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Roadmap

» First-order, imperative language
» First without, later with procedures
» In both cases, control-flow is fixed.

» Monotone frameworks

» Conceptual and implementational framework for building
dataflow analyses

> lllustrated by Available Expression Analysis, Live Variable
Analysis, and Constant Propagation.

» Distributivity
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1. Preliminaries

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢



The While-language §1

» Simple and imperative, no procedures (yet)
» Variables: z,v, ..., integers only
» Statements: assignments, if, while, skip and ;

» Boolean expressions: constants true, false, boolean
operators and, or,not, and relational operators <,=;, ...

> Integer expressions: 0,—1,1,—2,2,... and various
operators +, —, ...

» Labels for identification: [skip]?, [(x <= 2)]?,

[x = x + 13
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[v :=1]®

=13 [ = 1)?; [u
[n <= 2]' then \l,
[skip]*

se ¢ es
| while [n > 2J% do Y
([t :
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[m]

- mple program with its flow graph §1

no
o= % \l' ‘l’
[v :=u + t]7), [u := v]°
[v :=u + t]7 —
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Information from programs §1

> [v := 1]3; [u := 1]2;
if [n <= 2]' then

[skip]*
else
while [n > 2]® do
(t :=u’; [u:=v]% [v :=u+ t]");

» labels(S) ={1,...,8}, init(S) = 3 and
final(S) = {8,4}
» [v := 1]?, [skip]?, ... € blocks(S)

» flow(S) =
{3,2), 2,1), (1,4), (1,8), (8,5), (5,6), (6,7), (7, 8)} vs.
flowh(9) =
{(2,3),(1,2),(4,1),(8,1),(5,8),(6,5), (7,6), (8,7)}
glr% Universiteit Utrecht Information and Co[rfla;:tlitr{gogzgf:ecs?
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Information from programs §1

v

v = 13; [ := 1]%;
if [n <= 2]' then

[skip]*
else

while [n > 2J®

([t := u]'5; [u := V]G; [v :=u + t]7);
» AExp(u+ v *10) = {v * 10,u + v * 10} and
AExp(S) = {u+t}.

» AExp(e) does not include single variables and constants
» Program under analysis is usually denoted S..

» We write AExp, instead of AExp(S;) and so on.
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2. Intraprocedural Analysis
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Available Expression Analysis §2

» [x := (a + b) * x|!;

[y :=a * b

while [a * b > a + b]® do
([a := a + 1]%;
[x :=a + b]®)

» a + b is always available at 3, but a * b is not.

» For each program point, which (non-trivial) expressions
must already have been computed, and not later modified,
on all paths to the program point.

» Each a subset of AExp, = {a +b,(a+b) xx,axb,a + 1}

» Associated optimization: values of available expression may
be cached for use at [B]".

» To exploit this, all paths to [B]" must make it available

N/ aculty of Science
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Some equations for Available Expressions §2

v

[x := (a + b) * X]l;
[y := a b
while [a * b > a + b]® do
([a := a + 1 ]%
[x := a + b]®)

AEN(1) =10

» nothing available at start of program
AEx(2) = AEN(Q) U {a * b}

» only the non-trivial expressions
AEN(?)) = AE)((Q) N AEx(5)

> only if both paths make it available

v

v

v
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e equations for Available Expressions

Universiteit Utrecht

> [x :=
[y :=a * b
while [a * b
(Ja :=
[x :=

(a + b) * x]';

> a + b do
a+1]4;
a + b]°)

» AFEx(3) = AEN(3) U{a+ b,a * b}
» condition also has effect

L AEX(4) :AEN(4)_{a+b7(a+b)*x7a+1aa’*b}

» remove all arithmetic expressions which contain a

[m]

=

§2
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Auxiliary functions for Available Expressions §2

» We construct the analysis by specifying for each block:
» what expressions become available gen 4 (B?)
» what expressions become unavailable kill4z(B*)

» These we then plug into a generic transfer function, that
computes the effect of executing the block on the analysis
result.

» Together with “flow” functions that push analysis results
through the flow graph, we have a complete analysis.
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For assignments §2

» What to remove for assignments:
killag(x := a]’) = {a’ € AExp, | v € FV(d')}
» What to add for assignments:
genap(x := al') = {d' € AExp(a) | = ¢ FV(d')}
» Why z ¢ FV(d')?
> Example:
[x := (a + b) * x';
if [(a +b) * x > a + b + 14)]° then

> It helps to have side-effect free expressions.
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For skip and conditions §2

» For the remaining blocks, we do the same.
» For skip:

> kl'//AE([Skip]f) =0

> genyp([skip]’) =0
» For conditions:

> killa([6]") = 0

» gen, p([b]") = AExp(b)
We only save arithmetic expressions, not complete boolean
ones.

» Higher precision lead to higher costs.

v
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Analysis functions for Available Expressions §2

Flow functions:

0 if £ = init(S,)
AEN(E) = { (WAEx() | (¢',¢) € flow(S.)} otherwise

Transfer functions:

AEx () = (AEx({) — killap(B*)) U gen 4 (B

» Flow functions do not work for programs starting with a
loop. Why?

» Equations or assignments?

Q ﬁ)ﬁ . [Facul.ty of S'cience
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continued §2

= (a + b) * x|!;

= a * b?;
while [a * b > a + b} do

(a:=a+1]* [x :=a+ b
1 killag(€) geny g (f)
1 {(a+b)*zx} {a + b}
2 0 {a x b}
3 0 {a*b,a+ b}
4| {a*xba+b,(a+0b)*xxz,a+1} 0
5 {(a+0b)*z} {a + b}
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continued §2

= (a + b) * x|!;

= a * b?;
while [a * b > a + b} do
(a:=a+1]* [x :=a+ b
AE(0) A5x(0)
0 (AEN(1) = {(a +b) x2}) U{a + b}
AEx(l) AEyN (2) @] {(L * b}
AEx(z) n AE)((5) AEN(3) @] {CL *b,a+ b}
AEx(3) AEN(4) —{a*xb,a+b,(a+b)*x,a+ 1}
AEx(4) (AEN(5) — {(a +b) x2}) Ufa + b}
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Performing Chaotic Iteration §2

l AEN(?) AEx(¢)

i 0 @ED —{@+ b)»2NU{a+ 5}

2 AEx(].) AEN(Q) U {a * b}

3 | AEx(2) N AEx(5) AEN(3)U{axb,a+ b}

4 AFEx(3) AEN(4) — {a*xb,a+b,(a+b)*xx,a+ 1}

5 AEx(4) (AEN(5) — {(a+b) *x}) U{a + b}
AEN(1) [ AExp, 0 0 0
AEx(1) | AExp, {a + b} {a+ b} {a+ b}
AEN(2) | AExp, {a + b} {a + b} {a + b}
AFx(2) | AExp, | {a+b,axb} | {a+b,axb} | {a+b,axb}
AEN(3) | AExp, | {a+b,a*b} {a + b} {a + b}
AFx(3) | AExp, | {a+b,axb} | {a+0b,axb} | {a+baxb}
AEN(4) | AExp, | {a+b,axb} | {a+b,axb} | {a+b,axb}
AEx(4) | AExp, 0 0 ]
AEN(5) | AExp, 0 0 0
AEx(5) | AExp, {a + b} {a +b} {a + b}

N
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A more mathematical formulation §2

v

For every program point ¢, we have a finite set AEn(¢)
and AEx(Y).

Total analysis information for the program is a tuple
containing all these sets:

v

—

AE= (AEx(1), ABx(1),..., AEx(5), AEx(5))

Initialization:

v

H
AE= (AExp,,AExp,,...,AExp,, AExp,)

H
Why not at AE= (0),...,0)?

v
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A single “parallel” transfer function §2

17

—
» Equations implicitly define separate transformations on AE:

Fentry(g)(- .. ,AE)((Q), e ,AE)((5)) = AE)((Q) ﬂAEx(E))

Fe

it(3)(..,AEN(3),...) = AEN(3) U {a xb,a + b}

» Together give a transformation function F, applying the
separate transformations elementwise.

» [ maps column to column in every single iteration.

» Not as greedy as Chaotic Iteration
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Iterating §2

» We iterate F', by computing
initialize(AE);
while (AE != F(AE)) do
AE = F(AE);
output solution AE;

» A fixpoint (or fixed point) of F'is an X so that FI(X) = X.
) — ) — —
» The fixpoint AE satisfies the equations: F'(AE) =AE.

— —
» Moreover, going on does not help: F(F(AE)) =AE.

5&\\“’%}) [Faculty of Science
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itive reading §2

» We start from our most favourite, most informative answer.

> lterating makes the values less informative, but also more
consistent with the equations.

> We repeat until it is consistent.

[Faculty of Science
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Termination §2

» Does the iteration ever end?
—
» No cyclic behaviour: sets in AE can only shrink.
» Solutions can not shrink indefinitely:

> bounded by @) from below, and
> AExp, is finite to begin with.

» The transfer functions themselves terminate

» Together: computation of a fixed point terminates.

5&\\“’%}) [Faculty of Science
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Best possible solution §2

» The solution is a least fixed point: no avoidable
information is included.

» That is, no avoidable information according to the
equations.

> Imprecision comes from imprecision in the equations, not
their solution.

» Although F' changes all sets in parallel, the separate sets
may also be transformed non-deterministically in any order.

» The latter is in fact done when using Chaotic Iteration.
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Avoid cyclic behaviour: monotonocity §2

> lIterating makes the solution less useful.
» X C Y means that X is at least as useful as Y
> With AE, {a+b,a b} C {a+ b}
» Being less useful should not be an asset: transfer functions

must be monotone
— — — —
» F' is monotone if AE C AE' implies F'(AE) C F(AE’)

— —
Monotonocity does not mean that AE C F'(AE).

v

Q ﬁ)ﬁ . [Facul.ty of S'cience
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Verify that analysis functions are monotone! §2

28

v

Usually done by verifying that the separate
transformations, like Fentry(3), are monotone.

With AE, C is in fact D
FOI’ Fentry(?)):

v

v

AEx(2) D AE4(2) and AEx(5) D AEL(5)

implies
AEx(2) N AEx(5) D AEL(2) N AEL(5) .

v

If separate transformations are monotone, then so is F.

Q ﬁ)ﬁ . [Facul.ty of S'cience
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AE is a forward analysis §2

(0 if £ = init(S,)
AEN(€) = { (WAEx() | (¢',¢) € flow(Si)} otherwise

» Analysis information flows in the direction of program
execution.

» Starting from the beginning of the program.

» In the formulas: we use flow rather than flow’'.

&\\‘Wﬁ)) [Faculty of Science
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AE is a must analysis §2

2 = x4+ )1
while [true]® do
[skip]®

» Writing down the equations, and substituting, you get
AEN(Q) = {l‘ I y} N AEN(Q)

» Fixpoints not unique: () and {x + y} are both okay.
» Most informative solution is {x + y}, so we choose that
one.
> Must analysis: use N not U in the flow equations.
» All execution paths must make the expressions available.

5&\\“’%}) [Faculty of Science
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Live Variables Analysis §2

26

v

[x := 2% [y := 4]%; [x := 1]3;
(if [B]* then [z := y]°
else [z := x*x|%);
[x = z]";
Variable x is not live at the exit of 1
It is live at the exit of 3,
> unless we know that [B]* is never false.

v

v

v

Assignments to dead variables is dead code and might be
removed

v

In contrast with AE, LV is a backward analysis

Q ﬁ)ﬁ . [Facul.ty of S'cience
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Transfer functions for Live Variables Analysis §2

Vv if £ € final(Sy)
LVx(f) = { ULLVx (&) | (£, 0) € f1ow®(S,)} otherwise

LVx(€) = (LVx(¢) — killpy (BY)) U gen; v (BY)
Note: V denotes the initial set of variables of interest.

killpy ([x := ya]g) =1
killpy ([skip]) =0
killy ([b]") =0

genpy ([x := [alg) = FV(a)
genpy([skip]’) =0
\\\‘Wﬁ' genLV ( [b][) =S FV(b) [Faculty of Science
=V = S Universiteit Utrecht Information and Computing Sciences]
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An example §2

[y := x%; 0| killy (£) | genpy (€)
[z := 1]%; 1 {y} {z}
while [x>1]? do 2| {z} 0
(2 =z * x|; 3 0 {z}
[x := x - 1]°); 4 {~} {z 2}
[x := 0]° 5 {z} {z}
6 {z} 0
¢ LVx () L (¢)
1 LVx(2) (LVx(1) = {y}) U {z}
2 LVN(?)) LVX(Q) — {Z}
3| LWn(4) U LVn(6) LVx(3) U{x}
4 LVx(5) (LVx(4) — {z}) U{z, =z}
5 LVx(3) (LVx(5) — {z}) U {x}
6 {z} LVx(6) — {z}
§\Wﬁﬁ . ) [Faculty of Science
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A few computations for Live Variables

29

NI

y :
[z :

x]!;

1)?%;

while [x>1]? do

[x

(z := z * x|*;

[x := x - 1]°);

:= 0]°
» Variable of interest: z

» Conclusion: ¥ is not
live anywhere so
assignment 1 is dead
code.

<= Universiteit Utrecht

U

§2
LVx(6) | 0 {z} {z}
LVx(6) | 0 {z} {z}
LVX<5) @ @ {m, Z}
LVn(5) | 0 {z} | {z, 2}
LVx(4) | 0| A{z} |{z, 2}
L) | 0| {=,2} | {z, 2}
LVx(3) | 0| {=z, 2} | {z, 2}
LW@B) | 0| {=x,2} | {z, 2}
LVX(2) 0 {wvz} {xvz}
Ln(2) [ 0 {z} {z}
LVx(1) |0 {z} {z}
LVn(1) [ 0 {z} {z}

[Faculty of Science
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Live Variables Analysis is a backward analysis §2

v

Backward analysis:
> Variables used in an assignment are live before the
assignment.
» Variables assigned to are not live before the assignment
(except when also used)

v

Analysis information moves contrary to execution direction.

v

Speed up iteration by starting at program'’s end.

v

If we are not interested in any variable at the end, which
variables are then live?

&\\‘Wﬁ)) [Faculty of Science
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The smaller the better §2

31

» Consider
while [x>1]' do

[y o= x + 1)

» Substition gives LVx (1) = LVx (1) U {z}.

» Two safe solutions are {z,y} and {z}.

» The more variables dead (not live), the more we can
optimize: we choose {x}.

» Hence, we start small and grow out sets, by using U (may).

Q ﬁ)ﬁ . [Facul.ty of S'cience
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3. Monotone Frameworks
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Monotone Frameworks §3

> A framework that generalizes the example analyses
» Making them instances
» Identify the commonalities, parameterize by the differences
» Advantages:
> generic algorithms,
» generic proof methods for soundness, and
> less ad-hoc tends to provide better understanding.
» Disadvantage:
» mathematically more challenging
» algorithms cannot take advantage of special properties of
any specific analysis.
&\\Wi},; [Faculty of Science
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From entry and exit to context and effect §3

» Thus far, we had an entry and exit set for each
label /program point.

» Now, for each label ¢ we shall have

> Analysis, (¢) or the context value: values come from the
context of [B]

» Analysis, (¢) or effect value: it shows the effect of [B] on
Analysis, (¢)

> Analysis, (¢) is defined in terms of Analysis,(¢), and

> Analysis,(¢) is defined in terms of the Analysis, values of
other blocks.

» For LV, the context values are the exit sets (backward).

» For AE, the context values are the entry sets (forward).

5&\\“’%}) [Faculty of Science
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The formula for Analysis, (/) §3

Recall: these describe the effect of the blocks.

v

v

The generic transfer functions:

Analysis, (¢) = fy(Analysis,(¢))

fe is the transfer function for [B]".

v

v

Note: transfer functions can be given per block.

v

Thus far, we have specified them uniformly for each
language construct.

&\\‘Wﬁ)) [Faculty of Science
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The formula for Analysis, (/) §3

N L ifleFE
nalysis,(£) = | [{Analysis, (¢') | (¢',¢) € F} otherwise

» Combination operator | | is [ (for must) or |J (for may)

» F is either £1ow(S,) (forward) or its reverse f1low!*(S,)
(backward).

» FE is the set of extremal labels, e.g. {init(Ss)} or
final(S,)

> . is the extremal value for the extremal labels

» 4 combinations: backward vs. forward and must vs. may.

%I:% e e ntrmtion and Ghrponeg Scmeey
36 )



What is wrong with Analysis (¢)? §3

v

Formula is not correct when 3(¢',¢) € F with ¢ € E.

» Forward analysis of a program starting with a while loop
» Backward analysis of a program ending in a while loop

v

Consider LV analysis for
while [x > 1]! do
[x := X—1]2

> We want
Analysis, (1) = Analysis, (2) UV

and not simply
Analysis (1) =V .

» Workaround: start program with skip and end it with skip.
&\\‘Wﬁ,) [Faculty of Science
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ixing the formula for Analysis, ({) §3

» Or, the formula for Analysis,(¢) should read
Analysis, (¢) = |_|{Ana|ysis,(£’) | (¢,0) e F}u

where
0 0 if{e FE
‘BT L ife¢E

» Here, L (pronounced “bottom") is the zero of LI.
» Foralla: alU L =a.

[Faculty of Science
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: mple Available Expressions

v
£
1

<
o o

while [a *
(Ja :

[x :

> In this case:

> U=N

E={1}
L=0

vV vy VvYy

Universiteit Utrecht

b

(a + b) * x]';
a * b)%;

> a + b]® do
a + 1%
a + b]®)

[m]

F=1{(1,2),(2,3),(3,4),(4,5),(5,3)}

1 = AExp, (because z N AExp, = z)

» Transfer functions f, will have to wait a bit.

=

§3

[Faculty of Science
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§3

First, we consider the datatypes for Analysis, and Analysis,:
complete lattices satisfying the Ascending Chain Condition.

[Faculty of Science
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Fixed points §3

» Declarative, constraint-based specification of static
analysis:

» specifies all admissible/sound solutions.
» Algorithmically: find the best solution in finite time.

» Best solution is a so-called least fixed point of a function
that can be derived from this set of constraints.

> In the interest of definedness and termination, this is a
monotone function computed on a (complete) lattice that
satisfies the Ascending Chain Condition.

» Come back to read these statements at a later time.

5&\\“% [Faculty of Science
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K

41 KT\



Example

§3

» while [n < 10]' do
if [n >= 5]
then [n := 2*n]?
else [n :=n + 1]%;
» Sign analysis: For each variable compute the signs it may
have at/before each program point (—, +, 0).
» For simplicity, we consider only the variable n.
» Example constraints that influence analysis result A[1]:
{0} < Af1],
Af3] € Af1],
Al4] C A[1].
N/ aculty of Science
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A more operational view §3

» Constraints: {0} C A[1], A[3] C A[1], A[4] C A[1].

> Alternate view: A[1] is a function f; of A[3] and A[4].
When they change, A[1] may also need an update.

> In this case, fi1(A) = A[3] U A[4] U {0}.

» A system of constraints leads to a function F' that maps A
to a new, updated A, hopefully closer to the solution.

» lIterate until a fixed point F/(A) = A is reached.

» [ must be monotone: larger inputs do not lead to smaller
outputs.

» When can we be sure it stops, and is the answer any good?

5&\\“’%}) [Faculty of Science
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Essential ingredients: joins and termination §3

» During program analysis:
» we need need to “join” information from various execution
paths.
> The condition of a while can be reached from at least two
places.
» We can typically identify a best possible and a worst
possible value.

v

Lattices encapsulate what we need.

Iteration should terminate in finite number of iterations.

v

v

Guaranteed if function is monotone and lattice satisfies
Ascending Chain Condition.

At termination, we have the best possible (least) fixed
point.
> In the example, smallest possible sets of signs

v

5&\\“’%}) [Faculty of Science
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Introductory example §3

» Take a set of values, say {1, —,0,+,<0,>0, T}.
» Approximate sets of integers by means of signs

v

L (pron. bottom) represents {} (or 0).

v

T (pron. top) represents the set of all integers
Various relations hold:

» 0 is more precise than < 0, but also more precise than > 0
» | is more precise than everyhing
» < 0 and > 0 are not comparable

v

» Represent relations visually in Hasse diagram:
T
<0 >0
— 0 +
5&\\“@ 1 [Faculty of Science
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Partial orders §3

» A binary relation C on (L, L) (or L x L) is given.
For simplicity, instead of (z,y) € C we write = C y.
The relation C is a partial order if it is

» reflexive: forallz € L, z C z

> transitive: for all z,y,z € L, if x C y and y C z, then
x C 2

> anti-symmetric: if x C y and y C z, then x = y.

v

v

v

Examples:
> "(type t’) is an instance of (type t)" is a partial order
» < and > are partial orders on the natural numbers N, and
so is =.
Partial order P conventionally drawn as a Hasse diagram:

v

C a

5&\\“’%}) [Faculty of Science
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Lattices §3

» If for all z,y € L, it holds that there exists a smallest
z € L with z C z and y C z, then the partial order is
called a lattice (tralie in Dutch).

» If z exists, then it is unique and denoted x Ly (the join of
x and y).

» Similarly for the greatest lower bound x My, the meet of z
and y.

» Reason: we want L and 1 to be total binary functions, i.e.,
operators.

» Duality: reversing all edges in the lattice gives another

lattice.
ESW’B)& 5 . . [Facul.ty of S'ciem:e
= N S Universiteit Utrecht Information and Computing Sciences]
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Example lattices §3

v

(N, =) is not a lattice: Uy is undefined for all = # y.
T is a lattice, because of specially added error type:
» Int U Int = Int=T.

(N, <) and (N, >) are (dual) lattices.

v

v

» The partial order P is not a lattice.
C a
d
_\\‘Wﬁ' [Faculty of Science
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Complete lattices §3

» Consider a subset X = {1, z2,...} of the lattice L.

» Then | | X is well-defined for finite non-empty X:
U (z2U (oo xp)..2)).

» What about the infinite or empty X's?

> In a complete lattice, | | X is defined and unique for all
X CL.

» | |J0=Land | |L=TT.
> Is every finite lattice complete?
» No, complete lattices must have a bottom and top element.

» But a finite lattice with a bottom is complete.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
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Examples §3

» Subsets of S = {0,1,2} form a complete lattice (C is C).
Then L equals U, and () is smallest and S largest element.
» Dually, (S,2) is also one: Ll equals N, L =S5, T =0.
(N, <) is a lattice, but has no T. Here, x Uy = max(zx,y).
(P(N), C) with () as bottom, N as top. Here LI = U.
> An infinite complete lattice
L= {J_ll_—,O, +,<0,>0, T} for sign testing

v

v

v

\
<0 >0
— 0 +

W

L

5&\\“’%}) [Faculty of Science
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An aside:

computational aspects §3

How to define lattices or complete lattices in Haskell?
Preferably, like Eq and Ord, as a type class.

Preferably most definitions have a default implementation.
Enforcing algebraic laws is difficult (within the type
system).

L and I are associative, commutative binary operators.
Relation: = C y if and only if x LUy = y.

Defining LI in terms of C implies a search of some kind.
Other way around is direct.

Provide the lattice with bottom and top element (implicit
or explicit).

» Different lattices can be made on the same underlying set!
5&\\“@ [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
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The ascending chain condition (ACC) §3

» Necessary to assure needing only a finite number of
iterations during fixed point computation.

» Every chain 29 C z1 C ... in the lattice stabilizes: there is
an n where x, = T,41.

» We can only go up a finite number of times
» For finite lattices: ACC trivially satisfied
» ACC holds for (N, >): top is 0.

A lattice with ACC and a bottom element is complete.

v

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

52



descending chain condition (DCC) §3

» Descending Chain Condition is the dual.

» Ascending vs. Descending Chain Condition: turn the
lattice around.

> (Z, <) has neither ACC or DCC.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]
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Termination of fixpoint algorithm, formally §3

>

NI
W

54

X=ls¢

while (X!= F(X)) do
X =F(X);

where

» X has datatype T,

» T forms a lattice with bottom element L,
» T has Ascending Chain Condition, and

» F:T — T monotone.

Thm: least fixed point found in finite time.

Proof by induction.

Base case: by definition 1. = FO(1) C F(L),

Inductive case: by monotonicity

F=1(1) C F*(L) implies F*(L) C F™*1(1)

ACC now implies, the chain L C F(L)C F?(1)...
stabilizes. [Faculty of Science

<= Universiteit Utrecht Information and Computing Sciences]



Solution is the least fixed point §3

» X =1;
while (X!= F(X)) do
X=F(X);
where

» X has datatype T,

T forms a lattice with bottom element L,
T has Ascending Chain Condition, and

F : T — T monotone.

> Let S be another fixed point of F': F(S) =S
> Prove F*(L) C S for all n, by induction.
» Base case: by definition | = FO(1)C S

> Inductive case: assume F"(L)C S.
Then F" (1) = F(F*(L1)) C F(S) = S, because F is
monotone.

vV vy

Q ﬁ)ﬁ . [Facul.ty of S'cience
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§3

End of interlude.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢



Property spaces: the data type of the analysis §3

v

Values for Analysis, and Analysis, taken from the MF's
property space L.
Choosing a complete lattice for L provides us with

> a join operator LI to combine multiple values into a single
one consistent with both.

» for converging execution paths

v

> It provides the most precise value with that property.

v

ACC ensures termination of fixed point computation
Least element L can be used to initialize the computation
> Intuitively, | represents most informative element of L

v

v

Greatest element T (usually) means no useful or
inconsistent information

’\\\‘ [Faculty of Science
==
Z

NN
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Examples LV §3

» Live Variables (for program S.):
» L =P(Var,), finite sets of variables,
» for z,y € L: x C y if and only if x C y,
> LI=U,
» 1 =0 and T = Var,.
» Why not L = P(Var) so that it is the same for all
programs?
» To get a finite lattice and thus automatically ACC.
» ACC is sufficient, but not necessary: only variables in Var,

will be added.
_’\\\‘Wﬁ) [Faculty of Science
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ample AE §3

> Available Expressions (for program S,):

L = P(AExp, ), non-trivial subexpressions of S,
» for x,y € L: x C y if and only if z D y,

> =0,

» | = AExp, and T = (.

v

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]
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Transfer functions: the dynamics of the analysis §3

60

Start with a collection F of monotone functions on the
property space L:

v

FC{f|f:L— Land f monotone } .

v

Recall: a function f is monotone if

x C y implies f(z) C f(y) .

v

id € F (for the empty sequence of statements (and skip))

v

F closed under function composition o (for the sequencing
of statements)

Q ﬁ)é [Faculty of Science
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Transfer functions: the dynamics of the analysis §3

v

Start with a collection F of monotone functions on the
property space L:

FC{f|f:L— Land f monotone } .

» Recall: a function f is monotone if

x C y implies f(z) C f(y) .

» id € F (for the empty sequence of statements (and skip))
» F closed under function composition o (for the sequencing
of statements)

» For a given program and analysis, we specify for each label
a transfer function f, : L — L, all from F.

5&\\“’%}) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
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Finally, monotone frameworks §3

» A Monotone Framework consists of a property space L and
a set F of monotone functions, as well as
> the flow F' of the program
> the extremal labels
> an extremal value ¢« € L
» a mapping f. from the labels Lab, to functions in F

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

61



Example Available Expressions continued §3

» [x := (a + b) * x|
[y :=a * bJ*;
while [a * b > a + b]® do
(2 := a + 1]4;
[x := a + b]®)
» (L,C) = (P(AExp,), D) as earlier.

v

F = flow, = {(1,2),(2,3),(3,4),(4,5),(5,3)},

E ={init(S,)} = {1}
=0
The function space F could be all functions of the form
{f:L—=>L|3ly: f()=(1—-1l)Uly}.
» All functions that first remove and then add
> fol) = (I killa([B')) U gen,y([B]’) where
.\\Wﬁ» [B]F € blocks(S*) [Faculty of Science

=V = S Universiteit Utrecht Information and Computing Sciences]
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Available Expressions is a Monotone Framework §3

> Recall F={f: L — L| 3 ly: f(I) = (I —lx) Ul,} and
C equals D.
> Identity function exists in F: take [, = I, = 0.
» F is closed under composition: let
fO) ==l Ulg, f/(O)=(1-1) Vg €F.
(fo f)D) = fUf/())=(U-1) V) -l Ul =
(0= @ Ule) V(g — k) Ulg)
» Thus, kill set for fo f"is I} Ul and gen set is (I}, —Ix) Ul,.
» Monotonicity of f € F: let I D1'. Thenl —1; D' — I}
and finally (I — 1) Ul, D (I' = 1) Ul

&\‘Wﬁ,) [Faculty of Science
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Reflections on burden of proof §3

64

Proof also works when C=C: other three analyses are also
Monotone Frameworks.
We exploit similarities in the set F of transfer functions.

> All analyses choose their transfer functions from F.

» Easily seen because it is a syntactic property of the

functions.

» One proof works for all.
Another advantage: each function can be represented by
two sets.

Starting with F as the set of all monotone functions only
moves the burden, and does not allow reuse.

[Faculty of Science
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Distributivity §3

Consider analysis info ¢1 and ¢y for two executions leading
up to a block
Two ways to proceed:

> join before transfer: f(¢y U ¢3) (MFP)
> join after transfers: f(¢1) U f(¢2) (MOP)

By monotonicity f(¢1) U f(¢2) C f(€1 LI 4)
» So the second possibility is never worse than the first
If f is distributive then both ways are equivalent:

fllaUly) E f(l) U f(£2).
> In distributive frameworks doing a join before the transfer
does not lose information

Verify that AE is distributive: f(IN1") = f(I)n f(I')

Distributivity is good: faster algorithms, higher precision.

» Not all monotone frameworks are distributive.

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
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4. Constant propagation

Universiteit Utrecht
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Constant Propagation §4

» Constant Propagation: Determine at each program point
and for each variable whether the variable always has the
same value there.

» We are not interested to see which variables never change

> Although we shall find that out too

» For every variable we either know

> the single integer value it can have at that point
> a special T value signifying its value is not always the same
at that point

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
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Some examples 54

> [y = 2% [z := 1]3;
while [x>0]* do ([z := z * y]°; [x := x - 1]%);
> Analysis,(3) = [z — T,y +— 2,2+ 1] and
Analysis,(4) =[x — T,y — 2,z — T]

» [x := 8]} LP’ = 21%; [z := 1]3;

while [x>0]* do ([z := z * y]°; [x := x - 1]%);
> Analysis,(3) = [zt — 8,y — 2,z — 1] and
Analysis,(4) = [z — T,y +— 2,2+ T]
» [x :=8]'; [z := 1] ‘
while [x>0]* do ([z := z * y]°; [x := x - 1]9);

» We cannot know what values y might take so now
Analysis, (3) = [z — 8,y +— T,z + 1] and
Analysis, (4) = Av. T

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

68



The Constant Propagation lattice §4

» For values bound to variables we employ the lattice ZT

» The property space L is the complete lattice of total
functions from Var, to Z .

» Qur total functions can be interpreted as finite sets of pairs
Var, x Z' where every variable occurs exactly once.
» Add a special element for the always undefined function L.
» The ordering C is elementwise for all 7,0’ € L:
» 1 Co,and
» 0 C o’ if and only if for all z € Var, : 5(x) C 7'(z)

» Fcp contains all monotone functions of the correct type.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
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The transfer functions (different from NNH) §4

For the three types of statement

1 ifo=_1
.= al¢. fOP(5) =
x :=a]": f;/"(0) {8[$'—>ACP[[G]]3] otherwise
o
o

where we use the function Acp : AExp — (Var, - 2Z') - ZT
for evaluation

Acp[n]o =n
Acplz]o =o(x)
Acplar op, az]c = Acplai]o 6@ Acplaz]o

. . if z
and it is understood that x op, y = { :_UrOp“ b Ioti:ailwie

*&\ ﬁ/) [Faculty of Science
% é Universiteit Utrecht Information and Computing Sciences]
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Constant Propagation Analysis example §4

v

[y = 2%
[z := 1]3;
while [x>0]*
([z 5=z * y°;

[x := x - 1]%);
> Initial statement has « = Av.T: the only safe answer
> The effect f$T() =[y+ 2,2+ T,z T]
» Py 2,2 Lz T =y~ 2,20 2,2+ T]
> The join operator L proceeds elementwise:
> At first: Analysis,(4) = [y— 2,z 1,2+ T]
> Later: Analysis (4) = [y +— 2,z — T,z + T], because
z + 1 in Analysis,(3) and z +— 2 in Analysis, (6).

» Joining two different values for a variable leads to T.

Q ﬁ)ﬁ . [Facul.ty of S'cience
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Remarks about Constant Propagation §4

» Forward analysis

> | use less robust, but simpler notation

> Proof of being a monotone framework is an exercise. Prove
that

> the identity function is an element of Fop
» Fcop is closed under composition
» all transfer functions we use are in Fop

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]
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Constant Propagation is not distributive §4

» Recall distributive: f(¢1 Ud2) T f(41) U f(42).
» Let [y := x * x|, 51(x) = 1 and Fa(z) = —1.
» Joining before transfer:
(31|_|32)(1‘) =1U-1=T
» Therefore,
fEP@EIuG)y) =T.
» Postponing the join of arguments:

PG U P (G)(y) =1ul=1
> Indeed, T [Z 1 so CP is not distributive.

& ﬁ)ﬁ . [Facul.ty of S'cience
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Roadmap 54

» Monotone frameworks have been defined and illustrated.

» But how to compute an analysis result for a monotone
framework?

» Algorithm MFP computes the least fixpoint.

» We want to know how precise the result can be.

» What is the best possible solution we may ever obtain?

» This is the Meet Over all Paths (MOP) solution.
» MFP is a sound approximation of MOP: MOP C MFP.
» For distributive frameworks, however, MOP = MFP.

gwf/); [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]
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5. Solving a monotone framework

Universiteit Utrecht
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The Meet/Merge Over all Paths (MOP) solutionss

v

A complete execution is a path through the control-flow
graph F' from initial to (some) final label.

» What is an execution?

» A path from the initial label to any label in the program

» Consider for a particular label ¢:

patho(é) = {[Zl, ce ,fnfl] |
n>1Yi<n: (Ei,&q_l) ceFl=10,0 € E}

» The analysis function for one such path, p = [(1,..., 4]

fp:fgmo...ofeloid

» Applying the function to the extremal value ¢ gives the
analysis result for p.

» Be consistent with all possible executions leading to £:

MOP,(£) = LI{/fp(¢) | p € paths(£)}

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
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d similarly... 5

» For paths ending after the transfer function for block ¢:
pathy (¢) = {[l1,...,¢n] | n > 1,
Vi<mn: (Ei,éiﬂ) € F,é = fn,fl € E}

» The join over these paths is then

MOP,(¢) = | |{fo(+) | p € path,(£)}

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]
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OP is undecidable §5

» Without proof.

> Intuition: joining over an infinite number of execution
paths: when do you stop?

» For some analyses, MOP is decidable.

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]
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Maximal Fixed Point (MFP) - input/output §5

» Computes the least fixed point of an instance of a
monotone framework

» Input: the monotone framework (L, F, F, E, v, \l.fy).
where

» L the complete lattice

» F the monotone function space containing all the transfer
functions

F the transitions of the program

E the extremal labels

¢ the extremal value, and finally

M. fy the mapping from labels ¢ to transfer functions from
F.

» Output: the values MFP,(¢) and MFP4(¢) for all £ € Lab,

vV vy vYyy

5&\\“’%}) [Faculty of Science
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General idea of MFP §5

» Work list algorithm: intermediate worklist .

> An array A that approximates the solution from below
A¢] C MFP, ().

> We initialize A to something great, and repeat until
consistent with the constraints.

» Array A stores increasingly closer approximations of the
answer.

» Only the context values are stored.
» If transfer functions expensive to compute, then
cache/store also the effect values.

5&\\“’%}) [Faculty of Science
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The code of the algorithm §5

» Step 1 (initialization):

Set A[f]=_1 for (¢ E,

set A[f] =1 for { € E, and set W =F.
» Step 2 (iteration):

while W not empty do

(¢,0') := head(W); -- get next edge
W o= tail(W); —-— drop it from the list
if fo(A[¢]) € A[¢'] then  -- if not consistent
All'] := AU fo(A[f]);  -- incorporate it
for all ¢’ with ({,¢{")€ F do  -- add all
W= (0,07 W; -- successors to W

» Step 3 (finalization):
Copy A[f] into MFP,(¢) and fy(A[¢]) into MFP4({).

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
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How does it work?

v

v

v

yimarbf [
\ll yes
[a*b>a+ M [x

a+ ]!

a + b

At some point: (£,¢') = (5, 3) is next up,

A[3] ={a+b,a b} and

Do the test: is x a superset of

A[5] =
Compute 2 = f5(A[5]) = (0 — {(a +

v

No, so set A[3]

=N= q Universiteit Utrecht

EN

=AB|Uz =
Sy > Add (3,4) to W: propagate changes.

A
A3

0

b) x x}) U {a + b}.
[3]?
]N{a+b} ={a+b}.

85
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Part 1 of correctness: an invariant §5

v

Similar to correctness of fixpoint iteration.

Let Analysis, (¢) and Analysis, (¢) describe the least
solution to the equations.

v

v

To prove: A C Analysis, is an invariant of the while loop.
The base case: at initialization

» | C Analysis, (¢) for £ ¢ E, and

» ¢ C Analysis, (¢) for £ € E.
The inductive case: consider the flow edge (¢, ¢')

> If we do not change A, then nothing is changed except W.
> If we do, then monotonicity saves the day.

v

v

» In summary, A stays below (or is on) the least fixpoint.

5&\\“’%}) [Faculty of Science
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Part 2 of correctness: at termination §5

» Previous slide implies: we never “pass by" the intended
solution.

» But do we have a solution when the algorithm terminates?
» Two important aspects here:
» We consider every equation at least once.
> Because W is initialized to F'

» When a value is updated, we make sure all equations that
may be directly influenced are added to the worklist.

» Together implies that at termination we are in a reductive
point: F'(A) C A.
» Negate the if-condition in the algorithm.

5&\\“’%}) [Faculty of Science
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MFP computes the least fixed point §5

» Part 1 and 2 together say that A = F'(A): it is a fixpoint.

» Since this fixpoint lies below or on the least fixpoint (part
1), it must be that least fixpoint.

» Similar if you consider the effect values.

Q ﬁ)ﬁ . [Facul.ty of S'cience
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mination £5

> Everytime we add an edge to W it is because a value
changed.

» Because of ACC, every A[{] can only change a finite
number of times.

» This gives termination.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]
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Complexity of the algorithm §5

> Let L have finite height & > 1 (length of longest chain).
> Let e be the number of edges in F' (e > number of labels).
» Step 2 of the algorithm is in O(e - h)

» Reason: every edge can only lead to a change at most A
times (after a change). In each case, we do/generate a
“constant” amount of work.

» Evaluating fy, U, updating A are considered basic
operations. Running time is measured in terms of how
many of these basic operations have to be done.

5&\\“’%}) [Faculty of Science
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MFP approximates MOP §5

» MFP always terminates, MOP is generally undecidable.
» Obviously MFP £ MOP, but MOP C MFP.
» MOP can be more precise than what MFP computes.
» We saw this earlier for Constant Propagation: joining
before transfer loses detail.
» This is where MFP loses precision over MOP.
» Can this be reconciled with the fact that MFP computes
the least solution?

» For distributive frameworks: joining before or after makes
no difference.

» Not surprisingly, MFP = MOP

5&\\“’%}) [Faculty of Science
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Summary so far §5

v

General idea of program analysis

v

Two example analyses

Monotone frameworks

v

v

Algorithms for computing a solution for an instance of a
monotone framework.

v

Properties of such a solution

5&\\“’%}) [Faculty of Science
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