
[Faculty of Science
Information and Computing Sciences]

Plagiarism detection for Java: a tool
comparison

Jurriaan Hage
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/

Joint work with Peter Rademaker and Nikè van Vugt.

Department of Information and Computing Sciences, Universiteit Utrecht

June 7, 2012



[Faculty of Science
Information and Computing Sciences]

2

Overview

Context and motivation

Introducing the tools

The qualitative comparison

Quantitively: sensitivity analysis

Quantitively: top 10 comparison

Wrapping up



[Faculty of Science
Information and Computing Sciences]

3

1. Context and motivation



[Faculty of Science
Information and Computing Sciences]

4

Plagiarism detection §1

I plagiarism and fraud are taken seriously at Utrecht
University

I for papers we use Ephorus, but what about programs?

I plenty of cases of program plagiarism found

I includes students working together too closely

I reasons for plagiarism: lack of programming experience and
lack of time



[Faculty of Science
Information and Computing Sciences]

5

Manual inspection §1

I uneconomical
I infeasible:

I large numbers of students every year
I since this year 225, before that about 125

I multiple graders
I no new assigment every year: compare against older

incarnations

I manual detection typically depends on the same grader
seeing something idiosyncratic



[Faculty of Science
Information and Computing Sciences]

6

Automatic inspection §1

I tools only list similar pairs (ranked)

I similarity may be defined differently for tools

I in most cases: structural similarity
I comparison is approximative:

I false positives: detected, but not real
I false negatives: real, but escaped detection

I the teacher still needs to go through them, to decide what
is real and what is not.

I the idiosyncracies come into play again

I computer and human are nicely complementary



[Faculty of Science
Information and Computing Sciences]

7

Motivation §1

I various tools exist, including my own

I do they work “well”?

I what are their weak spots?

I are they complementary?



[Faculty of Science
Information and Computing Sciences]

8

2. Introducing the tools



[Faculty of Science
Information and Computing Sciences]

9

Criteria for tool selection §2

I available

I free

I suitable for Java



[Faculty of Science
Information and Computing Sciences]

10

JPlag §2

I Guido Malpohl and others, 1996, University of Karlsruhe

I web-service since 2005

I tokenises programs and compares with Greedy String Tiling

I getting an account may take some time



[Faculty of Science
Information and Computing Sciences]

11

Marble §2

I Jurriaan Hage, University of Utrecht, 2002

I instrumental in finding quite many cases of plagiarism in
Java programming courses

I two Perl scripts (444 lines of code in all)

I tokenises and uses Unix diff to perform comparison of
token streams.

I special facility to deal with reorderability of methods:
“sort” methods before comparison (and not)



[Faculty of Science
Information and Computing Sciences]

12

MOSS §2

I MOSS = Measure Of Software Similarity

I Alexander Aiken and others, Stanford, 1994

I fingerprints computed through winnowing technique
I works for all kinds of documents

I choose different settings for different kinds of documents



[Faculty of Science
Information and Computing Sciences]

13

Plaggie §2

I Ahtiainen and others, 2002, Helsinki University of
Technology

I workings similar to JPLag

I command-line Java application, not a web-app



[Faculty of Science
Information and Computing Sciences]

14

Sim §2

I Dick Grune and Matty Huntjens, 1989, VU.

I software clone detector, that can also be used for
plagiarism detection.

I written in C



[Faculty of Science
Information and Computing Sciences]

15

3. The qualitative comparison



[Faculty of Science
Information and Computing Sciences]

16

The criteria §3

I supported languages - besides Java

I extendability - to other languages

I how are results presented?

I usability - ease of use

I templating - discounting shared code bases

I exclusion of small files - tend to be too similar accidentally

I historical comparisons - scalable

I submission based, file based or both

I local or web-based - may programs be sent to third-parties?

I open or closed source - open = adaptable, inspectable



[Faculty of Science
Information and Computing Sciences]

17

Language support besides Java §3

I JPlag: C#, C, C++, Scheme, natural language text

I Marble: C#, and a bit of Perl, PHP and XSLT
I MOSS: just about any major language

I shows genericity of approach

I Plaggie: only Java 1.5

I Sim: C, Pascal, Modula-2, Lisp, Miranda, natural language



[Faculty of Science
Information and Computing Sciences]

18

Extendability §3

I JPlag: no

I Marble: adding support for C# took about 4 hours

I MOSS: yes (only by authors)

I Plaggie: no

I Sim: by providing specs of lexical structure



[Faculty of Science
Information and Computing Sciences]

19

How are results presented §3

I JPlag: navigable HTML pages, clustered pairs, visual diffs
I Marble: terse line-by-line output, executable script

I integration with submission system exists, but not in
production

I MOSS: HTML with built-in diff

I Plaggie: navigable HTML

I Sim: flat text



[Faculty of Science
Information and Computing Sciences]

20

Usability §3

I JPlag: easy to use Java Web Start client

I Marble: Perl script with command line interface

I MOSS: after registration, you obtain a submission script

I Plaggie: command line interface

I Sim: command line interface, fairly usable



[Faculty of Science
Information and Computing Sciences]

21

Templating? §3

I JPlag: yes

I Marble: no

I MOSS: yes

I Plaggie: yes

I Sim: no



[Faculty of Science
Information and Computing Sciences]

22

Exclusion of small files? §3

I JPlag: yes

I Marble: yes

I MOSS: yes

I Plaggie: no

I Sim: no



[Faculty of Science
Information and Computing Sciences]

23

Historical comparisons? §3

I JPlag: no

I Marble: yes

I MOSS: yes

I Plaggie: no

I Sim: yes



[Faculty of Science
Information and Computing Sciences]

24

Submission of file based? §3

I JPlag: per-submission

I Marble: per-file

I MOSS: per-submission and per-file

I Plaggie: presentation per-submission, comparison per-file

I Sim: per-file



[Faculty of Science
Information and Computing Sciences]

25

Local or web-based? §3

I JPlag: web-based

I Marble: local

I MOSS: web-based

I Plaggie: local

I Sim: local



[Faculty of Science
Information and Computing Sciences]

26

Open or closed source? §3

I JPlag: closed

I Marble: open

I MOSS: closed

I Plaggie: open

I Sim: open



[Faculty of Science
Information and Computing Sciences]

27

4. Quantitively: sensitivity analysis



[Faculty of Science
Information and Computing Sciences]

28

What is sensitivity analysis? §4

I take a single submission

I pretend you want to plagiarise and escape detection

I To which changes are the tools most sensitive?

I Given that original program scores 100 against itself, does
the transformed program score lower?

I Absolute or even relative differences mean nothing here.



[Faculty of Science
Information and Computing Sciences]

29

Experimental set-up §4

I we came up with 17 different refactorings

I applied these to a single submission (five Java classes)
I we consider only the two largest files (for which the tools

generally scored the best)
I Is that fair?

I we also combined a number of refactorings and considered
how this affected the scores

I baseline: how many lines have changed according to plain
diff (as a percentage of the total)?



[Faculty of Science
Information and Computing Sciences]

30

The first refactorings §4

1. comments translated

2. moved 25% of the methods

3. moved 50% of the methods

4. moved 100% of the methods

5. moved 50% of class attributes

6. moved 100% of class attributes

7. refactored GUI code

8. changed imports

9. changed GUI text and colors

10. renamed all classes

11. renamed all variables



[Faculty of Science
Information and Computing Sciences]

31

Eclipse refactorings §4

12. clean up function: use this qualifier for field and method
access, use declaring class for static access

13. clean up function: use modifier final where possible, use
blocks for if/while/for/do, use parentheses around
conditions

14. generate hashcode and equals function

15. externalize strings

16. extract inner classes

17. generate getters and setters (for each attribute)



[Faculty of Science
Information and Computing Sciences]

32

Results for a single refactoring §4

I PoAs: MOSS (12), many (15), most (7), many (16)

I reordering has little effect



[Faculty of Science
Information and Computing Sciences]

33

Results for a single refactoring §4

I reordering has strong effect

I 12, 13 and 14 generally problematic (except for Plaggie)



[Faculty of Science
Information and Computing Sciences]

34

Combined refactorings §4

I reorder all attributes and methods (4 and 6)

I apply all Eclipse refactorings (12 – 17)



[Faculty of Science
Information and Computing Sciences]

35

Results for combined refactorings §4



[Faculty of Science
Information and Computing Sciences]

35

Results for combined refactorings §4



[Faculty of Science
Information and Computing Sciences]

36

General conclusions §4

I all tools do well for most, and badly for a few refactorings.

I differences depend on the program: sometimes certain
refactorings have no effect

I except Marble all tools have a hard time with reordering of
methods

I Eclipse clean-up refactorings can influence scores strongly
(which is bad!)

I MOSS bad on variable renaming
I combined refactorings are much harder to deal with

I and we could have made it worse.



[Faculty of Science
Information and Computing Sciences]

37

5. Quantitively: top 10 comparison



[Faculty of Science
Information and Computing Sciences]

38

Rationale §5

I an extremely insensitive tool can be very bad: every
comparison scores 100.

I normally, tools are rated by precision and recall:
I when we kill 75 percent of the bad guys, how much

collateral damage is there?

I depends on knowing who is bad and who is good

I too much manual labour for us, so we approximate



[Faculty of Science
Information and Computing Sciences]

39

Top 10 comparison §5

I consider top 10 file comparisons of each tool

I consider each of them manually to decide on similarity

I for bad guys in the top 10 in tool X, we hope to find these
in the top 10 of all tools

I for good guys in the top 10 of X, we hope not to find it in
any other top 10



[Faculty of Science
Information and Computing Sciences]

40

Data §5

I Mandelbrot assignment: small, typically one class, from
course year 2002 up to course year 2007

I 913 submissions in all, with a number of known plagiarism
cases in there

I the top-10 of the five tools generate a total of 28 different
pairs (min. 10, max. 50)



[Faculty of Science
Information and Computing Sciences]

41

Manual comparison §5

I 3 self comparisons

I 5 resubmissions

I 11 false alarms

I 5 plagiarism

I 3 similar (but no plagiarism)

I 1 due to smallness



[Faculty of Science
Information and Computing Sciences]

42

Some highlights §5

I Plaggie has many false alarms, and many real cases do not
attain the top 10

I Plaggie and JPlag “failed” on uncompilable sources

I JPlag misses a plagariasm case that the others did find

I easy misses by MOSS (similar) and Sim (resubmission)

I Marble does generally well, assigning substantial scores to
all plagiarism and similar cases



[Faculty of Science
Information and Computing Sciences]

43

6. Wrapping up



[Faculty of Science
Information and Computing Sciences]

44

Conclusions §6

I comparison of five plagiarism detection tools (for Java)

I qualitatively on an extensive list of criteria
I quantitively by means of

I sensitivity to plagiarism masking
I top-10 comparison between tools

I in terms of maturity of tool experience, JPlag ranks highest

I genericity leads to unspecificity (MOSS)

I except for Marbe, tools can’t deal with reordering of
methods

I tool need to improve to deal well with combined
refactorings



[Faculty of Science
Information and Computing Sciences]

45

Future work §6

I other tools: Sherlock, CodeMatch (commercial), Sid (?)

I other languages?

I making the experiment repeatable

I larger collections of programs

I other quantitative comparison criteria


	Context and motivation
	Introducing the tools
	The qualitative comparison
	Quantitively: sensitivity analysis
	Quantitively: top 10 comparison
	Wrapping up

