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Roadmap

I First-order, imperative language

I First without, later with procedures

I In both cases, control-flow is fixed.
I Monotone frameworks

I Conceptual and implementational framework for building
dataflow analyses

I Illustrated by Available Expression Analysis, Live Variable
Analysis, and Constant Propagation.

I Distributivity
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1. Preliminaries
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The While-language §1

I Simple and imperative, no procedures (yet)

I Variables: x, y, . . ., integers only

I Statements: assignments, if, while, skip and ;

I Boolean expressions: constants true, false, boolean
operators and, or, not, and relational operators <,=, . . .

I Integer expressions: 0,−1, 1,−2, 2, . . . and various
operators +,−, . . .

I Labels for identification: [skip]2, [(x <= 2)]3,
[x := x + 1]31
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Example program with its flow graph §1

[v := 1]3; [u := 1]2;
if [n <= 2]1 then

[skip]4

else

while [n > 2]8 do

([t := u]5;
[u := v]6;
[v := u + t]7);

no
[skip]4

yes

[v := 1]3

[n <= 2]1

[u := 1]2

[n > 2]8

[t := u]5

[u := v]6

[v := u + t]7

no

yes
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Information from programs §1

I [v := 1]3; [u := 1]2;
if [n <= 2]1 then

[skip]4

else

while [n > 2]8 do

([t := u]5; [u := v]6; [v := u + t]7);

I labels(S) = {1, . . . , 8}, init(S) = 3 and
final(S) = {8, 4}

I [v := 1]3, [skip]4, . . . ∈ blocks(S)

I flow(S) =
{(3, 2), (2, 1), (1, 4), (1, 8), (8, 5), (5, 6), (6, 7), (7, 8)} vs.
flowR(S) =
{(2, 3), (1, 2), (4, 1), (8, 1), (5, 8), (6, 5), (7, 6), (8, 7)}
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Information from programs §1

I [v := 1]3; [u := 1]2;
if [n <= 2]1 then

[skip]4

else

while [n > 2]8 do

([t := u]5; [u := v]6; [v := u + t]7);

I AExp(u+ v ∗ 10) = {v ∗ 10, u+ v ∗ 10} and
AExp(S) = {u+ t}.

I AExp(e) does not include single variables and constants

I Program under analysis is usually denoted S∗.

I We write AExp∗ instead of AExp(S∗) and so on.
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2. Intraprocedural Analysis
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Available Expression Analysis §2

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1]4;
[x := a + b]5)

I a + b is always available at 3, but a * b is not.

I For each program point, which (non-trivial) expressions
must already have been computed, and not later modified,
on all paths to the program point.

I Each a subset of AExp∗ = {a+ b, (a+ b) ∗ x, a ∗ b, a+ 1}
I Associated optimization: values of available expression may

be cached for use at [B]`.

I To exploit this, all paths to [B]` must make it available
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Some equations for Available Expressions §2

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEN(1) = ∅
I nothing available at start of program

I AEX(2) = AEN(2) ∪ {a ∗ b}
I only the non-trivial expressions

I AEN(3) = AEX(2) ∩AEX(5)
I only if both paths make it available
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Some equations for Available Expressions §2

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4;
[x := a + b]5)

I AEX(3) = AEN(3) ∪ {a+ b, a ∗ b}
I condition also has effect

I AEX(4) = AEN(4)− {a+ b, (a+ b) ∗ x, a+ 1, a ∗ b}
I remove all arithmetic expressions which contain a
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Auxiliary functions for Available Expressions §2

I We construct the analysis by specifying for each block:
I what expressions become available genAE(B

`)
I what expressions become unavailable killAE(B

`)

I These we then plug into a generic transfer function, that
computes the effect of executing the block on the analysis
result.

I Together with “flow” functions that push analysis results
through the flow graph, we have a complete analysis.



[Faculty of Science
Information and Computing Sciences]

11

For assignments §2

I What to remove for assignments:
killAE([x := a]`) = {a′ ∈ AExp∗ | x ∈ FV (a′)}

I What to add for assignments:
genAE([x := a]`) = {a′ ∈ AExp(a) | x /∈ FV (a′)}

I Why x /∈ FV (a′)?

I Example:
[x := (a + b) * x]1;
if [(a + b) * x > a + b + 14)]2 then

...

I It helps to have side-effect free expressions.
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For skip and conditions §2

I For the remaining blocks, we do the same.
I For skip:

I killAE([skip]
`) = ∅

I genAE([skip]
`) = ∅

I For conditions:
I killAE([b]

`) = ∅
I genAE([b]

`) = AExp(b)

I We only save arithmetic expressions, not complete boolean
ones.

I Higher precision lead to higher costs.



[Faculty of Science
Information and Computing Sciences]

13

Analysis functions for Available Expressions §2

Flow functions:

AEN(`) =

{
∅ if ` = init(S∗)⋂
{AEX(`

′) | (`′, `) ∈ flow(S∗)} otherwise

Transfer functions:

AEX(`) = (AEN(`)− killAE(B
`)) ∪ genAE(B

`)

I Flow functions do not work for programs starting with a
loop. Why?

I Equations or assignments?
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Example continued §2

[x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4; [x := a + b]5)

` killAE(`) genAE(`)
1 {(a+ b) ∗ x} {a+ b}
2 ∅ {a ∗ b}
3 ∅ {a ∗ b, a+ b}
4 {a ∗ b, a+ b, (a+ b) ∗ x, a+ 1} ∅
5 {(a+ b) ∗ x} {a+ b}
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Example continued §2

[x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1 ]4; [x := a + b]5)

` AEN(`) AEX(`)
1 ∅ (AEN(1)− {(a+ b) ∗ x}) ∪ {a+ b}
2 AEX(1) AEN(2) ∪ {a ∗ b}
3 AEX(2) ∩AEX(5) AEN(3) ∪ {a ∗ b, a+ b}
4 AEX(3) AEN(4)− {a ∗ b, a+ b, (a+ b) ∗ x, a+ 1}
5 AEX(4) (AEN(5)− {(a+ b) ∗ x}) ∪ {a+ b}
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Performing Chaotic Iteration §2

` AEN(`) AEX(`)
1 ∅ (AEN(1)− {(a+ b) ∗ x}) ∪ {a+ b}
2 AEX(1) AEN(2) ∪ {a ∗ b}
3 AEX(2) ∩AEX(5) AEN(3) ∪ {a ∗ b, a+ b}
4 AEX(3) AEN(4)− {a ∗ b, a+ b, (a+ b) ∗ x, a+ 1}
5 AEX(4) (AEN(5)− {(a+ b) ∗ x}) ∪ {a+ b}

AEN(1) AExp∗ ∅ ∅ ∅
AEX(1) AExp∗ {a+ b} {a+ b} {a+ b}
AEN(2) AExp∗ {a+ b} {a+ b} {a+ b}
AEX(2) AExp∗ {a+ b, a ∗ b} {a+ b, a ∗ b} {a+ b, a ∗ b}
AEN(3) AExp∗ {a+ b, a ∗ b} {a+ b} {a+ b}
AEX(3) AExp∗ {a+ b, a ∗ b} {a+ b, a ∗ b} {a+ b, a ∗ b}
AEN(4) AExp∗ {a+ b, a ∗ b} {a+ b, a ∗ b} {a+ b, a ∗ b}
AEX(4) AExp∗ ∅ ∅ ∅
AEN(5) AExp∗ ∅ ∅ ∅
AEX(5) AExp∗ {a+ b} {a+ b} {a+ b}
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A more mathematical formulation §2

I For every program point `, we have a finite set AEN(`)
and AEX(`).

I Total analysis information for the program is a tuple
containing all these sets:

−→
AE= (AEN(1), AEX(1), . . . , AEN(5), AEX(5))

I Initialization:

−→
AE= (AExp∗,AExp∗, . . . ,AExp∗,AExp∗)

I Why not at
−→
AE= (∅, . . . , ∅)?
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A single “parallel” transfer function §2

I Equations implicitly define separate transformations on
−→
AE:

Fentry(3)(. . . , AEX(2), . . . , AEX(5)) = AEX(2)∩AEX(5)

Fexit(3)(. . . , AEN(3), . . .) = AEN(3) ∪ {a ∗ b, a+ b}

I Together give a transformation function F , applying the
separate transformations elementwise.

I F maps column to column in every single iteration.
I Not as greedy as Chaotic Iteration
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Iterating §2

I We iterate F , by computing

initialize(AE);

while (AE != F(AE)) do

AE = F(AE);

output solution AE;

I A fixpoint (or fixed point) of F is an X so that F (X) = X.

I The fixpoint
−→
AE satisfies the equations: F (

−→
AE) =

−→
AE.

I Moreover, going on does not help: F (F (
−→
AE)) =

−→
AE.
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Intuitive reading §2

I We start from our most favourite, most informative answer.

I Iterating makes the values less informative, but also more
consistent with the equations.

I We repeat until it is consistent.
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Termination §2

I Does the iteration ever end?

I No cyclic behaviour: sets in
−→
AE can only shrink.

I Solutions can not shrink indefinitely:
I bounded by ∅ from below, and
I AExp∗ is finite to begin with.

I The transfer functions themselves terminate

I Together: computation of a fixed point terminates.
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Best possible solution §2

I The solution is a least fixed point: no avoidable
information is included.

I That is, no avoidable information according to the
equations.

I Imprecision comes from imprecision in the equations, not
their solution.

I Although F changes all sets in parallel, the separate sets
may also be transformed non-deterministically in any order.

I The latter is in fact done when using Chaotic Iteration.
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Avoid cyclic behaviour: monotonocity §2

I Iterating makes the solution less useful.
I X v Y means that X is at least as useful as Y

I With AE, {a+ b, a ∗ b} v {a+ b}
I Being less useful should not be an asset: transfer functions

must be monotone

I F is monotone if
−→
AE v

−→
AE’ implies F (

−→
AE) v F (

−→
AE’)

I Monotonocity does not mean that
−→
AE v F (

−→
AE).
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Verify that analysis functions are monotone! §2

I Usually done by verifying that the separate
transformations, like Fentry(3), are monotone.

I With AE, v is in fact ⊇
I For Fentry(3):

AEX(2) ⊇ AE′X(2) and AEX(5) ⊇ AE′X(5)

implies

AEX(2) ∩AEX(5) ⊇ AE′X(2) ∩AE′X(5) .

I If separate transformations are monotone, then so is F .
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AE is a forward analysis §2

AEN(`) =

{
∅ if ` = init(S∗)⋂
{AEX(`

′) | (`′, `) ∈ flow(S∗)} otherwise

I Analysis information flows in the direction of program
execution.

I Starting from the beginning of the program.

I In the formulas: we use flow rather than flowR.
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AE is a must analysis §2

[z := x + y]1;
while [true]2 do

[skip]3

I Writing down the equations, and substituting, you get

AEN(2) = {x+ y} ∩AEN(2)

I Fixpoints not unique: ∅ and {x+ y} are both okay.

I Most informative solution is {x+ y}, so we choose that
one.

I Must analysis: use ∩ not ∪ in the flow equations.
I All execution paths must make the expressions available.
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Live Variables Analysis §2

I [x := 2]1; [y := 4]2; [x := 1]3;
(if [B]4 then [z := y]5

else [z := x*x]6);
[x := z]7;

I Variable x is not live at the exit of 1
I It is live at the exit of 3,

I unless we know that [B]4 is never false.

I Assignments to dead variables is dead code and might be
removed

I In contrast with AE, LV is a backward analysis
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Transfer functions for Live Variables Analysis §2

LVX(`) =

{
V if ` ∈ final(S∗)⋃
{LVN(`′) | (`′, `) ∈ flowR(S∗)} otherwise

LVN(`) = (LVX(`)− killLV (B
`)) ∪ genLV (B

`)

Note: V denotes the initial set of variables of interest.

killLV ([x := a]`) = {x}
killLV ([skip]

`) = ∅
killLV ([b]

`) = ∅

genLV ([x := a]`) = FV (a)
genLV ([skip]

`) = ∅
genLV ([b]

`) = FV (b)
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An example §2

[y := x]1;
[z := 1]2;
while [x>1]3 do

([z := z * x]4;
[x := x - 1]5);

[x := 0]6

` killLV (`) genLV (`)

1 {y} {x}
2 {z} ∅
3 ∅ {x}
4 {z} {z, x}
5 {x} {x}
6 {x} ∅

` LVX(`) LVN(`)

1 LVN(2) (LVX(1)− {y}) ∪ {x}
2 LVN(3) LVX(2)− {z}
3 LVN(4) ∪ LVN(6) LVX(3) ∪ {x}
4 LVN(5) (LVX(4)− {z}) ∪ {z, x}
5 LVN(3) (LVX(5)− {x}) ∪ {x}
6 {z} LVX(6)− {x}
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A few computations for Live Variables §2

[y := x]1;
[z := 1]2;
while [x>1]3 do

([z := z * x]4;
[x := x - 1]5);

[x := 0]6

I Variable of interest: z

I Conclusion: y is not
live anywhere so
assignment 1 is dead
code.

LVX(6) ∅ {z} {z}
LVN(6) ∅ {z} {z}
LVX(5) ∅ ∅ {x, z}
LVN(5) ∅ {x} {x, z}
LVX(4) ∅ {x} {x, z}
LVN(4) ∅ {x, z} {x, z}
LVX(3) ∅ {x, z} {x, z}
LVN(3) ∅ {x, z} {x, z}
LVX(2) ∅ {x, z} {x, z}
LVN(2) ∅ {x} {x}
LVX(1) ∅ {x} {x}
LVN(1) ∅ {x} {x}
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Live Variables Analysis is a backward analysis §2

I Backward analysis:
I Variables used in an assignment are live before the

assignment.
I Variables assigned to are not live before the assignment

(except when also used)

I Analysis information moves contrary to execution direction.

I Speed up iteration by starting at program’s end.

I If we are not interested in any variable at the end, which
variables are then live?
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The smaller the better §2

I Consider
while [x>1]1 do

[skip]2;
[y := x + 1]3

I Substition gives LVX(1) = LVX(1) ∪ {x}.
I Two safe solutions are {x, y} and {x}.
I The more variables dead (not live), the more we can

optimize: we choose {x}.
I Hence, we start small and grow out sets, by using ∪ (may).
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3. Monotone Frameworks
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Monotone Frameworks §3

I A framework that generalizes the example analyses
I Making them instances

I Identify the commonalities, parameterize by the differences
I Advantages:

I generic algorithms,
I generic proof methods for soundness, and
I less ad-hoc tends to provide better understanding.

I Disadvantage:
I mathematically more challenging
I algorithms cannot take advantage of special properties of

any specific analysis.
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From entry and exit to context and effect §3

I Thus far, we had an entry and exit set for each
label/program point.

I Now, for each label ` we shall have
I Analysis◦(`) or the context value: values come from the

context of [B]`

I Analysis•(`) or effect value: it shows the effect of [B]` on
Analysis◦(`)

I Analysis•(`) is defined in terms of Analysis◦(`), and

I Analysis◦(`) is defined in terms of the Analysis• values of
other blocks.

I For LV, the context values are the exit sets (backward).

I For AE, the context values are the entry sets (forward).
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The formula for Analysis•(`) §3

I Recall: these describe the effect of the blocks.

I The generic transfer functions:

Analysis•(`) = f`(Analysis◦(`))

I f` is the transfer function for [B]`.

I Note: transfer functions can be given per block.

I Thus far, we have specified them uniformly for each
language construct.
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The formula for Analysis◦(`) §3

Analysis◦(`) =

{
ι if ` ∈ E⊔
{Analysis•(`

′) | (`′, `) ∈ F} otherwise

I Combination operator
⊔

is
⋂

(for must) or
⋃

(for may)

I F is either flow(S∗) (forward) or its reverse flowR(S∗)
(backward).

I E is the set of extremal labels, e.g. {init(S∗)} or
final(S∗)

I ι is the extremal value for the extremal labels

I 4 combinations: backward vs. forward and must vs. may.
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What is wrong with Analysis◦(`)? §3

I Formula is not correct when ∃(`′, `) ∈ F with ` ∈ E.
I Forward analysis of a program starting with a while loop
I Backward analysis of a program ending in a while loop

I Consider LV analysis for
while [x > 1]1 do

[x := x-1]2

I We want

Analysis◦(1) = Analysis•(2) ∪ V

and not simply
Analysis◦(1) = V .

I Workaround: start program with skip and end it with skip.
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Fixing the formula for Analysis◦(`) §3

I Or, the formula for Analysis◦(`) should read

Analysis◦(`) =
⊔
{Analysis•(`

′) | (`′, `) ∈ F} t ι`E

where

ι`E =

{
ι if ` ∈ E
⊥ if ` /∈ E

I Here, ⊥ (pronounced “bottom”) is the zero of t.
I For all a: a t ⊥ = a.
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Example Available Expressions §3

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1]4;
[x := a + b]5)

I In this case:
I
⊔

=
⋂

I F = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}
I E = {1}
I ι = ∅
I ⊥ = AExp∗ (because x ∩ AExp∗ = x)

I Transfer functions f` will have to wait a bit.
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Interlude §3

First, we consider the datatypes for Analysis◦ and Analysis•:
complete lattices satisfying the Ascending Chain Condition.
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Fixed points §3

I Declarative, constraint-based specification of static
analysis:

I specifies all admissible/sound solutions.

I Algorithmically: find the best solution in finite time.

I Best solution is a so-called least fixed point of a function
that can be derived from this set of constraints.

I In the interest of definedness and termination, this is a
monotone function computed on a (complete) lattice that
satisfies the Ascending Chain Condition.

I Come back to read these statements at a later time.
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Example §3

I while [n < 10]1 do

if [n >= 5]2

then [n := 2*n]3

else [n := n + 1]4;

I Sign analysis: For each variable compute the signs it may
have at/before each program point (−,+, 0).

I For simplicity, we consider only the variable n.

I Example constraints that influence analysis result A[1]:
{0} ⊆ A[1],
A[3] ⊆ A[1],
A[4] ⊆ A[1].
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A more operational view §3

I Constraints: {0} ⊆ A[1], A[3] ⊆ A[1], A[4] ⊆ A[1].
I Alternate view: A[1] is a function f1 of A[3] and A[4].

When they change, A[1] may also need an update.

I In this case, f1(A) = A[3] ∪A[4] ∪ {0}.
I A system of constraints leads to a function F that maps A

to a new, updated A, hopefully closer to the solution.

I Iterate until a fixed point F (A) = A is reached.

I F must be monotone: larger inputs do not lead to smaller
outputs.

I When can we be sure it stops, and is the answer any good?
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Essential ingredients: joins and termination §3

I During program analysis:
I we need need to “join” information from various execution

paths.
I The condition of a while can be reached from at least two

places.

I We can typically identify a best possible and a worst
possible value.

I Lattices encapsulate what we need.

I Iteration should terminate in finite number of iterations.

I Guaranteed if function is monotone and lattice satisfies
Ascending Chain Condition.

I At termination, we have the best possible (least) fixed
point.

I In the example, smallest possible sets of signs
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Introductory example §3

I Take a set of values, say {⊥,−, 0,+,≤ 0,≥ 0,>}.
I Approximate sets of integers by means of signs

I ⊥ (pron. bottom) represents {} (or ∅).

I > (pron. top) represents the set of all integers
I Various relations hold:

I 0 is more precise than ≤ 0, but also more precise than ≥ 0
I ⊥ is more precise than everyhing
I ≤ 0 and ≥ 0 are not comparable

I Represent relations visually in Hasse diagram:

− 0 +

≤ 0 ≥ 0

>

⊥
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Partial orders §3

I A binary relation v on (L,L) (or L× L) is given.

I For simplicity, instead of (x, y) ∈ v we write x v y.
I The relation v is a partial order if it is

I reflexive: for all x ∈ L, x v x
I transitive: for all x, y, z ∈ L, if x v y and y v z, then
x v z

I anti-symmetric: if x v y and y v x, then x = y.

I Examples:
I ”(type t′) is an instance of (type t)” is a partial order
I ≤ and ≥ are partial orders on the natural numbers N, and

so is =.

I Partial order P conventionally drawn as a Hasse diagram:

b

c

d

a
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Lattices §3

I If for all x, y ∈ L, it holds that there exists a smallest
z ∈ L with x v z and y v z, then the partial order is
called a lattice (tralie in Dutch).

I If z exists, then it is unique and denoted x t y (the join of
x and y).

I Similarly for the greatest lower bound x u y, the meet of x
and y.

I Reason: we want t and u to be total binary functions, i.e.,
operators.

I Duality: reversing all edges in the lattice gives another
lattice.
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Example lattices §3

I (N,=) is not a lattice: x t y is undefined for all x 6= y.
I T is a lattice, because of specially added error type:

I Int t Int→ Int = >.

I (N,≤) and (N,≥) are (dual) lattices.

I The partial order P is not a lattice.

b

c

d

a
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Complete lattices §3

I Consider a subset X = {x1, x2, . . .} of the lattice L.

I Then
⊔
X is well-defined for finite non-empty X:

x1 t (x2 t (. . . xn) . . .)).

I What about the infinite or empty X’s?

I In a complete lattice,
⊔
X is defined and unique for all

X ⊆ L.

I
⊔
∅ = ⊥ and

⊔
L = >.

I Is every finite lattice complete?

I No, complete lattices must have a bottom and top element.

I But a finite lattice with a bottom is complete.
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Examples §3

I Subsets of S = {0, 1, 2} form a complete lattice (v is ⊆).
Then t equals ∪, and ∅ is smallest and S largest element.

I Dually, (S,⊇) is also one: t equals ∩, ⊥ = S, > = ∅.
I (N,≤) is a lattice, but has no >. Here, x t y = max(x, y).
I (P(N),⊆) with ∅ as bottom, N as top. Here t = ∪.

I An infinite complete lattice

I L = {⊥,−, 0,+,≤ 0,≥ 0,>} for sign testing

− 0 +

≤ 0 ≥ 0

>

⊥
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An aside: computational aspects §3

I How to define lattices or complete lattices in Haskell?

I Preferably, like Eq and Ord, as a type class.

I Preferably most definitions have a default implementation.

I Enforcing algebraic laws is difficult (within the type
system).

I t and u are associative, commutative binary operators.

I Relation: x v y if and only if x t y = y.

I Defining t in terms of v implies a search of some kind.

I Other way around is direct.

I Provide the lattice with bottom and top element (implicit
or explicit).

I Different lattices can be made on the same underlying set!
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The ascending chain condition (ACC) §3

I Necessary to assure needing only a finite number of
iterations during fixed point computation.

I Every chain x0 v x1 v . . . in the lattice stabilizes: there is
an n where xn = xn+1.

I We can only go up a finite number of times

I For finite lattices: ACC trivially satisfied

I ACC holds for (N,≥): top is 0.

I A lattice with ACC and a bottom element is complete.
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The descending chain condition (DCC) §3

I Descending Chain Condition is the dual.

I Ascending vs. Descending Chain Condition: turn the
lattice around.

I (Z,≤) has neither ACC or DCC.
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Termination of fixpoint algorithm, formally §3

I X = ⊥;
while (X! = F (X)) do

X = F (X);
where

I X has datatype T ,
I T forms a lattice with bottom element ⊥,
I T has Ascending Chain Condition, and
I F : T → T monotone.

I Thm: least fixed point found in finite time.

I Proof by induction.

I Base case: by definition ⊥ = F 0(⊥) v F (⊥),
I Inductive case: by monotonicity
Fn−1(⊥) v Fn(⊥) implies Fn(⊥) v Fn+1(⊥)

I ACC now implies, the chain ⊥ v F (⊥) v F 2(⊥) . . .
stabilizes.
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Solution is the least fixed point §3

I X = ⊥;
while (X! = F (X)) do

X = F (X);
where

I X has datatype T ,
I T forms a lattice with bottom element ⊥,
I T has Ascending Chain Condition, and
I F : T → T monotone.

I Let S be another fixed point of F : F (S) = S

I Prove Fn(⊥) v S for all n, by induction.

I Base case: by definition ⊥ = F 0(⊥) v S
I Inductive case: assume Fn(⊥) v S.

Then Fn+1(⊥) = F (Fn(⊥)) v F (S) = S, because F is
monotone.
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Interlude §3

End of interlude.
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Property spaces: the data type of the analysis §3

I Values for Analysis◦ and Analysis• taken from the MF’s
property space L.

I Choosing a complete lattice for L provides us with
I a join operator t to combine multiple values into a single

one consistent with both.
I for converging execution paths

I It provides the most precise value with that property.

I ACC ensures termination of fixed point computation
I Least element ⊥ can be used to initialize the computation

I Intuitively, ⊥ represents most informative element of L

I Greatest element > (usually) means no useful or
inconsistent information
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Examples LV §3

I Live Variables (for program S∗):
I L = P(Var∗), finite sets of variables,
I for x, y ∈ L: x v y if and only if x ⊆ y,
I t = ∪,
I ⊥ = ∅ and > = Var∗.

I Why not L = P(Var) so that it is the same for all
programs?

I To get a finite lattice and thus automatically ACC.
I ACC is sufficient, but not necessary: only variables in Var∗

will be added.
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Example AE §3

I Available Expressions (for program S∗):
I L = P(AExp∗), non-trivial subexpressions of S∗,
I for x, y ∈ L: x v y if and only if x ⊇ y,
I t = ∩,
I ⊥ = AExp∗ and > = ∅.
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Transfer functions: the dynamics of the analysis §3

I Start with a collection F of monotone functions on the
property space L:

F ⊆ {f | f : L→ L and f monotone } .

I Recall: a function f is monotone if

x v y implies f(x) v f(y) .

I id ∈ F (for the empty sequence of statements (and skip))

I F closed under function composition ◦ (for the sequencing
of statements)

I For a given program and analysis, we specify for each label
a transfer function f` : L→ L, all from F .
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Transfer functions: the dynamics of the analysis §3
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x v y implies f(x) v f(y) .
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a transfer function f` : L→ L, all from F .
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Finally, monotone frameworks §3

I A Monotone Framework consists of a property space L and
a set F of monotone functions, as well as

I the flow F of the program
I the extremal labels E
I an extremal value ι ∈ L
I a mapping f. from the labels Lab∗ to functions in F
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Example Available Expressions continued §3

I [x := (a + b) * x]1;
[y := a * b]2;
while [a * b > a + b]3 do

([a := a + 1]4;
[x := a + b]5)

I (L,v) = (P(AExp∗),⊇) as earlier.

I F = flow∗ = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)},
I E = {init(S∗)} = {1}
I ι = ∅
I The function space F could be all functions of the form
{f : L→ L | ∃lk, lg : f(l) = (l − lk) ∪ lg}.

I All functions that first remove and then add

I f`(l) = (l − killAE([B]
`)) ∪ genAE([B]

`) where
[B]` ∈ blocks(S∗)



[Faculty of Science
Information and Computing Sciences]

63

Available Expressions is a Monotone Framework §3

I Recall F = {f : L→ L | ∃lk, lg : f(l) = (l − lk) ∪ lg} and
v equals ⊇.

I Identity function exists in F : take lk = lg = ∅.
I F is closed under composition: let
f(`) = (l − lk) ∪ lg, f ′(`) = (l − l′k) ∪ l′g ∈ F .
(f ◦ f ′)(l) = f(f ′(l)) = (((l − l′k) ∪ l′g)− lk) ∪ lg =
(l − (l′k ∪ lk)) ∪ ((l′g − lk) ∪ lg)

I Thus, kill set for f ◦ f ′ is l′k ∪ lk and gen set is (l′g− lk)∪ lg.

I Monotonicity of f ∈ F : let l ⊇ l′. Then l − lk ⊇ l′ − lk
and finally (l − lk) ∪ lg ⊇ (l′ − lk) ∪ lg
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Reflections on burden of proof §3

I Proof also works when v=⊆: other three analyses are also
Monotone Frameworks.

I We exploit similarities in the set F of transfer functions.
I All analyses choose their transfer functions from F .
I Easily seen because it is a syntactic property of the

functions.
I One proof works for all.

I Another advantage: each function can be represented by
two sets.

I Starting with F as the set of all monotone functions only
moves the burden, and does not allow reuse.
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Distributivity §3

I Consider analysis info `1 and `2 for two executions leading
up to a block

I Two ways to proceed:
I join before transfer: f(`1 t `2) (MFP)
I join after transfers: f(`1) t f(`2) (MOP)

I By monotonicity f(`1) t f(`2) v f(`1 t `2)
I So the second possibility is never worse than the first

I If f is distributive then both ways are equivalent:
f(`1 t `2) v f(`1) t f(`2).

I In distributive frameworks doing a join before the transfer
does not lose information

I Verify that AE is distributive: f(l ∩ l′) = f(l) ∩ f(l′)
I Distributivity is good: faster algorithms, higher precision.

I Not all monotone frameworks are distributive.
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4. Constant propagation
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Constant Propagation §4

I Constant Propagation: Determine at each program point
and for each variable whether the variable always has the
same value there.

I We are not interested to see which variables never change
I Although we shall find that out too

I For every variable we either know
I the single integer value it can have at that point
I a special > value signifying its value is not always the same

at that point
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Some examples §4

I [y := 2]2; [z := 1]3;
while [x>0]4 do ([z := z * y]5; [x := x - 1]6);

I Analysis•(3) = [x 7→ >, y 7→ 2, z 7→ 1] and
Analysis◦(4) = [x 7→ >, y 7→ 2, z 7→ >]

I [x := 8]1; [y := 2]2; [z := 1]3;
while [x>0]4 do ([z := z * y]5; [x := x - 1]6);

I Analysis•(3) = [x 7→ 8, y 7→ 2, z 7→ 1] and
Analysis◦(4) = [x 7→ >, y 7→ 2, z 7→ >]

I [x := 8]1; [z := 1]3;
while [x>0]4 do ([z := z * y]5; [x := x - 1]6);

I We cannot know what values y might take so now
Analysis•(3) = [x 7→ 8, y 7→ >, z 7→ 1] and
Analysis◦(4) = λv.>
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The Constant Propagation lattice §4

I For values bound to variables we employ the lattice Z>

0−1. . .−∞

>

21 . . . ∞
I The property space L is the complete lattice of total

functions from Var∗ to Z>.

I Our total functions can be interpreted as finite sets of pairs
Var∗ × Z> where every variable occurs exactly once.

I Add a special element for the always undefined function ⊥.
I The ordering v is elementwise for all σ̂, σ̂′ ∈ L:

I ⊥ v σ̂, and
I σ̂ v σ̂′ if and only if for all x ∈ Var∗ : σ̂(x) v σ̂′(x)

I FCP contains all monotone functions of the correct type.
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The transfer functions (different from NNH) §4

For the three types of statement

[x := a]` : fCP
` (σ̂) =

{
⊥ if σ̂ = ⊥
σ̂[x 7→ ACP JaKσ̂] otherwise

[skip]` : fCP
` (σ̂) = σ̂

[b]` : fCP
` (σ̂) = σ̂

where we use the function ACP : AExp→ (Var∗ → Z>)→ Z>

for evaluation

ACP JnKσ̂ = n
ACP JxKσ̂ = σ̂(x)
ACP Ja1 opa a2Kσ̂ = ACP Ja1Kσ̂ ôpa ACP Ja2Kσ̂

and it is understood that x ôpa y =

{
x opa y if x, y ∈ Z
> otherwise
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Constant Propagation Analysis example §4

I [y := 2]2;
[z := 1]3;
while [x>0]4 do

([z := z * y]5;
[x := x - 1]6);

I Initial statement has ι = λv.>: the only safe answer

I The effect fCP
2 (ι) = [y 7→ 2, z 7→ >, x 7→ >]

I fCP
5 ([y 7→ 2, z 7→ 1, x 7→ >]) = [y 7→ 2, z 7→ 2, x 7→ >]

I The join operator t proceeds elementwise:

I At first: Analysis◦(4) = [y 7→ 2, z 7→ 1, x 7→ >]
I Later: Analysis◦(4) = [y 7→ 2, z 7→ >, x 7→ >], because
z 7→ 1 in Analysis•(3) and z 7→ 2 in Analysis•(6).

I Joining two different values for a variable leads to >.
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Remarks about Constant Propagation §4

I Forward analysis

I I use less robust, but simpler notation
I Proof of being a monotone framework is an exercise. Prove

that
I the identity function is an element of FCP

I FCP is closed under composition
I all transfer functions we use are in FCP
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Constant Propagation is not distributive §4

I Recall distributive: f(`1 t `2) v f(`1) t f(`2).
I Let [y := x * x]`, σ̂1(x) = 1 and σ̂2(x) = −1.

I Joining before transfer:

(σ̂1 t σ̂2)(x) = 1 t −1 = >

I Therefore,
fCP
` (σ̂1 t σ̂2)(y) = > .

I Postponing the join of arguments:

fCP
` (σ̂1)(y) t fCP

` (σ̂2)(y) = 1 t 1 = 1

I Indeed, > 6v 1 so CP is not distributive.
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Roadmap §4

I Monotone frameworks have been defined and illustrated.

I But how to compute an analysis result for a monotone
framework?

I Algorithm MFP computes the least fixpoint.

I We want to know how precise the result can be.
I What is the best possible solution we may ever obtain?

I This is the Meet Over all Paths (MOP) solution.

I MFP is a sound approximation of MOP: MOP v MFP.

I For distributive frameworks, however, MOP = MFP.
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5. Solving a monotone framework
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The Meet/Merge Over all Paths (MOP) solution§5

I A complete execution is a path through the control-flow
graph F from initial to (some) final label.

I What is an execution?
I A path from the initial label to any label in the program

I Consider for a particular label `:
path◦(`) = {[`1, . . . , `n−1] |

n ≥ 1, ∀i < n : (`i, `i+1) ∈ F, ` = `n, `1 ∈ E}
I The analysis function for one such path, p = [`1, . . . , `m]:

fp = f`m ◦ . . . ◦ f`1 ◦ id
I Applying the function to the extremal value ι gives the

analysis result for p.

I Be consistent with all possible executions leading to `:

MOP◦(`) =
⊔
{fp(ι) | p ∈ path◦(`)}
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And similarly... §5

I For paths ending after the transfer function for block `:
path•(`) = {[`1, . . . , `n] | n ≥ 1,

∀i < n : (`i, `i+1) ∈ F, ` = `n, `1 ∈ E}
I The join over these paths is then

MOP•(`) =
⊔
{fp(ι) | p ∈ path•(`)}
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MOP is undecidable §5

I Without proof.

I Intuition: joining over an infinite number of execution
paths: when do you stop?

I For some analyses, MOP is decidable.
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Maximal Fixed Point (MFP) - input/output §5

I Computes the least fixed point of an instance of a
monotone framework

I Input: the monotone framework (L,F , F, E, ι, λ`.f`).
where

I L the complete lattice
I F the monotone function space containing all the transfer

functions
I F the transitions of the program
I E the extremal labels
I ι the extremal value, and finally
I λ`.f` the mapping from labels ` to transfer functions from
F .

I Output: the values MFP◦(`) and MFP•(`) for all ` ∈ Lab∗
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General idea of MFP §5

I Work list algorithm: intermediate worklist W .

I An array A that approximates the solution from below
A[`] v MFP◦(`).

I We initialize A to something great, and repeat until
consistent with the constraints.

I Array A stores increasingly closer approximations of the
answer.

I Only the context values are stored.
I If transfer functions expensive to compute, then

cache/store also the effect values.
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The code of the algorithm §5

I Step 1 (initialization):
Set A[`] = ⊥ for ` /∈ E,
set A[`] = ι for ` ∈ E, and set W = F.

I Step 2 (iteration):
while W not empty do

(`, `′) := head(W); -- get next edge

W := tail(W); -- drop it from the list

if f`(A[`]) 6v A[`′] then -- if not consistent

A[`′] := A[`′] t f`(A[`]); -- incorporate it

for all `′′ with (`′, `′′) ∈ F do -- add all

W := (`′, `′′) : W; -- successors to W

I Step 3 (finalization):
Copy A[`] into MFP◦(`) and f`(A[`]) into MFP•(`).



[Faculty of Science
Information and Computing Sciences]

82

How does it work? §5

[x := a + b]5

[y := a * b]2

[x := (a + b) * x]1

[a * b > a + b]3

no

yes

[a := a + 1]4

I At some point: (`, `′) = (5, 3) is next up,
A[3] = {a+ b, a ∗ b} and A[5] = ∅

I Compute x = f5(A[5]) = (∅ − {(a+ b) ∗ x}) ∪ {a+ b}.
I Do the test: is x a superset of A[3]?

I No, so set A[3] = A[3] t x = A[3] ∩ {a+ b} = {a+ b}.
I Add (3, 4) to W : propagate changes.
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Part 1 of correctness: an invariant §5

I Similar to correctness of fixpoint iteration.

I Let Analysis◦(`) and Analysis•(`) describe the least
solution to the equations.

I To prove: A v Analysis◦ is an invariant of the while loop.
I The base case: at initialization

I ⊥ v Analysis◦(`) for ` /∈ E, and
I ι v Analysis◦(`) for ` ∈ E.

I The inductive case: consider the flow edge (`, `′)
I If we do not change A, then nothing is changed except W .
I If we do, then monotonicity saves the day.

I In summary, A stays below (or is on) the least fixpoint.
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Part 2 of correctness: at termination §5

I Previous slide implies: we never “pass by” the intended
solution.

I But do we have a solution when the algorithm terminates?
I Two important aspects here:

I We consider every equation at least once.
I Because W is initialized to F

I When a value is updated, we make sure all equations that
may be directly influenced are added to the worklist.

I Together implies that at termination we are in a reductive
point: F (A) v A.

I Negate the if-condition in the algorithm.
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MFP computes the least fixed point §5

I Part 1 and 2 together say that A = F (A): it is a fixpoint.

I Since this fixpoint lies below or on the least fixpoint (part
1), it must be that least fixpoint.

I Similar if you consider the effect values.
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Termination §5

I Everytime we add an edge to W it is because a value
changed.

I Because of ACC, every A[`] can only change a finite
number of times.

I This gives termination.
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Complexity of the algorithm §5

I Let L have finite height h ≥ 1 (length of longest chain).

I Let e be the number of edges in F (e ≥ number of labels).

I Step 2 of the algorithm is in O(e · h)
I Reason: every edge can only lead to a change at most h

times (after a change). In each case, we do/generate a
“constant” amount of work.

I Evaluating f`, t, updating A are considered basic
operations. Running time is measured in terms of how
many of these basic operations have to be done.
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MFP approximates MOP §5

I MFP always terminates, MOP is generally undecidable.
I Obviously MFP 6= MOP, but MOP v MFP.

I MOP can be more precise than what MFP computes.

I We saw this earlier for Constant Propagation: joining
before transfer loses detail.

I This is where MFP loses precision over MOP.

I Can this be reconciled with the fact that MFP computes
the least solution?

I For distributive frameworks: joining before or after makes
no difference.

I Not surprisingly, MFP = MOP
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Summary so far §5

I General idea of program analysis

I Two example analyses

I Monotone frameworks

I Algorithms for computing a solution for an instance of a
monotone framework.

I Properties of such a solution
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