
Pick Your Contexts Well:
Understanding Object-Sensitivity

The Making of a Precise and Scalable Pointer Analysis

Yannis Smaragdakis
University of Massachusetts, Amherst

and University of Athens

Martin Bravenboer
LogicBlox Inc.

Ondřej Lhoták
University of Waterloo

Context

 Object-sensitivity: an abstraction already behind
the most precise and scalable points-to analyses

 Introduced by Milanova, Rountev and Ryder in
2002, quickly adopted in many practical settings
 mostly for OO languages

 Still not completely understood:
 the design space yields algorithms with very different

precision
 not clear how context affects precision and scalability

Yannis Smaragdakis 2

What is this paper about?

 We offer a clearer understanding of object-sensitivity
design space, tradeoffs

 We exploit it to produce better points-to analysis:
type-sensitive analysis
 like object sensitive, but with some contexts replaced by types

 choice matters a lot!

 Why do you care?
 because there are some really cool insights

 easy to follow

 because the result is practical: currently the best tradeoff of
precision and performance

Yannis Smaragdakis 3

First: what is points-to analysis?

 Static analysis: what objects can a variable point to?
 Highly recursive

Yannis Smaragdakis 4

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

foo’s o can point to whatever
someobj1 can point to

foo’s o can point to whatever
someobj1 can point to

foo’s o can point to whatever
someobj2 can point to

foo’s o can point to whatever
someobj2 can point to

Call-site-sensitive
points-to analysis / kCFA

 Typically made precise using “context”: e.g., call-sites

Yannis Smaragdakis 5

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

foo analyzed separately:
•once for o pointing to whatever
someobj1 can point to
•once for o pointing to whatever
someobj2 can point to

Important because of further
analysis inside foo

foo analyzed separately:
•once for o pointing to whatever
someobj1 can point to
•once for o pointing to whatever
someobj2 can point to

Important because of further
analysis inside foo

In this talk: different context
abstraction! Object-Sensitivity

 Object-sensitivity: information on objects used as context

Yannis Smaragdakis 6

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

foo analyzed separately
•for each object pointed to by a1
•for each object pointed to by a2
How many cases in total?

0? 1? 2? ... 1million?

The number of contexts depends
on the analysis so far!

foo analyzed separately
•for each object pointed to by a1
•for each object pointed to by a2
How many cases in total?

0? 1? 2? ... 1million?

The number of contexts depends
on the analysis so far!

A large design space

 What “information on objects used as context” ?

Yannis Smaragdakis 7

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

Information available on an object:
•its creation site (instruction)
•the context for its creation site
No matter what “context” is!

Context for a call has to be
created out of:
•information for receiver object
•current context at call-site
•(information for caller object)
Need to at least collapse two
contexts into one

Information available on an object:
•its creation site (instruction)
•the context for its creation site
No matter what “context” is!

Context for a call has to be
created out of:
•information for receiver object
•current context at call-site
•(information for caller object)
Need to at least collapse two
contexts into one

Design Space

 This choice (practically options) has not
been acknowledged before

 The choices made by standard published
algorithms and implementations vary widely
 mostly without realizing

 The result is completely different precision
and performance

Yannis Smaragdakis 8







n

n2

Example: Paddle vs. Milanova

 For a 2-object-sensitive analysis: context is 2 allocation sites

Yannis Smaragdakis 9

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

Original object-sensitivity
(Milanova) uses:
•receiver (a1 or a2) allocation site
•allocation site of receiver’s
allocator

PADDLE framework uses:
•receiver (a1 or a2) allocation site
•caller allocation site

• i.e., of a Client object,
 not an A object

Quiz: which one do we think wins?

Original object-sensitivity
(Milanova) uses:
•receiver (a1 or a2) allocation site
•allocation site of receiver’s
allocator

PADDLE framework uses:
•receiver (a1 or a2) allocation site
•caller allocation site

• i.e., of a Client object,
 not an A object

Quiz: which one do we think wins?

General formal framework for
context-sensitive analyses

 Keep context-sensitive variables, a store, sets Context, HContext,
 abstr. interpretation over A-Normal FJ formalism

[Might, Smaragdakis, and Van Horn@PLDI’10]
 Functions:

 record: Instr x Context  HContext
 merge: Instr x HContext x Context  Context

 Key analysis logic:

 i: [v = new C();] with context c 
store heap context record(i,c) with v

 i: [v.m(…);] with context c 
analyze m with context merge(i,hc,c) where hc is
the context stored with v

Yannis Smaragdakis 10

We can now express past
analyses nicely

 Original Milanova et al.-style object-sensitivity:
 Context = HContext = Instrn

 Functions:
 record(i,c) = cons(i, firstn-1(c))
 merge(i, hc, c) = hc

Yannis Smaragdakis 11

 record: Instr x Context  HContext
 merge: Instr x HContext x Context  Context
 i: [v = new C();] with context c 

store heap context record(i,c) with v
 i: [v.m(…);] with context c 

analyze m with context merge(i,hc,c) where hc
is the context stored with v

We can now express past
analyses nicely

 Paddle-style object-sensitivity:
 Context = HContext = Instrn

 Functions:
 record(i,c) = cons(i, firstn-1(c))
 merge(i, hc, c) = cons(car(hc), firstn-1(c))

Yannis Smaragdakis 12

 record: Instr x Context  HContext
 merge: Instr x HContext x Context  Context
 i: [v = new C();] with context c 

store heap context record(i,c) with v
 i: [v.m(…);] with context c 

analyze m with context merge(i,hc,c) where hc
is the context stored with v

We can now express past
analyses nicely

 Most commonly called “object-sensitivity”:
 HContext = Instr, Context = Instrn

 Functions:
 record(i,c) = i
 merge(i, hc, c) = cons(hc, firstn-1(c))

Yannis Smaragdakis 13

 record: Instr x Context  HContext
 merge: Instr x HContext x Context  Context
 i: [v = new C();] with context c 

store heap context record(i,c) with v
 i: [v.m(…);] with context c 

analyze m with context merge(i,hc,c) where hc
is the context stored with v

We can now express past
analyses nicely

 object-sensitive+H analyses (heap cloning):
 HContext = Instrn+1, Context = Instrn

 Functions:
 record(i,c) = cons(i, c)
 merge(i, hc, c) = [any of the previous

options]

Yannis Smaragdakis 14

 record: Instr x Context  HContext
 merge: Instr x HContext x Context  Context
 i: [v = new C();] with context c 

store heap context record(i,c) with v
 i: [v.m(…);] with context c 

analyze m with context merge(i,hc,c) where hc
is the context stored with v

Some insights on context

 When context consists of n elements with K
possibilities for each, we analyze each method
up to nK times
 e.g., K = #allocation sites

 Relative to a shallower context (e.g., n-1) we
may replicate same points-to data K times

 Ideal for precision: extra context elements
partition space into small sets, i.e., evenly

 I.e., context elements are uncorrelated
 otherwise combinations uneven

Yannis Smaragdakis 15

Revisit Example:
Paddle vs. Milanova

 For a 2-object-sensitive analysis: context is 2 allocation sites

Yannis Smaragdakis 16

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

Original obj.-sens. (Milanova) uses:
•receiver (a1 or a2) allocation site
•allocation site of receiver’s allocator
PADDLE framework uses:
•receiver (a1 or a2) allocation site
•caller allocation site

Quiz: which one do we think wins?
• Original. Receiver and caller

are highly correlated!
• e.g., same object, wrapper

object, design patterns

Original obj.-sens. (Milanova) uses:
•receiver (a1 or a2) allocation site
•allocation site of receiver’s allocator
PADDLE framework uses:
•receiver (a1 or a2) allocation site
•caller allocation site

Quiz: which one do we think wins?
• Original. Receiver and caller

are highly correlated!
• e.g., same object, wrapper

object, design patterns

A significant difference
 Good choice of context is more precise:

 smaller points-to sets
 better results for client analyses: static cast

elimination, de-virtualization, reachable methods
 often difference on 2-object-sensitive analyses (good

vs. bad context) as great as from 1-object-sensitive

 Good choice of context yields much faster
implementation!
 often 2x or more
 using our framework

Yannis Smaragdakis 17

A significant difference

 Good choice of context is more precise:
 smaller points-to sets
 better results for client analyses: static cast

elimination, de-virtualization, reachable methods
 often difference on 2-object-sensitive analyses (good

vs. bad context) as great as from 1-object-sensitive

 Good choice of context yields much faster
implementation!
 often 2x or more

Yannis Smaragdakis 18

Some more understanding of
contexts

 The problem with precise, deep-context
analyses is that they may explode in complexity
 when deeper context yields precision, it is great

 even better performance

 when imprecision creeps in, scalability wall: extra
level of context, O(K) multiplicative factor in
complexity
 plain combinatorial explosion

 Result: some programs are fast(er), some
completely hopeless

Yannis Smaragdakis 19

Idea: type-sensitivity

 Why not alleviate the combinatorial explosion
by reducing combinations

 Instead of allocation sites, keep types
 Otherwise precisely isomorphic to

object-sensitivity
 just some elements of context are transformed by

a function T: Instr  ClassName

Yannis Smaragdakis 20

Example type-sensitive
analyses
 2type+1H:

 HContext = Instr x ClassName
Context = ClassName2

 Functions:
 record(i, [C1,C2]) = [i,C1]
 merge(i, [i’,C], c) = [T(i’),C]

Yannis Smaragdakis 21

 record: Instr x Context  HContext
 merge: Instr x HContext x Context  Context
 i: [v = new C();] with context c 

store heap context record(i,c) with v
 i: [v.m(…);] with context c 

analyze m with context merge(i,hc,c) where hc
is the context stored with v

Example type-sensitive
analyses
 1type1obj+1H:

 HContext = Instr2

Context = Instr x ClassName
 Functions:

 record(i, [i’,C]) = [i,i’]
 merge(i, [i1,i2], c) = [i1,T(i2)]

Yannis Smaragdakis 22

 record: Instr x Context  HContext
 merge: Instr x HContext x Context  Context
 i: [v = new C();] with context c 

store heap context record(i,c) with v
 i: [v.m(…);] with context c 

analyze m with context merge(i,hc,c) where hc
is the context stored with v

What function T to choose?

Yannis Smaragdakis 23

 class A {
 …
i: B b = new B();
 …
 b.foo(…);
 }

 class A {
 …
i: B b = new B();
 …
 b.foo(…);
 }

Which type gives more
information about i? A or B?

i used in representing receiver
object when analyzing specific
implementation of method foo

B offers little info: we already
know good upper bound for B
when analyzing foo:
•either B::foo or C::foo for
some close superclass C

Which type gives more
information about i? A or B?

i used in representing receiver
object when analyzing specific
implementation of method foo

B offers little info: we already
know good upper bound for B
when analyzing foo:
•either B::foo or C::foo for
some close superclass C

Type-sensitivity in practice
 Type-sensitive analyses work great in

practice!
 Very fast, very few scalability issues

 2type+1H at least 2x (and up to 8x) faster than
1obj+H for 9 out of 10 DaCapo benchmarks

 while almost always much more precise
 an excellent approximation of full object-sensitive

analyses

 2type+1H is probably the new sweet spot for
a practical precise analysis

Yannis Smaragdakis 24

Conclusions

 We offered a clearer understanding of object-sensitivity
design space, tradeoffs

 We exploited it to produce better points-to analysis:
type-sensitive analysis
 like object sensitive, but with some contexts replaced by types

 choice matters a lot!

 Why do you care?
 because there are some really cool insights

 easy to follow

 because the result is practical: currently the best tradeoff of
precision and performance

Yannis Smaragdakis 25

