[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

APA
Interprocedural Dataflow Analysis

Jurriaan Hage
e-mail: jur@cs.uu.nl
homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

May 1, 2012

1. The While language with procedures

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Procedural programming §1

» Any sensible programming language supports procedures or
functions in some form.
» The main complications that will arise are:
» How do we propagate analysis information into and out of

procedures?
» A procedure can be jumped to from arbitrarily many

locations.
» Do we join the results over all possible callers?
» How do we “know” where to return?

» What if we blindly propagate a single analysis result to all
return locations?

» We focus on forward analysis.

\1 aculty of Science
i, Faculty of S
% § Universiteit Utrecht Information and Computing Sciences]
3 TN

Adding procedures to While §1

v

Extend the While-language with procedures
> A program takes the form: begin D, S, end

v

D, is a sequence of procedure declarations:
proc p(val x, res y) is‘» S end’

> x and y are formal parameters and local to p

v

A procedure call is a statement: [call p(a,z)]g‘;

v

a is passed by-value and can be any arithmetic expression

v

z is call-by-result: it can only be used to pass the result
back

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

4

Information about programs §1

v

New block types: is, end and call (...)

v

Entry and exit labels attached to is and end

Call and return labels attached to call
Add new kind of flow:

> (l.;£,) for procedure call/entry
> (ly;£,) for procedure exit/return

v

v

v

Assume all programs are statically correct:

» only calls to existing procedures,
» all labels and procedure names unique.

&\\‘Wﬁ)) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
5 NS

An example program §1

begin proc fib(val z, u, res v) is!
if [z<3])? then [v := 1]°

else ([call fib(z-2,0,u)]3;

[call fib(z-1,0,v)]%;

7 [v := v+ulh)
end8;
[call fib(x,0,y)]},
end

» Syntax more restrictive than examples imply.
» Mimicking local variables: add by-value parameters (like u)
» Variables x and y have global scope

» The scope of u, v, zis limited to the body of fib.

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

6

flow graph

V

[call £ib(x,0,y)]],

§1

> is! =

/

no

[z<3]?

\ll yes

[v := 1]

[call fib(z-2,0,w)]: =

[call fib(z-1,0,v)]=

[v

'
|

= u+y]H

end®

Universiteit Utrecht

[m]

=

[Faculty of Science
Information and Computing Sciences]

DEE

Meet over all valid paths: MVP §1

8

Generalize the utopian MOP, and MOP, solutions to the
more precise MVP, and MVP,.

» Later we consider how to adapt monotone frameworks.
Paths up to £:
vpath, (¢) =
{[l1,. ln-1] | n>1,0,=20,[l1,...,0,] a valid path}

H

MVP.(€) = LI/~ (1) | £ € vpathy(0)}

Similarly for the closed case, MVP,4(¥).

But what is a valid path?

[Faculty of Science

%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Unbalance and poisoning §1

begin proc neg(val z, res u) is'
[:= -2]%)
endg;
[call neg(-1,p)]3;
[call neg(l,n)]}

end

» Suppose we treat (5;1) like (5,1)?

» Suppose we want to track the signs of all variables.

» Poisoning: information about the first call to neg also
flows to the second call. Reasonable?

» path, and path, do not always pair call labels correctly
with the label of the return.

» Valid paths, on the other hand, are balanced.

&, > [5,1,2,3,8] is not valid, but [5,1,2,3, 6] is. [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

9 %AA&‘

Use valid paths and context instead §1

> Issues when defining valid paths
» Consider only balanced executions.
» During analysis we only consider finite prefixes of these,
» including finite prefixes of infinite ones.
begin proc infinite(val n, res x) is?
[call infinite(0,x)]3;
end’;
[call infinite(0,x)]}
end
» Context can be used to enforce balance:

» it can simulate/abstract behaviour of a call stack.

» The amount of abstraction determines complexity and
precision.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

10

Interprocedural flows §1

» The previous slides motivate a need to distinguish
interprocedural and intraprocedural flow.

» For the fibonacci program:
£low(S,) = {(1,2), (2,3), (3.8), (2,4), (4 1), (8;
(6;1),(8;7),(7,11), (11, 8), (9;

(,),

5),
1), (8;10)}

» Interprocedural:
inter-flow(S,) = {(9,1,8,10),(4,1,8,5), }
4-tuples of call and corresponding return information.

> (9,1,8,5) ¢ inter-flow(S,)

» init(S,) =9 and final(S,) = {10}

» Backward variants exist: flow® and inter-flow’

‘S\ ﬁ/) . . . [Facul_ty of S'ciem:e

? &) § Universiteit Utrecht Information and Computing Sciences]

TN
11

flow graph again

V

[call fib(x,0,y)]}

§1

no

[call £ib(z-2,0,wW]} ==

[call fib(z-1,0,v)]¢=

[v

(= utv

i
|

]11

Universiteit Utrecht

end?®

=

[Faculty of Science
Information and Computing Sciences]

DEE

Intermediate summary §1

» Changes to the programming language have now been
made.
> syntax,
> scoping rules,
» MOP is generalized to MVP
» Now come the changes to the monotone framework
> reuse as much as possible of intraprocedural monotone

framework,
» transfer functions for the new statements,
» distinguish between certain execution paths via context.

5&\\“’%}) [Faculty of Science
% § Universiteit Utrecht Information and Computing Sciences]
13 N

2. Embellished Monotone Frameworks

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Towards embellished monotone frameworks §2

» From monotone framework to embellished monotone

framework.

» We proceed by example.

>

Define a monotone framework for Detection Of Signs
Analysis.

Specify the form of transfer functions for calls, entries, exits
and returns.

Change it to include context so that data flows along
balanced paths,

by lifting the original transfer functions so that they include
context,

and making sure that procedure call and return imply a
context change.

» Context can be "anything”, but we restrict ourselves later
so that context helps us to analyze only valid paths.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
15 N

Detection of Sign Analysis §2

» Let (L, F,F,E,t,\.f;) be an instance of a monotone
framework for Detection of Sign Analysis (Exercise 2.15)

» Detection of Signs gives for each program point what signs
each variable may have at that program point.

» Beware: my notation differs from that in NNH.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
16 NS

Detection of Sign Analysis - the lattice §2

» The complete lattice L consists of sets of functions

» More precisely: elements of P(Var, — S) with
S={-,0,+}

» Each function describes a set of executions leading to a
certain program point.

» Example: {g,h} € L with
g(x) = g(y) =+, and h(z) =+ and h(y) = —

» |n other words,

> there are executions where x and y are both positive and
> there are executions where x is positive and y is negative.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
17 N

Detection of Sign Analysis example §2

v

Assume Var, = {z,y},
g(x) =+ and g(y) = +, and
h(z) =+ and h(y) =
Consider the effect of [x := x y]‘ on g:
» the function ¢’ which maps both 2 and y to + (so g = ¢’)
The effect of [x := x+y]’ on h is

» map y to —, but z to —,0 or +
> the result is described by three functions, h_, hg and hy,
defined as h;(y) = — and h;(x) =i (for all 7).

The set {g, h} is thus mapped to {¢', h—, ho, hy}.

v

v

v

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

18

Relational vs. independent §2

» Recall: the set {g, h} was mapped to {g,h_, ho, h}.
» ¢ tells us y can be mapped to +, the h; that y maps to —.
» The h; tell us that = can map to any one of the {0, —,+}.
» Analysis is relational: we store combinations of x and y.

» To save on resources, merge the functions to a set of signs
for each variable: z has signs {0, —,+} and y has {+, —}

» Thereby becoming an independent attributes analysis.
» This value also represents the previously known to be
impossible [z — —,y — +] and [z — 0,y — +].
» The independent attribute analysis is really weaker,
> but also less resource consuming.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
19 NS

erpreting expressions §2

» As: AExp — (Var, — S) — P(S) gives all possible signs
of an expression, when given a sign for each variable.

> As[x+y]lz = +,y = +] = {+}

L AS[[X"'Y]][:E =ty _] = {O>+? _}

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Transfer functions §2

» Transfer function for [x := a]’ maps sets of functions to
sets of functions:

fo¥) = J{e(0) | o € Y}

where Y € L and ¢y(0) = {o[z — s] | s € As[a] (o)}
» Functions may “split up”:

Sz = +,y——]) =
{z—=—y—=—-llz—=0y— -]z~ +y—-]}

» Finally fy(Y") collects everything:

{lr = +y—=+],[z— —y— —],

&\\‘Wﬁ,) [$ — 07 Y — _]a [.’L‘ — +7 Yy — _]} [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
21 N

Adding context to the lattice §2

> Add context to get an embellished monotone framework
(L, F,F,E,T,\.fp)
» The complete lattice L becomes A — L:
P(Var, — S) becomes A — P(Var, — 5)
> “Omit" context by taking A a one element set.
» For each 6 € A we may have a different value in L.
> 0 serves as an index.
» Lisa complete lattice (page 398 of NNH) .

> In the book they use
P(A x (Var, — S5)) =2 A — P(Var, — S). We don't.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
22 NS

Lifting the transfer functions §2

v

We have a transfer function f,: L — L.
Lift pointwise to fy : (A—-L)— (A—L):

v

700) = A6 = fo(1(8)) forTe L

Or simply, fo(l) = feol
In words, apply old transfer function independently, i.e.,
pointwise, for each value in A.

v

v

> Example:
fe([01 = {g}, 02 = {h, g}]) =
[51 = fl)({g})752 = fﬁ({g> h})] =
[51 = {9}762 = {h07h—7h+’g}]'

&\‘Wﬁ)) [Faculty of Science
= é Universiteit Utrecht Information and Computing Sciences]

23 NS

Data flow in the new set-up §2

v

Information flows along dataflow graph edges:

=| {Au(&) | (¢, 0) e Fv (¢3¢ eF}u?};

v

So for procedure entry labels, we take the join over all
callers.

v

How do we tell different calls apart? By using context.

v

Transfer almost as usual:

Ad(0) = Fo(As(0))

Call and return are somewhat different.

v

‘S\ ﬁ/) . . . [Facul_ty of S'ciem:e

% &) § Universiteit Utrecht Information and Computing Sciences]

TN
24

What happens for a (forward) procedure call? 2

v

Assume a call to procedure p:
(bey by by, br) € inter—flow(Sy).
Two transfer functions: fy. and f,.

v

v

fe,, is the same for every call to p.
» In NNH always identity function.

v

fe. can be different for each call to p.

v

“Chronologically”:

» transfer value at call Aq(4.) = fr. (Ao(£e))
» compute A, (¢,) by joining A4 for all calls to p.
» transfer value at entry: Aq(¢y,) = fo, (Ac(£y))

> Often the identity function
» value ready to flow through p.

> fu, is typically a function that knows about context.

*&\ ﬁ/) . . . [Facul_ty of S'ciem:e

? &) § Universiteit Utrecht Information and Computing Sciences]

TN
25

What happens at procedure return? §2

v

Procedure return encompasses the real difference:

Au(ly) = T2 4 (As(le), Ao(£))

» Transfers information from inside the procedure and from
before the call to just after the call.
> Note: Ao(¢,) is (normally) just Ae(4s).
» Information before a call can be passed directly to after the
call.
» Instead of propagating it through the call.

> ffc ;. may ignore one (or both) arguments.

» For a backward analysis, the transfer functions change
arity: the one for call becomes binary, the one for return
becomes unary.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
26 NS

Call strings as context §2

» Context intends to keep analyses of separate calls separated
» Call string: list of addresses from which a call was made.
» Abstraction of the call stack: A = [Lab,]
» For fib: A, [4],[6], 9], [4,4],...,[9,9],[4,4,4],...
» Generate only when needed.
» Call-string abstracts an execution into the labels of calls
seen during execution without seeing the corresponding
return: [1,6,5,8,3,2,1,4,2,1,9] becomes [6, 9]

» Procedure call labels are added to the front (stack like).

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
27 N

Call strings as context §2

v

Call string: list of addresses from which a call was made.
For (Uc, ln,ly, L) we define

LAY (¢:0) = FLAG)) and LD =1

> f1 computes the effect of a call

v

and fl selects where the effect values should go.

| 2
» Valid paths simulated by the transferring between
"corresponding” call strings.
;&\\‘Wﬁ,) [Faculty of Science
::% &) é Universiteit Utrecht Information and Computing Sciences]
28 NS

Call strings example snapshot §2

AT

3y L AWl 1« \ 1 \f4v\

v T T

4 I —— /
[[eall pC..,.. N1 o] L] 1 [4
Ad(4) ~__
\\endS A"(l)
e ol
1 \\\‘
lealt pCoo DL T TRl L T T 1T
A S 01) N 7o L=
N

all strings as context, return §2

» Similarly, for procedure return:
fgc,er(l,l’)(é) = fezwer(l(d),l’(ﬁc:é))
» We use two values:
» from before the call, which is under the same context as

the return,
» from inside the procedure, which is under the extended call
string.
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Detection of Signs: procedure calls §2

v

Assume [call p(a,x)]ﬁj and
proc p(val x, res y) is‘» S end’”

> A call consists of two assignments x := aandy := 7.
» The context-less transfer function mimicks those.
» For o =[x+ +,2z +— —] and a = -x we ought to obtain

o (o) ={lx = —y— —,z2— —],
[x— —y—0,z+— —],
[x— —y—+,2— —]}

v

Semantics says value of y is undefined (instead of 0).

v

New z “shadows” the old.

v

In general, unshadow when returning.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

31

stection of Signs: procedure calls §2

» Assume [call p(a,x)]ﬁj and
proc p(val x, res y) is‘» S end’"
» For o0 =[x — +, 2z — —] and a = -x we ought to obtain
o, (o) ={[z— —y— —,z2— —],
[z — —y—0,z+— —],
[z —y—+,2— —|}
> fi.(2) = U{¢e.(0) | o € Z}

> Py (0) =
{olz — s]ly— §']| s € As[-x](c) A s’ € {0,+,—}}

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Detection of Signs: adding context §2

» Consider the function Z€ L=A — L
Z=[Aw— 01,02 09,...]
» We want to obtain
[A = L, [e] = fo,(01), (be:62) = fi,(02), -]
» So }g:(Z) is such that for all § € A

—) i if o/ = A
1e.(2)(8) = { fL(28) 5 =t.:6

» Warning: in NNH they give the same general formula, but
the example of Detection of Signs (2.38) uses different
g\“@ nOtation' [Faculty of Science

= é Universiteit Utrecht Information and Computing Sciences]

33 NS

34

Call strings of bounded size §2

» L might have ACC, but A — L might not

» Call strings can be arbitrarily long for recursive programs
» Enforce termination by restricting length call strings to < k

» For every different list of call labels, potentially a different
analysis result: quickly exponential.

&\\‘Wﬁ)) [Faculty of Science
E N § Universiteit Utrecht Information and Computing Sciences]
NS

What if we run out of bounds? §2

> Assume k = 2.

» Consider call from 4 either with context [1,4], [1,1] or [1].

» Then in all three cases, the context inside the call will be
[4,1].

» To stay sound we must join the transferred analysis results.

» Here's where we gain finiteness at the price of precision.

» In a formula

FE(@)(4,1)) = FA(Z([L4)) U FAZ (L) U FA(Z()

» We can choose the level of detail (value of k) with a
known price to pay.

» Take k = 0 to omit context: A then equals {A}

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
35 N

k = 2 bounded call strings, snapshot

AW L]l v]l x]|..

__———pointwise join P
[] [Iu\\m Ly 140 [L4) {44
AL LAl ... ly ...] \
proc p(.....) is’

| AL o TaolTaly [T]
\\\ends Y = fu(V) U fo(X) Ofu(W)
[call pC..,..)]
o L fdel e [a s |
gs\\\‘wﬁ)) o Ao (1) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

Separate the context from the transfer §2

» Context is never used to compute the transfer, it only tells
you which part of the value to use (and update).

» For different analyses you can use the same kind of context
and context change

» In an implementation: decouple the context change from
transfer

» The former selects which values influence a given value.
> The latter says how.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
37 N

Flow-sensitive versus flow-insensitive §2

> Flow-sensitive vs. flow-insensitive: does the result of the
analysis depend on the order of statements? Again a
matter of cost vs. precision.

» To go from flow-insensitive to flow-sensitive: add program
points as a form of context.

> In NNH, flow-sensitivity is hard-coded into the framework.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
38 NS

Final remarks about procedures §2

> Except for binary transfer functions, the technical changes
are slight.

» Conceptually, changes may be bigger.
» For termination, restrict context to finite sets of values.

» Use context to balance cost and precision.

» Simple monotone frameworks can be easily extended to
become embellished.

> A first step in building an analysis.

> Analyzing procedures can be a pain when scoping enters

the picture.
5&\\“’%}) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
39 N

	The While language with procedures
	Embellished Monotone Frameworks

