Subeffecting and subtyping

» We have now seen subeffecting at work.
» The main ideas of all of these are:
» compute types and annotations independent of context,
> allow to weaken the outcomes whenever convenient.
» Weakening provides a form of context-sensitiveness.
» In (shape conformant) subtyping we may also weaken
annotation deeper in the type.
&\\Wi},; [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
KNy

Example: parity analysis

» The natural number 1 can be analysed to have type
NattO},

» A function like double on naturals should work for all
naturals: Nat{O-F} s NgtlE},

» The type of 1 can then be weakened to Nat{OF} as it is
passed into double, without influencing the type and other
uses of 1.

let one = 1in
let double = Aqy. y x 2 in
one * double one

4 ﬁ)) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]

Limitations to subeffecting and subtyping

» Weakening prevents certain forms of poisoning,
» but it does not help propagate analysis information.

» For id on naturals we expect the type
Nat{O-E} 5 Nt OE},

> However, we also know that O inputs leads to O outputs,
and similar for E.

» Qur annotated types cannot represent this information.

» Is it realistic that id 1 and 1 give different analyses?

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
3 N

Polyvariance

» We consider only let-polyvariance.

» Exactly analogous to let-polymorphism, but for
annotations.

» For id we can instead derive the type V3. Nat® — Nat?.

» For id 1 we can choose § = { O} so that id 1 has
annotation { O }.

» Allows us to propagate properties through functions that
are property-agnostic.

» Polyvariant analyses with subtyping are current state of the
art.

> But it depends somewhat on the analysis.
:SWW/) [Faculty of Science
%

= o S q . .
§ Universiteit Utrecht Information and Computing Sciences]

P TN

otated polyvariant types
¢ € Ann

annotations

p =

BlO|{r} | p1Uep2

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

otated polyvariant types

¢ € Ann annotations

T € Ty annotated types
o = B0 {r} | pUep

7 u= a | Nat | Bool | 71 5 7

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

notated polyvariant types

¢ € Ann annotations
T € Ty annotated types
o € TyScheme annotated type schemes

= B0 {7} | prUp2
w= a | Nat | Bool | 71 5 7
= ? | Va.&l | Vﬁ&l

Q) N 6
I

[} [=

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

= E 9DQAC¢

notated polyvariant types

¢ € Ann annotations
T € ’fsr annotated types
o € Tygh\eme annotated type schemes
I e T?}Ev annotated type environments
o uw= B0 {r} | pr1Uep
7 u= a | Nat | Bool | 71 5 7
3 = ? | Va.&l | Vﬁ&l
I = []| iz~ 5]
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Annotated polyvariant types

¢» € Ann annotations

T € Ty annotated types

o0 € TyScheme annotated type schemes

I' € TyEnv annotated type environments
¢ u= B0 {r} | er1Up

7 u= a| Nat | Bool | 71 5 7

Zf\ = ? ‘ V(Y.Ef\l ’ V,@&l

r == []]| iz~ o]

I Fomn &2 @ control-flow analysis

&) [Faculty of Science
N § Universiteit Utrecht Information and Computing Sciences]

6

Is this enough?

let f = Apz. True in
let g = Aqk.if f O then & else (Ayy. False) in
9f

{my{u} B

A (mono)type for g f is v1 ol.

{u} is contributed by the else-part, {F} comes from the
parameter passed to g.

But what is the type of g that can lead to such type?

5&\\“’%}) [Faculty of Science
E N § Universiteit Utrecht Information and Computing Sciences]
NS

Is this enough?

let f = Apz. True in
let g = Aqk.if f O then & else (Ayy. False) in
9f

{my{u} B

A (mono)type for g f is v1 ol.

{u} is contributed by the else-part, {F} comes from the
parameter passed to g.

But what is the type of g that can lead to such type?
g:Ya. V3. (a LN Bool) = (a P Bool)

But how can we manipulate such annotations correctly?
1z Add a few rules

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
6 N

Polyvariant type system: generalisation

Introduction for type variables:

Them t:o aé ftv(D)
r Fopa t:Va. o

[cfa-gen]

Introduction for annotation variables:

Thee t:0 B¢ fav(l)
f l_CFA t:Vﬁa

[cfa-ann-gen]

Here fav(I") computes the free annotation variables in T".

@W&) [Faculty of Science
= U = Universiteit Utrecht Information and Computing Sciences]

N

yvariant type system: instantiation

Elimination for type variables:

— [cfa-inst]
T|o
Elimination for annotation variables:

f l_CFA t ZV/B.G

T bees t:[B— 00

[cfa-ann-inst]

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Polyvariant type system: subeffecting again

To align the types of the then-part and else-part, and to match
arguments to function types, we still need subeffecting.

Recap:

= ~ P ~
Thepa t:71 — T

[cfa-sub]

/

= ~ U <
Fhepa t: 71 —— T

then-part: 3 can be weakened to 5 U {H}.
else-part: {H} can be weakened to {H} U f.

But these are not the samel

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

9

When are two annotations equal?

The type system can never guess, so we have to tell it when.

— — L [cfa-eq]
r l_CFA t :?] i) ?]

rl_CFAt:?lg?Q QO: /

In other words: you may replace equals by equals.
re {H}UB by BU{H}

Problem now becomes to define/axiomatize equality for these
annotations.

*&\ ﬁ/) [Faculty of Science
% é Universiteit Utrecht

Information and Computing Sciences]
10

ality of annotations axiomatized (1)

[g-refl]
=y
¢ =
— [q_sy mm]
SD = SO” <PII = (,0,
o= [g-trans]
PL=¢) pa=
[q join]
p1Upe =) U
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ality of annotations axiomatized (2)

—— [g-unit]

{JUp=9¢

— [q-idem]

pUp=¢p

[g-comm)]
p1 Uz = paU gy
[g-ass]
P1U (P2 U p3) = (1 Upa) U g
[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

This combination of axioms often occurs:

> Unit
» Commutativity
» Associativity

> Idempotency

15 Modulo UCAI

3 [Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

What about the algorithm?

» We still perform generalization in the let.
» And instantiation in the variable case.
» Recall:
» The algorithm unifies types and identifies annotation
variables.
» |t collects constraints on the latter.
» After algorithm Wep,, we solve the constraints to obtain
annotation variables.
» In the monovariant setting this was fine: correctness did
not depend on the context.
> In a polyvariant setting, the context plays a role
1= Constraints on annotations must be propagated along.
&\\‘Wﬁ) [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
14 NS

Some variations

> ldea 1: simply store all constraints in the type.

» During instantation refresh type and annotations variables
in the type, and the constraint set (consistently).

» Includes also trivial and irrelevant constraints.

> ldea 2: simplify constraints as much as possible before
storing them.

» Simplification can take many forms.
> Takes place as part of generalisation.

» Type schemes store constraints sets: rather like qualified

types.
ESWW/)& 5 . . [Facul.ty of S'ciem:e
7{{{{‘1§ Universiteit Utrecht Information and Computing Sciences]
15)

Simplification

» Simplification = intermediate constraint solving.

» In both cases, annotations left unconstrained can be
defaulted to the best possible.

» However, annotation variables that occur in the type to be
generalized must be left unharmed.

» Why? Annotation variables provide flexibility for
propagation.
17 Defaulting throws that flexibility away.

:SWW/) [Faculty of Science
K

= o S q . .
N) % Universiteit Utrecht Information and Computing Sciences]

16 %ﬂ»

Example (to illustrate)

ﬁ

> Assume Wepa returns type (v — v]) % (1 B, vl)

and constraint set
{B22{G},B32 B4,84 2 B1,65 2 {u}, 53 2 B}

» And that 8 occurs free in L.

» (5 is not relevant, so it can be omitted (set to {H}).

» (4 is not relevant either, but removing it implies we must
add 3 2 fi.

» Neither 52 O {G} and /33 O 3 may be touched.

» Remember the invariant to keep unification simple: only
annotation variables in types.

‘S\ ﬁ/) [Faculty of Science

% N § Universiteit Utrecht Information and Computing Sciences]

K\
17

strained types and type schemes

Introduce an additional layer of types (a la qualified types):

~

o | Nat | Bool | 71 5 7
T|le=p
i)\ | ‘v’a.&l | Vﬁ&l

Q)) W
I

3 [Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Generalisation and instantiation

> Instantiation provides fresh variables for universally
quantified variables.

» Generalisation invokes the simplifier.

» Simplification can be performed by a worklist
algorithm, that leaves certain (which?) variables untouched.
1= Considers them to be constants

» Some say: simple duplication (no simplification) is not
feasible.

» Let-definition is like a compartment: we only care for its
interface to the world, not what happens inside.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
19 NS

