
T +31 20 314 0950
info@sig.eu
www.sig.eu

Measuring Software Product Quality
Eric Bouwers

June 20, 2013

2 I 53

Software Improvement Group

Who are we?
•  Highly specialized advisory company for cost,

quality and risks of software
•  Independent and therefore able to give objective

advice

What do we do?
•  Fact-based advice supported by our automated

toolset for source code analysis
•  Analysis across technologies by use of technology-

independent methods

Our mission:
 We give you control over your software.

3 I 53

Services

Software Risk Assessment
•  In-depth investigation of software quality and risks
•  Answers specific research questions

Software Monitoring
•  Continuous measurement, feedback, and decision support
•  Guard quality from start to finish

Software Product Certification
•  Five levels of technical quality
•  Evaluation by SIG, certification by TÜV Informationstechnik

Application Portfolio Analyses
•  Inventory of structure and quality of application landscape
•  Identification of opportunities for portfolio optimization

4 I 53

Measuring Software Product Quality

Today’s topic

5 I 53

Some definitions

Projects
•  Activity to create or modify software products
•  Design, Build, Test, Deploy

Product
•  Any software artifact produced to support business processes
•  Either built from scratch, from reusable components, or

by customization of “standard” packages

Portfolio
•  Collection of software products

in various phases of lifecycle
•  Development, acceptance, operation,

selected for decommissioning

Product

Product

Product

Product

Product Product

Project

6 I 53

Our claim today

“Measuring the quality of software products is key to
successful software projects and healthy software portfolios”

Product

Product

Product

Product

Product Product

Project

7 I 53

Measuring Software Product Quality

Today’s topic

8 I 53

The ISO 25010 standard for software quality

Functional Suitability Performance Efficiency Compatibility

Reliability

Portability Maintainability Security

Usability ISO 25010

9 I 53

Why focus on maintainability?

 Init-
 iation Build

 Accep-
 tation

Maintenance

20% of the costs 80% of the costs

10 I 53

The sub-characteristics of maintainability in
ISO 25010

Maintain

Analyze Modify Test Reuse

Modularity

11 I 53

Measuring maintainability
Some requirements

Simple to understand

Allow root-cause
analyses

Technology
independent

Easy to compute

Heitlager, et. al. A Practical Model for Measuring Maintainability, QUATIC 2007

Suggestions?

12 I 53

Measuring ISO 25010 maintainability using the
SIG model

Volum
e

Duplication

Unit size

Unit com
plexity

Unit interfacing

Module coupling

Com
ponent balance

Com
ponent independence

Analysability X X X X

Modifiability X X X

Testability X X X

Modularity X X X

Reusability X X

13 I 53

Measuring maintainability
Different levels of measurement

System

Component

Module

Unit

14 I 53

Source code measurement
Volume

Lines of code
•  Not comparable between technologies

Function Point Analysis (FPA)
•  A.J. Albrecht - IBM - 1979
•  Counted manually
•  Slow, costly, fairly accurate

Backfiring
•  Capers Jones - 1995
•  Convert LOC to FPs
•  Based on statistics per technology
•  Fast, but limited accuracy

15 I 53

Source code measurement
Duplication

0: abc
1: def
2: ghi
3: jkl
4: mno
5: pqr
6: stu
7: vwx
8: yz

34: xxxxx
35: def
36: ghi
37: jkl
38: mno
39: pqr
40: stu
41: vwx
42: xxxxxx

16 I 53

Source code measurement
Component balance

Measure for number and relative size of architectural elements
•  CB = SBO × CSU
•  SBO = system breakdown optimality, computed as distance from ideal
•  CSU = component size uniformity, computed with Gini-coefficient

0.0 0.1 0.2 0.6

E. Bouwers, J.P. Correia, and A. van Deursen, and J. Visser, A Metric for Assessing Component Balance of Software Architectures
in the proceedings of the 9th Working IEEE/IFIP Conference on Software Architecture (WICSA 2011)

A B C DA B C DA B C DA B C D

17 I 53

From measurement to rating
A benchmark based approach

0.14

0.96

0.09

0.84 0.09

0.14

0.84

0.96

…. ….

0.34

Note: example thresholds

sort

HHIII

Threshold Score
0.9 HHHHH

0.8 HHHHI

0.5 HHHII

0.3 HHIII

0.1 HIIII

18 I 53

But what about the measurements
on lower levels?

Volum
e

Duplication

Unit size

Unit com
plexity

Unit interfacing

Module coupling

Com
ponent balance

Com
ponent independence

Analysability X X X X

Modifiability X X X

Testability X X X

Modularity X X X

Reusability X X

19 I 53

Source code measurement
Logical complexity

•  T. McCabe, IEEE Transactions on Software Engineering, 1976

•  Academic: number of independent paths per method
•  Intuitive: number of decisions made in a method
•  Reality: the number of if statements (and while, for, ...)

McCabe: 4

Method

20 I 53

How can we aggregate this?

My question …

21 I 53

Option 1: Summing

Crawljax GOAL Checkstyle Springframework
Total McCabe 1814 6560 4611 22937

Total LOC 6972 25312 15994 79474

Ratio 0,260 0,259 0,288 0,288

22 I 53

Option 2: Average

Crawljax GOAL Checkstyle Springframework
Average McCabe 1,87 2,45 2,46 1,99

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 17" 18" 19" 20" 21" 22" 23" 24" 25" 27" 29" 32"

23 I 53
Cyclomatic
complexity

Risk
category

1 - 5 Low

6 - 10 Moderate

11 - 25 High

> 25 Very high

Sum lines of code"
per category"

Lines of code per risk category

Low Moderate High Very high

70 % 12 % 13 % 5 %

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#

Crawljax#

Goal#

Checkstyle#

Springframework#

Option 3: quality profile

24 I 53

First Level Calibration

25 I 53

The formal six step proces

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

26 I 53

Visualizing the calculated metrics

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

27 I 53

Choosing a weight metric

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

28 I 53

Calculate for a benchmark of systems

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010
70% 80% 90%

29 I 53

SIG Maintainability Model
Derivation metric thresholds

1.  Measure systems in benchmark

2.  Summarize all measurements

3.  Derive thresholds that bring out the
metric’s variability

4.  Round the thresholds

Cyclomatic
complexity

Risk
category

1 - 5 Low

6 - 10 Moderate

11 - 25 High

> 26 Very high

(a) Metric distribution (b) Box plot per risk category

Fig. 10: Unit size (method size in LOC)

(a) Metric distribution (b) Box plot per risk category

Fig. 11: Unit interfacing (number of parameters)

computed thresholds. For instance, the existence of unit test
code, which contains very little complexity, will result in lower
threshold values. On the other hand, the existence of generated
code, which normally have very high complexity, will result
in higher threshold values. Hence, it is extremely important to
know which data is used for calibration. As previously stated,
for deriving thresholds we removed both generated code and
test code from our analysis.

VIII. THRESHOLDS FOR SIG’S QUALITY MODEL METRICS

Throughout the paper, the McCabe metric was used as case
study. To investigate the applicability of our methodology to
other metrics, we repeated the analysis for the SIG quality
model metrics. We found that our methodology can be suc-
cessfully applied to derive thresholds for all these metrics.

Figures 10, 11, 12, and 13 depict the distribution and the box
plot per risk category for unit size (method size in LOC), unit
interfacing (number of parameters per method), module inward
coupling (file fan-in), and module interface size (number of
methods per file), respectively.

From the distribution plots, we can observe, as for McCabe,
that for all metrics both the highest values and the variability
between systems is concentrated in the last quantiles.

Table IV summarizes the quantiles used and the derived
thresholds for all the metrics from the SIG quality model.
As for the McCabe metric, we derived quality profiles for
each metric using our benchmark in order to verify that the
thresholds are representative of the chosen quantiles. The

(a) Metric distribution (b) Box plot per risk category

Fig. 12: Module Inward Coupling (file fan-in)

(a) Metric distribution (b) Box plot per risk category

Fig. 13: Module Interface Size (number of methods per file)

results are again similar. Except for the unit interfacing metric,
the low risk category is centered around 70% of the code and
all others are centered around 10%. For the unit interfacing
metric, since the variability is relative small until the 80%
quantile we decided to use 80%, 90% and 95% quantiles to
derive thresholds. For this metric, the low risk category is a
round 80%, the moderate risk is near 10% and the other two
around 5%. Hence, from the box plots we can observe that
the thresholds are indeed recognizing code around the defined
quantiles.

IX. CONCLUSION

A. Contributions
We proposed a novel methodology for deriving software

metric thresholds and a calibration of previously introduced
metrics. Our methodology improves over others by fulfilling
three fundamental requirements: i) it respects the statistical
properties of the metric, such as metric scale and distribution;
ii) it is based on data analysis from a representative set of
systems (benchmark); iii) it is repeatable, transparent and
straightforward to carry out. These requirements were achieved
by aggregating measurements from different systems using
relative size weighting. Our methodology was applied to a
large set of systems and thresholds were derived by choosing
specific percentages of overall code of the benchmark.

B. Discussion
Using a benchmark of 100 object-oriented systems (C#

and Java), both proprietary and open-source, we explained

Derive & Round"

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

30 I 53
Cyclomatic
complexity

Risk
category

1 - 5 Low

6 - 10 Moderate

11 - 25 High

> 25 Very high

Sum lines of code"
per category"

Lines of code per risk category

Low Moderate High Very high

70 % 12 % 13 % 5 %

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#

Crawljax#

Goal#

Checkstyle#

Springframework#

The quality profile

31 I 53

Second Level Calibration

32 I 53

How to rank quality profiles?
Unit Complexity profiles for 20 random systems

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, IWSM / Mensura 2011

HIIII

HHIII

HHHII

HHHHI

HHHHH

?

33 I 53

Ordering by highest-category is not enough!

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, IWSM / Mensura 2011

HIIII

HHIII

HHHII

HHHHI

HHHHH

?

34 I 53

A better ranking algorithm

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, IWSM / Mensura 2011

Order categories

Define thresholds
of given systems

Find smallest
possible

thresholds

35 I 53

Which results in a more natural ordering

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, IWSM / Mensura 2011

HIIII

HHIII

HHHII

HHHHI

HHHHH

36 I 53

Second level thresholds
Unit size example

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, IWSM / Mensura 2011

37 I 53

SIG Maintainability Model
Mapping quality profiles to ratings

1.  Calculate quality profiles for the systems in the benchmark
2.  Sort quality profiles
3.  Select thresholds based on 5% / 30% / 30% / 30% / 5% distribution

Select thresholds" HHHHH

HHHHI

HHHII

HHIII

HIIII

Sort"

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, IWSM / Mensura 2011

38 I 53

SIG measurement model
Putting it all together

Quality
Profiles

Property
Rating
HHIII

HIIII

HHHII

HHHHI

HHHHH

HHHHI

HHHII

HHHHI

Qualtity
Rating

HHIII

HHIII

HHHII

HHHHI

HHHII

Overall
Rating

HHHII

Measurements a. b. c. d.

39 I 53

Does this work?

Your question …

40 I 53

SIG Maintainability Model
Empirical validation

•  The Influence of Software Maintainability on Issue Handling
MSc thesis, Technical University Delft

•  Indicators of Issue Handling Efficiency and their Relation to Software Maintainability,
MSc thesis, University of Amsterdam

•  Faster Defect Resolution with Higher Technical Quality of Software, SQM 2010

16 projects
(2.5 MLOC)

150 versions

50K issues

Internal:
maintainability

external:
Issue handling

41 I 53

Empirical validation
The life-cycle of an issue

42 I 53

Empirical validation
Defect resolution time

Luijten et.al. Faster Defect Resolution with Higher Technical Quality of Software, SQM 2010

43 I 53

Empirical validation
Quantification

Luijten et.al. Faster Defect Resolution with Higher Technical Quality of Software, SQM 2010

44 I 53

SIG Quality Model
Quantification

Resolution time for defects and enhancements

•  Faster issue resolution with higher quality
•  Between 2 stars and 4 stars, resolution

speed increases by factors 3.5 and 4.0

45 I 53

SIG Quality Model
Quantification

Productivity (resolved issues per developer per month)

•  Higher productivity with higher quality
•  Between 2 stars and 4 stars, productivity

increases by factor 10

46 I 53

Does this work?
Yes

Theoretically

Your question …

47 I 53

But is it useful?

Your question …

HHHHH

48 I 53

Software Risk Assessment

Analysis in SIG Laboratory

Final
presentation

Kick-off
session

Strategy
session

Technical
session

Technical
validation

session

Risk
validation

session

Final Report

49 I 53

Example
Which system to use?

HHHII
HHIII

HHHHI

50 I 53

Should we accept delay and cost overrun, or
cancel the project?

User Interface

Business Layer

Data Layer

User Interface

Business Layer

Data Layer

Vendor framework

Custom

51 I 53

Software Monitoring

Source
code

Automated
analysis

Updated
Website

Interpret
Discuss
Manage

Act!

Source
code

Automated
analysis

Updated
Website

Interpret
Discuss
Manage

Act!

Source
code

Automated
analysis

Updated
Website

Interpret
Discuss
Manage

Act!

Source
code

Automated
analysis

Updated
Website

Interpret
Discuss
Manage

Act!

1 week 1 week 1 week

52 I 53

Software Product Certification

53 I 53

Summary

Volum
e

Duplication

Unit size

Com
plexity

Unit interfacing

Module coupling

Com
ponent balance

Com
ponent indepedence

Analysability X X X X

Modifiability X X X

Testability X X X

Modularity X X X

Reusability X X

Thank you!
Eric Bouwers

e.bouwers@sig.eu

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#

Crawljax#

Goal#

Checkstyle#

Springframework#

HHHHH

