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Part I: Constraint-based type inference

I Introduction

I Bottom-up typing rules

I Equality constraints

I Polymorphism and instance constraints

I Constraint solving

I Summary
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Example 1
.hs file

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

Is this program well typed?
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Example 1
.hs file

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

Is this program well typed?
ERROR "Main.hs":1 - Unresolved top-level overloading

*** Binding : main

*** Outstanding context : (Num [b], Num b)

Student FP: ”What did I do wrong?”

I Type classes make the type error message hard to understand

I The location of the mistake is rather vague

I No suggestions how to fix the program



Introduction 3 JJ J I II J • ×

Example 2
.hs file

pExpr = pAndPrioExpr
<|> sem_Expr_Lam

<$ pKey "\\"
<*> pFoldr1 (sem_LamIds_Cons, sem_LamIds_Nil) pVarid
<*> pKey "->" <*> pExpr

Is this program well typed?
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Example 2
.hs file

pExpr = pAndPrioExpr
<|> sem_Expr_Lam

<$ pKey "\\"
<*> pFoldr1 (sem_LamIds_Cons, sem_LamIds_Nil) pVarid
<*> pKey "->" <*> pExpr

Is this program well typed?
ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]
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Example 2

ERROR "BigTypeError.hs":1 - Type error in application
*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid <*> pKey "->"
*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid
*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I
nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))
-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b
,f -> f,[S] -> [S]),[Token])]
*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)
)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

Student IPT: ”Why is my parser not accepted by the compiler?”

I Message is really big, and thus not very helpful

I You have to discover why the types don’t match yourself

I It happens to be a common mistake, and easy to fix
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Example 3
.hs file

main :: (Bool -> a) -> (a, a, a)
main = \f -> (f True, f False, f [])

Is this program well typed?
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Example 3
.hs file

main :: (Bool -> a) -> (a, a, a)
main = \f -> (f True, f False, f [])

Is this program well typed?
ERROR "Main.hs":2 - Type error in application

*** Expression : f False

*** Term : False

*** Type : Bool

*** Does not match : [a]

Student Type Systems: ”Why is f False reported?”

I There is a lot of evidence that f False is well typed

I The type signature is not taken into account

I The type inference process suffers from a left-to-right bias
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Hindley/Milner type inference

τ ≺ Γ(x)

Γ H̀M x : τ
[Var]HM

Γ H̀M e1 : τ1 → τ2 Γ H̀M e2 : τ1

Γ H̀M e1 e2 : τ2
[App]HM

Γ\x ∪ {x ::τ1} H̀M e : τ2

Γ H̀M λx → e : (τ1 → τ2)
[Abs]HM

Γ H̀M e1 : τ1 Γ\x ∪ {x :generalize(Γ, τ1)} H̀M e2 : τ2

Γ H̀M let x = e1 in e2 : τ2
[Let]HM

I Algorithm W is a (deterministic) implementation of these typing rules.
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Constraint-based type inference

I A basic operation for type inference is unification.
Property: let S be unify(τ1, τ2), then Sτ1 = Sτ2

We can view unification of two types as a constraint.
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Constraint-based type inference

I A basic operation for type inference is unification.
Property: let S be unify(τ1, τ2), then Sτ1 = Sτ2

We can view unification of two types as a constraint.

I An equality constraint imposes two types to be equivalent.
Syntax: τ1 ≡ τ2

I We define satisfaction of an equality constraint as follows.
S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

I Example:

• [τ1 := Int, τ2 := Int] satisfies τ1 → τ1 ≡ τ2 → Int
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Bottom-up typing rules

{x :β}, ∅ B̀U x : β [Var]BU

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2, C1 ∪ C2 ∪ {τ1 ≡ τ2 → β} B̀U e1 e2 : β
[App]BU

A, C B̀U e : τ

A\x, C ∪ {τ ′ ≡ β | x :τ ′ ∈ A} B̀U λx → e : (β → τ )
[Abs]BU

I A judgement (A, C B̀U e : τ ) consists of the following.

• A: assumption set (contains assigned types for the free variables)

• C: constraint set

• e: expression

• τ : asssigned type (variable)
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Example
.hs file

twice = \f -> \x -> f (f x)

ABS(f)

ABS(x)

APP

APP

VAR(x)VAR(f)

VAR(f)

Constraints
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Example
.hs file

twice = \f -> \x -> f (f x)

VAR(f)
A={f:t1}

t1

ABS(f)

ABS(x)

APP

APP

VAR(x)VAR(f)

Constraints
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Example
.hs file

twice = \f -> \x -> f (f x)

VAR(f)

VAR(f)
A={f:t2}

A={f:t1}

t2

t1

ABS(f)

ABS(x)

APP

APP

VAR(x)

Constraints
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Example
.hs file

twice = \f -> \x -> f (f x)

VAR(f)

VAR(f) VAR(x)
A={x:t3}A={f:t2}

A={f:t1}

t3t2

t1

ABS(f)

ABS(x)

APP

APP

Constraints
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Example
.hs file

twice = \f -> \x -> f (f x)

APPVAR(f)

VAR(f) VAR(x)

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t4

t3t2

t1

ABS(f)

ABS(x)

APP

Constraints
t2 ≡ t3 -> t4
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Example
.hs file

twice = \f -> \x -> f (f x)

APP

APP

VAR(f)

VAR(f) VAR(x)

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t5

t4

t3t2

t1

ABS(f)

ABS(x) Constraints
t2 ≡ t3 -> t4
t1 ≡ t4 -> t5
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Example
.hs file

twice = \f -> \x -> f (f x)

APP

APP

ABS(x)

VAR(f)

VAR(f) VAR(x)

A={f:t1, f:t2}

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t6 -> t5

t5

t4

t3t2

t1

ABS(f)

Constraints
t2 ≡ t3 -> t4
t1 ≡ t4 -> t5
t3 ≡ t6
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Example
.hs file

twice = \f -> \x -> f (f x)

APP

APP

ABS(x)

ABS(f)

VAR(f)

VAR(f) VAR(x)

A={}

A={f:t1, f:t2}

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t7 -> (t6 -> t5)

t6 -> t5

t5

t4

t3t2

t1

Constraints
t2 ≡ t3 -> t4
t1 ≡ t4 -> t5
t3 ≡ t6
t1 ≡ t7
t2 ≡ t7
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Example
.hs file

twice = \f -> \x -> f (f x)

I C =


t2 ≡ t3 -> t4
t1 ≡ t4 -> t5
t3 ≡ t6
t1 ≡ t7
t2 ≡ t7

I S =

{
t1,t2,t7 := t6 -> t6
t3,t4,t5 := t6

I S satisfies C (moreover, S is a minimal substitution that satisfies C). As a
result, we have inferred the type

S(t7 -> t6 -> t5) = (t6 -> t6) -> t6 -> t6

for twice.
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Constraints and polymorphism

I Syntax of an instance constraint:

τ1 ≤M τ

I Semantics with respect to a substitution S:

S satisfies (τ1 ≤M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)

I Example:

• [t1 := t2, t4 := t5 -> t5] satisfies t4 ≤∅ t1 -> t2
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Constraints and polymorphism

I Syntax of an instance constraint:

τ1 ≤M τ

I Semantics with respect to a substitution S:

S satisfies (τ1 ≤M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)

I Example:

• [t1 := t2, t4 := t5 -> t5] satisfies t4 ≤∅ t1 -> t2

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ ≤M τ1 | x :τ ′ ∈ A2}
B̀U let x = e1 in e2 : τ2

[Let]BU
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Example
.hs file

identity = let i = \x -> x in i i

LET(i)

APP

VAR(i)VAR(i)

ABS(x)

VAR(x)

Constraints
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Example
.hs file

identity = let i = \x -> x in i i

VAR(x)
A={x:t1}

t1

LET(i)

APP

VAR(i)VAR(i)

ABS(x)

Constraints
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Example
.hs file

identity = let i = \x -> x in i i

ABS(x)

VAR(x)
A={x:t1}

A={}

t1

t2 -> t1

LET(i)

APP

VAR(i)VAR(i)

Constraints
t1 ≡ t2
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Example
.hs file

identity = let i = \x -> x in i i

ABS(x)

VAR(x) VAR(i)

A={i:t3}

A={x:t1}

A={}

t3

t1

t2 -> t1

LET(i)

APP

VAR(i)

Constraints
t1 ≡ t2
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Example
.hs file

identity = let i = \x -> x in i i

ABS(x)

VAR(x) VAR(i) VAR(i)
A={i:t4}

A={i:t3}

A={x:t1}

A={}

t4

t3

t1

t2 -> t1

LET(i)

APP

Constraints
t1 ≡ t2
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Example
.hs file

identity = let i = \x -> x in i i

APPABS(x)

VAR(x) VAR(i) VAR(i)

A={i:t3, i:t4}

A={i:t4}

A={i:t3}

A={x:t1}

A={}

t5

t4

t3

t1

t2 -> t1

LET(i)

Constraints
t1 ≡ t2
t3 ≡ t4 -> t5
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Example
.hs file

identity = let i = \x -> x in i i

APP

LET(i)

ABS(x)

VAR(x) VAR(i) VAR(i)

A={}

A={i:t3, i:t4}

A={i:t4}

A={i:t3}

A={x:t1}

A={}

t5

t5

t4

t3

t1

t2 -> t1

Constraints
t1 ≡ t2
t3 ≡ t4 -> t5
t3 ≤∅ t2 -> t1
t4 ≤∅ t2 -> t1
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Example
.hs file

identity = let i = \x -> x in i i

I C =


t1 ≡ t2
t3 ≡ t4 -> t5
t3 ≤∅ t2 -> t1
t4 ≤∅ t2 -> t1

I S =

 t1 := t2
t3 := (t6 -> t6) -> t6 -> t6

t4,t5 := t6 -> t6

I S satisfies C (moreover, S is a minimal substitution that satisfies C). As a
result, we have inferred the type

S(t5) = t6 -> t6

for identity.
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Greedy constraint solver

Given a set of type constraints, the greedy constraint solver returns a substitution
that satisfies these constraints, and a list of constraint that could not be satisfied
by the solver. The latter is used to produce type error messages.

I Advantages:

• Efficient and fast

• Straightforward implementation

I Disadvantage:

• The order of the type constraints strongly influences the reported error
messages. The type inference process is biased.
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Ordering type constraints

I One is free to choose the order in which the constraints should be considered
by the greedy constraint solver. (Although there is a restriction for an implicit
instance constraint)

I Instead of returning a list of constraints, return a constraint tree that follows
the shape of the AST.

I A tree-walk flattens the constraint tree and orders the constraints.

•W : almost a post-order tree walk

•M: almost a pre-order tree walk

• Bottom-up: ...

• Pushing down type signatures: ...
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Global constraint solver

Type graphs allow us to solve the collected type constraints in a more global way.

I Advantages:

• Global properties can be detected

• A lot of information is available

• The type inference process can be unbiased

• It is easy to include new heuristics to spot common mistakes.

I Disadvantage:

• Extra overhead makes this solver slower
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Type graphs

Int

-> : ->

-> xs ->

main

t0 Int
4

5

Int6

Int

[][][]

[]

[4,5,6] xs:[4,5,6]

t1

main = xs : [4, 5, 6]

where len = length xs

xs = [1, 2, 3]
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Type graph heuristics

If a type graph contains an inconsistency, then heuristics help to choose which
location is reported as type incorrect.

I Examples:

• minimal number of type errors

• count occurrences of clashing type constants (3×Int versus 1×Bool)

• reporting an expression as type incorrect is preferred over reporting a
pattern

• wrong literal constant (4 versus 4.0)

• not enough arguments are supplied for a function application

• permute the elements of a tuple

• (:) is used instead of (++)

I All these heuristics are present in the Helium compiler

I We will see more examples in Part II
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Summary

We have described a parametric type inferencer

I Constraint-based: specification and implementation are separated

I Standard algorithms can be simulated by choosing an order for the constraints

I Two implementations are available to solve the constraints

I Type graph heuristics help in reporting the most likely mistake

solve constraints

global (type graph)

solve constraints

greedy

flatten

treeconstraints

collectAST tree
constraint constraint

list
substitution +

type errors

type rules
specialized treewalk

type graph
heuristics
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Exercise 1: Constraint-based type inference

{x :β}, ∅ B̀U x : β [Var]BU

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2, C1 ∪ C2 ∪ {τ1 ≡ τ2 → β} B̀U e1 e2 : β
[App]BU

A, C B̀U e : τ

A\x, C ∪ {τ ′ ≡ β | x :τ ′ ∈ A} B̀U λx → e : (β → τ )
[Abs]BU

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ ≤M τ1 | x :τ ′ ∈ A2}
B̀U let x = e1 in e2 : τ2

[Let]BU
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Part II: Type inference directives

I Introduction

I Directives

• Specialized type rules

• Phasing of type constraints

• Sibling functions

• Permuted function arguments

I Summary

I Conclusion
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The problems

Type error messages suffer from the following problems.

1. A fixed order of unification. The order of traversal strongly influences the
reported error site, and there is no way to depart from it.

2. The size of the mentioned types. Irrelevant parts are shown, and type
synonyms are not always preserved.

3. The standard format of type error messages. Because of the general
format of type error messages, the content is often not very poignant. Domain
specific terms are not used.

4. No anticipation for common mistakes. Error messages focus on the
problem, and not on how to fix the program. It is impossible to anticipate
common pitfalls that exist.
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The solution

Idea: supply type inference directives to the compiler to improve error reporting.

I For a given .hs file, a programmer may supply a .type file containing the
directives

I The directives are automatically included when the module is imported
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The solution

Idea: supply type inference directives to the compiler to improve error reporting.

I For a given .hs file, a programmer may supply a .type file containing the
directives

I The directives are automatically included when the module is imported

I Examples:

• Type directives in Prelude.type can help the students of an introductory
course on functional programming
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The solution

Idea: supply type inference directives to the compiler to improve error reporting.

I For a given .hs file, a programmer may supply a .type file containing the
directives

I The directives are automatically included when the module is imported

I Examples:

• Type directives in Prelude.type can help the students of an introductory
course on functional programming

• The designer of a (combinator) library can supply directives that are
domain-specific

We use directives for a set of parser combinators as a running example.
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Specializing a type rule (1/3)

Applying the type rule for function application twice in succession results in the
following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2

Γ H̀M x ‘op‘ y : τ3



Type inference directives - Specialized type rules 24 JJ J I II J • ×

Specializing a type rule (1/3)

Applying the type rule for function application twice in succession results in the
following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2

Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators, for instance <$>.

<$> :: (a → b) → Parser s a → Parser s b

We can now create a specialized type rule by filling in this type in the type rule.
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Specializing a type rule (1/3)

Applying the type rule for function application twice in succession results in the
following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2

Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators, for instance <$>.

<$> :: (a → b) → Parser s a → Parser s b

We can now create a specialized type rule by filling in this type in the type rule.

Γ H̀M x : τ1 → τ2 Γ H̀M y : Parser τ3 τ1

Γ H̀M x <$> y : Parser τ3 τ2
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Specializing a type rule (2/3)

I Use equality constraints to make the restrictions that are imposed by the type
rule explicit.

I We only consider type rules that have the same type environment Γ above and
below the line.

I The type rule can only be used if the operator is unchanged. Type rules are
invalidated by shadowing.

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a → b
τ2 ≡ Parser s a
τ3 ≡ Parser s b
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Specializing a type rule (2/3)

I Use equality constraints to make the restrictions that are imposed by the type
rule explicit.

I We only consider type rules that have the same type environment Γ above and
below the line.

I The type rule can only be used if the operator is unchanged. Type rules are
invalidated by shadowing.

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a → b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2
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Specializing a type rule (3/3)

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

.type file

x :: t1; y :: t2;
---------------------

x <$> y :: t3;

t1 == a1 -> b1
t2 == Parser s1 a2
t3 == Parser s2 b2
s1 == s2
a1 == a2
b1 == b2
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Special type error messages
.type file

x :: t1; y :: t2;
---------------------

x <$> y :: t3;

t1 == a1 -> b1 : left operand is not a function
t2 == Parser s1 a2 : right operand is not a parser
t3 == Parser s2 b2 : result type is not a parser
s1 == s2 : parser has an incorrect symbol type
a1 == a2 : function cannot be applied to parser’s result
b1 == b2 : parser has an incorrect result type

I Supply an error message for each type constraint. This message is reported if
the corresponding constraint cannot be satisfied.
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Example
.hs file

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message:

Type error: right operand is not a parser
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Example
.hs file

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

Important context specific information is missing, for instance:

I Inferred types for (sub-)expressions, and intermediate type variables

I Pretty printed expressions from the program

I Position and range information

Solution: use error message attributes
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Error message attributes

The error message attached to a type constraint might now look like:
.type file

x :: t1; y :: t2;
---------------------

x <$> y :: t3;

...

...
t2 == Parser s1 a2 :
@expr.pos@: The right operand of <$> should be a parser
expression : @expr.pp@
right operand : @y.pp@

type : @t2@
does not match : Parser @s1@ @a2@

...

...
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Example
.hs file

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message (including the inserted error
message attributes):

(2,21): The right operand of <$> should be a parser
expression : map toUpper <$> "hello, world!"
right operand : "hello, world!"

type : String
does not match : Parser Char String
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Implicit constraints

A type constraint can be ”moved” from the constraint set to the deduction rule.

.type file

x :: t1; y :: t2;
----------------------------

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function
t2 == Parser s a2 : right operand is not a parser
a1 == a2 : function cannot be applied to parser’s result

An implicit constraint with a default error message is inserted for the type in the
conclusion.
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Order of the type constraints

I No knowledge about how the constraints are solved

I The earliest inconsistency is reported

I Each meta-variable represents a subtree for which also type constraints are
collected. This constraint set can be explicitly mentioned in the type rule.
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Order of the type constraints

I No knowledge about how the constraints are solved

I The earliest inconsistency is reported

I Each meta-variable represents a subtree for which also type constraints are
collected. This constraint set can be explicitly mentioned in the type rule.

.type file

x :: t1; y :: t2;
----------------------------

x <$> y :: Parser s b;

constraints x
t1 == a1 -> b : left operand is not a function
constraints y
t2 == Parser s a2 : right operand is not a parser
a1 == a2 : function cannot be applied to parser’s result
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Soundness

The soundness of a specialized type rule with respect to the default type rules is
examined at compile time.

I Because a mistake is easily made

I Invalid type rules are rejected when a Haskell file is compiled

I Type safety can still be guaranteed at run-time
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Example
.type file

x :: t1; y :: t2;
-----------------------------

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function
t2 == Parser s a2 : right operand is not a parser

This specialized type rule is not restrictive enough:

The type rule for "x <$> y" is not correct
the type according to the type rule is

(a -> b, Parser c d, Parser c b)
whereas the standard type rules infer the type

(a -> b, Parser c a, Parser c b)
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Example
.type file

x :: t1; y :: t2;
-----------------------------

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function
t2 == Parser s a2 : right operand is not a parser

This specialized type rule is not restrictive enough:

The type rule for "x <$> y" is not correct
the type according to the type rule is

(a -> b, Parser c d, Parser c b)
whereas the standard type rules infer the type

(a -> b, Parser c a, Parser c b)

Missing constraint:

a1 == a2 : function cannot be applied to parser’s result
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Another example
.type file

x :: a -> b; y :: Parser Char a;
-------------------------------------

x <$> y :: Parser Char b;

This specialized type rule is too restrictive:

The type rule for "x <$> y" is not correct
the type according to the type rule is

(a -> b, Parser Char a, Parser Char b)
whereas the standard type rules infer the type

(a -> b, Parser c a, Parser c b)
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Another example
.type file

x :: a -> b; y :: Parser Char a;
-------------------------------------

x <$> y :: Parser Char b;

This specialized type rule is too restrictive:

The type rule for "x <$> y" is not correct
the type according to the type rule is

(a -> b, Parser Char a, Parser Char b)
whereas the standard type rules infer the type

(a -> b, Parser c a, Parser c b)

A correct specialized type rule:
.type file

x :: a -> b; y :: Parser s a;
-------------------------------------

x <$> y :: Parser s b;



Type inference directives - Phasing 36 JJ J I II J • ×

AST versus conceptual structure
.hs file

f <$> p <*> q <*> r

I The associativity and priority of the parser operators are chosen to minimize
the number of parentheses in a practical situation

I The inferencing process follows the shape of the abstract syntax tree closely

I The actual shape of an AST differs from the way a programmer interprets it

<*>

<*>

r

q

pf

<$> f

<$>

<*>

p q r

abstract syntax tree conceptual structure

As a consequence, the reported error for an ill-typed expression involving these
combinators can be counter-intuitive and misleading.
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Phasing by example (1/2)

.hs file

test :: Parser Char String
test = (++) <$> token "hello world"

<*> symbol ’!’

A four step approach to infer the types:

1. Infer the types of the expressions between the parser combinators.

2. Check if the types inferred for the parser subexpressions are indeed Parser
types.

3. Verify that the parser types can agree upon a common symbol type.

4. Determine whether the result types of the parser fit the function.

In this case, a type inconsistency is detected in the fourth step.
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Phasing by example (2/2)

I Hugs reports the following:

ERROR "Phase1.hs":4 - Type error in application
*** Expression : (++) <$> token "hello world" <*> sy
mbol ’!’
*** Term : (++) <$> token "hello world"
*** Type : [Char] -> [([Char] -> [Char],[Char]
)]
*** Does not match : [Char] -> [(Char -> [Char],[Char])]

I The four step approach might result in:

(1,7): The function argument of <$> does not work on the
result types of the parser(s)

function : (++)
type : [a] -> [a] -> [a]
does not match : String -> Char -> String
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Assigning phase numbers (1/2)

.type file

x :: t1; y :: t2;
---------------------

x <$> y :: t3;

phase 6
t2 == Parser s1 a2 : right operand is not a parser
t3 == Parser s2 b2 : result type is not a parser
phase 7
s1 == s2 : parser has an incorrect symbol type
phase 8
t1 == a1 -> b1 : left operand is not a function
a1 == a2 : function cannot be applied to parser’s result
b1 == b2 : parser has an incorrect result type

I The constraints in phase number i are solved before the constraint solver
continues with the constraints of phase i + 1

I The default phase number is 5
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Assigning phase numbers (2/2)

In a similar way, the constraints can be assigned a lower phase number than the
default.

If we assign all constraints to phase 4, then the following error is reported:
.hs file

test :: Parser Char String
test = map toUpper <$> "hello, world!"

(2,21): Type error in string literal
expression : "hello, world!"

type : String
expected type : Parser Char String
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Anticipate common mistakes

One typical mistake is confusing two functions that are somehow related.

Examples:

I curry and uncurry

I (:) and (++)

I (<∗>) and (<∗)
We will refer to such a pair of related functions as siblings.
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Anticipate common mistakes

One typical mistake is confusing two functions that are somehow related.

Examples:

I curry and uncurry

I (:) and (++)

I (<∗>) and (<∗)
We will refer to such a pair of related functions as siblings.

By declaring siblings in a .type file, the type inferencer will consider suggesting a
probable fix.

.type file

siblings <$> , <$
siblings <*> , <*
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Example
.hs file

data Expr = Lambda Patterns Expr
type Patterns = [Pattern]
type Pattern = String

pExpr :: Parser Token Expr
pExpr

= pAndPrioExpr
<|> Lambda <$ pKey "\\"

<*> many pVarid
<* pKey "->"
<* pExpr -- <* should be <*>

An extreme of concision is:

(11,13): Type error in the operator <*
probable fix: use <*> instead
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Permuting function arguments (1/2)

Supplying the arguments of a function in the wrong order can result in
incomprehensible type error messages.

.hs file

test :: Parser Char String
test = option "" (token "hello!")

ERROR "Swapping.hs":2 - Type error in application

*** Expression : option "" (token "hello!")

*** Term : ""

*** Type : String

*** Does not match : [a] -> [([Char] -> [([Char],[Char])],[a])]

I Check for permuted function arguments in case of a type error

I There is no need to declare this in a .type file
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Permuting function arguments (2/2)

.hs file

test :: Parser Char String
test = option "" (token "hello!")

(2,8): Type error in application
expression : option "" (token "hello!")
term : option

type : Parser a b -> b -> Parser a b
does not match : String -> Parser Char String -> c

probable fix : flip the arguments
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Summary

We have shown four techniques to influence the behaviour of constraint-based
type inferencers.

I Specialized type rules

I Phasing of type constraints

I Identification of sibling functions

I Testing for permuted function arguments
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Summary

We have shown four techniques to influence the behaviour of constraint-based
type inferencers.

I Specialized type rules

I Phasing of type constraints

I Identification of sibling functions

I Testing for permuted function arguments

Results:

fixed order
size of
types

standard
format

no
anticipation

specialized type rules
√ √ √ √

phasing
√

× × ×
siblings × ×

√ √

permuting × ×
√ √
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Conclusion

The major advantages of our approach can be summarized as follows.

I Type directives are supplied externally. As a result, no detailed knowledge of
how the type inference process is implemented is necessary.

I Type directives can be concisely and easily specified by anyone familiar with
type inference. Consequently, experimenting effectively with the type inference
process becomes possible.

I The directives are automatically checked for soundness. The major advantage
here is that the underlying type system remains unchanged, thus providing a
firm basis for the extensions.

I For combinator libraries in particular, it becomes possible to report error
messages which correspond more closely to the conceptual domain for which
the library was developed.
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Exercise 2: Specialized type rules

Example of a specialized type rule.
.type file

x :: t1; y :: t2;

---------------------

x <$> y :: t3;

t1 == a1 -> b1 : left operand is not a function

t2 == Parser s1 a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

s1 == s2 : parser has an incorrect symbol type

a1 == a2 : function cannot be applied to parser’s result

b1 == b2 : parser has an incorrect result type

The error messages can be refined with error message attributes.
.type file

t2 == Parser s1 a2 :

@expr.pos@: The right operand of <$> should be a parser

expression : @expr.pp@

right operand : @y.pp@

type : @t2@

does not match : Parser @s1@ @a2@


