-order, imperative language
- First without, later with procedures
- In both cases, control-flow is fixed.
- Monotone frameworks
 - Conceptual and implementational framework for building dataflow analyses
- Illustrated by Available Expression Analysis, Live Variable Analysis, and Constant Propagation.
- Distributivity

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト 不得 トイヨト イヨト 三日

1. Preliminaries

Universiteit Utrecht

3

The While-language

- Simple and imperative, no procedures (yet)
- Variables: x, y, \ldots , integers only
- Statements: assignments, if, while, skip and ;
- Boolean expressions: constants true, false, boolean operators and, or, not, and relational operators <, =, ...</p>
- ► Integer expressions: 0, -1, 1, -2, 2, ... and various operators +, -, ...
- ► Labels for identification: [skip]², [(x <= 2)]³, [x := x + 1]³¹

U

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

Example program with its flow graph

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

§1

Universiteit Utrecht

Information from programs

 \triangleright [v := 1]³; [u := 1]²; if $[n \le 2]^1$ then [skip]⁴ else while $[n > 2]^8$ do $([t := u]^5; [u := v]^6; [v := u + t]^7);$ • $labels(S) = \{1, ..., 8\}, init(S) = 3 and$ $final(S) = \{8, 4\}$ ▶ $[v := 1]^3$, $[skip]^4$, ... \in blocks(S) \blacktriangleright flow(S) = $\{(3,2), (2,1), (1,4), (1,8), (8,5), (5,6), (6,7), (7,8)\}$ vs. $flow^R(S) =$ $\{(2,3), (1,2), (4,1), (8,1), (5,8), (6,5), (7,6), (8,7)\}$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

Information from programs

- > [v := 1]³; [u := 1]²; if [n <= 2]¹ then [skip]⁴ else while [n > 2]⁸ do ([t := u]⁵; [u := v]⁶; [v := u + t]⁷); > AFyn(u + v * 10) = {v * 10 u + v * 10} and
- $AExp(u + v * 10) = \{v * 10, u + v * 10\}$ and $AExp(S) = \{u + t\}.$
- $\mathbf{AExp}(e)$ does not include single variables and constants
- Program under analysis is usually denoted S_* .
- We write \mathbf{AExp}_* instead of $\mathbf{AExp}(S_*)$ and so on.

Universiteit Utrecht

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

2. Intraprocedural Analysis

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

7

Available Expression Analysis

•
$$[x := (a + b) * x]^{1};$$

 $[y := a * b]^{2};$
while $[a * b > a + b]^{3}$ do
 $([a := a + 1]^{4};$
 $[x := a + b]^{5})$

a + b is always available at 3, but a * b is not.

- For each program point, which (non-trivial) expressions must already have been computed, and not later modified, on all paths to the program point.
- ▶ Each a subset of $\textbf{AExp}_* = \{a+b, (a+b) * x, a * b, a+1\}$
- ► Associated optimization: values of available expression may be cached for use at [B]^ℓ.
- To exploit this, all paths to $[B]^{\ell}$ must make it available

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Some equations for Available Expressions

• $AE_{\rm N}(1) = \emptyset$

nothing available at start of program

•
$$AE_{\mathbf{X}}(2) = AE_{\mathbf{N}}(2) \cup \{a * b\}$$

- only the non-trivial expressions
- $AE_{\rm N}(3) = AE_{\rm X}(2) \cap AE_{\rm X}(5)$
 - only if both paths make it available

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

ξ2

Some equations for Available Expressions

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

§2

Auxiliary functions for Available Expressions

We construct the analysis by specifying for each block:

- what expressions become available $gen_{AE}(B^{\ell})$
- what expressions become unavailable $kill_{AE}(B^{\ell})$
- These we then plug into a generic transfer function, that computes the effect of executing the block on the analysis result.
- ► Together with "flow" functions that push analysis results through the flow graph, we have a complete analysis.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

§2

- ▶ What to remove for assignments: $kill_{AE}([x := a]^{\ell}) = \{a' \in \mathbf{AExp}_* \mid x \in FV(a')\}$
- ▶ What to add for assignments: $gen_{AE}([x := a]^{\ell}) = \{a' \in AExp(a) \mid x \notin FV(a')\}$
- Why $x \notin FV(a')$?
- Example:

. . .

 $[x := (a + b) * x]^{1};$ if $[(a + b) * x > a + b + 14)]^{2}$ then

It helps to have side-effect free expressions.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

For skip and conditions

▶ For the remaining blocks, we do the same.

- For skip:
 - $kill_{AE}([skip]^{\ell}) = \emptyset$
 - ▶ $gen_{AE}([skip]^{\ell}) = \emptyset$
- For conditions:
 - $kill_{AE}([\mathbf{b}]^{\ell}) = \emptyset$
 - $gen_{AE}([\mathbf{b}]^{\ell}) = \mathbf{AExp}(b)$
- We only save arithmetic expressions, not complete boolean ones.
 - Higher precision lead to higher costs.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

Analysis functions for Available Expressions

Flow functions:

$$AE_{\rm N}(\ell) = \begin{cases} \emptyset & \text{if } \ell = \texttt{init}(S_*) \\ \bigcap \{AE_{\rm X}(\ell') \mid (\ell', \ell) \in \texttt{flow}(S_*)\} & \text{otherwise} \end{cases}$$

Transfer functions:

$$AE_{\mathbf{X}}(\ell) = (AE_{\mathbf{N}}(\ell) - \textit{kill}_{AE}(B^{\ell})) \cup \textit{gen}_{AE}(B^{\ell})$$

- Flow functions do not work for programs starting with a loop. Why?
- Equations or assignments?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

ξ2

Example continued

$$\begin{array}{ll} [x := (a + b) * x]^{1};\\ [y := a * b]^{2};\\ \text{while } [a * b > a + b]^{3} \ \text{do}\\ ([a := a + 1]^{4}; \ [x := a + b]^{5}) \end{array}$$

l	$\textit{kill}_{AE}(\ell)$	$gen_{AE}(\ell)$
1	$\{(a+b)*x\}$	$\{a+b\}$
2	Ø	$\{a * b\}$
3	Ø	$\{a * b, a + b\}$
4	$\{a * b, a + b, (a + b) * x, a + 1\}$	Ø
5	$\{(a+b)*x\}$	$\{a+b\}$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・今日・

Example continued

$$\begin{array}{ll} [x := (a + b) * x]^{1};\\ [y := a * b]^{2};\\ \text{while } [a * b > a + b]^{3} \ \text{do}\\ ([a := a + 1]^{4}; \ [x := a + b]^{5}) \end{array}$$

l	$AE_{\rm N}(\ell)$	$AE_{ m X}(\ell)$
1	Ø	$(AE_{N}(1) - \{(a+b) * x\}) \cup \{a+b\}$
2	$AE_{\rm X}(1)$	$AE_{\mathrm{N}}(2) \cup \{a * b\}$
3	$AE_{\mathbf{X}}(2) \cap AE_{\mathbf{X}}(5)$	$AE_{\mathrm{N}}(3) \cup \{a * b, a + b\}$
4	$AE_{\rm X}(3)$	$AE_{N}(4) - \{a * b, a + b, (a + b) * x, a + 1\}$
5	$AE_{\rm X}(4)$	$(AE_{\rm N}(5) - \{(a+b) * x\}) \cup \{a+b\}$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Performing Chaotic Iteration

l	$AE_{\rm N}(\ell)$			$AE_{ m X}(\ell)$			
1	Ø			$(AE_{\rm N}(1) - \{(a+b) * x\}) \cup \{a+b\}$			
2	$AE_{\rm X}(1)$			$AE_{\mathrm{N}}(2) \cup \{a * b\}$			
3	$AE_{\mathbf{X}}(2) \cap AE_{\mathbf{X}}(5)$			$AE_{\mathrm{N}}(3) \cup \{a * b, a + b\}$			
4	$AE_{\rm X}(3)$			$AE_{N}(4) - \{a * b, a + b, (a + b) * x, a + 1\}$			
5	$AE_{\rm X}(4)$			$(AE_{N}(5) - \{(a+b) * x\}) \cup \{a+b\}$			
$AE_{\rm N}(1)$		$AExp_*$	Ø		Ø	Ø	
4	$AE_{\rm X}(1)$	\mathbf{AExp}_*		$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	
1	$4E_{\rm N}(2)$	\mathbf{AExp}_*		$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	
1	$4E_{\rm X}(2)$	2) AExp _* { <i>a</i>		a + b, a * b	$\{a+b, a*b\}$	$\{a+b, a*b\}$	
1	$AE_{ m N}(3) \mid AExp_* \mid \{a\}$		a + b, a * b	$\{a+b\}$	$\{a+b\}$		
4	$AE_{\mathrm{X}}(3) \mid AExp_{*} \mid \{a\}$		a + b, a * b	$\{a+b, a*b\}$	$\{a+b, a*b\}$		
4	$4E_{\rm N}(4)$	\mathbf{AExp}_*	{ <i>a</i>	a + b, a * b	$\{a+b, a*b\}$	$\{a+b, a*b\}$	
4	$AE_{\rm X}(4)$	\mathbf{AExp}_*		Ø	Ø	Ø	
1	$4E_{\rm N}(5)$	AExp _*		Ø	Ø	Ø	
1	$AE_{\rm X}(5)$	$AExp_*$		$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	

[Faculty of Science Information and Computing Sciences]

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

15

A more mathematical formulation

- For every program point ℓ , we have a finite set $AE_N(\ell)$ and $AE_X(\ell)$.
- Total analysis information for the program is a tuple containing all these sets:

$$\overrightarrow{\mathsf{AE}} = (AE_{\mathrm{N}}(1), AE_{\mathrm{X}}(1), \dots, AE_{\mathrm{N}}(5), AE_{\mathrm{X}}(5))$$

Initialization:

$$\stackrel{\longrightarrow}{\mathsf{AE}}=(\mathbf{AExp}_*,\mathbf{AExp}_*,\ldots,\mathbf{AExp}_*,\mathbf{AExp}_*)$$

• Why not at
$$\overrightarrow{AE} = (\emptyset, \dots, \emptyset)$$
?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

ξ2

A single "parallel" transfer function

- ► Equations implicitly define separate transformations on AE: $F_{entry}(3)(..., AE_X(2), ..., AE_X(5)) = AE_X(2) \cap AE_X(5)$ $F_{exit}(3)(..., AE_N(3), ...) = AE_N(3) \cup \{a * b, a + b\}$
- ► Together give a transformation function *F*, applying the separate transformations elementwise.
- ▶ F maps column to column in every single iteration.
 - Not as greedy as Chaotic Iteration

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

§2

- We iterate F, by computing initialize(AE); while (AE != F(AE)) do AE = F(AE); output solution AE;
- A fixpoint (or fixed point) of F is an X so that F(X) = X.
 The fixpoint AE satisfies the equations: F(AE) = AE.
- Moreover, going on does not help: $F(F(\overrightarrow{AE})) = \overrightarrow{AE}$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

Intuitive reading

- ▶ We start from our most favourite, most informative answer.
- Iterating makes the values less informative, but also more consistent with the equations.
- ▶ We repeat until it is consistent.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

(日)(同)(日)(日)(日)(日)

Termination

Does the iteration ever end?

- ► No cyclic behaviour: sets in AE can only shrink.
- Solutions can not shrink indefinitely:
 - bounded by Ø from below, and
 - AExp_{*} is finite to begin with.
- The transfer functions themselves terminate
- Together: computation of a fixed point terminates.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Best possible solution

- The solution is a least fixed point: no avoidable information is included.
- That is, no avoidable information according to the equations.
 - Imprecision comes from imprecision in the equations, not their solution.
- Although F changes all sets in parallel, the separate sets may also be transformed non-deterministically in any order.
- The latter is in fact done when using Chaotic Iteration.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Avoid cyclic behaviour: monotonocity

- Iterating makes the solution less useful.
- $X \sqsubseteq Y$ means that X is at least as useful as Y
 - With AE, $\{a+b, a*b\} \subseteq \{a+b\}$
- Being less useful should not be an asset: transfer functions must be monotone
- ► *F* is monotone if $\overrightarrow{\mathsf{AE}} \sqsubseteq \overrightarrow{\mathsf{AE'}}$ implies $F(\overrightarrow{\mathsf{AE}}) \sqsubseteq F(\overrightarrow{\mathsf{AE'}})$
- Monotonocity does not mean that $\overrightarrow{\mathsf{AE}} \sqsubseteq F(\overrightarrow{\mathsf{AE}})$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

ξ2

Verify that analysis functions are monotone!

- Usually done by verifying that the separate transformations, like F_{entry}(3), are monotone.
- With AE, \sqsubseteq is in fact \supseteq

• For $F_{entry}(3)$:

 $AE_{\mathrm{X}}(2) \supseteq AE'_{\mathrm{X}}(2)$ and $AE_{\mathrm{X}}(5) \supseteq AE'_{\mathrm{X}}(5)$

implies $AE_{\rm X}(2) \cap AE_{\rm X}(5) \supseteq AE'_{\rm X}(2) \cap AE'_{\rm X}(5) \ .$

▶ If separate transformations are monotone, then so is *F*.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

§2

AE is a forward analysis

$$AE_{\mathrm{N}}(\ell) = \left\{ \begin{array}{ll} \emptyset & \text{if } \ell = \mathtt{init}(S_*) \\ \bigcap \{AE_{\mathrm{X}}(\ell') \mid (\ell', \ell) \in \mathtt{flow}(S_*)\} & \text{otherwise} \end{array} \right.$$

- Analysis information flows in the direction of program execution.
- Starting from the beginning of the program.
- In the formulas: we use flow rather than $flow^R$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミ * * ミ * う * の < や

AE is a must analysis

```
\begin{array}{ll} [z := x + y]^1; \\ \text{while } [\texttt{true}]^2 \ \text{do} \\ [\texttt{skip}]^3 \end{array}
```

Writing down the equations, and substituting, you get

$$AE_{\mathcal{N}}(2) = \{x+y\} \cap AE_{\mathcal{N}}(2)$$

- Fixpoints not unique: \emptyset and $\{x + y\}$ are both okay.
- ► Most informative solution is {x + y}, so we choose that one.
- Must analysis: use \cap not \cup in the flow equations.
 - All execution paths must make the expressions available.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミ * * ミ * う * の < や

Live Variables Analysis

- ▶ [x := 2]¹; [y := 4]²; [x := 1]³; (if [B]⁴ then [z := y]⁵ else [z := x*x]⁶); [x := z]⁷;
- Variable x is not live at the exit of 1
- It is live at the exit of 3,
 - unless we know that [B]⁴ is never false.
- Assignments to dead variables is dead code and might be removed
- In contrast with AE, LV is a backward analysis

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Transfer functions for Live Variables Analysis §2

$$LV_{\mathbf{X}}(\ell) = \begin{cases} \mathbf{V} & \text{if } \ell \in \texttt{final}(S_*) \\ \bigcup \{LV_{\mathbf{N}}(\ell') \mid (\ell', \ell) \in \texttt{flow}^R(S_*)\} & \text{otherwise} \end{cases}$$
$$LV_{\mathbf{N}}(\ell) = (LV_{\mathbf{X}}(\ell) - \textit{kill}_{LV}(B^\ell)) \cup \textit{gen}_{LV}(B^\ell)$$

Note: V denotes the initial set of variables of interest.

$$\begin{aligned} & \text{kill}_{LV}([\mathbf{x} := \mathbf{a}]^{\ell}) &= \{x\} \\ & \text{kill}_{LV}([\texttt{skip}]^{\ell}) &= \emptyset \\ & \text{kill}_{LV}([\mathbf{b}]^{\ell}) &= \emptyset \\ & \text{gen}_{LV}([\mathbf{x} := \mathbf{a}]^{\ell}) &= FV(a) \\ & \text{gen}_{LV}([\texttt{skip}]^{\ell}) &= \emptyset \\ & \text{gen}_{LV}([\texttt{skip}]^{\ell}) &= FV(b) \\ & \text{Information and Computing Sciences} \end{aligned}$$

(日)

Universiteit Utrecht

An example

$[y := x]^1;$	ℓ	$\textit{kill}_{LV}(\ell)$	$gen_{LV}(\ell)$
$[z := 1]^2;$	1	$\{y\}$	$\{x\}$
while $[x>1]^3$ do	2	$\{z\}$	Ø
$([z := z * x]^4;$	3	Ø	$\{x\}$
$[x := x - 1]^5$;	4	$\{z\}$	$\{z, x\}$
$[x := 0]^6$	5	$\{x\}$	$\{x\}$
	6	$\{x\}$	Ø

ℓ	$LV_{ m X}(\ell)$	$LV_{ m N}(\ell)$
1	$LV_{\rm N}(2)$	$(LV_{X}(1) - \{y\}) \cup \{x\}$
2	$LV_{ m N}(3)$	$LV_{\rm X}(2) - \{z\}$
3	$LV_{\rm N}(4) \cup LV_{\rm N}(6)$	$LV_{\mathbf{X}}(3) \cup \{x\}$
4	$LV_{\rm N}(5)$	$(LV_{X}(4) - \{z\}) \cup \{z, x\}$
5	$LV_{ m N}(3)$	$(LV_{\mathbf{X}}(5) - \{x\}) \cup \{x\}$
6	$\{z\}$	$LV_{\rm X}(6) - \{x\}$

[Faculty of Science Information and Computing Sciences]

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

A few computations for Live Variables

 $[y := x]^1;$ $[z := 1]^2;$ while $[x>1]^3$ do $([z := z * x]^4;$ $[x := x - 1]^5);$ $[x := 0]^6$

- Variable of interest: z
- Conclusion: y is not live anywhere so assignment 1 is dead code.

$LV_{\rm X}(6)$	Ø	$\{z\}$	$\{z\}$
$LV_{\rm N}(6)$	Ø	$\{z\}$	$\{z\}$
$LV_{\rm X}(5)$	Ø	Ø	$\{x, z\}$
$LV_{\rm N}(5)$	Ø	$\{x\}$	$\{x, z\}$
$LV_{\rm X}(4)$	Ø	$\{x\}$	$\{x, z\}$
$LV_{\rm N}(4)$	Ø	$\{x, z\}$	$\{x, z\}$
$LV_{\rm X}(3)$	Ø	$\{x, z\}$	$\{x, z\}$
$LV_{\rm N}(3)$	Ø	$\{x, z\}$	$\{x, z\}$
$LV_{\rm X}(2)$	Ø	$\{x, z\}$	$\{x, z\}$
$LV_{\rm N}(2)$	Ø	$\{x\}$	$\{x\}$
$LV_{\rm X}(1)$	Ø	$\{x\}$	$\{x\}$
$LV_{\rm N}(1)$	Ø	$\{x\}$	$\{x\}$

§2

*ロト * 得 * * ミ * * ミ * う * の < や

Live Variables Analysis is a backward analysis §2

Backward analysis:

- Variables used in an assignment are live before the assignment.
- Variables assigned to are not live before the assignment (except when also used)
- Analysis information moves contrary to execution direction.
- Speed up iteration by starting at program's end.
- If we are not interested in any variable at the end, which variables are then live?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

The smaller the better

Consider while [x>1]¹ do [skip]²; [y := x + 1]³

- Substition gives $LV_X(1) = LV_X(1) \cup \{x\}.$
- Two safe solutions are $\{x, y\}$ and $\{x\}$.
- ► The more variables dead (not live), the more we can optimize: we choose {*x*}.
- Hence, we start small and grow out sets, by using \cup (may).

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミ * * ミ * う * の < や

3. Monotone Frameworks

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

32

Monotone Frameworks

► A framework that generalizes the example analyses

- Making them instances
- Identify the commonalities, parameterize by the differences
- Advantages:
 - generic algorithms,
 - generic proof methods for soundness, and
 - less ad-hoc tends to provide better understanding.
- Disadvantage:
 - mathematically more challenging
 - algorithms cannot take advantage of special properties of any specific analysis.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本
From entry and exit to context and effect

- Thus far, we had an entry and exit set for each label/program point.
- Now, for each label ℓ we shall have
 - ► Analysis_o(ℓ) or the context value: values come from the context of [B]^ℓ
 - ▶ Analysis_•(ℓ) or effect value: it shows the effect of $[B]^{\ell}$ on Analysis_•(ℓ)
- ► Analysis_●(ℓ) is defined in terms of Analysis_○(ℓ), and
- ► Analysis_o(ℓ) is defined in terms of the Analysis_● values of other blocks.
- ▶ For LV, the context values are the exit sets (backward).
- ▶ For AE, the context values are the entry sets (forward).

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

The formula for Analysis (ℓ)

- Recall: these describe the effect of the blocks.
- ► The generic transfer functions:

 $\mathsf{Analysis}_{\bullet}(\ell) = f_{\ell}(\mathsf{Analysis}_{\circ}(\ell))$

- f_{ℓ} is the transfer function for $[B]^{\ell}$.
- Note: transfer functions can be given per block.
- Thus far, we have specified them uniformly for each language construct.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

The formula for Analysis $_{\circ}(\ell)$

$$\mathsf{Analysis}_{\circ}(\ell) = \left\{ \begin{array}{ll} \iota & \text{if } \ell \in E \\ \bigsqcup \{\mathsf{Analysis}_{\bullet}(\ell') \mid (\ell', \ell) \in F \} & \text{otherwise} \end{array} \right.$$

- ▶ Combination operator \sqcup is \bigcap (for *must*) or \bigcup (for *may*)
- F is either flow(S_{*}) (forward) or its reverse flow^R(S_{*}) (backward).
- ► E is the set of extremal labels, e.g. {init(S*)} or final(S*)
- ι is the extremal value for the extremal labels
- ▶ 4 combinations: backward vs. forward and must vs. may.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

What is wrong with Analysis_{\circ}(ℓ)?

▶ Formula is not correct when $\exists (\ell', \ell) \in F$ with $\ell \in E$.

- Forward analysis of a program starting with a while loop
- Backward analysis of a program ending in a while loop
- Consider LV analysis for while [x > 1]¹ do [x := x-1]²
- We want

$$\mathsf{Analysis}_{\circ}(1) = \mathsf{Analysis}_{\bullet}(2) \cup V$$

and not simply

 $\mathsf{Analysis}_\circ(1) = V$.

Workaround: start program with skip and end it with skip.

[Faculty of Science Information and Computing Sciences]

Fixing the formula for Analysis $_{\circ}(\ell)$

 \blacktriangleright Or, the formula for Analysis $_{\circ}(\ell)$ should read

$$\mathsf{Analysis}_{\circ}(\ell) = \bigsqcup\{\mathsf{Analysis}_{\bullet}(\ell') \mid (\ell', \ell) \in F\} \sqcup \iota_E^{\ell}$$

where

$$\iota_E^\ell = \left\{ \begin{array}{ll} \iota & \text{if } \ell \in E \\ \bot & \text{if } \ell \notin E \end{array} \right.$$

- ▶ Here, \perp (pronounced "bottom") is the zero of \sqcup .
 - For all $a: a \sqcup \bot = a$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミ * * ミ * う * の < や

§3

Example Available Expressions

► $[x := (a + b) * x]^{1};$ $[y := a * b]^{2};$ while $[a * b > a + b]^{3}$ do $([a := a + 1]^{4};$ $[x := a + b]^{5})$

In this case:

 $L = \bigcap_{F = \{(1,2), (2,3), (3,4), (4,5), (5,3)\}}$

$$\blacktriangleright E = \{1\}$$

$$\blacktriangleright \iota = \emptyset$$

- $\bot = \mathsf{AExp}_*$ (because $x \cap \mathsf{AExp}_* = x$)
- Transfer functions f_{ℓ} will have to wait a bit.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

Interlude

First, we consider the datatypes for Analysis $_\circ$ and Analysis $_\bullet$: complete lattices satisfying the Ascending Chain Condition.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

ξ3

- Declarative, constraint-based specification of static analysis:
 - specifies all admissible/sound solutions.
- Algorithmically: find the best solution in finite time.
- Best solution is a so-called least fixed point of a function that can be derived from this set of constraints.
- In the interest of definedness and termination, this is a monotone function computed on a (complete) lattice that satisfies the Ascending Chain Condition.
- Come back to read these statements at a later time.

Fixed points

[Faculty of Science Information and Computing Sciences]

・ロット (雪)・ (ヨ)・ (ヨ)・

Example

- ▶ while [n < 10]¹ do if [n >= 5]² then [n := 2*n]³ else [n := n + 1]⁴;
- ► Sign analysis: For each variable compute the signs it may have at/before each program point (-, +, 0).
- For simplicity, we consider only the variable n.
- Example constraints that influence analysis result A[1]: $\{0\} \subseteq A[1],$ $A[3] \subseteq A[1],$ $A[4] \subseteq A[1].$

Universiteit Utrecht

A more operational view

- ▶ Constraints: $\{0\} \subseteq A[1], A[3] \subseteq A[1], A[4] \subseteq A[1].$
- ► Alternate view: A[1] is a function f₁ of A[3] and A[4]. When they change, A[1] may also need an update.
- In this case, $f_1(A) = A[3] \cup A[4] \cup \{0\}$.
- ► A system of constraints leads to a function F that maps A to a new, updated A, hopefully closer to the solution.
- Iterate until a fixed point F(A) = A is reached.
- F must be monotone: larger inputs do not lead to smaller outputs.
- When can we be sure it stops, and is the answer any good?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Essential ingredients: joins and termination

- During program analysis:
 - we need need to "join" information from various execution paths.
 - The condition of a while can be reached from at least two places.
 - We can typically identify a best possible and a worst possible value.
- Lattices encapsulate what we need.
- Iteration should terminate in finite number of iterations.
- Guaranteed if function is monotone and lattice satisfies Ascending Chain Condition.
- At termination, we have the best possible (least) fixed point.
 - In the example, smallest possible sets of signs

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミ * * ミ * う * の < や

ξ3

Introductory example

- Take a set of values, say $\{\perp, -, 0, +, \leq 0, \geq 0, \top\}$.
 - Approximate sets of integers by means of signs
- ▶ \perp (pron. bottom) represents {} (or \emptyset).
- \blacktriangleright \top (pron. top) represents the set of all integers
- Various relations hold:
 - ▶ 0 is more precise than ≤ 0 , but also more precise than ≥ 0
 - \blacktriangleright \perp is more precise than everyhing
 - \blacktriangleright < 0 and > 0 are not comparable
- Represent relations visually in Hasse diagram:

Faculty of Science Information and Computing Sciences

Partial orders

- A binary relation \sqsubseteq on (L, L) (or $L \times L$) is given.
- ▶ For simplicity, instead of $(x, y) \in \sqsubseteq$ we write $x \sqsubseteq y$.
- The relation \sqsubseteq is a partial order if it is
 - reflexive: for all $x \in L$, $x \sqsubseteq x$
 - ▶ transitive: for all $x, y, z \in L$, if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$
 - anti-symmetric: if $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y.
- Examples:
 - "(type t') is an instance of (type t)" is a partial order
 - \blacktriangleright \leq and \geq are partial orders on the natural numbers N, and so is =.
- Partial order P conventionally drawn as a Hasse diagram:

ξ3

46

Lattices

- If for all x, y ∈ L, it holds that there exists a smallest z ∈ L with x ⊑ z and y ⊑ z, then the partial order is called a lattice (tralie in Dutch).
- If z exists, then it is unique and denoted x ⊔ y (the join of x and y).
- Similarly for the greatest lower bound x □ y, the meet of x and y.
- ▶ Reason: we want ⊔ and □ to be total binary functions, i.e., operators.
- Duality: reversing all edges in the lattice gives another lattice.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Example lattices

- ▶ (**N**,=) is not a lattice: $x \sqcup y$ is undefined for all $x \neq y$.
- \mathcal{T} is a lattice, because of specially added error type:
 - Int \sqcup Int \rightarrow Int $= \top$.
- \blacktriangleright (N, $\leq)$ and (N, $\geq)$ are (dual) lattices.
- ▶ The partial order *P* is not a lattice.

[Faculty of Science Information and Computing Sciences]

Complete lattices

- Consider a subset $X = \{x_1, x_2, \ldots\}$ of the lattice L.
- ► Then $\bigsqcup X$ is well-defined for finite non-empty X: $x_1 \sqcup (x_2 \sqcup (\dots x_n) \dots)).$
- What about the infinite or empty X's?
- ▶ In a complete lattice, $\bigsqcup X$ is defined and unique for all $X \subseteq L$.
- $\bigsqcup \emptyset = \bot$ and $\bigsqcup L = \top$.
- Is every finite lattice complete?
- No, complete lattices must have a bottom and top element.
- But a finite lattice with a bottom is complete.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Examples

- ▶ Subsets of $S = \{0, 1, 2\}$ form a complete lattice (\sqsubseteq is \subseteq). Then \sqcup equals \cup , and \emptyset is smallest and S largest element.
- ▶ Dually, (S, \supseteq) is also one: \sqcup equals \cap , $\bot = S$, $\top = \emptyset$.
- ▶ (\mathbf{N}, \leq) is a lattice, but has no \top . Here, $x \sqcup y = \max(x, y)$.
- ▶ $(\mathcal{P}(\mathbf{N}), \subseteq)$ with \emptyset as bottom, **N** as top. Here $\sqcup = \cup$.
 - An infinite complete lattice
- ▶ $L = \{\perp, -, 0, +, \leq 0, \geq 0, \top\}$ for sign testing

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

An aside: computational aspects

- How to define lattices or complete lattices in Haskell?
- Preferably, like Eq and Ord, as a type class.
- Preferably most definitions have a default implementation.
- Enforcing algebraic laws is difficult (within the type system).
- ▶ □ and □ are associative, commutative binary operators.
- Relation: $x \sqsubseteq y$ if and only if $x \sqcup y = y$.
- Defining \sqcup in terms of \sqsubseteq implies a search of some kind.
- Other way around is direct.
- Provide the lattice with bottom and top element (implicit or explicit).
- Different lattices can be made on the same underlying set!

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

The ascending chain condition (ACC)

- Necessary to assure needing only a finite number of iterations during fixed point computation.
- ► Every chain x₀ ⊑ x₁ ⊑ ... in the lattice stabilizes: there is an n where x_n = x_{n+1}.
 - We can only go up a finite number of times
- For finite lattices: ACC trivially satisfied
- ACC holds for (\mathbf{N}, \geq) : top is 0.
- ► A lattice with ACC and a bottom element is complete.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

The descending chain condition (DCC)

- Descending Chain Condition is the dual.
- Ascending vs. Descending Chain Condition: turn the lattice around.
- (\mathbf{Z}, \leq) has neither ACC or DCC.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト 不得 トイヨト イヨト 三日

§3

Termination of fixpoint algorithm, formally

▶ $X = \bot$; while (X! = F(X)) do X = F(X);

where

- ► X has datatype T,
- T forms a lattice with bottom element \perp ,
- T has Ascending Chain Condition, and
- $F: T \to T$ monotone.
- Thm: least fixed point found in finite time.
- Proof by induction.
- ▶ Base case: by definition $\bot = F^0(\bot) \sqsubseteq F(\bot)$,
- ► Inductive case: by monotonicity $F^{n-1}(\bot) \sqsubseteq F^n(\bot)$ implies $F^n(\bot) \sqsubseteq F^{n+1}(\bot)$
- ACC now implies, the chain $\bot \sqsubseteq F(\bot) \sqsubseteq F^2(\bot) \dots$

stabilizes. Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Solution is the least fixed point

▶ $X = \bot$; while (X! = F(X)) do X = F(X);

where

- ► X has datatype T,
- T forms a lattice with bottom element \perp ,
- T has Ascending Chain Condition, and
- $F: T \to T$ monotone.
- Let S be another fixed point of F: F(S) = S
- Prove $F^n(\perp) \sqsubseteq S$ for all n, by induction.
- ▶ Base case: by definition $\bot = F^0(\bot) \sqsubseteq S$
- Inductive case: assume Fⁿ(⊥) ⊑ S. Then Fⁿ⁺¹(⊥) = F(Fⁿ(⊥)) ⊑ F(S) = S, because F is monotone.

Universiteit Utrecht

Interlude

End of interlude.

Universiteit Utrecht

Property spaces: the data type of the analysis §3

- Values for Analysis_o and Analysis_o taken from the MF's property space L.
- Choosing a complete lattice for L provides us with
 - ► a join operator ⊔ to combine multiple values into a single one consistent with both.
 - for converging execution paths
 - It provides the most precise value with that property.
- ACC ensures termination of fixed point computation
- Least element \perp can be used to initialize the computation
 - Intuitively, \perp represents *most informative* element of L
- ► Greatest element ⊤ (usually) means no useful or inconsistent information

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Examples LV

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

- Live Variables (for program S_*):
 - $L = \mathcal{P}(\mathbf{Var}_*)$, finite sets of variables,
 - for $x, y \in L$: $x \sqsubseteq y$ if and only if $x \subseteq y$,
 - ▶ 凵 = ∪,
 - $\bot = \emptyset$ and $\top = Var_*$.
- ► Why not L = P(Var) so that it is the same for all programs?
 - To get a finite lattice and thus automatically ACC.
 - ACC is sufficient, but not necessary: only variables in Var_{*} will be added.

58

Example AE

- $L = \mathcal{P}(\mathbf{AExp}_*)$, non-trivial subexpressions of S_* ,
- for $x, y \in L$: $x \sqsubseteq y$ if and only if $x \supseteq y$,
- ▶ $\square = \cap$,
- $\bot = \mathbf{AExp}_*$ and $\top = \emptyset$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Transfer functions: the dynamics of the analysis §3

► Start with a collection *F* of *monotone* functions on the property space *L*:

 $\mathcal{F} \subseteq \{f \mid f: L \rightarrow L \text{ and } f \text{ monotone } \}$.

• Recall: a function f is monotone if

 $x \sqsubseteq y \text{ implies } f(x) \sqsubseteq f(y)$.

- ▶ $id \in \mathcal{F}$ (for the empty sequence of statements (and skip))
- ► *F* closed under function composition ∘ (for the sequencing of statements)

U

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Transfer functions: the dynamics of the analysis §3

► Start with a collection *F* of *monotone* functions on the property space *L*:

 $\mathcal{F} \subseteq \{f \mid f: L \rightarrow L \text{ and } f \text{ monotone } \}$.

• Recall: a function f is monotone if

 $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$.

- ▶ $id \in \mathcal{F}$ (for the empty sequence of statements (and skip))
- ► *F* closed under function composition ∘ (for the sequencing of statements)
- For a given program and analysis, we specify for each label a transfer function $f_{\ell}: L \to L$, all from \mathcal{F} .

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Finally, monotone frameworks

- A Monotone Framework consists of a property space L and a set F of monotone functions, as well as
 - the flow F of the program
 - \blacktriangleright the extremal labels E
 - \blacktriangleright an extremal value $\iota \in L$
 - \blacktriangleright a mapping f_{\cdot} from the labels \mathbf{Lab}_{*} to functions in $\mathcal F$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Example Available Expressions continued

►
$$[x := (a + b) * x]^{1};$$

 $[y := a * b]^{2};$
while $[a * b > a + b]^{3}$ do
 $([a := a + 1]^{4};$
 $[x := a + b]^{5})$

▶ $(L, \sqsubseteq) = (\mathcal{P}(\mathsf{AExp}_*), \supseteq)$ as earlier.

•
$$F = flow_* = \{(1,2), (2,3), (3,4), (4,5), (5,3)\},\$$

•
$$E = \{ \texttt{init}(S_*) \} = \{ 1 \}$$

 $\blacktriangleright \ \iota = \emptyset$

- ▶ The function space \mathcal{F} could be all functions of the form $\{f: L \to L \mid \exists l_k, l_g: f(l) = (l l_k) \cup l_g\}.$
 - All functions that first remove and then add

▶
$$f_{\ell}(l) = (l - kill_{AE}([B]^{\ell})) \cup gen_{AE}([B]^{\ell})$$
 where $[B]^{\ell} \in blocks(S_*)$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミ * * ミ * う * の < や

ξ3

Available Expressions is a Monotone Framework §3

▶ Recall $\mathcal{F} = \{f : L \to L \mid \exists l_k, l_g : f(l) = (l - l_k) \cup l_g\}$ and \sqsubseteq equals \supseteq .

• Identity function exists in \mathcal{F} : take $l_k = l_g = \emptyset$.

F is closed under composition: let $f(\ell) = (l - l_k) \cup l_g, f'(\ell) = (l - l'_k) \cup l'_g \in \mathcal{F}.$ $(f \circ f')(l) = f(f'(l)) = (((l - l'_k) \cup l'_g) - l_k) \cup l_g =$ $(l - (l'_k \cup l_k)) \cup ((l'_g - l_k) \cup l_g)$

▶ Thus, kill set for $f \circ f'$ is $l'_k \cup l_k$ and gen set is $(l'_g - l_k) \cup l_g$.

▶ Monotonicity of $f \in \mathcal{F}$: let $l \supseteq l'$. Then $l - l_k \supseteq l' - l_k$ and finally $(l - l_k) \cup l_g \supseteq (l' - l_k) \cup l_g$

Unive

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Reflections on burden of proof

- ► Proof also works when ⊑=⊆: other three analyses are also Monotone Frameworks.
- We exploit similarities in the set \mathcal{F} of transfer functions.
 - \blacktriangleright All analyses choose their transfer functions from ${\cal F}.$
 - Easily seen because it is a syntactic property of the functions.
 - One proof works for all.
- Another advantage: each function can be represented by two sets.
- ► Starting with *F* as the set of all monotone functions only moves the burden, and does not allow reuse.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

Distributivity

- ► Consider analysis info l₁ and l₂ for two executions leading up to a block
- Two ways to proceed:
 - join before transfer: $f(\ell_1 \sqcup \ell_2)$ (MFP)
 - ▶ join after transfers: $f(\ell_1) \sqcup f(\ell_2)$ (MOP)
- By monotonicity $f(\ell_1) \sqcup f(\ell_2) \sqsubseteq f(\ell_1 \sqcup \ell_2)$
 - So the second possibility is never worse than the first
- ▶ If *f* is distributive then both ways are equivalent:

 $f(\ell_1 \sqcup \ell_2) \sqsubseteq f(\ell_1) \sqcup f(\ell_2).$

- In distributive frameworks doing a join before the transfer does not lose information
- ▶ Verify that AE is distributive: $f(l \cap l') = f(l) \cap f(l')$
- Distributivity is good: faster algorithms, higher precision.
- ► Not all monotone frameworks are distributive.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

4. Constant propagation

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

66

Constant Propagation

ξ4

- Constant Propagation: Determine at each program point and for each variable whether the variable always has the same value there.
- ▶ We are not interested to see which variables never change
 - Although we shall find that out too
- For every variable we either know
 - the single integer value it can have at that point
 - \blacktriangleright a special \top value signifying its value is not always the same at that point

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト 不得 トイヨト イヨト 三日

Some examples

• $[y := 2]^2; [z := 1]^3;$ while $[x>0]^4$ do $([z := z * y]^5; [x := x - 1]^6);$ • Analysis $(3) = [x \mapsto \top, y \mapsto 2, z \mapsto 1]$ and Analysis $(4) = [x \mapsto \top, y \mapsto 2, z \mapsto \top]$ • $[x := 8]^1$; $[y := 2]^2$; $[z := 1]^3$; while $[x>0]^4$ do $([z := z * y]^5; [x := x - 1]^6);$ • Analysis $(3) = [x \mapsto 8, y \mapsto 2, z \mapsto 1]$ and Analysis $(4) = [x \mapsto \top, y \mapsto 2, z \mapsto \top]$ \triangleright [x := 8]¹; [z := 1]³; while $[x>0]^4$ do $([z := z * y]^5; [x := x - 1]^6);$ We cannot know what values y might take so now Analysis $(3) = [x \mapsto 8, y \mapsto \top, z \mapsto 1]$ and Analysis $(4) = \lambda v. \top$

 Universiteit Utrecht [Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や
The Constant Propagation lattice

ξ4

- ► The property space L is the complete lattice of total functions from Var_{*} to Z^T.
- ► Our total functions can be interpreted as finite sets of pairs Var_{*} × Z^T where every variable occurs exactly once.
- Add a special element for the always undefined function \perp .
- The ordering \sqsubseteq is elementwise for all $\widehat{\sigma}, \widehat{\sigma}' \in L$:
 - $\bot \sqsubseteq \widehat{\sigma}$, and
 - $\widehat{\sigma} \sqsubseteq \widehat{\sigma}'$ if and only if for all $x \in \mathbf{Var}_* : \widehat{\sigma}(x) \sqsubseteq \widehat{\sigma}'(x)$

► \mathcal{F}_{CP} contains all monotone functions of the correct type. [Faculty of Science Universiteit Utrecht Information and Computing Sciences]

The transfer functions (different from NNH)

For the three types of statement

$$\begin{split} [\mathbf{x} \ := \ \mathbf{a}]^{\boldsymbol{\ell}} : \quad f_{\ell}^{CP}(\widehat{\sigma}) = \left\{ \begin{array}{ll} \bot & \text{if } \widehat{\sigma} = \bot \\ \widehat{\sigma}[x \mapsto \mathcal{A}_{CP}[\![a]\!] \widehat{\sigma}] & \text{otherwise} \end{array} \right. \\ \\ [\mathbf{skip}]^{\boldsymbol{\ell}} : \qquad f_{\ell}^{CP}(\widehat{\sigma}) = \widehat{\sigma} \\ [\mathbf{b}]^{\boldsymbol{\ell}} : \qquad f_{\ell}^{CP}(\widehat{\sigma}) = \widehat{\sigma} \end{split}$$

where we use the function $\mathcal{A}_{CP} : \mathbf{AExp} \to (\mathbf{Var}_* \to \mathbf{Z}^{\top}) \to \mathbf{Z}^{\top}$ for evaluation

$$\begin{aligned} \mathcal{A}_{CP}[\![n]\!]\widehat{\sigma} &= n \\ \mathcal{A}_{CP}[\![x]\!]\widehat{\sigma} &= \widehat{\sigma}(x) \\ \mathcal{A}_{CP}[\![a_1 \text{ op}_a a_2]\!]\widehat{\sigma} &= \mathcal{A}_{CP}[\![a_1]\!]\widehat{\sigma} \ \widehat{\text{ op}_a} \ \mathcal{A}_{CP}[\![a_2]\!]\widehat{\sigma} \end{aligned}$$

and it is understood that $x \ \widehat{\mathsf{op}_a} \ y = \begin{cases} x \ \mathsf{op}_a \ y & \text{if } x, y \in \mathbf{Z} \\ \top & \text{otherwise}_{\text{|Faculty of Science}} \end{cases}$

Universiteit Utrecht

Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

ξ4

Constant Propagation Analysis example

▶ Initial statement has $\iota = \lambda v. \top$: the only safe answer

▶ The effect $f_2^{CP}(\iota) = [y \mapsto 2, z \mapsto \top, x \mapsto \top]$

 $\blacktriangleright \ f_5^{CP}([y\mapsto 2,z\mapsto 1,x\mapsto \top]) = [y\mapsto 2,z\mapsto 2,x\mapsto \top]$

- ► The join operator ⊔ proceeds elementwise:
- ▶ At first: Analysis₀(4) = [$y \mapsto 2, z \mapsto 1, x \mapsto \top$]
- ▶ Later: Analysis_o(4) = [$y \mapsto 2, z \mapsto \top, x \mapsto \top$], because $z \mapsto 1$ in Analysis_•(3) and $z \mapsto 2$ in Analysis_•(6).
 - Joining two different values for a variable leads to \top .

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

δ4

71

Remarks about Constant Propagation

- Forward analysis
- I use less robust, but simpler notation
- Proof of being a monotone framework is an exercise. Prove that
 - the identity function is an element of \mathcal{F}_{CP}
 - \mathcal{F}_{CP} is closed under composition
 - all transfer functions we use are in \mathcal{F}_{CP}

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

ξ4

Constant Propagation is not distributive

▶ Recall distributive: $f(\ell_1 \sqcup \ell_2) \sqsubseteq f(\ell_1) \sqcup f(\ell_2)$.

- Let $[\mathbf{y} := \mathbf{x} * \mathbf{x}]^{\ell}$, $\widehat{\sigma}_1(x) = 1$ and $\widehat{\sigma}_2(x) = -1$.
- Joining before transfer:

$$(\widehat{\sigma}_1 \sqcup \widehat{\sigma}_2)(x) = 1 \sqcup -1 = \top$$

Therefore,

$$f_{\ell}^{CP}(\widehat{\sigma}_1 \sqcup \widehat{\sigma}_2)(y) = \top$$
.

Postponing the join of arguments:

$$f_{\ell}^{CP}(\widehat{\sigma}_1)(y) \sqcup f_{\ell}^{CP}(\widehat{\sigma}_2)(y) = 1 \sqcup 1 = 1$$

• Indeed, $\top \not\sqsubseteq 1$ so CP is not distributive.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・西ト・ヨト・日・ つくぐ

Roadmap

- Monotone frameworks have been defined and illustrated.
- But how to compute an analysis result for a monotone framework?
- Algorithm MFP computes the least fixpoint.
- We want to know how precise the result can be.
- What is the best possible solution we may ever obtain?
 - ▶ This is the Meet Over all Paths (MOP) solution.
- MFP is a sound approximation of MOP: MOP \sqsubseteq MFP.
- ► For distributive frameworks, however, MOP = MFP.

ξ4

5. Solving a monotone framework

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

75

The Meet/Merge Over all Paths (MOP) solution §5

- ► A complete execution is a path through the control-flow graph *F* from initial to (some) final label.
- What is an execution?
 - A path from the initial label to any label in the program
- ► Consider for a particular label ℓ : path_o(ℓ) = {[$\ell_1, \dots, \ell_{n-1}$] | $n \ge 1, \forall i < n : (\ell_i, \ell_{i+1}) \in F, \ell = \ell_n, \ell_1 \in E$ }

• The analysis function for one such path, $p = [\ell_1, \ldots, \ell_m]$:

$$f_p = f_{\ell_m} \circ \ldots \circ f_{\ell_1} \circ id$$

- ▶ Applying the function to the extremal value *ι* gives the analysis result for *p*.
- Be consistent with all possible executions leading to ℓ :

$$\mathsf{MOP}_{\circ}(\ell) = \bigsqcup\{ f_p(\iota) \mid p \in \mathsf{path}_{\circ}(\ell) \}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

And similarly...

- ► For paths ending after the transfer function for block ℓ : path_•(ℓ) = {[ℓ_1, \ldots, ℓ_n] | $n \ge 1$, $\forall i < n : (\ell_i, \ell_{i+1}) \in F, \ell = \ell_n, \ell_1 \in E$ }
- The join over these paths is then

$$\mathsf{MOP}_{\bullet}(\ell) = \bigsqcup\{f_p(\iota) \mid p \in \mathsf{path}_{\bullet}(\ell)\}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

▲□▶▲□▶▲□▶▲□▶ □ のへで

MOP is undecidable

- Without proof.
- Intuition: joining over an infinite number of execution paths: when do you stop?
- ► For some analyses, MOP is decidable.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Maximal Fixed Point (MFP) - input/output

- Computes the least fixed point of an instance of a monotone framework
- ► Input: the monotone framework $(L, \mathcal{F}, F, E, \iota, \lambda \ell. f_{\ell})$. where
 - L the complete lattice
 - ► *F* the monotone function space containing all the transfer functions
 - F the transitions of the program
 - E the extremal labels
 - ι the extremal value, and finally
 - $\lambda \ell. f_{\ell}$ the mapping from labels ℓ to transfer functions from \mathcal{F} .
- ▶ Output: the values $MFP_{\circ}(\ell)$ and $MFP_{\bullet}(\ell)$ for all $\ell \in Lab_{*}$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

ξ5

General idea of MFP

- ▶ Work list algorithm: intermediate worklist W.
- An array A that approximates the solution from below $A[\ell] \sqsubseteq MFP_{\circ}(\ell)$.
- We initialize A to something great, and repeat until consistent with the constraints.
- Array A stores increasingly closer approximations of the answer.
 - Only the context values are stored.
 - If transfer functions expensive to compute, then cache/store also the effect values.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

The code of the algorithm

Step 1 (initialization): Set $A[\ell] = \bot$ for $\ell \notin E$, set $A[\ell] = \iota$ for $\ell \in E$, and set W = F. Step 2 (iteration): while W not empty do $(\ell, \ell') := \text{head}(W);$ -- get next edge W := tail(W); -- drop it from the list if $f_{\ell}(A[\ell]) \not\sqsubseteq A[\ell']$ then -- if not consistent $A[\ell'] := A[\ell'] \sqcup f_{\ell}(A[\ell]);$ -- incorporate it for all ℓ'' with $(\ell', \ell'') \in F$ do -- add all $W := (\ell', \ell'') : W;$ -- successors to W Step 3 (finalization):

 $\text{Copy } A[\ell] \text{ into } \operatorname{MFP}_{\circ}(\ell) \text{ and } f_{\ell}(A[\ell]) \text{ into } \operatorname{MFP}_{\bullet}(\ell).$

Universiteit Utrecht

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

How does it work?

- At some point: $(\ell, \ell') = (5, 3)$ is next up, $A[3] = \{a + b, a * b\}$ and $A[5] = \emptyset$
- Compute $x = f_5(A[5]) = (\emptyset \{(a+b) * x\}) \cup \{a+b\}.$
- ▶ Do the test: is x a superset of A[3]?
- No, so set $A[3] = A[3] \sqcup x = A[3] \cap \{a+b\} = \{a+b\}.$

► Add (3,4) to W: propagate changes. [Faculty of Science Universiteit Utrecht Information and Computing Sciences]

イロト (母) (三) (三) (つ) (つ)

Part 1 of correctness: an invariant

- Similar to correctness of fixpoint iteration.
- ► Let Analysis_o(ℓ) and Analysis_o(ℓ) describe the least solution to the equations.
- ▶ To prove: $A \sqsubseteq$ Analysis_o is an invariant of the while loop.
- The base case: at initialization
 - $\bot \sqsubseteq Analysis_{\circ}(\ell)$ for $\ell \notin E$, and
 - $\iota \sqsubseteq \text{Analysis}_{\circ}(\ell)$ for $\ell \in E$.
- \blacktriangleright The inductive case: consider the flow edge (ℓ,ℓ')
 - ▶ If we do not change A, then nothing is changed except W.
 - If we do, then monotonicity saves the day.
- ▶ In summary, A stays below (or is on) the least fixpoint.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ つくや

Part 2 of correctness: at termination

- Previous slide implies: we never "pass by" the intended solution.
- But do we have a solution when the algorithm terminates?
- Two important aspects here:
 - We consider every equation at least once.
 - $\blacktriangleright \ \ \, {\rm Because} \ W \ \, {\rm is \ initialized \ to} \ F$
 - When a value is updated, we make sure all equations that may be directly influenced are added to the worklist.
- ► Together implies that at termination we are in a reductive point: F(A) ⊑ A.
 - Negate the if-condition in the algorithm.

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

§5

MFP computes the least fixed point

- ▶ Part 1 and 2 together say that A = F(A): it is a fixpoint.
- Since this fixpoint lies below or on the least fixpoint (part 1), it must be that least fixpoint.
- Similar if you consider the effect values.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト 不得 トイヨト イヨト 三日

§5

Termination

- Everytime we add an edge to W it is because a value changed.
- Because of ACC, every A[l] can only change a finite number of times.
- This gives termination.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Complexity of the algorithm

- Let L have finite height $h \ge 1$ (length of longest chain).
- Let e be the number of edges in F ($e \ge$ number of labels).
- \blacktriangleright Step 2 of the algorithm is in $\mathcal{O}(e\cdot h)$
- Reason: every edge can only lead to a change at most h times (after a change). In each case, we do/generate a "constant" amount of work.
- ► Evaluating f_ℓ, □, updating A are considered basic operations. Running time is measured in terms of how many of these basic operations have to be done.

[Faculty of Science Information and Computing Sciences]

MFP approximates MOP

- MFP always terminates, MOP is generally undecidable.
- Obviously MFP \neq MOP, but MOP \sqsubseteq MFP.
 - MOP can be more precise than what MFP computes.
- We saw this earlier for Constant Propagation: joining before transfer loses detail.
- This is where MFP loses precision over MOP.
- Can this be reconciled with the fact that MFP computes the least solution?
- For distributive frameworks: joining before or after makes no difference.
 - Not surprisingly, MFP = MOP

Universiteit Utrecht

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Summary so far

- General idea of program analysis
- Two example analyses
- Monotone frameworks
- Algorithms for computing a solution for an instance of a monotone framework.
- Properties of such a solution

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]