
[Faculty of Science
Information and Computing Sciences]

APA
Effects in Type Systems

Jurriaan Hage
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

May 22, 2012

[Faculty of Science
Information and Computing Sciences]

2

Effects

I In static analysis we compute properties of programs.

I In functional languages we tend to consider programs,
expressions and values to be relatively similar.

I However, computations and values are different from an
optimizer’s perspective:

I Types are about properties of values (being an integer,
being even, be storable in 4 bits)

I Effects are properties of computations
I the maximum number of memory allocations
I the set of functions that may be applied during evaluation

I Often come up in side-effected language, but not only
there.

[Faculty of Science
Information and Computing Sciences]

3

The Fun language

I Lambda calculus with the necessary syntactic sugar

I Arithmetic and boolean expressions as in While.
I ML style function declarations

I fn x => e for anonymous, non-recursive functions
I fun f x => e for anonymous, recursive functions

I An if-then-else construct is present.

I Example is forthcoming.

[Faculty of Science
Information and Computing Sciences]

4

Adding assignments and references to Fun

I Imperative constructs for Fun:

e ::= · · · | newπ x := e1 in e2 | !x | x := e0 | e1; e2

I new introduces a statically scoped reference and initializes
the value it refers to.

I We need program point annotation π again.

I Deferencing the value of the reference x is via the !
operator.

I Explicit difference between rvalue and lvalue

I Assignments may set this value to a new one.

I Sequencing ; first evaluates e1 for its effect on the state,
then evaluates e2 (in this new state) and returns this value.

[Faculty of Science
Information and Computing Sciences]

5

Example

I This variant of fibonacci uses a ’global’ variable r to
compute:
newR r := 0
in let fib = funF f z => if z < 3

then r := !r + 1
else f(z − 1); f(z − 2)

in fib x; !r

I The fib definition assigns to and references the reference
variable created at program point R.

[Faculty of Science
Information and Computing Sciences]

6

Side Effect Analysis

I Side Effect Analysis determines

For each subexpression, which locations have
been created, accessed and assigned.

I Monomorphic/monovariant, but with subeffecting.

I No algorithm.

[Faculty of Science
Information and Computing Sciences]

7

Annotations

I Annotations are sets of effects (three kinds):

ϕ ::= {!π} | {π :=} | {newπ} | ϕ1 ∪ ϕ2 | ∅

I {!π} means that in the expression to which it is attached,
a location created at program point π was accessed.

I And similarly for the others

I We also need sets of program points:

ω ::= {π} | ω ∪ ω | ∅

[Faculty of Science
Information and Computing Sciences]

8

UCAI

I ωs (sets of locations) are equal modulo UCAI.

I Values are considered the same if they only differ in order,
parenthesis and the presence of unit or cancelling values
because of idempotence.

I For example:

({π1} ∪ {π2}) ∪ ∅
U
=

{π1} ∪ {π2}
I
=

{π1} ∪ ({π2} ∪ {π2})
A
=

({π1} ∪ {π2}) ∪ {π2}
C
=

({π2} ∪ {π1}) ∪ {π2}
I We may simply write {π1, π2}.

[Faculty of Science
Information and Computing Sciences]

9

Annotated types

I Annotated types are defined to be

τ̂ ::= int | bool | τ̂1
ϕ→τ̂2 | refω τ̂

I Example: int
{!R,R:=}→ int.

[Faculty of Science
Information and Computing Sciences]

10

Example revisited

I newR r := 0
in let fib = funF f z => if z < 3

then r := !r + 1
else f(z − 1); f(z − 2)

in fib x; !r

I A reference variable like r has type ref{R} int

I The function fib has type int
{!R,R:=}→ int.

I It is obviously a function from int to int.
I Which may, as a side effect, access and update a reference

created at R.

[Faculty of Science
Information and Computing Sciences]

11

Judgments

I Judgments for Side Effect Analysis are of the form

Γ̂ S̀E e : τ̂ & ϕ

I The name type and effect system should now become
apparent.

I Every expression has an (annotated) type and an effect.

[Faculty of Science
Information and Computing Sciences]

12

Rule for let-expressions

Γ̂ S̀E e1 : τ̂1 & ϕ1 Γ̂[x 7→ τ̂1] S̀E e2 : τ̂2 & ϕ2

Γ̂ S̀E let x = e1 in e2 : τ̂2 & ϕ1 ∪ ϕ2

[let]

Effects typically accumulate: ϕ1 ∪ ϕ2.

[Faculty of Science
Information and Computing Sciences]

13

Rule for abstraction

Γ̂[x 7→ τ̂x] S̀E e0 : τ̂0 & ϕ0

Γ̂ S̀E fnπ x => e0 : τ̂x
ϕ0→τ̂0 & ∅

[fn]

I A function body has effect, defining a function does not.

I Effects of bodies are stored on the arrows in [fn] or [fun].

[Faculty of Science
Information and Computing Sciences]

14

Rule for application

Γ̂ S̀E e1 : τ̂2
ϕ0→τ̂0 & ϕ1 Γ̂ S̀E e2 : τ̂2 & ϕ2

Γ̂ S̀E e1 e2 : τ̂0 & ϕ0 ∪ ϕ1 ∪ ϕ2

[app]

I Application retrieves the effect of executing body from
annotated type of function.

I Contributes it to the total effect.
I Abstraction rule stores effect on arrow type, application

retrieves it.
I Help deal with the non-compositional aspect of function

definition.

[Faculty of Science
Information and Computing Sciences]

15

Rule for dereference

Γ̂(x) = ref{π1,...,πn} τ̂

Γ̂ S̀E !x : τ̂ & {!π1, . . . , !πn}
[deref]

I {π1, . . . , πn} describes all program points where the
reference x may have been created.

I Why a set?

I Reference variables can be function arguments.

[Faculty of Science
Information and Computing Sciences]

15

Rule for dereference

Γ̂(x) = ref{π1,...,πn} τ̂

Γ̂ S̀E !x : τ̂ & {!π1, . . . , !πn}
[deref]

I {π1, . . . , πn} describes all program points where the
reference x may have been created.

I Why a set?

I Reference variables can be function arguments.

[Faculty of Science
Information and Computing Sciences]

16

Rule for new-expression

Γ̂ S̀E e1 : τ̂1 & ϕ1 Γ̂[x 7→ ref{π} τ̂1] S̀E e2 : τ̂2 & ϕ2

Γ̂ S̀E newπ x := e1 in e2 : τ̂2 & ϕ1 ∪ ϕ2 ∪ {newπ}
[new]

I Put the annotation into the type of x and add its effect.

[Faculty of Science
Information and Computing Sciences]

17

Rule for assignments

Γ̂ S̀E e : τ̂ & ϕ Γ̂(x) = ref{π1,...,πn} τ̂

Γ̂ S̀E x := e : τ̂ & ϕ ∪ {π1 :=, . . . , πn :=}
[ass]

I Simply add annotations to denote the fact that x has a
new value.

[Faculty of Science
Information and Computing Sciences]

18

Example

I newA x := 1
in (newB y :=!x in (x :=!y + 1; !y + 3))

+ (newC x :=!x in (x :=!x+ 1; !x+ 1))

I First summand has type and effect:
int & {newB, !A,A :=, !B}

I Second summand has type and effect:
int & {newC, !A,C :=, !C}

I The updated x is the local, not the global one

I Together we get
int & {newA, !A,A :=,newB, !B,newC,C :=, !C}

I Conclusion: reference created B is never assigned to, so
could be replaced by an ordinary integer variable.

[Faculty of Science
Information and Computing Sciences]

19

Poisoning

I newA x := 1
in (fn f => f (fn y => !x) + f(fn z => (x := z; z)))

(fn g => g 1)

I Determine that f has the type (int
{!A,A:=}→ int)

{!A,A:=}→ int?

I In the presence of poisoning, both arguments must have

exactly the type of the argument to f , (int
{!A,A:=}→ int).

I We would prefer (fn y => !x) : (int
{!A}→ int) and

(fn z => (x := z; z)) : (int
{A:=}→ int).

I And to weaken annotations independently and only when
we must.

[Faculty of Science
Information and Computing Sciences]

19

Poisoning

I newA x := 1
in (fn f => f (fn y => !x) + f(fn z => (x := z; z)))

(fn g => g 1)

I Determine that f has the type (int
{!A,A:=}→ int)

{!A,A:=}→ int?

I In the presence of poisoning, both arguments must have

exactly the type of the argument to f , (int
{!A,A:=}→ int).

I We would prefer (fn y => !x) : (int
{!A}→ int) and

(fn z => (x := z; z)) : (int
{A:=}→ int).

I And to weaken annotations independently and only when
we must.

[Faculty of Science
Information and Computing Sciences]

20

Subtyping

Γ̂ S̀E e : τ̂ & ϕ τ̂ ≤ τ̂ ′ ϕ ⊆ ϕ′

Γ̂ S̀E e : τ̂ ′ & ϕ′
[sub]

I Subeffecting/subtyping performed by a single rule.
I The rule allows us to weaken analysis results when

appropriate:
I τ̂ ≤ τ̂ ′: τ̂ ′ is weaker than τ̂ .
I ϕ ⊆ ϕ′: ϕ′ is weaker than ϕ.

I In the example: large sets are weaker.

I The rule is not syntax directed.
I It can always be applied, forever.

I Typically, subsumption is built into [app], [if] etc.

[Faculty of Science
Information and Computing Sciences]

21

The example again

I newA x := 1
in (fn f => f (fn y => !x) + f(fn z => (x := z; z)))

(fn g => g 1)

I Weaken the type when necessary (when a value is “used”):

(int
{!A}→ int) ≤ (int

{!A,A:=}→ int)

(int
{A:=}→ int) ≤ (int

{!A,A:=}→ int)

I Larger type for f does not change types of its arguments.

I Just before matching the type of an argument with the
formal parameter type.

I Just before checking that the then-part and else-part have
matching types.

[Faculty of Science
Information and Computing Sciences]

22

The subtyping relation

I We should now define ≤ for annotated types.

I Example (function types):

τ̂ ′1 ≤ τ̂1 τ̂2 ≤ τ̂ ′2 ϕ ⊆ ϕ′

τ̂1
ϕ→τ̂2 ≤ τ̂ ′1

ϕ′
→τ̂ ′2

I The subtyping relation is
I covariant in the result
I contravariant in the argument

I and covariant in the argument of the argument, etc.

I The reference type refω τ̂ is both covariant and
contravariant (invariant) in τ̂ .

I A reference can be used to read from and write to.

[Faculty of Science
Information and Computing Sciences]

23

Contravariance example

I Consider sets of signs as annotation and a function with
analysis:

f :: int{0,+}→int{−,0}

I This is a may-style analysis so we can weaken to

int{0,+}→int{−,0,+}

I But what can be done with int{0,+}?

I If f returns a value in {−, 0} for positive arguments and
zero, then it also returns such values if we restrict to {0}.

I Thus: int{0}→int{−,0} is a safe approximation of f

I Applicability of f is restricted: only for arguments 0.

I Note: growing the set on the argument may not be safe!

[Faculty of Science
Information and Computing Sciences]

24

More covariance and contravariance

I A fact of life (with subtyping) that must be dealt with.
I Essentially it distinguishes between consuming a value and

producing one.
I And this has implications for how we should handle them.

I In Java: S extends T , and T extends U
I Assume a method

T work(T t) .

Then we may safely
I pass an S, but not a U to the method work,
I use the result of work where a U is expected, but not

where we need an S.
I In other words, T work(T t) may be weakened to
U work(S t).

I Bottom-line: changing a value safely (weakening) is done
differently depending on variance.

[Faculty of Science
Information and Computing Sciences]

24

More covariance and contravariance

I A fact of life (with subtyping) that must be dealt with.
I Essentially it distinguishes between consuming a value and

producing one.
I And this has implications for how we should handle them.

I In Haskell: f :: Eq a⇒ a→ a
I We may pass values b to f that have at least Eq b, so they

may have also Ord b

I We may write id (f x), forgetting that a has Eq a

I Bottom-line: changing a value safely (weakening) is done
differently depending on variance.

[Faculty of Science
Information and Computing Sciences]

25

More?

I Call Tracking Analysis is an effect analysis that is much
related to CFA.

I In Call Tracking Analysis:

Which functions may have been called during the
evaluation of an expression.

I In 2006, an assignment was to give a deduction system and
algorithm for the monomorphic/monovariant case without
subeffecting.

I Behaviours: effects are not sets but sequences.
I Effects include information on when it happened:

Communication Analysis

