I

Software Improvement Group

Measuring Software Product Quality

Eric Bouwers

T+3120314 0950
info@sig.eu
www.sig.eu

June 20,2013

Software Improvement Group S ' :

Software Improvement Group

2153

Who are we?

 Highly specialized advisory company for cost,
quality and risks of software

* Independent and therefore able to give objective
advice

What do we do?

 Fact-based advice supported by our automated
toolset for source code analysis

 Analysis across technologies by use of technology-
independent methods

Our mission:
We give you control over your software.

Yy
Services S ' J

Software Improvement Group

3153

Software Risk Assessment
* In-depth investigation of software quality and risks
* Answers specific research questions

Software Monitoring
e Continuous measurement, feedback, and decision support
e Guard quality from start to finish

Software Product Certification
* Five levels of technical quality
» Evaluation by SIG, certification by TUV Informationstechnik

Application Portfolio Analyses
* Inventory of structure and quality of application landscape
* ldentification of opportunities for portfolio optimization

, : | o
Today’s topic & | J

Measuring Software Product Quality

° eg o -
Some definitions S ' J

Software Improvement Group

Projects 5153
e Activity to create or modify software products
 Design, Build, Test, Deploy

Product Project

 Any software artifact produced to support business processes

e Either built from scratch, from reusable components, or
by customization of “standard” packages

Portfolio

¢ Collection of software products
in various phases of lifecycle

» Development, acceptance, operation,
selected for decommissioning

Our claim today S ' :

Software Improvement Group

“Measuring the quality of software products is key to 6153
successful software projects and healthy software portfolios”

Project

, : 1=
Today’s topic . | J

Measuring Software Product Quality

The ISO 25010 standard for software quality S | :

Software Improvement Group

8153

Functional Suitability Performance Efficiency Compatibility

Usability } ISO 25010 Reliability

Security Maintainability I Portability

o o op e -
Why focus on maintainability? S ' J

Software Improvement Group

91583

Accep- :
Init- . Maintenance
iation tat|0n

20% of the costs 80% of the costs

A
v

The sub-characteristics of maintainability in S | :

ISO 25010 Software Improvement Group
10153
Maintain >\
Analyze . Reuse | Modify Test

Modularity

Measuring maintainability S ' :

Some reqUiremen ts Software Improvement Group
11153

Simple to understand

Allow root-cause

analyses
Suggestions?

Technology
independent

Easy to compute

Heitlager, et. al. A Practical Model for Measuring Maintainability, QUATIC 2007

Measuring 1ISO 25010 maintainability using the S ' :

SIG mOdEI Software Improvement Group
12153
C
(o)
C 2,
< ¢ Y 0 %
L % ¢ %, % %, ", %,
O/ 0/. 0/’ oo 4 /@ o .
(7 (s} (o) % Q <, %
2% %, %, % 2% %, l %
% 'b, % /,,) 6{9 Q’)
<+ 9 © N %
e 2,
%
Analysability X X X X
Modifiability X X X
Testability X X X
Modularity X X X
Reusability X X

< -y
M.easurlng maintainability Q ' 3
DLf.ferent Ievels Of measurement Software Improvement Group

Component 4

-
Source code measurement S ' 3

VOIume Software Improvement Group
14153

Lines of code
* Not comparable between technologies

.)] Table 2. Sample Function Point Calculations
Function Point Analysis (FPA)
e A.J. Albrecht - IBM - 1979 Raw Data Weights Function Points
e Counted manually 1 Input X4 = 4
e Slow, costly, fairly accurate 1 Output X5 = 5
1 Inquiry X4 = 4
Backfiring 1 Data File X10 = 10
e Capers Jones - 1995 1 Interface X7 = 7
e Convert LOC to FPs .
« Based on statistics per technology Unadjusted Total 30
* Fast, but limited accuracy Compexity Adustment None
Adjusted Function Points 30

Source code measurement
Duplication

I

Software Improvement Group

151583

0: abc 34: XXXXX

1: def 35: def

2: ghi 36: ghi

3: jkl 37: jkl

4: mno 38: mno

5: pqgr 39: pqr

6: stu 40: stu

7: VWX 41: vwx

8:yz 42: XXXXXX
4

-y
Source code measurement S ' J
Component balance Software Improvement Group

161583

U
H - 00000
0.0 0.1 0.2 0.6

Measure for number and relative size of architectural elements
« CB=SBO x CSU
* SBO = system breakdown optimality, computed as distance from ideal
¢ CSU = component size uniformity, computed with Gini-coefficient

E. Bouwers, J.P. Correia, and A. van Deursen, and J. Visser, A Metric for Assessing Component Balance of Software Architectures
in the proceedings of the 9t" Working IEEE/IFIP Conference on Software Architecture (WICSA 2011)

[
From measurement to rating S ' gl

A benChmark baSEd approaCh Software Improvement Group
e 171583

Threshold Score

0.9 >k

sort 0.8 Yok

—> - 0.5 okokstrte
0.3 Yokl

0.1 >ty

Yook et

Note: example thresholds

But what about th t J
ut wnat abou € measurements -l d

on Iower IeveIS? Software Improvement Group
18153

%,

(7

’bo
Analysability
Modifiability X X X
Testability X X X
Modularity X X X
Reusability X X

-
Source code measurement S ' 3

Logical CompIEXity Software Improvement Group
191583

* T. McCabe, IEEE Transactions on Software Engineering, 1976

e Academic: number of independent paths per method
e Intuitive: number of decisions made in a method
e Reality: the number of if statements (and while, for, ...)

Method

McCabe: 4

. < -
My question ... - | |

How can we aggregate this?

Option 1: Summing S ' :

Software Improvement Group

21153
Crawljax GOAL Checkstyle Springframework

Total McCabe 1814 6560 4611 22937

Total LOC 6972 25312 15994 79474

Ratio 0,260 0,259 0,288 0,288

Option 2: Average S ' :

Software Improvement Group

22153
Crawljax Checkstyle Springframework
Average McCabe 1,87 2,45 2,46 1,99
-
Kent Beck 2 84l Following
o w @KentBeck -

1400 -

characterizing power law distributed data
. with mean and std deviation is like

- summarizing moby dick by listing the

3 weights of characters

400

1200

200 -

o0 - ST E——

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 17 18 19 20 21 22 23 24 25 27 29 32

Option 3: quality profile

-

Cyclomatic Risk
complexity category
1-5 Low
6-10 Moderate
11-25 | High
>25

Very high)

Sum lines of code
per category

I

Software Improvement Group

Low Moderate High

> | 70% 12 % 13 %

Very high

23153

Lines of code per risk category

5%

Checkstyle

Goal

0%

10% 20% 30% 40% 50% 60%

70%

80%

90%

100%

First Level Calibration

The formal six step proces

1. metrics extraction :
Legend

System — (Entity — Metric x Weight)
.

(2. weight ratio calculation)

System — (Entity — Metric x WeightRatio)
v

(3. entity aggregation)

System — (Metric — WeightRatio)
v

(4. system aggregation)

Metric — WeightRatio

v

(5. weight ratio aggregation)

WeightRatio — Metric

6. thresholds derivation

-

map relation (one-to-many
relationship)

X

product (pair of columns or
elements)

System

Represents individual
systems (e.g. Vuze)

Entity
Represents a measurable
entity (e.g java method)

Metric

Represents a metric value
(e.g. McCabe of 5)

Weight

Represents the weight
value (e.g. LOC of 10)

WeightRatio

Represents the weight
percentage inside of the
system (e.g. entity LOC
divided by system LOC)

Metric Metric Metric

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

I

Software Improvement Group

251583

Visualizing the calculated metrics J
Isualizing tne calcuiate € -l d

Software Improvement Group

26153

o

o

o

S _
27 R
: "
- O —
(O] o
S § . @ S
S 2o
5 © —

> ~

Es 2 |
23" 5%
> Z o
5 o
23 o (96%,g}
o 9 Al
L i

o e

0 20 50 80 110 140 170 0.0 0.2 0.4 0.6 0.8 1.0
McCabe values Quantiles (% of methods)

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

Choosing a weight metric S ' :

Software Improvement Group

27153
o o
= =
o o
< <t
N ~ | 0 ~
S o S o
T2 T2
> ~ | > ~ |
S o 8 o
58 58
o | (84%,3) o | (36%,3)
= o | 2 o |
o (77%,]
B (se:ﬁ»,n R
O - o -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Quantiles (% of methods) Quantiles (% of LOC)

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

Calculate for a benchmark of systems S | :

Software Improvement Group

McCabe values

100 200 300 400 500 600 700 800 900 1000

0
|

T T T T T T T = I I |

00 01 02 03 04 05 06 07 08 09 10

Quantiles (% of LOC)

70% 80% 90%

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

SIG Maintainability Model S ' :

Derivation metric thresholds
291583
1. Measure systems in benchmark 3. Derive thresholds that bring out the
metric’s variability
2. Summarize all measurements 4. Round the thresholds

2 S Cyclomatic Risk
§° complexity category
%f I Derive & Round 1-5 Low
% ;) > 6-10 Moderate
Se I 11-25 High

% e peonog” >26 Very high

Alves, et. al., Deriving Metric Thresholds from Benchmark Data, ICSM 2010

The quality profile S | :

Software Improvement Group

301583

Cyclomatic Risk Sum I|neS Of Code linec nf rode nar rick r:fpgnry

complexity category per category
1-5 Low

Low Moderate High Very high

6-10 Moderate

11-25 | High

[,
Springframework

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Checkstyle

Goal

Second Level Calibration

-y
How to rank quality profiles? S ' 3
Unit Complexity profiles for 20 random systems — sorwweimonenicros

)

[———— 32153
B |
e
00 R —
0 O O
I T W [OO0
I >
7 [¢
e e L e
" [e
[— .
0 N |
D Lo [OOOO0ON
0 W —
[e —
== R
] o

: 20 " " o 0

B Low risk B High risk

Moderaterisk] Very-high risk

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, INSM / Mensura 2011

Ordering by highest-category is not enough!

J

I

7 .

N N |

e R
) S N — |

— 1 [1.

e [
I . —

/"7 [.

I . —

T T
ST — |

. 1T [

T —— 0

T [
I —

. 1T [.

B . —

[I I I I |

0 20 40 60 80 100
B Low risk B High risk

Moderate risk] Very-high risk

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, INSM / Mensura 2011

I

Software Improvement Group

= XXk

— Ok

Yool

= Yoledtedte

[Yololoteol

33153

A better ranking algorithm S ' :

Require: riskprofiles : (Moderate x High x VeryHigh)*, partition™
. thresholds + ()
: ordered[M oderate] « order(riskprofiles.Moderate) Order Catego ries

: ordered
: ordered

: for rating =1to (N — 1) do

19:

8

21:
22:
23:
24:
25

26:
27:

28:

Software Improvement Group

-1
34153

High| + order(riskprofiles.High)
VeryHigh] + order(riskprofiles.VeryHigh)

140
repeat
ii+1
thresholds[rating]|[Moderate] + ordered[Moderate][i) H
thresholds|rating|[High| + ordered[High][i] Defl ne t h res h o I d S
thresholds[rating|[VeryHigh] « ordered(VeryHigh|[t] of given System S
until distribution(riskprofiles,thresholds[rating]) > partition[rating] or i > length(riskprofiles)
index i
for all risk in (Moderate, High, VeryHigh) do
i+ index
done + False
while ¢ > 0 and not done do

thresholds.old < thresholds Fi n d sma I I est

iei—1 .

thresholds[rating|[risk] < ordered|risk][i] pOSS| ble

if distribution(riskprofiles,thresholds|rating]) < partition|rating] then
thresholds < thresholds.old t h res h (o] I d S
done + True

end if

end while
end for
end for

return thresholds

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, \WSM / Mensura 2011

Which results in a more natural ordering

—_—

A

J

\

o
-
o
o

20 40 60 80
B Low risk B High risk
Moderaterisk] Very-high risk

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, INSM / Mensura 2011

I

Software Improvement Group

1.8, 8.8 ¢

1.8, 0.0 8¢

1 8.0, 004

Yostestedte

Yotostestedte

35153

Yy
Second level thresholds S ' 3

Unit Size example Software Improvement Group
36153

: Low risk Moderate risk High risk Very-high risk
Star rating | 5 3 30, 44] |44, 74] 74, o0
*kh kK i 9.5 10.9 3.9
kA ke i 26.0 15.5 6.5
kAo i 34.1 222 11.0
ok e e i 45.9 31.4 18.1

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, \WSM / Mensura 2011

SIG Maintainability Model S ' :

Mapping quality prOﬁIes to ratings Software Improvement Group
37153

1. Calculate quality profiles for the systems in the benchmark
2. Sort quality profiles
3. Select thresholds based on 5% /30% / 30% / 30% / 5% distribution

2.0.0. 0.0, ¢

Sort Select thresholds kb ok
> > 0.0 90

Yootk

Stttk

Alves, et. al., Benchmark-based Aggregation of Metrics to Ratings, \WSM / Mensura 2011

< Yy
SIG measurement model . I J
Putting it all together

38153
Qualit
Measurements KB = .y
Profiles

Property c d
Rating . Qualtity
Rating

b.
=
| oo |) | oot Overall
e ow W Soooior
| | W) | ookt »
I | ﬂ 0.0.0.0.0 ¢
e 1 | 9 [oo
e || W [oo
| [ookt

Your question ...

Does this work?

SIG Maintainability Model S ' :

Empirical validation Software Improvement Group
correlation 40153

external:

Internal:
Issue handling

maintainability

maintainability
ratings

indicators

16 projects
(2.5 MLOC)

ITS
: project site ’-:: ety

repository
* The Influence of Software Maintainability on Issue Handling
MSc thesis, Technical University Delft

* Indicators of Issue Handling Efficiency and their Relation to Software Maintainability,
MSc thesis, University of Amsterdam

150 versions

* Faster Defect Resolution with Higher Technical Quality of Software, SOM 2010

Empirical validation < ' -.l.

L
The life-cycle of an issue Sotware Improvement Group
41153

Issue is Resolved
resolved again
Issue is Issue is Issue is
reported assigned reopene
v vy Y

Empirical validation S ' :

Defect resolution time
42153
5000 - Category Thresholds
4000- Low 0 - 28 days (4 weeks)
- Moderate 28 - 70 days (10 weeks)
8" High 70 - 182 days (6 months)
2000- Very high 182 days or more

Defect resolution time (days)

Luijten et.al. Faster Defect Resolution with Higher Technical Quality of Software, SOM 2010

Empirical validation

Quantification

I

Software Improvement Group

43153

Defect resolution vs. ps p-value
Volume 0.29 0.003
Duplication 0.31 0.002
Unit size 0.51 0.000
Unit complexity 0.51 0.000
Unit interfacing -0.14 0.897
Module coupling 0.51 0.000
Analysability 0.51 0.000
Changeability 0.64 0.000
Stability 041 0.000
Testability 0.53 0.000
Maintainability 0.000

Luijten et.al. Faster Defect Resolution with Higher Technical Quality of Software, SOM 2010

SIG Quality Model S ' :

Quantif.ication Software Improvement Group
441 53

Resolution time for defects and enhancements

Defect Resolution Time Enhancement Resolution Time
1.0.0.0.8. 1.0.8.0.0 ¢
1.8.0.0 8¢ 1.0, 8.0 04
1.0, 0 PO 1.0, 8. 004
ook steste st YOk At
Festeteste st Yorrotedtedle
0 7 14 21 28 35 42 49 56 0 7 14 21 28 35 42 49 56
days days

e Faster issue resolution with higher quality

* Between 2 stars and 4 stars, resolution
speed increases by factors 3.5 and 4.0

SIG Quality Model S ' :

Quan tl:f.ication Software Improvement Group
45153

Productivity (resolved issues per developer per month)

Productivity
1.8, 8.0 9
ok
Yok teteke
0 05 10 15 20 25

issues per developer per month

» Higher productivity with higher quality
» Between 2 stars and 4 stars, productivity
increases by factor 10

Your question ...

Does this work?
Yes
Theoretically

oooooooooooooooooooooooo

Your question ...

But is it useful?

Ok ok

. C1=
Software Risk Assessment - ' i |

Software Improvement Group

48153

Risk
validation
session

Technical
validation
session

Technical
session

Strategy
session

Kick-off
session

Final
presentation

Final Report

Analysis in SIG Laboratory

Example S':

WhiCh System to use.? Software Improvement Group
49153

Yook et
okok ek 1 0. 0.0. ¢

-y
Should we accept delay and cost overrun, or S ' 3
cancel the project?

50153

User Interface User Interface

Data Layer Data Layer

f N
Vendor framework

- Custom
\& J

Software Monitoring

I

Software Improvement Group

51153
Source Source Source Source
code code code code
Automated Automated Automated Automated
analysis analysis analysis analysis
> Updated q Updated .| Updated > Updated
Website Website Website Website
A y A
Interpret Interpret Interpret Interpret
Discuss Discuss Discuss Discuss
Manage Manage Manage Manage
Act! Act! Act! Act!

P Jr
Software Product Certification - ' =

Software Improvement Group

52153

System producer

1.
" ertiicate .

| evaluation
Certification client report
T certificate Certification body
System producer and p=
certification client can -
be the same organization rw’

-y
Summary S'J

Software Improvement Group

53153

Q ||
)
%, %, % %, “, % %, S,
%, %, % %, %, o s, %, |
% N W, N % N N %, N\ %, N %, N\ %
% © K2 <, ’°//;) %, g,
® %,
o
Analysability X X X X 1
ety : . > - [I
Testability X X X
Modularity X X X

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Defect Resolution Time

YOk kS

ol Thank you!
0 0 @ © ¢ Eric Botwers
Yook st ste .
N~ e.bouwers@s:g.eu

0 7 14 21 28 35 42 49 56
days

