
[Faculty of Science
Information and Computing Sciences]

APA
Interprocedural Dataflow Analysis

Jurriaan Hage
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

May 1, 2012

[Faculty of Science
Information and Computing Sciences]

2

1. The While language with procedures

[Faculty of Science
Information and Computing Sciences]

3

Procedural programming §1

I Any sensible programming language supports procedures or
functions in some form.

I The main complications that will arise are:
I How do we propagate analysis information into and out of

procedures?
I A procedure can be jumped to from arbitrarily many

locations.
I Do we join the results over all possible callers?

I How do we “know” where to return?
I What if we blindly propagate a single analysis result to all

return locations?

I We focus on forward analysis.

[Faculty of Science
Information and Computing Sciences]

4

Adding procedures to While §1

I Extend the While-language with procedures

I A program takes the form: begin D∗ S∗ end

I D∗ is a sequence of procedure declarations:
proc p(val x, res y) is`n S end`x

I x and y are formal parameters and local to p

I A procedure call is a statement: [call p(a,z)]`c`r
I a is passed by-value and can be any arithmetic expression

I z is call-by-result: it can only be used to pass the result
back

[Faculty of Science
Information and Computing Sciences]

5

Information about programs §1

I New block types: is, end and call (...)

I Entry and exit labels attached to is and end

I Call and return labels attached to call

I Add new kind of flow:
I (`c; `n) for procedure call/entry
I (`x; `r) for procedure exit/return

I Assume all programs are statically correct:
I only calls to existing procedures,
I all labels and procedure names unique.

[Faculty of Science
Information and Computing Sciences]

6

An example program §1

begin proc fib(val z, u, res v) is1

if [z<3]2 then [v := 1]3

else ([call fib(z-2,0,u)]45;
[call fib(z-1,0,v)]67;
[v := v+u]11)

end8;

[call fib(x,0,y)]910
end

I Syntax more restrictive than examples imply.

I Mimicking local variables: add by-value parameters (like u)

I Variables x and y have global scope

I The scope of u, v, z is limited to the body of fib.

[Faculty of Science
Information and Computing Sciences]

7

The flow graph §1

[call fib(x,0,y)]910

is1

[z<3]2

[v := 1]3

[v := u+v]11

no

yes

end8

[call fib(z-2,0,u)]45

[call fib(z-1,0,v)]67

[Faculty of Science
Information and Computing Sciences]

8

Meet over all valid paths: MVP §1

I Generalize the utopian MOP◦ and MOP• solutions to the
more precise MVP◦ and MVP•.

I Later we consider how to adapt monotone frameworks.

I Paths up to `:
vpath◦(`) =
{[`1, . . . , `n−1] | n ≥ 1, `n = `, [`1, . . . , `n] a valid path}

I MVP◦(`) =
⊔
{f−→

`
(ι) |

−→
` ∈ vpath◦(`)}

I Similarly for the closed case, MVP•(`).

I But what is a valid path?

[Faculty of Science
Information and Computing Sciences]

9

Unbalance and poisoning §1

begin proc neg(val z, res u) is1

[u := -z]2)
end3;

[call neg(-1,p)]56;
[call neg(1,n)]78

end

I Suppose we treat (5; 1) like (5, 1)?

I Suppose we want to track the signs of all variables.

I Poisoning: information about the first call to neg also
flows to the second call. Reasonable?

I path◦ and path• do not always pair call labels correctly
with the label of the return.

I Valid paths, on the other hand, are balanced.

I [5, 1, 2, 3, 8] is not valid, but [5, 1, 2, 3, 6] is.

[Faculty of Science
Information and Computing Sciences]

10

Use valid paths and context instead §1

I Issues when defining valid paths
I Consider only balanced executions.
I During analysis we only consider finite prefixes of these,
I including finite prefixes of infinite ones.

begin proc infinite(val n, res x) is2

[call infinite(0,x)]34;
end5;

[call infinite(0,x)]16
end

I Context can be used to enforce balance:
I it can simulate/abstract behaviour of a call stack.

I The amount of abstraction determines complexity and
precision.

[Faculty of Science
Information and Computing Sciences]

11

Interprocedural flows §1

I The previous slides motivate a need to distinguish
interprocedural and intraprocedural flow.

I For the fibonacci program:
flow(S∗) = {(1, 2), (2, 3), (3, 8), (2, 4), (4; 1), (8; 5), (5, 6),

(6; 1), (8; 7), (7, 11), (11, 8), (9; 1), (8; 10)}
I Interprocedural:

inter-flow(S∗) = {(9,1,8,10), (4,1,8,5), (6,1,8,7)}
4-tuples of call and corresponding return information.

I (9, 1, 8, 5) /∈ inter-flow(S∗)

I init(S∗) = 9 and final(S∗) = {10}
I Backward variants exist: flowR and inter-flowR

[Faculty of Science
Information and Computing Sciences]

12

The flow graph again §1

[call fib(x,0,y)]910

is1

[z<3]2

[v := 1]3

[v := u+v]11

no

yes

end8

[call fib(z-2,0,u)]45

[call fib(z-1,0,v)]67

[Faculty of Science
Information and Computing Sciences]

13

Intermediate summary §1

I Changes to the programming language have now been
made.

I syntax,
I scoping rules,
I MOP is generalized to MVP

I Now come the changes to the monotone framework
I reuse as much as possible of intraprocedural monotone

framework,
I transfer functions for the new statements,
I distinguish between certain execution paths via context.

[Faculty of Science
Information and Computing Sciences]

14

2. Embellished Monotone Frameworks

[Faculty of Science
Information and Computing Sciences]

15

Towards embellished monotone frameworks §2

I From monotone framework to embellished monotone
framework.

I We proceed by example.
I Define a monotone framework for Detection Of Signs

Analysis.
I Specify the form of transfer functions for calls, entries, exits

and returns.
I Change it to include context so that data flows along

balanced paths,
I by lifting the original transfer functions so that they include

context,
I and making sure that procedure call and return imply a

context change.

I Context can be ”anything”, but we restrict ourselves later
so that context helps us to analyze only valid paths.

[Faculty of Science
Information and Computing Sciences]

16

Detection of Sign Analysis §2

I Let (L,F , F, E, ι, λ`.f`) be an instance of a monotone
framework for Detection of Sign Analysis (Exercise 2.15)

I Detection of Signs gives for each program point what signs
each variable may have at that program point.

I Beware: my notation differs from that in NNH.

[Faculty of Science
Information and Computing Sciences]

17

Detection of Sign Analysis - the lattice §2

I The complete lattice L consists of sets of functions

I More precisely: elements of P(Var∗ → S) with
S = {−, 0,+}

I Each function describes a set of executions leading to a
certain program point.

I Example: {g, h} ∈ L with
g(x) = g(y) = +, and h(x) = + and h(y) = −

I In other words,
I there are executions where x and y are both positive and
I there are executions where x is positive and y is negative.

[Faculty of Science
Information and Computing Sciences]

18

Detection of Sign Analysis example §2

I Assume Var∗ = {x, y},
g(x) = + and g(y) = +, and
h(x) = + and h(y) = −.

I Consider the effect of [x := x+y]` on g:
I the function g′ which maps both x and y to + (so g = g′)

I The effect of [x := x+y]` on h is
I map y to −, but x to −, 0 or +
I the result is described by three functions, h−, h0 and h+,

defined as hi(y) = − and hi(x) = i (for all i).

I The set {g, h} is thus mapped to {g′, h−, h0, h+}.

[Faculty of Science
Information and Computing Sciences]

19

Relational vs. independent §2

I Recall: the set {g, h} was mapped to {g, h−, h0, h+}.
I g tells us y can be mapped to +, the hi that y maps to −.
I The hi tell us that x can map to any one of the {0,−,+}.

I Analysis is relational: we store combinations of x and y.
I To save on resources, merge the functions to a set of signs

for each variable: x has signs {0,−,+} and y has {+,−}
I Thereby becoming an independent attributes analysis.

I This value also represents the previously known to be
impossible [x 7→ −, y 7→ +] and [x 7→ 0, y 7→ +].

I The independent attribute analysis is really weaker,
I but also less resource consuming.

[Faculty of Science
Information and Computing Sciences]

20

Interpreting expressions §2

I As : AExp→ (Var∗ → S)→ P(S) gives all possible signs
of an expression, when given a sign for each variable.

I AsJx+yK[x 7→ +, y 7→ +] = {+}
I AsJx+yK[x 7→ +, y 7→ −] = {0,+,−}

[Faculty of Science
Information and Computing Sciences]

21

Transfer functions §2

I Transfer function for [x := a]` maps sets of functions to
sets of functions:

f`(Y) =
⋃
{φ`(σ) | σ ∈ Y }

where Y ∈ L and φ`(σ) = {σ[x 7→ s] | s ∈ AsJaK(σ)}
I Functions may “split up”:

φ`([x 7→ +, y 7→ −]) =

{[x 7→ −, y 7→ −], [x 7→ 0, y 7→ −], [x 7→ +, y 7→ −]}

I Finally f`(Y) collects everything:

{[x 7→ +, y 7→ +], [x 7→ −, y 7→ −],

[x 7→ 0, y 7→ −], [x 7→ +, y 7→ −]}

[Faculty of Science
Information and Computing Sciences]

22

Adding context to the lattice §2

I Add context to get an embellished monotone framework
(L̂, F̂ , F, E, ι̂, λ`.f̂`)

I The complete lattice L becomes ∆→ L:

P(Var∗ → S) becomes ∆→ P(Var∗ → S)

I “Omit” context by taking ∆ a one element set.
I For each δ ∈ ∆ we may have a different value in L.

I δ serves as an index.

I L̂ is a complete lattice (page 398 of NNH) .

I In the book they use
P(∆× (Var∗ → S)) ∼= ∆→ P(Var∗ → S). We don’t.

[Faculty of Science
Information and Computing Sciences]

23

Lifting the transfer functions §2

I We have a transfer function f` : L→ L.

I Lift pointwise to f̂` : (∆→ L)→ (∆→ L):

f̂`(l̂) = λδ → f`(l̂(δ)) for l̂ ∈ L̂

I Or simply, f̂`(l̂) = f` ◦ l̂
I In words, apply old transfer function independently, i.e.,

pointwise, for each value in ∆.

I Example:
f̂`([δ1 7→ {g}, δ2 7→ {h, g}]) =
[δ1 7→ f`({g}), δ2 7→ f`({g, h})] =
[δ1 7→ {g}, δ2 7→ {h0, h−, h+, g}].

[Faculty of Science
Information and Computing Sciences]

24

Data flow in the new set-up §2

I Information flows along dataflow graph edges:

A◦(`) =
⊔
{A•(`′) | (`′, `) ∈ F ∨ (`′; `) ∈ F} t ι̂`E

I So for procedure entry labels, we take the join over all
callers.

I How do we tell different calls apart? By using context.

I Transfer almost as usual:

A•(`) = f̂`(A◦(`))

I Call and return are somewhat different.

[Faculty of Science
Information and Computing Sciences]

25

What happens for a (forward) procedure call? §2

I Assume a call to procedure p:
(`c, `n, `x, `r) ∈ inter-flow(S∗).

I Two transfer functions: f`c and f`n .
I f`n is the same for every call to p.

I In NNH always identity function.

I f`c can be different for each call to p.
I “Chronologically”:

I transfer value at call A•(`c) = f`c(A◦(`c))
I compute A◦(`n) by joining A• for all calls to p.
I transfer value at entry: A•(`n) = f`n(A◦(`n))

I Often the identity function

I value ready to flow through p.

I f`c is typically a function that knows about context.

[Faculty of Science
Information and Computing Sciences]

26

What happens at procedure return? §2

I Procedure return encompasses the real difference:

A•(`r) = f̂2`c,`r(A◦(`c), A◦(`r))

I Transfers information from inside the procedure and from
before the call to just after the call.

I Note: A◦(`r) is (normally) just A•(`x).
I Information before a call can be passed directly to after the

call.
I Instead of propagating it through the call.

I f̂2`c,`r may ignore one (or both) arguments.

I For a backward analysis, the transfer functions change
arity: the one for call becomes binary, the one for return
becomes unary.

[Faculty of Science
Information and Computing Sciences]

27

Call strings as context §2

I Context intends to keep analyses of separate calls separated
I Call string: list of addresses from which a call was made.

I Abstraction of the call stack: ∆ = [Lab∗]

I For fib: Λ, [4], [6], [9], [4, 4], . . . , [9, 9], [4, 4, 4], . . .
I Generate only when needed.

I Call-string abstracts an execution into the labels of calls
seen during execution without seeing the corresponding
return: [1, 6, 5, 8, 3, 2, 1, 4, 2, 1, 9] becomes [6, 9]

I Procedure call labels are added to the front (stack like).

[Faculty of Science
Information and Computing Sciences]

28

Call strings as context §2

I Call string: list of addresses from which a call was made.

I For (`c, `n, `x, `r) we define

f̂1`c(l̂)(`c :δ) = f1`c(l̂(δ)) and f̂1`c(l̂)(Λ) = ⊥
I f1 computes the effect of a call

I and f̂1 selects where the effect values should go.

I Valid paths simulated by the transferring between
”corresponding” call strings.

[Faculty of Science
Information and Computing Sciences]

29

Call strings example snapshot §2

. . .

proc p(..,..) is3

end8

[call p(..,..)]1..

[call p(..,..)]4..

⊥ ⊥ ⊥ . . .

[] [1] [1, 1] [4, 1]

⊥ . . .

⊥ ⊥ ⊥ ⊥ . . .

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ . . .

. . .

A◦(1)

ι

A◦(3)

A◦(4)

A•(1)

A•(4)

[4]

pointwise join

f 11 (ι)

f 11 (ι)

f4(V)

V

f4(V)

.

[Faculty of Science
Information and Computing Sciences]

30

Call strings as context, return §2

I Similarly, for procedure return:

f̂2`c,`r(l̂, l̂′)(δ) = f2`c,`r(l̂(δ), l̂′(`c :δ))

I We use two values:
I from before the call, which is under the same context as

the return,
I from inside the procedure, which is under the extended call

string.

[Faculty of Science
Information and Computing Sciences]

31

Detection of Signs: procedure calls §2

I Assume [call p(a,x)]`c`r and

proc p(val x, res y) is`n S end`x

I A call consists of two assignments x := a and y := ?.
I The context-less transfer function mimicks those.

I For σ = [x 7→ +, z 7→ −] and a = -x we ought to obtain
φ`c(σ) = {[x 7→ −, y 7→ −, z 7→ −],

[x 7→ −, y 7→ 0, z 7→ −],
[x 7→ −, y 7→ +, z 7→ −]}

I Semantics says value of y is undefined (instead of 0).

I New x “shadows” the old.

I In general, unshadow when returning.

[Faculty of Science
Information and Computing Sciences]

32

Detection of Signs: procedure calls §2

I Assume [call p(a,x)]`c`r and

proc p(val x, res y) is`n S end`x

I For σ = [x 7→ +, z 7→ −] and a = -x we ought to obtain
φ`c(σ) = {[x 7→ −, y 7→ −, z 7→ −],

[x 7→ −, y 7→ 0, z 7→ −],
[x 7→ −, y 7→ +, z 7→ −]}

I f`c(Z) =
⋃
{φ`c(σ) | σ ∈ Z}

I φ`c(σ) =
{σ[x 7→ s][y 7→ s′] | s ∈ AsJ-xK(σ) ∧ s′ ∈ {0,+,−}}

[Faculty of Science
Information and Computing Sciences]

33

Detection of Signs: adding context §2

I Consider the function Z ∈ L̂ = ∆→ L

Z = [Λ 7→ σ1, δ2 7→ σ2, . . .]

I We want to obtain

[Λ 7→ ⊥, [`c] 7→ f1`c(σ1), (`c :δ2) 7→ f1`c(σ2), . . .]

I So f̂1`c(Z) is such that for all δ ∈ ∆

f̂1`c(Z)(δ′) =

{
⊥ if δ′ = Λ
f1`c(Z(δ)) if δ′ = `c :δ

I Warning: in NNH they give the same general formula, but
the example of Detection of Signs (2.38) uses different
notation.

[Faculty of Science
Information and Computing Sciences]

34

Call strings of bounded size §2

I L might have ACC, but ∆→ L might not
I Call strings can be arbitrarily long for recursive programs

I Enforce termination by restricting length call strings to ≤ k
I For every different list of call labels, potentially a different

analysis result: quickly exponential.

[Faculty of Science
Information and Computing Sciences]

35

What if we run out of bounds? §2

I Assume k = 2.

I Consider call from 4 either with context [1, 4], [1, 1] or [1].

I Then in all three cases, the context inside the call will be
[4, 1].

I To stay sound we must join the transferred analysis results.

I Here’s where we gain finiteness at the price of precision.

I In a formula

f̂4`c(Z)([4, 1]) = f4`c(Z([1, 4])) t f4`c(Z([1, 1])) t f4`c(Z([1]))

I We can choose the level of detail (value of k) with a
known price to pay.

I Take k = 0 to omit context: ∆ then equals {Λ}

[Faculty of Science
Information and Computing Sciences]

36

k = 2 bounded call strings, snapshot §2

X

⊥ ⊥ ⊥
A•(1)

f 11 (ι)⊥
[call p(..,..)]1..

proc p(..,..) is3

end8

[call p(..,..)]4..

⊥
[] [1] [1, 1] [4, 1]

A◦(3) Y

[4]

pointwise join

[1, 4] [4, 4]

f 11 (ι)

A•(4) ⊥ ⊥ ⊥ ⊥ Y

⊥A◦(4) W . . .⊥V

Y = f4(V) t f4(X) t f4(W)

. . .

[Faculty of Science
Information and Computing Sciences]

37

Separate the context from the transfer §2

I Context is never used to compute the transfer, it only tells
you which part of the value to use (and update).

I For different analyses you can use the same kind of context
and context change

I In an implementation: decouple the context change from
transfer

I The former selects which values influence a given value.
I The latter says how.

[Faculty of Science
Information and Computing Sciences]

38

Flow-sensitive versus flow-insensitive §2

I Flow-sensitive vs. flow-insensitive: does the result of the
analysis depend on the order of statements? Again a
matter of cost vs. precision.

I To go from flow-insensitive to flow-sensitive: add program
points as a form of context.

I In NNH, flow-sensitivity is hard-coded into the framework.

[Faculty of Science
Information and Computing Sciences]

39

Final remarks about procedures §2

I Except for binary transfer functions, the technical changes
are slight.

I Conceptually, changes may be bigger.

I For termination, restrict context to finite sets of values.

I Use context to balance cost and precision.
I Simple monotone frameworks can be easily extended to

become embellished.
I A first step in building an analysis.

I Analyzing procedures can be a pain when scoping enters
the picture.

	The While language with procedures
	Embellished Monotone Frameworks

