[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

APA
Abstract Interpretation

Jurriaan Hage
e-mail: jur@cs.uu.nl
homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

May 3, 2012

1. Abstract interpretation

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

tract Interpretation §1

Abstract Interpretation

analysis as a simplification of running a computer program.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Examples §1

» During program execution we compute the values of
variables.
» And our location in the program.
» During abstract interpretation we might

» compute only the signs of integer variables,

» compute where closures are created, but not the closures
themselves,

» compute only the lengths of lists,

» compute only the types of variables.

» Typically, but not necessarily, we compute this for any
given location.

> The right simplification depends on the analysis we are
attempting.

5&\\“’7/} [Faculty of Science

= o S q . .
= % Universiteit Utrecht Information and Computing Sciences]

P TN

The benefits of good abstractions §1

» For certain “good” abstract interpretations, soundness of
the analysis follows “immediately” from the soundness of
the semantics of the language.

» The latter needs to be proved only once, but many
analyses may benefit.

» Semantics must be formally defined.

» E.g., operational semantics, i.e., specification of interpreter

» Since static analyses must be sound for all executions, we
need a collecting semantics for the language.

» Abstracting to a complete lattice with ACC gives
guarantee of termination.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
5 NS

The State is everything §1

> An interpreter keeps track of the state of the program.
» Usually it contains:
» What program point are we at?
» For every variable, what value does it currently have?
» What does the stack look like?
» What is allocated on the heap?

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

6

Examples §1

7

» For While without procedures we track only the program
point and the variables to value mapping.

» To deal with procedures, also track the stack.

» The state is determined by the language constructs we
support.
» Adding new implies the need to keep track of the heap.

» For the moment, we assume
State = Lab x (Var — Data)

where Data typically contains integers, reals and booleans.

5&\\“% [Faculty of Science
% N) % Universiteit Utrecht Information and Computing Sciences]
N

State too static §1

> In abstract interpretation we simplify the state.

» And operations on the state should behave consistently
with the abstraction.

» What if the state is already so information poor that the
information we want is not in the state to begin with?

» Our state
State = Lab x (Var — Data)

has only momentaneous information:

» It does not record dynamic information for the program,
e.g., executions.

= o S q . .
N) % Universiteit Utrecht Information and Computing Sciences]

:SWW/) [Faculty of Science
8 £

The need for dynamic information §1

» Many program analyses concern dynamic properties.
» Examples:
» Record the minimum and maximum value an integer
identifier may take.
> In a dynamically typed language: compute all types a
variable may have.
» Record all the function abstractions an identifier might
evaluate to.
» Record the set of pairs (x,£) in case x may have gotten its
last value at program point /.

» We must first enrich the state to hold this information.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
9 N

Single execution versus all executions §1

» Static analysis results should hold for all runs.

» Code is only dead if all executions avoid it.

> An interpreter considers only a single execution at the time.
> Redefine semantics to specify all executions “in parallel”.
» This is called a collecting semantics.

» Static analysis is on a simplified version (abstraction) of
the collecting semantics.

» Because, usually, the collecting semantics is very infinite.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
10 NS

Collecting semantics §1

> A collecting semantics for While might record sets of
execution histories:

State = P([(Lab, Maybe(Var, Data))))

» Example: if [x > 0]' then [y := -3]? else [skip]®
> {[(?,Just (z,0)), (7, Just (y,0)), (1, Nothing), (3, Nothing)],
[(?,Just (z,2)), (7, Just (y, 0)), (1, Nothing), (2, Just (y, —3))]

*&\ ﬁ/) . . . [Facul_ty of S'ciem:e

? &) § Universiteit Utrecht Information and Computing Sciences]

TN
11

A different collecting semantics §1

v

Consider State = Lab — P(Var — Data).

> Sets of functions telling us what values variables can have
right before a given program point.

We repeat: if [x > 0]' then [y := -3]° else [skip]®

v

v

For the above program we have (given the initial values):
(1= {[z =0,y = 0] [z — 2,y 0]},
2= {lz—2,y—0]},3— {[z— 0,y — 0]}]

v

At the end of the program, we have
{[x = 27y = 73]? [I = an = O]}

v

The semantics does not record that [z — 2,y +— 0] leads
to [z — 2,y — —3|.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
12 NS

Variations §1

» Also track the heap and/or stack (if the language needs it).
» In an instrumented semantics information is stored that
does not influence the outcome of the execution.
» For example, timing information.
» Choose one which is general enough to accommodate all
your analyses.

» You cannot analyze computation times if there is no
information about it in your collecting semantics

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
13 N

The need to abstract §1

» We cannot compute all the states for an arbitrary program:
it might take an infinite amount of time and space.
» We now must simplify the semantics.
» How far?
» Trade-off between resources and amount of detail.
» The least one can demand is that the amount of time is
finite.
> In some cases, we have to give up more detail than we can
allow.
» Therefore: widening

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
TR\

Example abstractions §1

» We take P(Var — Data) as a starting point.
» Example: S ={[z — 2,y — 0],[z — -2,y — 0]}
» Abstract to Var — P(Data) (relational to independent):
» S now becomes [z — {—2,2},y — {0}].
» Abstract further to intervals [z, y] for z < y:
» S now becomes represented by [z — [—2,2],y — [0,0]]
» Abstract further to Var — P({0, —, +}):
» S now becomes [z +— {—,0,+},y — {0}].
» Mappings are generally not injective:
{lx = 2,y—0],[zr — -2,y — 0],[z — 0,y — 0]} also
maps to [z — {—,0,+},y — {0}].

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
15 N

Computing with abstract values §1

» Consider: you have an interpreter for your language.
> It knows how to add integers, but not how to add signs.
» Would be great if the operators followed immediately from
the abstraction.
> This is the case, but the method is not constructive:
» How to (effectively) compute {—} +5 {—} in terms of +
for integers?
> It does give some correctness criteria for the abstracted
operators: the result of {—} +g {—} must include —.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
16 NS

Non-determinism §1

» Consider abstraction from

Lab — P(Var — Z)
to
Lab — Var — P({0,—,+}) .

» When we add integers, the result is deterministic: two
integers go in, one comes out.

» If we add signs + and —, then we must get {+,0, —}.

> The abstract add is non-deterministic.

» Another reason for working with sets of abstraction of
integers.

» We already needed those to deal with sets of executions.

_.&\“Wﬁ)‘ [Faculty of Science

= =3 - CYRs . . .

= b = Universiteit Utrecht Information and Computing Sciences]
17 N

Connecting back to dataflow analysis §1

» Practically, Abstract Interpretation concerns itself with the
“right" choice of lattice, and how to compute safely with
its elements.

» Assume semantics is L = Lab,, — P(Var, — Z) where C
is elementwise C.

» Forms a complete lattice, but does not satisfy ACC!

» For Constant Propagation, abstract L to
M = Lab, — (Var, — Z") withZ" =ZU{T}.

M does have ACC.

v

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
18 NS

The abstraction function §1

> Recall:
L = Lab, — P(Var, — Z)
M = Lab, — (Var, — Z"), withZ" =ZU{T}
» For each label, a: L — M maps () to L, collects all values
for a given variable together in a set and then maps {i} to
i and others to T.

» Example:
a(fy=l=z— T,y— 0,2 [z+— 8 y+— 1]

where f =[1 — {[z — =8,y — 0], [z — 8,y — 0]},
2= {[z— 8,y+— 1]}]

‘S\ ﬁ/) . . . [Facul_ty of S'ciem:e

% &) § Universiteit Utrecht Information and Computing Sciences]

TN
19

Analyze ... analyze §1

v

Solve equations on the complete lattice M (MFP).

v

Initial value « = a(z), where x represents what values the
program may legally start with.

v

Variables are initialized to zero: choose ¢ = Av.{0}.

v

Variables are not initialized: take ¢« = A\v.T.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
20 NS

The concretization function §1

» Afterwards, if necessary, transform the solution back to one
for L.

» Transformation by concretization function « from M to L.
»letm=[1—[z— T,y 0,2 [z+— 8 y—1]].
» Then y(m) =[1— {[x — a,y— 0] |a € Z},
2= {[z— 8,y— 1]}
» Note: v(m) is infinite!
» But the original concrete value was not.
» If a and v have certain properties then abstraction may
lose precision, but not correctness.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
21 NS

2. Galois Connections and Galois Insertions

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

“Good” abstractions §2

» Not every combination of abstraction and concretization
function is “good”.

» When we abstract, we prefer the soundness of the concrete
lattice to be inherited by the abstract one.

> In particular, the soundness of an analysis derives from the
soundness of the collecting operational semantics.
» NB: executing the collecting operational semantics is also a
sort of analysis.
» The Cousots defined when this is the case.
» These abstractions are termed Galois Insertions
» Slightly more general, Galois Connections aka adjoints.

» Abstraction can be a stepwise process.

> In the end everything relates back to the soundness of the

collecting semantics.
:SWW/) [Faculty of Science
%

= o S q . .
N) % Universiteit Utrecht Information and Computing Sciences]

23 %ﬂ»

Abstraction and concretization §2

> Let L= (P(2),C) and M = (P({0,+,—}), C).
» Let o : L — M be the abstraction function defined as

a(S) = {sign(z) | z € S} where

sign(z) =0ifz =0, +ifz>0and — if z <0.
» For example: a({0,2,20,204}) = {0,+} and
a(0) = {—, +} where O is the set of odd numbers.
» Obviously, « is monotone: if x C y then a(z) C a(y).

&\‘Wﬁ)) [Faculty of Science
= é Universiteit Utrecht Information and Computing Sciences]

24 {%ﬂ!“\

Abstraction and concretization §2

25

v

Let L =(P(Z),C) and M = (P({0,+,—1}), Q).
The concretization function + is defined by:
y(T)={1,2,...|+ €T}
u{...,—2,-1|—-€T}
u{0|0eT}
Again, obviously, v monotone.

v

v

v

Monotonicity of a and «y and two extra demands make
(L,a,y, M) into a Galois Connection.

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Demand number 1 §2

RN
L M

» « removes detail, so when going back to L we expect to
lose information.

» Gaining information would be non-monotone.
» Demand 1: for all c€ L, ¢ Cp, v(a(c))
» For the set O of odd numbers,
O CH(O))=~y{+-}H={..,-2,-1,1,2,...}
» What about a(y(«a(c)))? It equals a(c).

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
26 NS

Demand number 2 §2

» Demand 2: for all a € M, a(v(a)) Ty a
» Dual version of demand 1.
» Abstracting the concrete value of an abstract values gives
a lower bound of the abstract value.
» Fora={+,0} € M, a(y(a)) = a({0,1,2,...}) ={0,+}
» What about y(a(vy(a)))? It equals v(a).
. ;::Xg‘ oty Uteon informatin and Computg Seeneed

Galois Insertions §2

» Sometimes Demand 2 becomes
Demand 2': for all a € M, a(y(a)) = a.

» [t is then called a Galois Insertion.

» Often an Insertion is a Connection, but not always.

» A Connection can always be made into an Insertion

» Remove values from abstract domain that cannot be
reached.
&\\Wi},; [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
28 NS

Connection that is not an Insertion §2

» Consider the complete lattices L = (P(Z),C) and
M ="P({0,+, —} x {odd, even},...) and the obvious
abstraction av: L — M.

» Concretization: what is y({(0,0dd), (—, even)})?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

A Connection that is not an Insertion §2

Consider the complete lattices L = (P(Z),C) and
M =P({0,+,—} x {odd,even},...) and the obvious
abstraction av: L — M.

Concretization: what is v({(0,0dd), (—,even)})?
What happens to (0,0dd)? We ignore it!
Abstracting back:

a(v({(0,0dd), (—,even)})) gives {(—,even)}
and note that

{(—,even)} C {(0,0dd), (—,even)}

» Why be satisfied before you have na Insertion?
» The Connection may be much easier to specify.
&\\Wi},; [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
29 N

Adjoints §2

v

Now « and + are total functions between L and M.

v

Abstraction of less gives less: ¢ T y(a) implies a(c) C a.

v

Concretization of more gives more: «(c) C a implies
c C ~(a).
Together: (L, a,~y, M) is an adjoint.

v

v

Thm: adjoints are equivalent to Galois Connections.

5&\\“’%}) [Faculty of Science
EN é Universiteit Utrecht Information and Computing Sciences]
30 NS

Some (related) example abstractions

> Reachability:
M = Lab, — {L, T} where
L describes “not reachable”,
T describes “might be reachable”.

> Undefined variable analysis:
M = Var, — {1, T} where
T describes “might get a value”,
| describes “never gets a value”.

» Undefined before use analysis:
M = Lab, — Var, — {1, T}

31 {{{{A

§2

[Faculty of Science

Y
N) § Universiteit Utrecht Information and Computing Sciences]
AN

Combinators for Galois Connections §2

» Building Galois Connections from smaller ones.

» Reuse to save on proofs and implementations.
> Quick look at:

» composition of Galois Connections,

» total function space,

> independent attribute combination,

> direct product.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

32

The running example §2

>

Construct a Galois Connection from the collecting

semantics
L = Lab, — P(Var, — Z)

to
M = Lab, — Var, — Interval

M can be used for Array Bound Analysis:

» Of interest are only the minimal and maximal values.
First we abstract L to T' = Lab, — Var, — P(Z), and
then T to M.

The abstraction a from L to M is the composition of
these two.

The intermediate Galois Connections are built using the
total function space combinator.

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
33 NS

Galois Connection/Insertion composition §2

» The general picture:

aq %)

» The composition of the two can be taken directly from the
picture:
(L7a2 o 01,71 0727M) .

» Thm: always a Connection (Insertion) if the two
ingredients are Connections (Insertions)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

34

To get from L to T §2

» L = Lab, — P(Var, — Z) is a relational lattice,
T = Lab, — Var, — P(Z) is only suited for independent
attribute analysis.

» This kind of step occurs quite often: define separately for
reuse.

» Example:
(1= {[z 2,y =3], [z~ 0,y = 0]}]
should abstract to

1~ [z~ {0,2},y — {-3,0}]] .

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

35

Abstraction §2

> We first try to get from
L' =P(\Var, — Z) to
T' = Var, — P(Z).
» “Add" back the Lab, by invoking the total function space
combinator.
» Start by finding a Galois Connection (a/,~;) from
L' =P\Var, — Z) to T = Var, — P(Z).
» {[x— 2,y +— =3],[z — 0,y — 0]} should abstract to
[SL’ = {07 2})y = {_3a 0}]
» oj(S)=Xv.{z|3feS.z=f(v)}

> Collect for each variable v all the values it maps to.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
36 NS

cretization §2

» L' =P(Var, — Z)
T" = Var, — P(Z).
> 7} unfolds sets of values to sets of functions,
» simply by taking all combinations.
» From [z — {0,2},y — {—3,0}] we obtain
{lx = 2,y — =3],[x — 0,y — 0],
[+ 2,y — 0], [z — 0,y — —3|}

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

The total function space combinator §2

» Let (L', a),~1,T") be the Galois Connection just
constructed.

» How can we obtain a Galois Connection (L, ay,7v1,7)?

» Use the total function space combinator.

» For a fixed set, say S = Lab,., (L, o},71,T") is
transformed into a Galois Connection between L = S — L’
andT=S5—T".

» L and T are complete lattices if L’ and T" are (App. A).

» The construction tells us how to build a; and v; out of o)
and ;.

> Apply primed versions pointwise:

» For each ¢ € L: a1(¢) = a0 (see also p. 96)
» Similarly, for each ¢ € T: v1 (1) = 71 o .

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
38 NS

From T to M (quickly) §2

v

What remains is getting from

T = Lab, — Var, — P(Z) to
M = Lab, — Var, — Interval.

v

v

>

>
>
'S

v

Intervals: L = [oo, —o0], [0,0], [-00,2], T = [—00, 0].
Abstraction from P(Z) to Interval:

if set empty take L,

find minimum and maximum,

if minimum undefined: take —oco,
if maximum undefined: take ococ.

Invoke total function space combinator twice to “add”

Lab, and Var, on both sides.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
39 NS

Direct product §2

» Starting from the lattice P(Z) we can abstract to
M; = P({odd, even}) and
My =P({—,0,+}).
» Combine the two into one Galois Connection between
L ="7P(Z) and M = P({odd,even}) x P({—,0,+}).
» Given that we have (L, a1,v1, M1) and (L, aa,y2, M) we
obtain (L, a7y, My x Ms) where
» a(c) = (a1(e), as(c)) and
> y(a1,a2) = y1(a1) N2(az)
» Why take the meet (greatest lower bound)?

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
40 N

Direct product §2

» Starting from the lattice P(Z) we can abstract to
M; = P({odd, even}) and
My =P({—,0,+}).
» Combine the two into one Galois Connection between
L ="7P(Z) and M = P({odd,even}) x P({—,0,+}).
» Given that we have (L, a1,v1, M1) and (L, aa,y2, M) we
obtain (L, a7y, My x Ms) where
» a(c) = (a1(e), as(c)) and
> y(a1,a2) = y1(a1) N2(az)
» Why take the meet (greatest lower bound)?

» It enables us to ignore combinations (a1, as) that cannot
occur.

7(({odd}, {0})) = 11({odd}) N y2({0})
— (.., —L1..}n{0} =0
$\\Wﬁ)) [Faculty of Science

<= Universiteit Utrecht Information and Computing Sciences]

N

v

40

The independent attribute method (tupling) §2

A

I, n M,
— (’717 ’72)
—
“ — L x Ly M, X M,
72 _//7
/f\ a1, o
b M o

» Example: L; = L and M, = M, and M is some
abstraction of Lo which describes the state of the heap at
different program points.

> Define o and ~y between L X Ly and M; x My as follows:

> afer, c2) = (a1(cr), az(e2))

> y(a1,a2) = (v1(a1), v2(az)).
W » Abstractions are done independently. [Faculty of Science
N

>
<= Universiteit Utrecht Information and Computing Sciences]

s\
=z
a

Universiteit Utrecht

3. Widening

[Faculty of Science
Information and Computing Sciences]

Array Bound Analysis §3

» We abstracted from L = Lab, — P(Var, — Z) to
M = Lab, — Var, — Interval.

» M prime candidate for Array Bound Analysis:

At every program point, determine the minimum
and maximum value for every variable.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
43 N

M has its problems §3

44

» Consider the program
[x := 0]}
while [x >= 0]? do
[x 1= x + 1]3;

» The intervals for x in Analysis,(2) turn out to be
[0,0] C [0,1] C [0,2] C [0,3] C

» Not having ACC prevents termination.

» When the loop is bounded (e.g., [x < 10000]?)
convergence to [0,10001] takes a long time.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Consider the options §3

» Two ways out:

» abstract M further to a lattice that does have ACC, or
» ensure all infinite chains in M are traversed in finite time.

> In this case, there does not seem to be any further
abstraction possible.

> So let's consider the second: widening.

&\\‘Wﬁ)) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
45 NS

Widening §3

» Widening ~ a non-uniform coarsening of the lattice.
» We promise not to visit some parts of the lattice.
» Which parts typically depends on the program.
» Essentially making larger skips along ascending chains than
necessary.
» This buys us termination.
» But we pay a price: no guarantee of a least fixed point.
» By choosing a clever widening we can hope it won't be too

bad.
5&\\“’%}) [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
46 NS

Array Bound Analysis

47

1

SN
=

]

» Consider the following program:

int i, c, n,

int A[20], C[], BI[];

C = new int[9];

input n; B = new int[n];

if (A[i] < B[i]) then
Cli/2] = B[il;

§3

» Which bound checks are certain to succeed?

» Arrays A and C' have static sizes, which can be determined

"easily’ (resizing is prohibited).

vV vy VvYyYy

LN
8 S Universiteit Utrecht
NS

Therefore: find the possible values of i.

If always i € [0,17], then omit checks for A and C.
If always i € [0,19], then omit checks for A.
Nothing to be gained for B: it is dynamic.

[Faculty of Science
Information and Computing Sciences]

The key realization §3

> For the arrays A and C, the fact i € [—20,300] is (almost)
as bad as [—o0, 0].

» Why then put such large intervals in the lattice?

» Widening allows us to tune (per program) what intervals
are of interest.

&\\‘Wﬁ)) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
w W

What intervals are interesting? §3

» Consider, for simplicity, the set of all constants C' in a

program P.
> Includes those that are used to define the sizes of arrays.

» What if, when we join two intervals, we consider as result
only intervals, the boundaries of which consist of values
taken from C'U {—o00,00}?

» To keep it safe, every value over sup(C') must be mapped
to oo, and below inf(C') to —oc.

» A program has only a finite number of constants: number
of possible intervals for every program point is now finite.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
49 N

Variations §3

» Which constants work well depends on how the arrays are
addressed: A[2*i + j] = B[3*i] - C[i]
» Variations can be made: take all constants plus or minus
one, etc. etc.
» In a language like Java and C all arrays are zero-indexed
» Consider only positive constants (A[-1]7).

» What works well can only be empirically established.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
50 N

§3

()
M f™(T)
gfp(f)

Ifp(f)
Unf™(L)
(L)

> Red(f) = {z | f(z) Ex}
» Ext(f) = {z |z C f(z)} and
> Fix(f) = Red(f) N Ext(f). [Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

Back to the lattice §3

51

()
M f™(T)
gfp(f)

Ifp(f)
U f™(L)
(L)

» Start from | so that we obtain the least fixed point.

» Another possibility is to start in T and move down.
Whenever we stop, we are safe.

RN » But....no guarantee that we reach Ifp [Faculty of Science

§ Universiteit Utrecht Information and Computing Sciences]

Pictorial view of widening §3

Red(f) """" f7vn T fgwrl
v

r=—2

Ifp(f) v
12
5
fo=1

» Widening: replace Ll with a widening operator V (nabla).

» V is an upper bound operator, but not least:
forall l1,lo € L: 11 Uly C [1Vis.

» The point: take larger steps in the lattice than is necessary.

iy > Not precise, but definitely sound. [Faculty of Science

<= Universiteit Utrecht Information and Computing Sciences]
> =
52 N

How widening affects sequences §3

v

Consider a sequence

lo,l1,1a,. ..

v

Note: any sequence will do.

v

Under conditions, it becomes an ascending chain

lo C oV E (I0VI1) Vi E

v

that is guaranteed to stabilize.

v

Stabilization point is known to be a reductive point,
> l.e. a sound solution to the constraints

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

53

How widening affects sequences §3

v

Consider a sequence

lo,l1,1a,. ..

v

Note: any sequence will do.

v

Under conditions, it becomes an ascending chain

lo C oV E (I0VI1) Vi E

v

that is guaranteed to stabilize.

v

Stabilization point is known to be a reductive point,
> l.e. a sound solution to the constraints

v

but is not always a fixed point. Bummer.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

53

What it takes to be V 63

LV,

LUl

/\
L ly

> Let a lattice L be given and V a widening operator, i.e.,
» for all ll,lg € L:1l; C1;Viy Od15, and
» for all ascending chains (I;), the ascending chain
lo, 1oVi1, (o V1)V, ... eventually stabilizes.

» The latter seems a rather selffulfilling property.

&\\‘Wﬁ)) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
54 NS

Iterating with V §3

» How can we use V to find a reductive point of a function?
1L ifn=0
> fo=9 fv ifn>0Af(fg) Ef5
fo v f(fg 1) otherwise
» First argument represent all previous iterations, second
represents result of new iteration.

‘S\ ﬁ/) . . . [Facul_ty of S'ciem:e

E &) § Universiteit Utrecht Information and Computing Sciences]

TN
55

example

» Define V¢ to be the following upper bound operator
19 < 171

li1, 1] Ve [iz, j2] = [LBc(i1,42), UBc(j1, j2)] where
> LBc(’il,ig) =17 if i1 < i, otherwise

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

» LB (i1,42) = k where k = max{z | z € C,z < iy} if

§3

An example §3

» Define V¢ to be the following upper bound operator:
li1, 1] Ve [iz, j2] = [LBc(i1,42), UBc(j1, j2)] where
» LBc(i1,i2) =47 if i1 < ig, otherwise
» LBc(i1,i2) = k where k = max{x | x € C,z < iy} if
19 < 11
» And similar for UB¢.
» Exception: L. Vo I=1=1V¢ L.

» Essentially, only the boundaries of the first argument
interval, values from C, and —oo and oo are allowed as
boundaries of the result.

> Let C' = {3,5,100}. Then

» [0,2] V¢ [0,1] =[0,2]
» [0,2] Ve [-1,2] = [0, 2]

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
56 N

Ascending chains will stabilize §3

v

Intuition by example.
Consider the chain [0,1] C [0,2] C [0,3] C [0,4]... and
choose C' = {3,5}.

v

» From it we obtain the stabilizing chain:

[0,1],

[07]-] Ve [072] = [073]7

[073] Ve [073] = [073]7

[073] Ve [074] = [075]7

[075] Ve [075] = [0?5]’

[075] Ve [0 6] = [0,00],

[0,00] Ve [0,7] = [0,00],...

v

Essentially, we fold V over the sequence.

\\\‘Wﬁ' [Faculty of Science

=V = S Universiteit Utrecht Information and Computing Sciences]

N

Analyzing the infinite loop §3

> Recall the program
[x := 0
while [x >= 0]? do
[x := x + 1]3;

» lterating with Vo with C' = {3,5} gives

A L] L 1 T | L
A1) | L | [0,0] [0, 0] 0,0] | [0,0]
A.2) | L [[0,0] | [0,0]Vc[1,1] =1[0,3] | [0,5] | [0,00] | [
A.2) | L] [0,0] [0, 3] [0,5] | [0,00] | |
Ao(3) | L | [0,0] [0, 3] [0,5] | [0,00] | [
A3) | L] [1,1] [1,4] [1,6] | [1,00] | |

» Note: not all interval boundaries are values from C'

5&\\“’%}) [Faculty of Science
= B = Universiteit Utrecht Information and Computing Sciences]

= U
58 N

Final remarks on widening §3

» Widening operator V replaces join LI:

> Bigger leaps in lattice guarantee stabilisation.

> guarantees reductive point, not necessarily a fixed point
» Widening operator: verify the two properties.

» Any complete lattice supports a range of widening
operators. Balance cost and coarseness.

» Widening operator often a-symmetric: the first operand is
treated more respectfully.

» Widening usually parameterized by information from the
program:
» (' is the set of constants occuring in the program.

» We visit a finite, program dependent part of the lattice.

= o S q . .
§ Universiteit Utrecht Information and Computing Sciences]

:SWW/) [Faculty of Science
50 TN

	Abstract interpretation
	Galois Connections and Galois Insertions
	Widening

