
[Faculty of Science
Information and Computing Sciences]

1

Subeffecting and subtyping

I We have now seen subeffecting at work.
I The main ideas of all of these are:

I compute types and annotations independent of context,
I allow to weaken the outcomes whenever convenient.

I Weakening provides a form of context-sensitiveness.

I In (shape conformant) subtyping we may also weaken
annotation deeper in the type.

[Faculty of Science
Information and Computing Sciences]

2

Example: parity analysis

I The natural number 1 can be analysed to have type
Nat{O }.

I A function like double on naturals should work for all
naturals: Nat{O ,E } −→ Nat{E }.

I The type of 1 can then be weakened to Nat{O ,E } as it is
passed into double, without influencing the type and other
uses of 1.

let one = 1 in
let double = λgy . y ∗ 2 in
one ∗ double one

[Faculty of Science
Information and Computing Sciences]

3

Limitations to subeffecting and subtyping

I Weakening prevents certain forms of poisoning,

I but it does not help propagate analysis information.

I For id on naturals we expect the type
Nat{O ,E } −→ Nat{O ,E }.

I However, we also know that O inputs leads to O outputs,
and similar for E .

I Our annotated types cannot represent this information.

I Is it realistic that id 1 and 1 give different analyses?

[Faculty of Science
Information and Computing Sciences]

4

Polyvariance

I We consider only let-polyvariance.

I Exactly analogous to let-polymorphism, but for
annotations.

I For id we can instead derive the type ∀β.Natβ −→ Natβ.

I For id 1 we can choose β = {O } so that id 1 has
annotation {O }.

I Allows us to propagate properties through functions that
are property-agnostic.

I Polyvariant analyses with subtyping are current state of the
art.

I But it depends somewhat on the analysis.

[Faculty of Science
Information and Computing Sciences]

5

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

5

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

5

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1

Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

5

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

5

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

6

Is this enough?

let f = λfx . True in
let g = λgk . if f 0 then k else (λhy .False) in
g f

A (mono)type for g f is v1
{f}∪{h}−−−−−→ Bool .

{h} is contributed by the else-part, {f} comes from the
parameter passed to g .

But what is the type of g that can lead to such type?

g : ∀a.∀β. (a β−→ Bool)
g−→ (a

β∪{h}−−−−→ Bool)

But how can we manipulate such annotations correctly?

�
Add a few rules

[Faculty of Science
Information and Computing Sciences]

6

Is this enough?

let f = λfx . True in
let g = λgk . if f 0 then k else (λhy .False) in
g f

A (mono)type for g f is v1
{f}∪{h}−−−−−→ Bool .

{h} is contributed by the else-part, {f} comes from the
parameter passed to g .

But what is the type of g that can lead to such type?

g : ∀a. ∀β. (a β−→ Bool)
g−→ (a

β∪{h}−−−−→ Bool)

But how can we manipulate such annotations correctly?

�
Add a few rules

[Faculty of Science
Information and Computing Sciences]

7

Polyvariant type system: generalisation

Introduction for type variables:

Γ̂ `cfa t : σ̂ α /∈ ftv(Γ)

Γ̂ `cfa t : ∀α. σ̂
[cfa-gen]

Introduction for annotation variables:

Γ̂ `cfa t : σ̂ β /∈ fav(Γ)

Γ̂ `cfa t : ∀β. σ̂
[cfa-ann-gen]

Here fav(Γ) computes the free annotation variables in Γ.

[Faculty of Science
Information and Computing Sciences]

8

Polyvariant type system: instantiation

Elimination for type variables:

Γ̂ `cfa t : ∀α. σ̂
Γ̂ `cfa t : [α 7→ τ̂]σ̂

[cfa-inst]

Elimination for annotation variables:

Γ̂ `cfa t : ∀β. σ̂
Γ̂ `cfa t : [β 7→ ϕ]σ̂

[cfa-ann-inst]

[Faculty of Science
Information and Computing Sciences]

9

Polyvariant type system: subeffecting again

To align the types of the then-part and else-part, and to match
arguments to function types, we still need subeffecting.

Recap:

Γ̂ `cfa t : τ̂1
ϕ−→ τ̂2

Γ̂ `cfa t : τ̂1
ϕ∪ϕ′
−−−→ τ̂2

[cfa-sub]

then-part: β can be weakened to β ∪ {h}.

else-part: {h} can be weakened to {h} ∪ β.

But these are not the same!

[Faculty of Science
Information and Computing Sciences]

10

When are two annotations equal?

The type system can never guess, so we have to tell it when.

Γ̂ `cfa t : τ̂1
ϕ−→ τ̂2 ϕ ≡ ϕ′

Γ̂ `cfa t : τ̂1
ϕ′
−→ τ̂1

[cfa-eq]

In other words: you may replace equals by equals.

�
{h} ∪ β by β ∪ {h}

Problem now becomes to define/axiomatize equality for these
annotations.

[Faculty of Science
Information and Computing Sciences]

11

Equality of annotations axiomatized (1)

ϕ ≡ ϕ
[q-refl]

ϕ′ ≡ ϕ
ϕ ≡ ϕ′ [q-symm]

ϕ ≡ ϕ′′ ϕ′′ ≡ ϕ′

ϕ ≡ ϕ′ [q-trans]

ϕ1 ≡ ϕ′
1 ϕ2 ≡ ϕ′

2

ϕ1 ∪ ϕ2 ≡ ϕ′
1 ∪ ϕ′

2

[q-join]

[Faculty of Science
Information and Computing Sciences]

12

Equality of annotations axiomatized (2)

{ } ∪ ϕ ≡ ϕ
[q-unit]

ϕ ∪ ϕ ≡ ϕ
[q-idem]

ϕ1 ∪ ϕ2 ≡ ϕ2 ∪ ϕ1
[q-comm]

ϕ1 ∪ (ϕ2 ∪ ϕ3) ≡ (ϕ1 ∪ ϕ2) ∪ ϕ3
[q-ass]

[Faculty of Science
Information and Computing Sciences]

13

UCAI

This combination of axioms often occurs:

I Unit

I Commutativity

I Associativity

I Idempotency

�
Modulo UCAI

[Faculty of Science
Information and Computing Sciences]

14

What about the algorithm?

I We still perform generalization in the let.

I And instantiation in the variable case.
I Recall:

I The algorithm unifies types and identifies annotation
variables.

I It collects constraints on the latter.

I After algorithm Wcfa, we solve the constraints to obtain
annotation variables.

I In the monovariant setting this was fine: correctness did
not depend on the context.

I In a polyvariant setting, the context plays a role

�
Constraints on annotations must be propagated along.

[Faculty of Science
Information and Computing Sciences]

15

Some variations

I Idea 1: simply store all constraints in the type.

I During instantation refresh type and annotations variables
in the type, and the constraint set (consistently).

I Includes also trivial and irrelevant constraints.

I Idea 2: simplify constraints as much as possible before
storing them.

I Simplification can take many forms.

I Takes place as part of generalisation.

I Type schemes store constraints sets: rather like qualified
types.

[Faculty of Science
Information and Computing Sciences]

16

Simplification

I Simplification = intermediate constraint solving.

I In both cases, annotations left unconstrained can be
defaulted to the best possible.

I However, annotation variables that occur in the type to be
generalized must be left unharmed.

I Why? Annotation variables provide flexibility for
propagation.

�
Defaulting throws that flexibility away.

[Faculty of Science
Information and Computing Sciences]

17

Example (to illustrate)

I Assume Wcfa returns type (v1
β1−→ v1)

β2−→ (v1
β3−→ v1)

and constraint set
{β2 ⊇ {g}, β3 ⊇ β4, β4 ⊇ β1, β5 ⊇ {h}, β3 ⊇ β}

I And that β occurs free in Γ̂.

I β5 is not relevant, so it can be omitted (set to {h}).

I β4 is not relevant either, but removing it implies we must
add β3 ⊇ β1.

I Neither β2 ⊇ {g} and β3 ⊇ β may be touched.

I Remember the invariant to keep unification simple: only
annotation variables in types.

[Faculty of Science
Information and Computing Sciences]

18

Constrained types and type schemes

Introduce an additional layer of types (a la qualified types):

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

ρ̂ ::= τ̂ | c ⇒ ρ̂
σ̂ ::= ρ̂ | ∀α. σ̂1 | ∀β. σ̂1

[Faculty of Science
Information and Computing Sciences]

19

Generalisation and instantiation

I Instantiation provides fresh variables for universally
quantified variables.

I Generalisation invokes the simplifier.

I Simplification can be performed by a worklist
algorithm, that leaves certain (which?) variables untouched.

�
Considers them to be constants

I Some say: simple duplication (no simplification) is not
feasible.

I Let-definition is like a compartment: we only care for its
interface to the world, not what happens inside.

