
Pick Your Contexts Well:
Understanding Object-Sensitivity

The Making of a Precise and Scalable Pointer Analysis

Yannis Smaragdakis
University of Massachusetts, Amherst

and University of Athens

Martin Bravenboer
LogicBlox Inc.

Ondřej Lhoták
University of Waterloo

Context

 Object-sensitivity: an abstraction already behind
the most precise and scalable points-to analyses

 Introduced by Milanova, Rountev and Ryder in
2002, quickly adopted in many practical settings
 mostly for OO languages

 Still not completely understood:
 the design space yields algorithms with very different

precision
 not clear how context affects precision and scalability

Yannis Smaragdakis 2

What is this paper about?

 We offer a clearer understanding of object-sensitivity
design space, tradeoffs

 We exploit it to produce better points-to analysis:
type-sensitive analysis
 like object sensitive, but with some contexts replaced by types

 choice matters a lot!

 Why do you care?
 because there are some really cool insights

 easy to follow

 because the result is practical: currently the best tradeoff of
precision and performance

Yannis Smaragdakis 3

First: what is points-to analysis?

 Static analysis: what objects can a variable point to?
 Highly recursive

Yannis Smaragdakis 4

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

foo’s o can point to whatever
someobj1 can point to

foo’s o can point to whatever
someobj1 can point to

foo’s o can point to whatever
someobj2 can point to

foo’s o can point to whatever
someobj2 can point to

Call-site-sensitive
points-to analysis / kCFA

 Typically made precise using “context”: e.g., call-sites

Yannis Smaragdakis 5

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

foo analyzed separately:
•once for o pointing to whatever
someobj1 can point to
•once for o pointing to whatever
someobj2 can point to

Important because of further
analysis inside foo

foo analyzed separately:
•once for o pointing to whatever
someobj1 can point to
•once for o pointing to whatever
someobj2 can point to

Important because of further
analysis inside foo

In this talk: different context
abstraction! Object-Sensitivity

 Object-sensitivity: information on objects used as context

Yannis Smaragdakis 6

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

foo analyzed separately
•for each object pointed to by a1
•for each object pointed to by a2
How many cases in total?

0? 1? 2? ... 1million?

The number of contexts depends
on the analysis so far!

foo analyzed separately
•for each object pointed to by a1
•for each object pointed to by a2
How many cases in total?

0? 1? 2? ... 1million?

The number of contexts depends
on the analysis so far!

A large design space

 What “information on objects used as context” ?

Yannis Smaragdakis 7

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

Information available on an object:
•its creation site (instruction)
•the context for its creation site
No matter what “context” is!

Context for a call has to be
created out of:
•information for receiver object
•current context at call-site
•(information for caller object)
Need to at least collapse two
contexts into one

Information available on an object:
•its creation site (instruction)
•the context for its creation site
No matter what “context” is!

Context for a call has to be
created out of:
•information for receiver object
•current context at call-site
•(information for caller object)
Need to at least collapse two
contexts into one

Design Space

 This choice (practically options) has not
been acknowledged before

 The choices made by standard published
algorithms and implementations vary widely
 mostly without realizing

 The result is completely different precision
and performance

Yannis Smaragdakis 8

n

n2

Example: Paddle vs. Milanova

 For a 2-object-sensitive analysis: context is 2 allocation sites

Yannis Smaragdakis 9

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

Original object-sensitivity
(Milanova) uses:
•receiver (a1 or a2) allocation site
•allocation site of receiver’s
allocator

PADDLE framework uses:
•receiver (a1 or a2) allocation site
•caller allocation site

• i.e., of a Client object,
 not an A object

Quiz: which one do we think wins?

Original object-sensitivity
(Milanova) uses:
•receiver (a1 or a2) allocation site
•allocation site of receiver’s
allocator

PADDLE framework uses:
•receiver (a1 or a2) allocation site
•caller allocation site

• i.e., of a Client object,
 not an A object

Quiz: which one do we think wins?

General formal framework for
context-sensitive analyses

 Keep context-sensitive variables, a store, sets Context, HContext,
 abstr. interpretation over A-Normal FJ formalism

[Might, Smaragdakis, and Van Horn@PLDI’10]
 Functions:

 record: Instr x Context HContext
 merge: Instr x HContext x Context Context

 Key analysis logic:

 i: [v = new C();] with context c
store heap context record(i,c) with v

 i: [v.m(…);] with context c
analyze m with context merge(i,hc,c) where hc is
the context stored with v

Yannis Smaragdakis 10

We can now express past
analyses nicely

 Original Milanova et al.-style object-sensitivity:
 Context = HContext = Instrn

 Functions:
 record(i,c) = cons(i, firstn-1(c))
 merge(i, hc, c) = hc

Yannis Smaragdakis 11

 record: Instr x Context HContext
 merge: Instr x HContext x Context Context
 i: [v = new C();] with context c

store heap context record(i,c) with v
 i: [v.m(…);] with context c

analyze m with context merge(i,hc,c) where hc
is the context stored with v

We can now express past
analyses nicely

 Paddle-style object-sensitivity:
 Context = HContext = Instrn

 Functions:
 record(i,c) = cons(i, firstn-1(c))
 merge(i, hc, c) = cons(car(hc), firstn-1(c))

Yannis Smaragdakis 12

 record: Instr x Context HContext
 merge: Instr x HContext x Context Context
 i: [v = new C();] with context c

store heap context record(i,c) with v
 i: [v.m(…);] with context c

analyze m with context merge(i,hc,c) where hc
is the context stored with v

We can now express past
analyses nicely

 Most commonly called “object-sensitivity”:
 HContext = Instr, Context = Instrn

 Functions:
 record(i,c) = i
 merge(i, hc, c) = cons(hc, firstn-1(c))

Yannis Smaragdakis 13

 record: Instr x Context HContext
 merge: Instr x HContext x Context Context
 i: [v = new C();] with context c

store heap context record(i,c) with v
 i: [v.m(…);] with context c

analyze m with context merge(i,hc,c) where hc
is the context stored with v

We can now express past
analyses nicely

 object-sensitive+H analyses (heap cloning):
 HContext = Instrn+1, Context = Instrn

 Functions:
 record(i,c) = cons(i, c)
 merge(i, hc, c) = [any of the previous

options]

Yannis Smaragdakis 14

 record: Instr x Context HContext
 merge: Instr x HContext x Context Context
 i: [v = new C();] with context c

store heap context record(i,c) with v
 i: [v.m(…);] with context c

analyze m with context merge(i,hc,c) where hc
is the context stored with v

Some insights on context

 When context consists of n elements with K
possibilities for each, we analyze each method
up to nK times
 e.g., K = #allocation sites

 Relative to a shallower context (e.g., n-1) we
may replicate same points-to data K times

 Ideal for precision: extra context elements
partition space into small sets, i.e., evenly

 I.e., context elements are uncorrelated
 otherwise combinations uneven

Yannis Smaragdakis 15

Revisit Example:
Paddle vs. Milanova

 For a 2-object-sensitive analysis: context is 2 allocation sites

Yannis Smaragdakis 16

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

class A {
 void foo(Object o) {…}
}

class Client {
 void bar(A a1, A a2) {
 …
 a1.foo(someobj1);
 …
 a2.foo(someobj2);
 }
}

Original obj.-sens. (Milanova) uses:
•receiver (a1 or a2) allocation site
•allocation site of receiver’s allocator
PADDLE framework uses:
•receiver (a1 or a2) allocation site
•caller allocation site

Quiz: which one do we think wins?
• Original. Receiver and caller

are highly correlated!
• e.g., same object, wrapper

object, design patterns

Original obj.-sens. (Milanova) uses:
•receiver (a1 or a2) allocation site
•allocation site of receiver’s allocator
PADDLE framework uses:
•receiver (a1 or a2) allocation site
•caller allocation site

Quiz: which one do we think wins?
• Original. Receiver and caller

are highly correlated!
• e.g., same object, wrapper

object, design patterns

A significant difference
 Good choice of context is more precise:

 smaller points-to sets
 better results for client analyses: static cast

elimination, de-virtualization, reachable methods
 often difference on 2-object-sensitive analyses (good

vs. bad context) as great as from 1-object-sensitive

 Good choice of context yields much faster
implementation!
 often 2x or more
 using our framework

Yannis Smaragdakis 17

A significant difference

 Good choice of context is more precise:
 smaller points-to sets
 better results for client analyses: static cast

elimination, de-virtualization, reachable methods
 often difference on 2-object-sensitive analyses (good

vs. bad context) as great as from 1-object-sensitive

 Good choice of context yields much faster
implementation!
 often 2x or more

Yannis Smaragdakis 18

Some more understanding of
contexts

 The problem with precise, deep-context
analyses is that they may explode in complexity
 when deeper context yields precision, it is great

 even better performance

 when imprecision creeps in, scalability wall: extra
level of context, O(K) multiplicative factor in
complexity
 plain combinatorial explosion

 Result: some programs are fast(er), some
completely hopeless

Yannis Smaragdakis 19

Idea: type-sensitivity

 Why not alleviate the combinatorial explosion
by reducing combinations

 Instead of allocation sites, keep types
 Otherwise precisely isomorphic to

object-sensitivity
 just some elements of context are transformed by

a function T: Instr ClassName

Yannis Smaragdakis 20

Example type-sensitive
analyses
 2type+1H:

 HContext = Instr x ClassName
Context = ClassName2

 Functions:
 record(i, [C1,C2]) = [i,C1]
 merge(i, [i’,C], c) = [T(i’),C]

Yannis Smaragdakis 21

 record: Instr x Context HContext
 merge: Instr x HContext x Context Context
 i: [v = new C();] with context c

store heap context record(i,c) with v
 i: [v.m(…);] with context c

analyze m with context merge(i,hc,c) where hc
is the context stored with v

Example type-sensitive
analyses
 1type1obj+1H:

 HContext = Instr2

Context = Instr x ClassName
 Functions:

 record(i, [i’,C]) = [i,i’]
 merge(i, [i1,i2], c) = [i1,T(i2)]

Yannis Smaragdakis 22

 record: Instr x Context HContext
 merge: Instr x HContext x Context Context
 i: [v = new C();] with context c

store heap context record(i,c) with v
 i: [v.m(…);] with context c

analyze m with context merge(i,hc,c) where hc
is the context stored with v

What function T to choose?

Yannis Smaragdakis 23

 class A {
 …
i: B b = new B();
 …
 b.foo(…);
 }

 class A {
 …
i: B b = new B();
 …
 b.foo(…);
 }

Which type gives more
information about i? A or B?

i used in representing receiver
object when analyzing specific
implementation of method foo

B offers little info: we already
know good upper bound for B
when analyzing foo:
•either B::foo or C::foo for
some close superclass C

Which type gives more
information about i? A or B?

i used in representing receiver
object when analyzing specific
implementation of method foo

B offers little info: we already
know good upper bound for B
when analyzing foo:
•either B::foo or C::foo for
some close superclass C

Type-sensitivity in practice
 Type-sensitive analyses work great in

practice!
 Very fast, very few scalability issues

 2type+1H at least 2x (and up to 8x) faster than
1obj+H for 9 out of 10 DaCapo benchmarks

 while almost always much more precise
 an excellent approximation of full object-sensitive

analyses

 2type+1H is probably the new sweet spot for
a practical precise analysis

Yannis Smaragdakis 24

Conclusions

 We offered a clearer understanding of object-sensitivity
design space, tradeoffs

 We exploited it to produce better points-to analysis:
type-sensitive analysis
 like object sensitive, but with some contexts replaced by types

 choice matters a lot!

 Why do you care?
 because there are some really cool insights

 easy to follow

 because the result is practical: currently the best tradeoff of
precision and performance

Yannis Smaragdakis 25

