
[Faculty of Science
Information and Computing Sciences]

APA
Plagiarism Dectection: a tool and a

comparison

Jurriaan Hage
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/

Contributions by Peter Rademaker

Department of Information and Computing Sciences, Universiteit Utrecht

June 7, 2012

[Faculty of Science
Information and Computing Sciences]

2

1. Introduction

[Faculty of Science
Information and Computing Sciences]

3

Overview §1

Introduction

What can Marble do?

How does Marble work?

A small experiment

How does Marble do it?

A comparison of plagiarism detection tools

Holmes

[Faculty of Science
Information and Computing Sciences]

4

What is plagiarism? §1

het in een scriptie of ander werkstuk gegevens of
tekstgedeelten van anderen overnemen zonder
bronvermelding. (Docenthandleiding Dept.
Informatica)

which translates to

to copy information or textual passages written by
others into a paper or other artifact without proper
citation.

[Faculty of Science
Information and Computing Sciences]

5

Why do we need tools? §1

I Detecting plagiarism in computer programs is hard to do
by hand:

I discoveries tend to be accidental, based on remarkable
similarities

I only between assignments handed in in the same year
I fewer discoveries if the group of students becomes very

large
I assignments are checked by various people

I Support is essential when students number in the
hundreds, and the same assignment is given repeatedly

[Faculty of Science
Information and Computing Sciences]

6

2. What can Marble do?

[Faculty of Science
Information and Computing Sciences]

7

Marble §2

I Lends support in discovering plagiarism in (mainly
Java/C#) programs

I listing pairs of files, sorted on amount of similarity
I results in an executable script that shows these files with

their similarities
I also compares against a collection of assignments of

previous years
I is relatively fast (20,000 in 6 minutes and 20 seconds)
I and was little work to program

I Marble is tailored to Java/C#, but variants made and
applied to PHP, Perl and XSLT

[Faculty of Science
Information and Computing Sciences]

8

Some numbers on plagiarism cases §2

I Since 2006:
I IMP 2006: five new cases
I IMP 2007, mandelbrot: 5 cases of plagiarism, 4 of

selfplagiarim
I IMP 2007, reversi: 8 new cases of plagiarism, 2 of

selfplagiarism
I IMP 2008, reversi: 11 cases of plagiarism, 2 cases of

collaboration, 4 of selfplagiarism
I IMP 2009, mandelbrot: 1 case of plagiarism
I IMP 2009, reversi: 5 cases of plagiarism
I IMP 2010: no cases.
I DS 2011: 10 and DS 2012: currently at 3

I Note: selfplagiarism is allowed, but still useful to know.

I Patterns: Computer Science vs. Information Science

[Faculty of Science
Information and Computing Sciences]

9

Characteristics of Marble §2

I Compares all newly handed in assignments to
I each other
I to all formerly handed in assignments
I by comparing them source file to source file

I Comparison is insensitive to
I names of variables/identifiers
I string, character or numerical constants
I indentation
I position or contents of comments
I package structure (to some extent)
I order of definition of methods, inner classes and attributes
I how classes are distributed over source files

I Some identifiers remain untouched.

I No deletion of template code.

[Faculty of Science
Information and Computing Sciences]

10

3. How does Marble work?

[Faculty of Science
Information and Computing Sciences]

11

How is Marble organized §3

I Two phases
I the normalisation phase

I Transforms source code into a special form suited for
literal comparison

I the detection phase
I actually performs the comparisons and ranks the results

I Some assumptions are made about how assignments are
organized:

halloworld/0405period1/jur/assignment2/

I For submission directories, assignment2, we make no
assumptions how they are organized.

[Faculty of Science
Information and Computing Sciences]

12

Normalisation §3

Normalisation removes unessential detail from source files.

In particular, details that are easy to change without changing
the behaviour of the program.

Either by tool, or by hand!

[Faculty of Science
Information and Computing Sciences]

13

Normalisation in Marble §3

I Consider each Java source file in turn
I Anywhere inside the assignment2 directory

I Split them up into a separate file for each class

I Normalise the names
assignment2/src/Hello World.java becomes
assignment2/src!Hello@World.java

I For each of these files, residing at top level, we normalise
the Java source code.

[Faculty of Science
Information and Computing Sciences]

14

Code normalisation in detail §3

I Remove comments and literal strings and characters
I Map identifiers to X, except

I keywords (while), special constants (true), special
methods (wait) and special types (String)

I We keep these special identifiers to avoid false positives

I Decimal and octal numbers ⇒ N

I Hexadecimal numbers ⇒ H

I Essentially, we map the tokens in the program to special
uppercase letters.

I Retain symbols like assignments, braces, arithmetic
symbols.

I Each token on a separate line (or almost)

[Faculty of Science
Information and Computing Sciences]

15

An example §3

The class

class Bliep extends Zwiep {

String glob (int z) {

int cnt = x;

cnt = cnt*2;

}

}

becomes

CLASS X EXTENDS X {

STRING X (INT X){

INT X = X;

X = X * N;

}

}

[Faculty of Science
Information and Computing Sciences]

16

Actually... §3

CLASS

X

EXTENDS

X

{

STRING

X

(

INT

X

){

INT

X

=

X

;

X

=

X

*

N

;

}

}

[Faculty of Science
Information and Computing Sciences]

17

Two variants §3

I In one variant (.nf) we are now done.
I In another variant (.nfs) we “sort” the methods, attributes

and inner classes:
I annotate each brace, { and }, with its nesting depth.
I extract inner classes, methods and attributes based on

positions of paired {1 and }1 and semi-colons ;
I group methods, attributes and inner classes together
I sort within each group on the length of normalised code,

then alphabetically

I If students actually moved methods around, using the .nfs
version for comparison gives much better results

[Faculty of Science
Information and Computing Sciences]

18

The detection phase §3

I Consider all files with extension (.nf or .nfs)

I Compare them using the standard diff utility

differentlines = diff file1 file2 || wc -l

len1 = wc -l file1

len2 = wc -l file2

measure =

100 - 100 * differentlines / (len1 + len2)

I measure is 100 if very similar, 0 when very dissimilar.

[Faculty of Science
Information and Computing Sciences]

19

The generated output §3

I Each score above a given threshold generates one line

echo 100 59 59 85 S && vimdiff \

../org/jur/origineel/QSortObserver.java \

../hist/testset/versie9/QuickSortObserver.java

I 100 is the score attained for the Sorted version, 59 and 59
are the respective “file sizes”

I 85 is then the score for unsorted

I File is sorted in descending order (score than size)

I File can be run as a script (under Linux/Unix)
I Typically, a lecturer goes through these until he/she

I discovers that the last five cases show similarities, but
within limits

I or gets fed up

[Faculty of Science
Information and Computing Sciences]

20

4. A small experiment

[Faculty of Science
Information and Computing Sciences]

21

Experiment set-up §4

I Two student assistants, Arjen Swart and Arie Middelkoop,

I were handed somebody else’s assignment for an exercise
they also made themselves

I Their task: change the program as much as possible to
avoid detection, but

I the program should behave in the same way and should be
human readable.

[Faculty of Science
Information and Computing Sciences]

22

Arjen Swart’s nine versions §4

Version modification nf score nfs score
1 comment and layout changes 100 100
2 interchanged method declarations 96 100
3 attribute declarations exchanged 96 100
4 calls to GUI methods exchanged 87 99
5 imports changed 87 99
6 GUI text and colours changed 86 99
7 identifier names changed 86 99
8 rewrote some expressions 86 98
9 get/setmethods inlined 86 98

I Scores are the highest ones for a significantly large class file

I For non-plagiarism: highest scores obtained are 51 for nf,
52 for nfs

I nfs score is sometimes worse!

[Faculty of Science
Information and Computing Sciences]

23

5. How does Marble do it?

[Faculty of Science
Information and Computing Sciences]

24

Main characteristics §5

I Marble should be short, easy to implement and maintain
I 440 lines of code, 220 line of comment

I Significantly flexible to change
I no parsing, only work on lexical level

I Programming language is Perl
I ugly and obscure
I regular expressions supported directly in the language
I meant for report generation, text manipulation
I why: familiarity and regexps

[Faculty of Science
Information and Computing Sciences]

25

On extensability §5

I Moving to Java 1.5:
I add two new keywords to a specific array in the program

(enum and assert)
I verify that generics do not interfere too much

I Moving to C#:
I after reading up on C# syntax and finding a token

description
I a few hours of work to deal with nested namespaces
I namespace declarations are first deleted, and then proceed

as usual

[Faculty of Science
Information and Computing Sciences]

26

Regular expressions §5

I The main tool for normalisation

I First map the whole program to lower case

I Capture tokens, replace them by an upper case character
or remove them

I Uppercase parts never matched: transformed text never
touched again

[Faculty of Science
Information and Computing Sciences]

27

Regular expression examples §5

I To replace all octal and decimals numerals by N:

$prog =~ s/\d+/N/gs;

I To remove all comments and literals in the program:

$prog =~

s/(\/*(.|\n)*?*\/) # multi-line comments

|(\/\/.*?\n) # end-of-line comments

|(".*?") # string literals

|(’.*?’) # character literals

/ /g; # replace all with space

I Why *? and not *?

[Faculty of Science
Information and Computing Sciences]

28

Annotation of braces §5

sub annotateAccolades ($) {

my $src = $_[0];

my $depth = 0;

my $dest = "";

while ($src =~ /(.*?)(\{|\})(.*)/s) {

($upto,$match,$src) = ($1, $2, $3);

if ($match eq "{") {

$dest .= "$upto$match$depth";

$depth++;

}

else {

$depth--;

$dest .= "$upto$match$depth";

}

}

return $dest;

}

[Faculty of Science
Information and Computing Sciences]

29

Retaining untouchables §5

sub untouchabilize ($) {

my $line = $_[0];

$line =~ tr/A-Z/a-z/; # Line to lower case

foreach $untouchable (@untouchables) {

$UNTOUCH = "\U$untouchable";

$line =~ s/(\W|\s)$untouchable(\W|\s)/1UNTOUCH$2/gs;

}

foreach $class (@preserveclasses) {

$CLASS = "\U$class";

$line =~ s/(\W|\s)$class((\s+)[a-z\$_])/$1$CLASS$2/gs;

}

return $line;

}

A class (use) is an identifier that is followed directly by another

[Faculty of Science
Information and Computing Sciences]

30

What is untouchable? §5

@keywordsunsorted =

("abstract", ... "enum", "true", ..., "null");

@additionals =

("system.out.println", "tostring", "wait", "notify");

@untouchables =

sort bylength (@keywordsunsorted, @additionals);

[Faculty of Science
Information and Computing Sciences]

31

Order can be essential §5

I Remove escaped quotes and backslashes

I Remove comments and literals

I Remove superfluous whitespace

I Preserve untouchables

I Replace octal and decimal numbers

I Replace hexadecimal numbers

I Separate X+N into X + N .

I Replace remaining identifiers with X

[Faculty of Science
Information and Computing Sciences]

32

Summary §5

I Marble has been an ongoing side-track for many years
I Discovered quite a few actual plagiarism cases

I More than documented by the Exam Committee

I Characteristics of the system are
I little code, lots of documentation
I Uses token-abstraction to normalize code
I by means of Perl’s regular expression.
I For the rest, the code is mainly administration.
I command-line scripts with a script as output
I Running that script gives the most suspect cases first.
I Using the right editor, quickly shows the lecturer whether

it’s plagiarism or not.

[Faculty of Science
Information and Computing Sciences]

33

6. A comparison of plagiarism detection tools

[Faculty of Science
Information and Computing Sciences]

34

Where to next? §6

I Slides on our comparative study of plagiarism detection
tools.

I Published/presented at CSERC 2011, Heerlen.
I 1st International Computer Science Education Research

Conference

[Faculty of Science
Information and Computing Sciences]

35

7. Holmes

[Faculty of Science
Information and Computing Sciences]

36

What is Holmes? §7

I Marble for (all of) Haskell
I But with ...

I detemplating
I multiple heuristics
I dead code removal

I Based on haskell-src-exts

I Joint work with Brian Vermeer and Gerben Verburg

[Faculty of Science
Information and Computing Sciences]

37

How does it work §7

I Similar to Marble:
I holmes-prepare: computes token stream, but this time

also other information
I holmes-compare: compares submissions/files pairwise

(mostly submission at this time)

[Faculty of Science
Information and Computing Sciences]

38

Detemplating §7

I Code marked as template is removed (various pragma’s
exist)

I Allows us to deal with lecture provided code

I Per module, and/or per function

[Faculty of Science
Information and Computing Sciences]

39

Dead code removal §7

I Lecturer provides “starting points”.

I Only code reachable from starting point will be retained.

I Specification examples Main.* and *.main

useful =

spurious =

cleverlyHidden = ...

main =

let

f = (spurious, useful)

g = cleverlyHidden

h = useful

in const h g

[Faculty of Science
Information and Computing Sciences]

40

Implemented heuristics §7

I Implementation by Brian Vermeer had more than a dozen
I In the final version only five are used for comparison

I fingerprinting
I Taken from MOSS, information theory, generic

I tokenstream
I As in Marble

I indegree signature of top-level functions (compared in three
different ways)

[Faculty of Science
Information and Computing Sciences]

41

Token stream (slight return) §7

module Token where

f y = 3

main :: Int -> IO()

main x = do

putStrLn (f (x + x))

return ()

X X = I X X = do X (X (X O X)) X ()

Sorting the functions: by arity, number of tokens, alphabetically
Haskell’s Diff library used for comparing

[Faculty of Science
Information and Computing Sciences]

42

Control flow graph §7

functionA :: String

functionA = let

f = functionB "foo"

in

f "bar"

functionB :: String -> String -> String

functionB str1 str2 = str1 ++ str2

[Faculty of Science
Information and Computing Sciences]

43

In-degree signature §7

For each vertex, compute the number of incoming edges; sort
the list of degrees: 0, 1, 1.

FunctionA has in-degree 0, FunctionB has in-degree 1.

[Faculty of Science
Information and Computing Sciences]

44

Sample output §7

fingerprints; tokens; ind1; ind2; ind3; sub VS sub;

015; 067; 076; 048; 079; 2007/xx-yy VS 2007/zz1;

019; 067; 052; 034; 069; 2007/xx-yy VS 2001-hugs/zz2;

026; 064; 068; 068; 079; 2007/xx-yy VS 2004/zz3;

Import into Excel for easy manipulation.

[Faculty of Science
Information and Computing Sciences]

45

Sensitivity Analysis again §7

Single refactorings
Name Description

nc changed identifier names

tc translated comments from Dutch to English

rl changed the order of the function declarations

rw simple transformations like where to let - in

trc declared a trace function similar to the Debug
module and let all functions call trace

cp move single used functions to local scope

un declared a unit test function that calls all
functions declared in the module

[Faculty of Science
Information and Computing Sciences]

46

Sensitivity results §7

original VS ... tks in1 in2 in3 fps

nc 100 100 100 100 68

bogus 3 12 4 12 0

trc 85 92 46 92 68

tc 100 100 100 100 100

rl 100 100 100 100 91

rw 87 85 86 94 78

compact 86 94 58 94 99

unit 91 61 60 80 86

nc rw 87 85 86 94 53

nc rw tc 87 85 86 94 53

nc rw tc cp 77 83 62 89 53

nc rw tc cp trc 74 84 67 92 42

nc rw tc cp trc un 68 58 58 81 37

nc rw tc cp trc un rl 68 58 58 81 36

[Faculty of Science
Information and Computing Sciences]

47

Applying Holmes to real life data §7

I On all submissions for FP from Submit

I Organised per assignment/incarnation/submission

I No detemplating, *.*, only submission level

[Faculty of Science
Information and Computing Sciences]

48

Some statistics §7

total submissions 2122 (out of 2250)

different assignments 18

total incarnations 36

max repeats for an assignment 7

total students 1042

max assignment for any student 11

[Faculty of Science
Information and Computing Sciences]

49

Corpus §7

Assignment name incarnations submissions
fp-afschrift 1 65

fp-afschriftgui-ghc 1 62
fp-agenda 1 78

fp-beeldverwerking-ghc 1 59
fp-creditcardvalidation 1 93

fp-fpcal 1 68
fp-fql 6 420

fp-getallen 1 95
fp-html 1 68

fp-kalender 1 6
fp-mastermind 2 156

fp-propositielogica 7 380
fp-river 1 70
fp-rocks 1 70
fp-soccer 2 52

fp-spreadsheet 1 5
fp-turtlegraphics 4 163

fp-wiki 1 74
fp-wisselkoers 1 163

fp-wxcal 1 52

[Faculty of Science
Information and Computing Sciences]

50

Results §7

I 63 cases of clear cut plagiarism, 3 cases of fraud

I 12 additional cases that were less clear cut

I 27 cases of plagiarism through previous incarnation
I Only seven cases had a lot of identical code

I Refactoring/rework have been performed otherwise

I Tokenstream and fingerprinting each have something to
contribute

I Indegree signatures often also high accidentally

[Faculty of Science
Information and Computing Sciences]

51

Summary §7

I Results are very promising, even without file-to-file
submissions

I With better suited assignments, Holmes is likely to do
better

I room to roam
I one starting point
I template annotations if necessary

I Holmes will be used next year during FP

	Introduction
	What can Marble do?
	How does Marble work?
	A small experiment
	How does Marble do it?
	A comparison of plagiarism detection tools
	Holmes

