[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Plagiarism detection for Java: a tool
comparison

Jurriaan Hage
e-mail: jur@cs.uu.nl
homepage: http://www.cs.uu.nl/people/jur/

Joint work with Peter Rademaker and Niké van Vugt.

Department of Information and Computing Sciences, Universiteit Utrecht

June 7, 2012

rview

Context and motivation

Introducing the tools

The qualitative comparison

Quantitively: sensitivity analysis

Quantitively: top 10 comparison

Wrapping up

Universiteit Utrecht

[m]

[Faculty of Science

Information and Computing Sciences]

=

= E 9DQAC¢

1. Context and motivation

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Plagiarism detection §1

> plagiarism and fraud are taken seriously at Utrecht
University

» for papers we use Ephorus, but what about programs?
> plenty of cases of program plagiarism found
» includes students working together too closely

» reasons for plagiarism: lack of programming experience and

lack of time
_’\\\‘Wﬁ) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
4 N

Manual inspection §1

» uneconomical

> infeasible:
» large numbers of students every year
> since this year 225, before that about 125
» multiple graders
> no new assigment every year: compare against older
incarnations

» manual detection typically depends on the same grader
seeing something idiosyncratic

\1 aculty of Science
NI Faculty of S
% § Universiteit Utrecht Information and Computing Sciences]
5 TN

Automatic inspection §1

» tools only list similar pairs (ranked)
» similarity may be defined differently for tools

> in most cases: structural similarity

» comparison is approximative:

» false positives: detected, but not real
» false negatives: real, but escaped detection

> the teacher still needs to go through them, to decide what
is real and what is not.

> the idiosyncracies come into play again

» computer and human are nicely complementary

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
6 N

g1

» various tools exist, including my own
» do they work “well”?
» what are their weak spots?

> are they complementary?

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

2. Introducing the tools

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

eria for tool selection §2

> available
> free

» suitable for Java

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

JPlag §2

v

Guido Malpohl and others, 1996, University of Karlsruhe

web-service since 2005

v

v

tokenises programs and compares with Greedy String Tiling

» getting an account may take some time
_*\\‘Wﬁ' [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
10 N

Marble §2

» Jurriaan Hage, University of Utrecht, 2002

» instrumental in finding quite many cases of plagiarism in
Java programming courses

> two Perl scripts (444 lines of code in all)

> tokenises and uses Unix diff to perform comparison of
token streams.

» special facility to deal with reorderability of methods:
“sort” methods before comparison (and not)

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
11 N

MOSS §2

MOSS = Measure Of Software Similarity
Alexander Aiken and others, Stanford, 1994

fingerprints computed through winnowing technique

works for all kinds of documents
» choose different settings for different kinds of documents

v

v

v

v

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
12 NS

§2

> Ahtiainen and others, 2002, Helsinki University of
Technology

» workings similar to JPLag

» command-line Java application, not a web-app

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

§2

» Dick Grune and Matty Huntjens, 1989, VU.

» software clone detector, that can also be used for
plagiarism detection.

» written in C

3 [Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

3. The qualitative comparison

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

The criteria §3

> supported languages - besides Java

» extendability - to other languages

» how are results presented?

» usability - ease of use

» templating - discounting shared code bases

» exclusion of small files - tend to be too similar accidentally
» historical comparisons - scalable

» submission based, file based or both

> local or web-based - may programs be sent to third-parties?

» open or closed source - open = adaptable, inspectable

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]
K

16 KN

Language support besides Java §3

» JPlag: C#, C, C++, Scheme, natural language text

» Marble: C+#, and a bit of Perl, PHP and XSLT

» MOSS: just about any major language

> shows genericity of approach

> Plaggie: only Java 1.5

» Sim: C, Pascal, Modula-2, Lisp, Miranda, natural language
i —— temtionsnd Compti Scemee]

17 AN

tendability 3

JPlag: no

Marble: adding support for C# took about 4 hours
MOSS: yes (only by authors)

Plaggie: no

v

v

v

» Sim: by providing specs of lexical structure

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

How are results presented §3

v

JPlag: navigable HTML pages, clustered pairs, visual diffs
Marble: terse line-by-line output, executable script

> integration with submission system exists, but not in
production

v

» MOSS: HTML with built-in diff
> Plaggie: navigable HTML
» Sim: flat text
N/ aculty of Science
gﬂ% Universiteit Utrecht Information and CcErflputlitr):g ;csiences]
19 N

Usability §3

v

JPlag: easy to use Java Web Start client

v

Marble: Perl script with command line interface

v

MOSS: after registration, you obtain a submission script

v

Plaggie: command line interface

v

Sim: command line interface, fairly usable

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
20 N

plating? §3

v

JPlag: yes

Marble: no
MOSS: yes
Plaggie: yes

v

v

v

Sim: no

v

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

lusion of small files?

v

JPlag: yes

v

Marble: yes
MOSS: yes
Plaggie: no

v

v

Sim: no

v

Universiteit Utrecht

[m]

§3

[Faculty of Science
Information and Computing Sciences]

F = = E 9DQAC¢

torical comparisons? §3

\{

JPlag: no

v

Marble: yes
MOSS: yes
Plaggie: no

v

v

> Sim: yes

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

bmission of file based? 03

JPlag: per-submission
Marble: per-file
MQOSS: per-submission and per-file

Plaggie: presentation per-submission, comparison per-file

vV V. vV VvV Vv

Sim: per-file

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

v

JPlag: web-based

v

Marble: local
MOSS: web-based
Plaggie: local

v

v

» Sim: local

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

en or closed source? §3

\{

JPlag: closed

v

Marble: open
MOSS: closed
Plaggie: open

v

v

» Sim: open

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

4. Quantitively: sensitivity analysis

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

What is sensitivity analysis? §4

> take a single submission
» pretend you want to plagiarise and escape detection
» To which changes are the tools most sensitive?

» Given that original program scores 100 against itself, does
the transformed program score lower?

» Absolute or even relative differences mean nothing here.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

28

Experimental set-up §4

» we came up with 17 different refactorings

» applied these to a single submission (five Java classes)

» we consider only the two largest files (for which the tools
generally scored the best)

» |s that fair?

» we also combined a number of refactorings and considered
how this affected the scores

> baseline: how many lines have changed according to plain
diff (as a percentage of the total)?

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
29 NS

The first refactorings §4

. comments translated

. moved 25% of the methods

. moved 50% of the methods

. moved 100% of the methods

. moved 50% of class attributes
. moved 100% of class attributes
. refactored GUI code

. changed imports

© 00 N O G B W N =

. changed GUI text and colors

—
o

. renamed all classes

11. renamed all variables

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
30 NS

Eclipse refactorings §4

12.

13.

14.
15.
16.
17.

clean up function: use this qualifier for field and method
access, use declaring class for static access

clean up function: use modifier final where possible, use
blocks for if /while/for/do, use parentheses around
conditions

generate hashcode and equals function
externalize strings
extract inner classes

generate getters and setters (for each attribute)

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
31 NS

Results for a single refactoring §4

QSortApplet - sensitivity (all tools)

100 -

80 H - H
60 - L
40 1 1

(percent)

20 4 H

Similarity to version 0

Version

O Similarity diff @ Similarity JPlag O Similarity Marble O Similarity MOSS B Similarity Plaggie @ Similarity SIM |

» PoAs: MOSS (12), many (15), most (7), many (16)

> reordering has little effect

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
32 NS

Results for a single refactoring §4

QSorAlgorithm - sensitivity (all tools)

100 TR = = T TR - —

mH - L L L - I -

40 4 - L L L I -

a1 4 [| | | I [

o T T T T T T T T T T T T T T T
3

4 5 B 7 g El 10 " 12 13 14 15 18 17
Version

ity to version 0 (percent)

£

|E| Diff sirnilarity ® Similarity JPlag O Similarity Marble O Similarity MOSS B Similarity Plaggie 8 Similar ity SIM

» reordering has strong effect
» 12, 13 and 14 generally problematic (except for Plaggie)

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

33 %{ﬂ@

bined refactorings

» reorder all attributes and methods (4 and 6)
» apply all Eclipse refactorings (12 — 17)

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

sults for combined refactorings §4

Sensitivity to combined modifications -

QS ortApplet
- 1m
s
4
2% m
23
ES 40
E 20 4
W
o4
Diff JPlag Merble MOSS Plagge SIM
Tool

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

sults for combined refactorings §4

Sensitivity to combined modifications -

Qs ortAlgorithm

- 100

E g0

[

= g B0 4

25

Sensit €2 07

=

E 20 4

I o
< 100 4 oiff JFlag Mable MOSS Plagge S
E LU — Tool
2% m
23
% 2 40
=
E 20
) ol

Diff JPlag M arhle MOSS Plagoie S
Tool
[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

General conclusions §4

> all tools do well for most, and badly for a few refactorings.
» differences depend on the program: sometimes certain
refactorings have no effect

» except Marble all tools have a hard time with reordering of
methods

» Eclipse clean-up refactorings can influence scores strongly
(which is bad!)
» MOSS bad on variable renaming

» combined refactorings are much harder to deal with
» and we could have made it worse.

5&\\“’%}) [Faculty of Science
% % Universiteit Utrecht Information and Computing Sciences]
K

36)

5. Quantitively: top 10 comparison

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Rationale §5

> an extremely insensitive tool can be very bad: every
comparison scores 100.
» normally, tools are rated by precision and recall:
» when we kill 75 percent of the bad guys, how much
collateral damage is there?
» depends on knowing who is bad and who is good

» too much manual labour for us, so we approximate

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
38 NS

Top 10 comparison §5

» consider top 10 file comparisons of each tool
» consider each of them manually to decide on similarity

» for bad guys in the top 10 in tool X, we hope to find these
in the top 10 of all tools

» for good guys in the top 10 of X, we hope not to find it in
any other top 10

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
39 NS

Data 85

» Mandelbrot assignment: small, typically one class, from
course year 2002 up to course year 2007

» 913 submissions in all, with a number of known plagiarism
cases in there

> the top-10 of the five tools generate a total of 28 different
pairs (min. 10, max. 50)

:SWW/) [Faculty of Science
K

= o S q . .
§ Universiteit Utrecht Information and Computing Sciences]

40 %ﬂ»

nual comparison §5

» 3 self comparisons

» 5 resubmissions

» 11 false alarms

» 5 plagiarism

» 3 similar (but no plagiarism)

» 1 due to smallness

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Some highlights §5

> Plaggie has many false alarms, and many real cases do not
attain the top 10

» Plaggie and JPlag “failed” on uncompilable sources
» JPlag misses a plagariasm case that the others did find
» easy misses by MOSS (similar) and Sim (resubmission)

> Marble does generally well, assigning substantial scores to
all plagiarism and similar cases

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
42 N

6. Wrapping up

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Conclusions §6

» comparison of five plagiarism detection tools (for Java)
» qualitatively on an extensive list of criteria
» quantitively by means of
> sensitivity to plagiarism masking
> top-10 comparison between tools
> in terms of maturity of tool experience, JPlag ranks highest
» genericity leads to unspecificity (MOSS)
» except for Marbe, tools can't deal with reordering of
methods

» tool need to improve to deal well with combined
refactorings

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
44 KT\

other tools: Sherlock, CodeMatch (commercial), Sid (?)
other languages?
making the experiment repeatable

larger collections of programs

vV V. vV VvV Vv

other quantitative comparison criteria

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

	Context and motivation
	Introducing the tools
	The qualitative comparison
	Quantitively: sensitivity analysis
	Quantitively: top 10 comparison
	Wrapping up

