
Higher-Order and Symbolic Computation manuscript No.
(will be inserted by the editor)

Improving Type Error Messages for Generic Java?

Nabil el Boustani · Jurriaan Hage

Received: date / Accepted: date

Abstract Since version 1.5, generics (parametric polymorphism) are part of the Java

language. However, the combination of parametric polymorphism and inclusion poly-

morphism is complicated, particularly so for Generic Java. Indeed, the main Java com-

pilers, Eclipse’s ejc and Sun’s javac, do not even accept the same set of programs.

Moreover, experience with these compilers shows that the error messages provided by

them leave more than a little to be desired.

To alleviate the latter problem, we describe how to adapt the type inference process

of Java to obtain better error diagnostics for generic method invocations. Although the

extension by itself already helps to improve type error messages to some extent, another

major advantage of the new type inference process is that it also paves the way for

further heuristics can provide additional diagnostic information. The extension has

been implemented into the JastAdd Extensible Java Compiler.

Keywords compilers · type checking · error diagnosis · Java generics

1 Introduction

Since the introduction of generics in Java, the programmers who seek to actually use

this powerful feature may have discovered that production strength compilers such as

Eclipse’s ejc and Sun’s javac, do not always carefully explain why a given generic

method invocation fails to type check.

? This paper is an extended version of (el Boustani and Hage 2009) that was presented at
PEPM ’09.

Jurriaan Hage
Center for Software Technology
Department of Information and Computing Sciences, Universiteit Utrecht
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: jur@cs.uu.nl

Nabil el Boustani
E-mail: alumno@gmail.com



2

import java.util.*;

class Listing1{
<T> void foo(Map<T,T> a){

Map<Number, Integer> m1 = null;
foo(m1);

}
}

listings/Listing1.java:6: <T>foo(java.util.Map<T,T>) in Listing1 cannot be
applied to (java.util.Map<java.lang.Number,java.lang.Integer>)

foo(m1);
^

javac

1. ERROR in listings/Listing1.java (at line 6)
foo(m1);
^^^

The method foo(Map<T,T>) in the type Listing1 is not applicable for the
arguments (Map<Number,Integer>)

ejc

listings/Listing1.java:6
Method <T>foo(Map<T, T>) of type Listing1 is not applicable for the argument of
type (Map<Number, Integer>), because:

[*] The type variable T is invariant, but the types:
- Integer in Map<Number, Integer> on 5:9(5:21)
- Number in Map<Number, Integer> on 5:9(5:13)
are not the same type.

ours

Fig. 1 A Java code fragment harbouring a type equality conflict, and the type error messages
for javac, ejc and our implementation respectively.

Consider the code and the corresponding error messages1 in Figure 1. Both ejc and

javac merely claim that there is no method declared with the signature foo(Map<Number,

Integer>). However, they do not explain why the foo method that is declared does not

match the invocation. Our message, on the other hand, does make such an attempt.

In this paper, we describe how to rearchictect the Java type checking process in

order to obtain more informative error messages. We have implemented our solution

into the JastAdd Extensible Java Compiler and provide many examples of programs

that benefit from our approach. Our modifications also pave the way for the imple-

mentation of special heuristics that can go beyond explaining what the problem is, by

showing how the problem can be fixed. These heuristics are, however, considered in

another paper (el Boustani and Hage 2010).

Having some experience in improving type error messages for functional languages

(Hage and Heeren 2007; Heeren et al. 2003), it turns out that in the current study we

1 All examples in the paper first give the code to be compiled, followed by a number of
error messages, accompanied by an indication of which compiler generated the message. The
indication ejc refers to the Eclipse Java Compiler (0.883 R34x, 3.4.1 release, in mode 1.5,
MacOSX), javac to Sun’s Javac (version 1.5.0 22, MacOSX), and ours refers to our own
implementation based on the JastAdd Extensible Java Compiler (see Section A for information
on how to obtain this implementation). In our examples we sometimes write (...) to indicate
that part of the error message has been deleted. These omitted parts are hints that serve to
suggest how to fix the type error and are considered outside the scope of the current paper
(el Boustani and Hage 2010).



3

faced a number of additional problems. The first problem is that the Java Language

Specification (JLS) (Gosling et al. 2005) is large, complicated and full of all kinds of

restrictions and limitations that the programmer needs to know about. The fact that

not even ejc and javac always agree on the type correctness of a program suggests

that also the implementers of Java have problems coming to grips with it. Furthermore,

Smith and Cartwright have shown that type inference in Generic Java is neither sound

nor complete (Smith and Cartwright 2008). It is worthwhile to note here that type

inference is not the same as type checking: type inference, in the case of Java, refers to

the process that tries to come up with suitable instantiations for type variables that

occur in the program. In the case of Java this process can come up with instantiations

that will later be found to be inconsistent. In that sense, type inference can be consid-

ered to be unsound, but it does not mean that the specification allows type incorrect

programs. A further illustration of the complexity of Generic Java is the sizable FAQ

maintained by Angelika Langer (Langer 2008).

The second problem is that the combination of generics with subtyping, i.e., the

fact that you can bind an object of type T to an identifier of type S if T is a subtype of

S, yields a type system that is inherently complex. This is further complicated by other

demands on the language, such as backwards compatibility and the recent addition of

various other features such as variable arity methods and autoboxing and unboxing.

Given the size of the language, we restrict ourselves to type error diagnosis for

generic method invocations. In our solution we adhere to three general principles: we do

not change, but only add to the original type checking processs, in that our extension

only comes into play after an inconsistency has been detected. Second, in order to

provide more elaborate error messages, we retain the constraints generated for an

inconsistent invocation in order to better explain what went wrong, and to be able to

execute heuristics that work directly on the constraints. The final principle is to avoid

acting on those parts of the program that are more likely to contain mistakes. Since we

believe that the generic arguments of the generic types are likely to be the source of

a mistake when an inconsistency arises, this implies we should ignore these arguments

as long as we can.

To better substantiate and position our contribution, we consider the properties

proposed by Yang and others (Yang et al. 2000) that a good type error message should

have: correctness, accuracy, intuitiveness, succinctness and source-basedness. Although

these properties tend to be hard to establish formally, we believe the examples in

this paper show that compared to the error messages provided by ejc and javac

our messages are more intuitive and source-based. We also believe that we strike a

better balance in being more informative, although at the price of being less concise.

Finally, we believe our implementation is not less correct than that of the compiler into

which our research has been implemented (but proving that would be very hard). In

general, we think that we have improved the situation with respect to javac and ejc

in particular by striking a better balance between verbosity and terseness, and that

our messages are less tied the internal type inference process.

The paper is structured as follows. In Section 2 we reiterate some of the essential

elements of the Generics extension in Java, and introduce some basic notations. Sec-

tion 3 then provides quite a number of examples of type error messages constructed

by our implementation, together with the messages provided by ejc and javac. In

Section 4 we explain in some detail the type checking process as specified by the JLS,

and discuss our extension to that process in Section 5. In Section 6 we briefly describe



4

our implementation, Section 7 describes related work, and Section 8 reflects, concludes

and gives directions for future work.

2 An overview of Java Generics

For completeness we run through the essentials of the generics of Java. We assume the

reader is familiar with the non-generic part of Java. For more details, the reader can

consult the Java standard (Gosling et al. 2005) and the Java Generics FAQ (Langer

2008).

Arguably, the main reason for introducing generics into Java was to counter the

large number of casts needed to deal with collection classes, e.g., sets and vectors.

Before generics, all collection classes were defined so that any Object could be stored

in them. However, this makes all collections potentially heterogeneous and makes it

necessary to explicitly downcast objects obtained from such a collection. This is both

cumbersome and potentially unsafe.

With generics, the programmer can specify upper bounds, besides Object, for the

objects that can be stored in a collection. For example, a List<Number> can store

Numbers and objects of any type that is a subclass of Number, such as Integer. If an

object is retrieved from such a list, then it can be stored as a Number without any type

cast, and if the need arises it can be further downcast to, say, Integer.

An important and maybe subtle point is that although Integer is a subclass of

Number, List<Integer> is not a subclass of List<Number>. Indeed, this holds for all

collection classes: they are all invariant type constructors. All things considered, this

is not so strange: a List<Integer> is not supposed to store Numbers, but if we assign

it to a variable of type List<Number> we cannot safely guarantee this. However, a

value of type HashMap<Integer,String> may be passed safely to a parameter of type

Map<Integer,String>, because HashMap extends Map.

A consequence of the invariance restriction is that there is no type that denotes a

list of any kind of element. We still need such a type, for example to write a length

method for lists. This is why the wildcard was introduced: List<?> denotes a list for

which nothing is known of the element type. We can store a List<T> for any type T in

a variable of such a type. The price to be paid is that we cannot store anything into

the list, and we can only read Objects from it.

The wildcard introduces a problem by itself. If we would like to write a method

that computes the reverse of a list, we can easily do so for non-wild card types, and

only for wild-card types if we do not mind losing the knowledge that the input list and

the output list have the same element type. In Java this can, in some cases, be solved

by wildcard capture conversion (Torgersen et al. 2004), in which case the compiler can

determine that although it may not know the concrete type at compile-time, it is still

known to be safe at run-time.

In many cases, we can be more precise in our estimation of the possible types that a

certain type variable or a wildcard may have. For that reasons bounds were introduced.

For example T extends Number expresses that the type inferred for T should be a

subtype of Number. Similarly, T super Number expresses the inverse relation. The same

applies to wildcards. For example, the declaration

void foo (Map<? extends Number, ? super Integer> mp)



5

expresses that the key type of an actual parameter should be a subtype of Number and

that the value type should be a supertype of Integer. Note however, that the fact

that a wildcard ? refers to both key and value type does not imply that the types

are the same, or even related. For example, we can pass a value of type Map<Double,

Integer>, Map<Number, Number> or even Map<Integer, Object> to foo.

In Generic Java, the raw type, e.g., a type constructor such as List without its

type arguments, is assignment compatible with all instantiations of the generic type.

So, if you write List as a type somewhere, the inferencer can decide to interpret it as

List<T> for whatever T it finds suitable at that point. This mixing of type constructor

and type is used in dealing with legacy code.

The JLS imposes a number of seemingly arbitrary restrictions. To give a few exam-

ples: Wildcard capture conversion only works when wildcards are at top-level, and not

for a type like List<List<?>>. Wildcards may only occur as arguments to a generic

type constructor, i.e, you cannot write ? x = ... to describe an identifier of unknown

type. Primitive types may not occur as parameters of a generic type constructor, e.g.,

Vector<int> is not allowed, but Vector<Integer> is. There are also some restrictions

on how type variables may be bounded: we may write T extends Number, but not T

super Number (Gosling et al. (2005), §4.4). This restriction does not apply to wild-

cards: both ? extends Number and ? super Number are allowed (Gosling et al. (2005),

§4.5.1).

2.1 Notation and terminology

We shortly introduce some notation used throughout the paper, linking these to the

pertinent paragraphs of the JLS (Gosling et al. 2005), to which we refer for more

details.

Since we deal exclusively with method invocations in this paper, and focus on

generic classes and interfaces, the basic operation is that of method invocation conver-

sion (§5.3). It specifies when actual arguments are compatible with formal parameters.

In our case, the main conversion operation is widening reference conversion (§5.1.5),

which basically specifies that compatibility is governed by the subtype relation (§4.10):

T <: S if T is a subtype of S; we also write S :> T for T <: S. The relation :> is defined as

the reflexive and transitive closure of the direct supertype relation >1, which contains

the extends relationship between classes and interfaces: if A extends B then B >1 A.

As §4.10.2 of the JLS makes clear, the subtyping relation among (generic) classes and

interfaces is quite complicated. For the purposes of the examples in this paper, we need

not to consider these definitions in full detail. Instead, we prefer to give a restricted

version of the definition:2

C<S1, . . . ,Sn> <: D<T1, . . . ,Tn>

if and only if C <: D and for all 1 ≤ i ≤ n: Si ≤: Ti (pronounced Si contains Ti) where

– T ≤: T,

– T ≤: ? extends T,

– T ≤: ? super T,

– ? extends T ≤: ? extends S, if T <: S,

2 For example, we restrict C and D to have the same number of arguments, there are no
intersections, and no capture conversion is performed.



6

– ? super T ≤: ? super S, if S <: T.

Intersection types are written T1 & . . . & Tn, n > 0, where the Ti are type expres-

sions (§4.9). At most one of these types may specify a class type, since Java does not

support multiple inheritance.

The least upper bound (lub) of a collection of classes and interfaces S is the most

specific type that is a supertype of each S ∈ S. For example, lub({Integer, Double}) =

Number. Often, the lub is not simply a class name, but also specifies a number of inter-

faces. For example, lub({Integer, String}) equals

Object & Serializable &

Comparable<? extends Object & Serializable & Comparable<?>> .

Dually, the greatest lower bound (glb) of S is the most general type in the hi-

erarchy that extends each S ∈ S. Note that the glb is sometimes undefined, e.g.,

glb({String, Number}).

3 Examples

To illustrate what can be gained from the developments in this paper, we compare

the messages generated by our implementation with those generated by the standard

compilers for Java, ejc (0.883 R34x, 3.4.1 release, in mode 1.5, MacOSX) and javac

(version 1.5.0 22, MacOSX). We have taken the liberty to insert some newlines in order

to make the output fit the width of a page. The examples we show tend to be contrived

in the sense that they show a particular phenomenon with as little code as possible.

We shall however start with a somewhat more realistic and intuitive longer example.

The number of examples is relatively small, but Appendix A describes where to obtain

programs to generate many more examples of the messages we can provide, as part of

the test set for our implementation.

Consider the code in Figure 2 which describes a class for doing static operations

on HashMaps. Four methods are provided: copy adds the pairs in from to those in to,

and project restricts the domain of the map to the list of elements in the second

argument. The method printRange can be used to show that the operations work as

expected. The final operation is selfcompose which composes a map with itself: the

result contains a pair (x, y) if there is some u such that (x, u) and (u, y) are pairs in the

argument HashMap. A critical requirement is that in the argument to selfcompose, the

map may not have an arbitrary range and domain, but that these should coincide. We

believe the code to be sufficiently standard to need no further explanation. If the type-

incorrect invocation hm1 = MapOps.selfcompose(hm1); is deleted, then the output of

the program is [twenty].

If the classes in Figure 2 are compiled, then we obtain the type error messages given

in Figure 3. We note that javac and ejc are not very informative, and only say that

no matching method could be found. Our message explains the inconsistency between

the defined selfcompose and the invocation: the method expects a map from a type

to the same type, but this is not the case for hm1 which maps numbers to strings.

It is quite easy to change MapOps.java to show the behaviour of our system for

other kinds of errors. Consider that the line marked as incorrectly typed is omitted. We

shall now describe three modifications of the signature of project. In each case, ejc

and javac continue to generate messages similar to those in Figure 3, which we omit.



7

import java.util.*;

class MapOps {
MapOps() {
}

static <T,S> void copy(HashMap<T,S> from, HashMap<T,S> to) {
for (T key : from.keySet()) {

to.put(key, from.get(key));
}

}

static <T,S> HashMap<T,S> project(HashMap<T,S> cmap,
ArrayList<? extends T> dom) {

HashMap<T,S> retmap = new HashMap<T,S>();
copy(cmap,retmap);
Set<T> keyset = retmap.keySet();
keyset.retainAll(dom);
return retmap;

}

static <T,S> void printRange(HashMap<T,S> cmap) {
System.out.println(cmap.values().toString());

}

static <T> HashMap<T,T> selfcompose(HashMap<T,T> map) {
HashMap<T,T> twm = new HashMap<T,T>();
Set<T> domain = map.keySet();

for (T key : domain) {
T img = map.get(key);
i f (domain.contains(img)) {
twm.put(key, map.get(img));

}
}
return twm;

}
}

class Main {
public static void main(String[] parameters)
{

HashMap<Number, String> hm1 = new HashMap<Number,String>();
hm1.put(10,"ten");
hm1.put(20,"twenty");
hm1.put(21.5,"twenty-one-and-a-half");
ArrayList<Integer> l1 = new ArrayList<Integer>();
l1.add(20);
l1.add(30);
hm1 = MapOps.project(hm1,l1);
hm1 = MapOps.selfcompose(hm1); // Type-incorrect
MapOps.printRange(hm1);

}

}

Fig. 2 A class defining operations on HashMaps that is used type incorrectly.



8

listings/MapOps.java:50: <T>selfcompose(java.util.HashMap<T,T>) in MapOps cannot
be applied to (java.util.HashMap<java.lang.Number,java.lang.String>)

hm1 = MapOps.selfcompose(hm1);
^

javac

1. ERROR in listings/MapOps.java (at line 50)
hm1 = MapOps.selfcompose(hm1);

^^^^^^^^^^^
The method selfcompose(HashMap<T,T>) in the type MapOps is not applicable for
the arguments (HashMap<Number,String>)

ejc

listings/MapOps.java:50
Method <T>selfcompose(HashMap<T, T>) of type MapOps is not applicable for the
argument of type (HashMap<Number, String>), because:

[*] The type variable T is invariant, but the types:
- String in HashMap<Number, String> on 42:8(42:24)
- Number in HashMap<Number, String> on 42:8(42:16)
are not the same type.

ours

Fig. 3 The three error messages for the inconsistency caused by the wrong invocation to
selfCompose.

The first modification is to change extends into super in the signature of project. If

we compile the MapOps.java after this first modification, then the error message reads:

listings/MapOps.java:49
Method <T, S>project(HashMap<T, S>, ArrayList<? super T>) of type MapOps is
not applicable for the arguments of type (HashMap<Number, String>,
ArrayList<Integer>), because:

[*] The type Integer in ArrayList<Integer> on 46:8(46:18) is not a supertype
of the inferred type for T: Number.

If we write ? extends S instead of ? extends T, then we obtain the message

listings/MapOps.java:49
Method <T, S>project(HashMap<T, S>, ArrayList<? extends S>) of type MapOps is
not applicable for the arguments of type (HashMap<Number, String>,
ArrayList<Integer>), because:

[*] The type Integer in ArrayList<Integer> on 46:8(46:18) is not a subtype
of the inferred type for S: String.

Finally, if we replace ? extends T with T, then the message becomes:

listings/MapOps.java:49
Method <T, S>project(HashMap<T, S>, ArrayList<T>) of type MapOps is not applicable
for the arguments of type (HashMap<Number, String>, ArrayList<Integer>), because:

[*] The type variable T is invariant, but the types:
- Integer in ArrayList<Integer> on 46:8(46:18)
- Number in HashMap<Number, String> on 42:8(42:16)
are not the same type.

We now continue with the smaller, more contrived examples in order to show the

kind of situations we can handle. We already saw an example of a type equality conflict,

but we shall list a few more to illustrate some further differences between our compiler

and ejc and javac. The first example can be found in Figure 4. Note that our message

explains that there are in fact two independent errors (indicated by [*]), and that it



9

import java.util.*;

class Listingindep{
<T,S> void foo(Map<T,T> a, Map<S,S> b){

Map<Number,String> m1 = null;
Map<Integer,String> m2 = null;
foo(m1,m2);

}
}

listings/Listingindep.java:7: <T,S>foo(java.util.Map<T,T>,java.util.Map<S,S>)
in Listingindep cannot be applied to (java.util.Map<java.lang.Number,
java.lang.String>,java.util.Map<java.lang.Integer,java.lang.String>)

foo(m1,m2);
^

javac

1. ERROR in listings/Listingindep.java (at line 7)
foo(m1,m2);
^^^

The method foo(Map<T,T>, Map<S,S>) in the type Listingindep is not applicable
for the arguments (Map<Number,String>, Map<Integer,String>)

ejc

listings/Listingindep.java:7
Method <T, S>foo(Map<T, T>, Map<S, S>) of type Listingindep is not applicable
for the arguments of type (Map<Number, String>, Map<Integer, String>), because:

[*] The type variable T is invariant, but the types:
- String in Map<Number, String> on 5:9(5:20)
- Number in Map<Number, String> on 5:9(5:13)
are not the same type.
[*] The type variable S is invariant, but the types:
- String in Map<Integer, String> on 6:9(6:21)
- Integer in Map<Integer, String> on 6:9(6:13)
are not the same type.

ours

Fig. 4 A code fragment with two independent equality type conflicts (one in each argument),
and the type error messages for javac, ejc and our implementation respectively.

also explains why the invocation does not match the given definition. Again, neither

ejc nor javac explains what the problem is, only that the invocation does not match.

In Figure 5, the conflicts are not independent, because all inconsistencies involve

the same type variable, and our message reflects this. We have omitted the messages

of ejc and javac since they follow the same pattern as in Figure 4.

As a final type equality conflict consider the fragment in Figure 6. In this case,

both calls are inconsistent, and although the return type of the inner foo does not

depend on the types of its inputs, all three compilers only mention the inconsistency

arising from the inner invocation: the inconsistency will only show up after fixing the

innermost one.

We now continue with an example of a subtyping conflict. Consider the code frag-

ment and associated messages in Figure 7. Such a conflict arises when an equality

constraint determines the type of a particular type variable; in this case T becomes

equal to Integer, which then leads to an inconsistency in the second parameter, be-

cause Number is not a subtype of Integer. Neither ejc nor javac explain why the



10

import java.util.*;

class Listingref{
<T> void foo(Map<T,Map<T,T>> a){

Map<Number, Map<Integer,String>> m1 = null;
foo(m1);

}
}

listings/Listingref.java:6
Method <T>foo(Map<T, Map<T, T>>) of type Listingref is not applicable for the
argument of type (Map<Number, Map<Integer, String>>), because:

[*] The type variable T is invariant, but the types:
- Integer in Map<Number, Map<Integer, String>> on 5:9(5:25)
- String in Map<Number, Map<Integer, String>> on 5:9(5:33)
- Number in Map<Number, Map<Integer, String>> on 5:9(5:13)
are not the same type.

ours

Fig. 5 A code fragment with multiple conflicts arising from the variable m1, and the error
message we provide.

import java.util.*;

class Listingnested{
<T> Map<Number,Integer> foo(Map<T,T> a){

Map<Number,String> m1 = null;
foo(foo(m1));

}
}

listings/Listingnested.java:6: <T>foo(java.util.Map<T,T>) in Listingnested
cannot be applied to (java.util.Map<java.lang.Number,java.lang.String>)

foo(foo(m1));
^

javac

1. ERROR in listings/Listingnested.java (at line 6)
foo(foo(m1));

^^^
The method foo(Map<T,T>) in the type Listingnested is not applicable for
the arguments (Map<Number,String>)

ejc

listings/Listingnested.java:6
Method <T>foo(Map<T, T>) of type Listingnested is not applicable for the
argument of type (Map<Number, String>), because:

[*] The type variable T is invariant, but the types:
- String in Map<Number, String> on 5:9(5:20)
- Number in Map<Number, String> on 5:9(5:13)
are not the same type.

ours

Fig. 6 Although our error message provides more explanation, for all three compilers the type
inconsistency in the inner invocation of foo eclipses the inconsistency in the outer invocation.



11

import java.util.*;

class Listing2{
static <T> void bar(Map<T, ? extends T> a){

Map<Integer, Number> m2 = null;
bar(m2);

}
}

listings/Listing2.java:6: <T>bar(java.util.Map<T,? extends T>) in Listing2
cannot be applied to (java.util.Map<java.lang.Integer,java.lang.Number>)

bar(m2);
^

javac

1. ERROR in listings/Listing2.java (at line 6)
bar(m2);
^^^

The method bar(Map<T,? extends T>) in the type Listing2 is not applicable for
the arguments (Map<Integer,Number>)

ejc

listings/Listing2.java:6
Method <T>bar(Map<T, ? extends T>) of type Listing2 is not applicable for the
argument of type (Map<Integer, Number>), because:

[*] The type Number in Map<Integer, Number> on 5:9(5:22) is not a subtype of
the inferred type for T: Integer.

ours

Fig. 7 A code fragment with a subtyping conflict and the three corresponding type error
messages.

invocation does not match the declared type of bar; our message does provide such an

explanation.

It is quite easy, but not very interesting, to come up with a similar mistake to

that in Figure 7, but which involves super rather than extends. A more interesting

source of mistakes, that is typical for supertype constraints, is due to the inability to

find a single type that extends two different types. In the case of the code fragment in

Figure 8, the return type of foo is void so the assignment context cannot be used to

find a proper instance for T. Following the JLS, the type T is then computed by taking

the largest type that extends both Number and String. However, such a type does not

exist, as our error message explains. As usual, both ejc and javac simply complain

that the invocation does not match the method. In Section 3.1 we show that these

compilers sometimes exhibit strange behaviour for this kind of example.

A similar kind of situation occurs in Figure 9, but here the cause of the problem

is a subtype conflict: because of the second argument type for Map and the invariance

of collection class type constructors, T will be instantiated to Number. However, this

choice clashes with the fact that Number is not a subtype of Integer.

We continue with some examples that involve a bound conflict, starting with Fig-

ure 10. Surprisingly, javac gives exactly the same error messages as in Figure 1, al-

though the reason why this particular invocation fails is completely different: it is

illegal, because the type that the type variable T should be instantiated with must be

a subtype of Number. Since the type Comparable<Integer> of the actual parameter is

not a subtype of Number, the invocation is incorrect.



12

import java.util.*;

class Listing6{
<T extends Number> void foo(Map<? super T, ? super T> a){

Map<Number, String> m = null;
foo(m);

}
}

listings/Listing6.java:7: <T>foo(java.util.Map<? super T,? super T>) in Listing6
cannot be applied to (java.util.Map<java.lang.Number,java.lang.String>)

foo(m);
^

javac

1. ERROR in listings/Listing6.java (at line 6)
foo(m);
^^^

The method foo(Map<? super T,? super T>) in the type Listing6 is not applicable
for the arguments (Map<Number,String>)

ejc

listings/Listing6.java:7
Method <T extends Number>foo(Map<? super T, ? super T>) of type Listing6 is not
applicable for the argument of type (Map<Number, String>), because:

[*] The types Number in Map<Number, String> on 5:9(5:13) and String in
Map<Number, String> on 5:9(5:21) do not share a common subtype.

ours

Fig. 8 A code fragment without assignment context, so that in absence of equality and subtype
constraints the supertype constraints determine the type.

A second example of a bound error can be found in Figure 11. In this case the

error message of ejc is quite reasonable, although our message does not resort to

mentioning an intersection type, which is an artifact constructed by the type inference

phase. Surprisingly, some versions of javac crash for this particular program due to

an infinite number of calls to the least upper bound function, while some other version

of javac generate an internal error.

An example of a type error involving wildcards can be found in Figure 12. The

code fragment shows what might be a typical mistake on the part of a novice program-

mer: assuming that the type ? extends Number equals ? extends Number which, if

provable, would make the invocation correct. However, these types are not equivalent.

Our message follows the tenets of the manifesto of Yang (2000) in that an error mes-

sage should never reveal anything internal to compiler. However, the error messages

provided by ejc and javac explicitly refer to a captured wildcard.

3.1 Strange behaviour

In some cases we have observed that the compilers may behave strangely, or simply

not according to the JLS.

Sometimes the type inferencer computes the largest subtype of a pair of types, and

recall from the preliminaries that such a type may not always exist. This is the case

for the program given in Figure 13, in which T should be instantiated to the largest

subtype of Number and String, which is not a valid type. Surprisingly, javac accepts



13

import java.util.*;

class Listing8{
<T> void foo(Map<? super T, T> a) {

Map<Integer, Number> m = null;
foo(m);

}
}

listings/Listing8.java:6: <T>foo(java.util.Map<? super T,T>) in Listing8 cannot
be applied to (java.util.Map<java.lang.Integer,java.lang.Number>)

foo(m);
^

javac

1. ERROR in listings/Listing8.java (at line 6)
foo(m);
^^^

The method foo(Map<? super T,T>) in the type Listing8 is not applicable for the
arguments (Map<Integer,Number>)

ejc

listings/Listing8.java:6
Method <T>foo(Map<? super T, T>) of type Listing8 is not applicable for the
argument of type (Map<Integer, Number>), because:

[*] The type Integer in Map<Integer, Number> on 5:7(5:11) is not a supertype
of the inferred type for T: Number.

ours

Fig. 9 A conflict due to the fact that Integer is not a supertype of Number, a constraint that
follows from the second argument to Map.

the program, due to the fact that it ignores the bound constraint when inferring a type

for T.

A second example of a program that is erroneously accepted by javac can be found

in Figure 14. In fact, none of the method invocations in this program should be allowed

according to the JLS. Both ejc and our own compiler generate the type error messages

as provided.

So why are these invocations type incorrect? The type of a generic type variable T

for which no constraints of the form T = . . . or . . . <: T are generated, is determined

by the type to which the result of the call to bar is assigned (if present). This, in the

case of bar(m1) results in T being instantiated to Integer due to the type given for l.

For the second call, T is instantiated to Integer. However, in both cases, and the third

one as well, the constraint derived from the invocation itself T <: List<String> then

cannot be satisfied.

The ejc compiler also sometimes exhibits strange behaviour. Consider the code

fragments in Figure 15 and 16. The only difference between the two is in the order of

the type arguments of the value passed to the method. The constraints generated for

both method calls are the same according to the JLS:

{T <: Number, T <: String}

One would expect, therefore, the error messages for the two programs to be identical, as

they are for our implementation. However, the type error diagnosis for these programs

by ejc is quite different. This is due to how ejc resolves subtype constraints. Note



14

import java.util.*;

class Listing3{
<T extends Number> void baz(List<T> a){

List<Comparable<Integer>> x = null;
baz(x);

}
}

listings/Listing3.java:6: <T>baz(java.util.List<T>) in Listing3 cannot be
applied to (java.util.List<java.lang.Comparable<java.lang.Integer>>)

baz(x);
^

javac

1. ERROR in listings/Listing3.java (at line 6)
baz(x);
^^^

Bound mismatch: The generic method baz(List<T>) of type Listing3 is not
applicable for the arguments (List<Comparable<Integer>>). The inferred type
Comparable<Integer> is not a valid substitute for the bounded parameter
<T extends Number>

ejc

listings/Listing3.java:6
Method <T extends Number>baz(List<T>) of type Listing3 is not applicable for the
argument of type (List<Comparable<Integer>>), because:

[*] The type Comparable<Integer> in List<Comparable<Integer>> on 5:9(5:9) is
not a subtype of T’s upper bound Number in ‘T extends Number‘.

ours

Fig. 10 A code fragment with a bound conflict followed by the three corresponding type error
messages.

that although the error messages generated by javac are the same, neither is very

informative.

Obtaining different type error messages for very similar, in some sense isomorphic,

programs is an often observed but not so pleasant phenomenon. It is typically due to

the fact that the implementation of the type checking process leaks through to the

type error messages. Since programmers typically do not have any knowledge of the

implementation, they are at a disadvantage when trying to interpret the messages. We

saw two examples of this earlier: the captured wildcards (Figure 12) and the intersection

types (Figure 11) computed by the inference process.

4 The Type Checking Process

To be able to describe our modifications to the Java type checking process, we first

discuss the original process. The modifications are then described in the next section.

To avoid any misunderstanding, we first explain our terminology. In this paper, type

checking process refers to the complete process of determining the type correctness of

a particular program fragment. In our particular case these program fragments are

always method invocations.

The type checking process is depicted in Figure 17. It starts off by performing

method resolution, which determines, for a given invocation, a set of methods that the



15

class JavacError1 {
<T extends Number> void foo(T a, T b){

foo(1, false);
}

}

listings/JavacError1.java:3: internal error; cannot instantiate <T>foo(T,T) at
JavacError1 to (int,boolean)

foo(1, false);
^

javac

1. ERROR in listings/JavacError1.java (at line 3)
foo(1, false);
^^^

Bound mismatch: The generic method foo(T, T) of type JavacError1 is not
applicable for the arguments (Integer, Boolean). The inferred type
Object&Comparable<?>&Serializable is not a valid substitute for the bounded
parameter <T extends Number>

ejc

listings/JavacError1.java:3
Method <T extends Number>foo(T, T) of type JavacError1 is not applicable for the
arguments of type (int, boolean), because:

[*] The type boolean of the expression ‘false’ on 3:12 is not a subtype of T’s
upper bound Number in ‘T extends Number‘.

ours

Fig. 11 The value false cannot be considered an element of any type that extends Number;
everything is okay for the first argument 1.

programmer may be invoking. We describe the complex process of method resolution

in some detail below.

The set of methods obtained by method resolution may contain a number of generic

methods. Pairing the concrete parameter types to the formal parameter types of a

generic method:

<T, S> List<S> foo (Map<T, T> a,

List <? super S> b);

...

Map<Integer, Number> m = ...;

List<String> l = ...;

List<Integer> ret = foo(m, l);

results in a set of constraints

{Map<Integer, Number> <: Map<T, T>,

List<String> <: List<? super S>}.

that should hold if this invocation is to typecheck.

The set of constraints is subsequently decomposed into atomic constraints between

type variables on the one hand and types on the other. Although there are quite a

few cases to be covered, this part of the process is conceptually quite easy and is

described in detail in §15.12.2.7 of (Gosling et al. 2005). Here, we give only the result

of decomposition for our example:

{T = Integer, T = Number, String :> S} .



16

import java.util.*;

class Listing4{
<T> void bar(Map<T, T> a){

Map<? extends Number, ? extends Number> m = null;
bar(m);

}
}

listings/Listing4.java:6: <T>bar(java.util.Map<T,T>) in Listing4 cannot be
applied to (java.util.Map<capture of ? extends java.lang.Number,
capture of ? extends java.lang.Number>)

bar(m);
^

javac

1. ERROR in listings/Listing4.java (at line 6)
bar(m);
^^^

The method bar(Map<T,T>) in the type Listing4 is not applicable for the arguments
(Map<capture#1-of ? extends Number,capture#2-of ? extends Number>)

ejc

listings/Listing4.java:6
Method <T>bar(Map<T, T>) of type Listing4 is not applicable for the argument of
type (Map<? extends Number, ? extends Number>), because:

[*] The type variable T is invariant, but the type ‘? extends Number’ is not.
ours

Fig. 12 Two wildcards (even with the same bounds) are never provably the same, which is
a likely reason for the inconsistency. Both javac and ejc make explicit reference to captured
variables, while our message does not.

import java.util.*;

class JavacError2 {
<T extends Number> void foo(List<? super T> a){

List<String> x = null;
foo(x);

}
}

1. ERROR in listings/JavacError2.java (at line 6)
foo(x);
^^^

Bound mismatch: The generic method foo(List<? super T>) of type JavacError2 is
not applicable for the arguments (List<String>). The inferred type String is not
a valid substitute for the bounded parameter <T extends Number>

ejc

listings/JavacError2.java:6
Method <T extends Number>foo(List<? super T>) of type JavacError2 is not
applicable for the argument of type (List<String>), because:

[*] The types String in List<String> on 5:5(5:10) and Number do not share a
common subtype. (...)

ours

Fig. 13 The argument type implies that T is String, which is clearly not a subtype of Number.
Still, the program is accepted by javac.



17

import java.util.*;

class JavacError3{
<T extends Number> List<T> bar(Map<? super T, ? super T> a){

Map<List<String>, List<String>> m1 = null;
Map<Double, Number> m2 = null;
List<Integer> l = bar(m1);
List<Integer> s = bar(m2);
s = bar(m1);
return null;

}
}

1. ERROR in listings/JavacError3.java (at line 7)
List<Integer> l = bar(m1);

^^^
The method bar(Map<? super T,? super T>) in the type JavacError3 is not
applicable for the arguments (Map<List<String>,List<String>>)
----------
2. ERROR in listings/JavacError3.java (at line 8)

List<Integer> s = bar(m2);
^^^

The method bar(Map<? super T,? super T>) in the type JavacError3 is not
applicable for the arguments (Map<Double,Number>)
----------
3. ERROR in listings/JavacError3.java (at line 9)

s = bar(m1);
^^^

The method bar(Map<? super T,? super T>) in the type JavacError3 is not
applicable for the arguments (Map<List<String>,List<String>>)

ejc

listings/JavacError3.java:7
Method <T extends Number>bar(Map<? super T, ? super T>) of type JavacError3
is not applicable for the argument of type (Map<List<String>, List<String>>),
because:

[*] The type List<String> in Map<List<String>, List<String>> on 5:9(5:9) is
not a supertype of the inferred type for T: Integer.

listings/JavacError3.java:8
Method <T extends Number>bar(Map<? super T, ? super T>) of type JavacError3
is not applicable for the argument of type (Map<Double, Number>), because:

[*] The type Double in Map<Double, Number> on 6:9(6:13) is not a supertype of
the inferred type for T: Integer.

listings/JavacError3.java:9
Method <T extends Number>bar(Map<? super T, ? super T>) of type JavacError3
is not applicable for the argument of type (Map<List<String>, List<String>>),
because:

[*] The type List<String> in Map<List<String>, List<String>> on 5:9(5:9) is
not a supertype of the inferred type for T: Integer.

ours

Fig. 14 Another code fragment erroneously accepted by javac.



18

import java.util.Map;

class Listing51{
<T extends Number> void foo(Map<? super T, ? super T> a){

Map<String, Number> m = null;
foo(m);

}
}

listings/Listing5-1.java:6: <T>foo(java.util.Map<? super T,? super T>) in
Listing51 cannot be applied to
(java.util.Map<java.lang.String,java.lang.Number>)

foo(m);
^

javac

1. ERROR in listings/Listing5-1.java (at line 6)
foo(m);
^^^

Bound mismatch: The generic method foo(Map<? super T,? super T>) of type
Listing51 is not applicable for the arguments (Map<String,Number>). The inferred
type String is not a valid substitute for the bounded parameter
<T extends Number>

ejc

listings/Listing5-1.java:6
Method <T extends Number>foo(Map<? super T, ? super T>) of type Listing51 is not
applicable for the argument of type (Map<String, Number>), because:

[*] The types String in Map<String, Number> on 5:9(5:13) and Number in
Map<String, Number> on 5:9(5:21) do not share a common subtype. (...)

ours

Fig. 15 An inconsistency that for ejc reveals some of the underlying type checking machinery:
the diagnosis given by ejc for the erroneous invocation should be the same as that for Figure 16,
but this is not the case.

The type checking process then proceeds with generic instantiation to infer the

types of the generic variables, essentially a process of finding a concrete type for each

type variable. Although its name might imply otherwise, the inference process has

a surprising property: if multiple, conflicting instantiations for a type variable are

possible, then the inference process simply selects one, leaving it up to the later type

checking phase to find that the instantiation is incorrect. The JLS states that if a

conflict exists, then it will indeed not show up until in the type checking phase at the

end of the type checking process. In the above example, a possible outcome of the

inference phase is:

T = Integer .

In the presence of multiple supertype constraints, say

{Integer <: T, Double <: T} ,

this results in the instantiation of T to the least upper bound (lub) of the two, Number.

However, things are not always so simple: for {Integer <: T, String <: T}, the lub is

Object & Serializable & Comparable<? extends Object & Serializable &

Comparable<?>>,



19

import java.util.Map;

class Listing52{
<T extends Number> void foo(Map<? super T, ? super T> a){

Map<Number, String> m = null;
foo(m);

}
}

listings/Listing5-2.java:6: <T>foo(java.util.Map<? super T,? super T>) in
Listing52 cannot be applied to (java.util.Map<java.lang.Number,
java.lang.String>)

foo(m);
^

javac

1. ERROR in listings/Listing5-2.java (at line 6)
foo(m);
^^^

The method foo(Map<? super T,? super T>) in the type Listing52 is not applicable
for the arguments (Map<Number,String>)

ejc

listings/Listing5-2.java:6
Method <T extends Number>foo(Map<? super T, ? super T>) of type Listing52 is not
applicable for the argument of type (Map<Number, String>), because:

[*] The types Number in Map<Number, String> on 5:9(5:13) and String in
Map<Number, String> on 5:9(5:21) do not share a common subtype. (...)

ours

Fig. 16 The inconsistency is very similar to that in Figure 15, but nonetheless diagnosed
differently by ejc.

Fig. 17 The type checking process

because both Integer and String implement these interfaces. Note that in many com-

pilers, not only are these types computed by the inference process, they are sometimes

also used in the type error message displayed to the programmer. This contradicts

one of the crucial properties that we, and others (Yang 2000), believe a type checking

process should have: it should only refer to types or expressions that are part of the

original source program. Without any information on how the lub was computed, it

can be very difficult for programmers to reconstruct what has happened and why.



20

The dual of the least upper bound is the greatest lower bound (glb), which is used to

capture the most general type that extends both argument types (which may include

classes and interfaces). However, if all constraints in which a type variable is involved

are of this kind and the invocation occurs in an assignment context, then the JLS spec-

ifies that the type of the variable to which the result is assigned should, if possible, be

used to determine to what type a type variable should be instantiated. This happens to

be the case in our example for S. Therefore, the constraint List<S> <: List<Integer>

is added to the constraint set. It decomposes into S = Integer. Together, the decom-

posed constraints are

{T = Integer, T = Number, S = Integer, String :> S} .

The inference process then instantiates S to Integer on the basis of the third constraint

above; note that T was already instantiated to Integer.

One may wonder what happens if a declared type variable is not constrained in

any way. The JLS specifies that the variable should then be instantiated to Object;

this helps the JLS deal with legacy code.

In the final step, it is determined whether the remaining constraints, which are by

now all equivalence and subtype relations between concrete types, are consistent. This

part of the type checking process we call the type checking phase.

It is important to realize that in the type checking phase each invocation is con-

sidered in isolation. This even holds for nested invocations foo(bar(x),y), where first

the bar invocation will be considered in isolation from its context. It can therefore well

be that the bar invocation type checks, but that types chosen by the inference phase

turn out to be inconsistent with the enclosing call to foo. Or, it may be that the call

to bar is not valid due to a case of ambiguous method invocation, but that on the

basis of the type of foo, this ambiguity could have been resolved. By contrast, in the

polymorphic lambda-calculus type information from the encapsulating call would be

used to determine the proper instantiations for bar. This lack of propagation in Java

has its advantages, as types are instantiated based on local information only and not

through a long and complicated sequence of unifications. But this may also surprise

the programmer, particularly in the case of an ambigious method invocation.

4.1 Method resolution

The goal of method resolution, for a given invocation, is to come up with a single

method in the program that the programmer intends to call. This decision has to be

made statically, and cannot depend on run-time type information.

The process of method resolution is rather complex, due to such features as over-

loading (multiple methods having the same name), overriding (methods can be overri-

den by subclasses), variable arity methods, and visibility. Visibility depends not only

on lexical scope, but also on, e.g., the access modifiers of the method. This includes

the fact that you may not call a private method from certain contexts, but also that

you cannot access (non-static) instance fields from a static method.

Method resolution consists of three main steps. For a given method invocation,

i. Determine the name of the method to be invoked, say mthd, and the class or

interface that receives the invocation. Java has five different forms of method invo-

cation. Examples respectively are a.byteValue(), this.Foo(), super.intVal(),



21

Baz.super.intVal() and Collections<X>.emptySet(). In the case of the invoca-

tion a.byteValue(), byteValue() is the name of the method, and the receiver is

the innermost class or interface that encloses the method declaration (if indeed,

byteValue is visible from the invocation site). Note that for this case alone there

are two additional variants: a. may be omitted, and a type name may be used

instead of a. For more details see the JLS.

ii. Consider every method of the receiver in turn to find all possible accessible and

applicable method members. A method potential in the receiver is a candidate if

and only if

– the names potential and mthd are the same,

– potential is accessible from the invocation site

– if potential is a variable arity method of arity, say n, then the number of

arguments passed to mthd must be greater than or equal to n− 1,

– if potential is a fixed arity method of arity n, then the number of arguments

passed to mthd must be equal to n,

– if the method invocation includes explicit type parameters, and potential is

a generic method, then the number of actual type parameters must equal the

number of formal type parameters.

Then the compiler tries to weed out potential methods by comparing actual to for-

mal parameters. Due to the presence of subtyping, auto-boxing, and variable arity

methods, this is quite a complicated process, consisting of three alternative deci-

sion procedures. A decision procedure is only applied if all the preceding decision

procedures eliminated all candidates. Below, we assume the method invocation is

mthd(A1, . . . , An).

(a) Identify methods mthd(F1, . . . , Fn), and in which only “weakening by subtyp-

ing” is allowed to match actual argument types to formal argument types. In

other words, for all 1 ≤ i ≤ n:

– Ai <: Fi, or

– Ai is a raw type that can be parametrized into a type Ci so that Ci <: Fi.

If the method is generic, then all type variables in the Fi are bound to a

concrete type provided by the method invocation. If such type information is

unavailable then type inference, as described earlier, is used to find concrete

types. The potential method is then only applicable if all instantiated type

variables are within their stated bounds.

(b) Similar to the previous case, but now in combination with (un)boxing.

(c) Similar to the previous case, but now allowing also variable arity methods.

Details can be found in the JLS.

If all the sets of candidates delivered by the three previous cases are empty, then no

matching method exists, and an error message is produced. Otherwise, we take the

first non-empty one, say S, and proceed to try to eliminate candidates until only

one is left. For example, we remove from S those methods for which a more specific

signature in S exists, e.g., if both mthd(List<T>) and mthd (List<Integer>) are in

S, then the former is deleted. A similar but more complicated rule can be formulated

for variable arity methods.

If for any pair of methods it cannot be decided which is the most specific, the

compiler has a few rules to deal with this, largely by preferring non-abstract over

abstract methods. In the absence of the former, an arbitrary abstract method with

the most specific return type is chosen.



22

Fig. 18 The modified type checking process

If that still does not work, then an ambiguous method invocation error message is

generated.

iii. In the third and final step, the method chosen in the previous step is screened for

appropriateness. For example, an instance method cannot be invoked from a static

context.

As the reader can see, method resolution is indeed a complicated, stepwise process.

In our extension of the type checking process, which we describe in the following section,

we relax the constraints somewhat to try and figure out which method the programmer

might have been trying to call, and to use that information in our type error message.

5 The Modified Type Checking Process

Figure 18 shows the overall architecture of our modified type checking process. The

structure of the process is not much different, only the contents of the phases themselves

change. It is important to realize that this modified process is only invoked after the

original process has found a particular invocation to be type incorrect.

5.1 Weakened method resolution

First, we define a weaker form of method resolution that allows more candidate methods

to be targeted by the method invocation. We are not interested in identifying a single

method that is being called, but want to consider multiple candidate methods and

provide a diagnosis for each method that is reasonably close to what the programmer

intended to call.

A major decision we have to make is how exactly we weaken method resolution.

Our choice here is to erase generic information from the invocation and the candidate

method. In other words, when we are looking for a suitable method in the second

step (ii) of method resolution we base our comparison between the signatures on the

raw types, instead of the generic types. Conversion to raw types involves replacing



23

type variables (and possible bounds) with Object and changing generic types like

List<Number> to the raw type List.

The original process of method resolution aims to come up with a single method to

be called (or it may fail to find one at all). Because we drop information that might be

used during the original method resolution phase, the set of candidates might now be

larger. This is not a problem. Remember that we already know that in the end none of

these methods will be acceptable. But since we have more candidates to pass on to the

part of the process that is still to come, that part of the process may then be able to

tell us more precisely why each of the candidates fails to qualify. In our particular case,

for example, we have defined and implemented a number of heuristics (el Boustani and

Hage 2010) that work directly on the constraints derived from a particular method

invocation and method definition, but these heuristics will only be applied to method

definitions that pass (weakened) method resolution.

The (heuristic) assumption we make is that when it comes to the types of argu-

ments, the generic parts of Java are more likely to contain mistakes than the raw types.

This assumption derives from the fact that the generic part of Java is pretty compli-

cated and therefore more easily misunderstood. Moreover, it is a fairly recent addition

to the language, and a refinement of the raw types.

Another way to view our assumption, is that we prefer not to commit too early

to certain choices because that immediately biases the type checking process, in that

it becomes less likely that we shall ever blame that which we commit upon first. This

indicates that, as a rule, it pays to commit first to facts in which your confidence is

the highest. Since our assumption is that we should have less confidence in the generic

parts of the types, it makes sense to ignore them in the early phases of the process.

Another instance of this idea can be found in work on removing the bias from

Algorithm W (Damas and Milner 1982): in a standard implementation, constraints

are solved (i.e., unifications are performed) while traversing the abstract syntax tree

of the program (from left to right), thereby building a type substitution on the fly.

So if we have multiple, inconsistent constraints for a particular type variable, the left-

most constraint is seen first and will determine the type we find for the type variable,

even in cases where we find that all other constraints for that type variable say dif-

ferently. In (Hage and Heeren 2007) it was shown how the bias can be removed by a

constraint solving approach in which sets of constraints are considered simultaneously,

and heuristics that work on these sets of constraints, either select the constraint(s)

that are most likely to be the cause of the inconsistency, or eliminate constraints for

which the opposite is the case.

The specification of weakened method resolution in the form of pseudocode can

be found in Figures 19, 20 and 21. The function methodResolution takes a method

invocation as an argument and returns a set of most specific method declarations.

The procedure starts by searching for potentially applicable methods, by considering

all methods that are members of the receiver of the invocation. These are methods

with the same name as the method that is invoked, and have an arity equal the num-

ber of arguments in the invocation (if the method is of fixed arity), or an arity less

than the number of arguments in the invocation (if the method is of variable arity).

This part is performed by the procedure potentiallyApplicable in Figure 19. As ex-

plained before, three attempts will be made to come to a non-empty set of methods:

first we are only allowed to match up to subtyping, then we allow method conversion

(methodConvertible, that considers candidate methods modulo boxing, unboxing and



24

[Method] methodResolution(invocation)
potentialMethods = [m in invocation.receiver

| potentiallyApplicable(m,invocation)]
specificMethods = [m in potentialMethods

| m of fixed arity and
applicableBySubtyping(m,invocation)]

mostSpecificMethods = mostSpecificMethodFixed(specificMethods)
i f empty mostSpecificMethods then
methodConvertedMethods = [m in potentialMethods

| m of fixed arity and
applicableByMethodConversion(m,invocation)]

mostSpecificMethods = mostSpecificMethodFixed(methodConvertedMethods)
i f empty mostSpecificMethods then
methodVarArity = [m in potentialMethods

| m of variable arity and
applicableByMethodConversion(m,invocation)]

mostSpecificMethods = mostSpecificMethodVariable(methodConvertedMethods)
return [m in mostSpecificMethods | m appropriate]

boolean potentiallyApplicable(method, invocation)
return

method.name == invocation.name and
method accessible from invocation.location and
(method.arity == length(invocation.arguments) or
(method of variable arity and
length(invocation.arguments) >= method.arity-1))

boolean applicableBySubtyping(method, invocation)
foreach (parameter,argument) in (method.arguments,invocation.arguments) do
erasedParameter = wideErasure(parameter)
i f (argument <: erasedParameter) then
continue

else
return false

return true

boolean applicableByMethodConversion(method, invocation)
(* Works both for variable and fixed arity methods *)
k = method.arity-1
for i = 1 to k
erasedParameter = wideErasure(method.arguments[i])
argument = invocation.arguments[i]
i f methodConvertible(argument, erasedParameter) then
continue

else
return false

(* The "variable" part *)
erasedParameter = wideErasure(method.arguments[k+1]
for i = k+1 to n
argument = invocation.arguments[i]
i f methodConvertible(argument, erasedParameter) then
continue

else
return false

return true

Fig. 19 Pseudocode for weakened method resolution (part 1).



25

Type wideErasure(tp)
i f tp is a type variable then

return Object
else

i f tp is generic then
return raw form of tp

else
return tp

[Method] mostSpecificMethodFixed(methods)
foreach m1 in methods

foreach m2 in methods
i f moreSpecificFixed(m1,m2) then
methods.delete(m2)

[Method] mostSpecificMethodVariable(methods)
foreach m1 in methods

foreach m2 in methods
i f moreSpecificVariable(m1,m2) then
methods.delete(m2)

Fig. 20 Pseudocode for weakened method resolution (part 2).

various forms of widening, §5.3 of (Gosling et al. 2005)), and finally we also allow

methods of variable arity to be considered.3

In each case, methods will be eliminated if they are less specific than at least one

other in the list. This check is implemented for the fixed arity and variable arity case in

mostSpecificMethodFixed and mostSpecificMethodVariable, as given in Figure 20.

The methods behave exactly as in the original type checking process, except that

they ignore any kind of generic information. The specification of the auxiliary function

moreSpecificVariable in Figure 21 is rather lengthy, because we have to deal with the

fact that the number of parameters can be unequal in two ways, but that the subtype

relation is independent of the respective lengths. Note that we could have abstracted

away from the particular type comparison operator in order to save code, but for

reasons of clarity and correspondence with the JLS (Section 15.12.2.5) we preferred to

write it out.

After having constructed a set of most specific methods, methodResolution will

remove any method declaration that is not appropriate from the set (e.g. not accessible

from the call site), and returns the set of remaining methods.

We illustrate the process by means of an example. Consider the code in Figure 22

where we define a many-times overloaded method foo (we designate foo on line x by

foox). Consider first the invocation on line 20. The method foo2 does not qualify as a

candidate because it has the wrong number of parameters. All the other declarations

have the right number of parameters, so they are marked as candidates in step (i).

Their signatures are converted into their raw form, and we obtain

foo4(Map, Collection), foo7(Map, List), foo10(HashMap, List),

foo13(HashMap, LinkedList), foo16(HashMap, Set).

In the absence of primitive types and variable arity methods, the applicable methods

can be determined using subtyping only, i.e., we only need to look at case (a) of step (ii)

3 The construct foreach (x, y) in (xs,ys) iterates through the lists xs and ys in a way
that if x is the ith element of xs, then y is the ith element of ys.



26

boolean moreSpecificFixed(m1,m2)
(* In case both methods are of fixed arity *)
foreach (paramm1,paramm2) in (m1.arguments, m2.arguments) do
paramm1 = wideErasure(paramm1)
paramm2 = wideErasure(paramm2)
i f (paramm1 <: paramm2) then
continue

else
return false

return true

boolean moreSpecificVariable(m1,m2)
(* In case both methods are of variable arity *)
i f m1.arity >= m2.arity then

k = m2.arity - 1
m = m1.arity
for i = 1 to k
paramm1 = wideErasure(m1.arguments[i])
paramm2 = wideErasure(m2.arguments[i])
i f (paramm1 <: paramm2) then
continue

else
return false

paramm2 = wideErasure(m2.arguments[k+1])

for i = k+1 to n
paramm1 = wideErasure(m1.arguments[i])
i f (paramm1 <: paramm2) then
continue

else
return false

return true
else

k = m1.arity - 1
m = m2.arity
for i = 1 to k
paramm1 = wideErasure(m1.arguments[i])
paramm2 = wideErasure(m2.arguments[i])
i f (paramm1 <: paramm2) then
continue

else
return false

paramm1 = wideErasure(m1.arguments[k+1])

for i = k+1 to n
paramm2 = wideErasure(m2.arguments[i])
i f (paramm1 <: paramm2) then
continue

else
return false

return true

Fig. 21 Pseudocode for weakened method resolution (part 3).



27

1 class FooLib{
2 <T> void foo(Map<T, ? extends T> a){}
3
4 <T> void foo(Map<T, ? extends T> a,
5 Collection<? super T> b){}
6
7 <T> void foo(Map<T, ? extends T> a,
8 List<? super T> b){}
9

10 <T> void foo(HashMap<T, ? extends T> a,
11 List<? super T> b){}
12
13 <T> void foo(HashMap<T, ? extends T> a,
14 LinkedList<? super T> b){}
15
16 <T> void foo(HashMap<T, ? extends T> a,
17 Set<? super T> b){}
18 }
19 ...
20 UtilLib.foo(new HashMap<Integer, Integer>(),
21 new LinkedList<Number>());
22 UtilLib.foo(new HashMap<Double, Number>(),
23 new LinkedList<Integer>());
24 LinkedList<? extends Number> wl = ...;
25 UtilLib.foo(new HashMap<Number, Double>(), wl);

Fig. 22 A utility class for illustrating weakened method resolution.

in the method resolution phase. The second parameter LinkedList in the invocation

is not a subtype of the generic interface type Set. Therefore, foo16 is disqualified as a

candidate.

Next, our weak method resolution reduces the set of applicable methods

{foo4, foo7, foo10, foo13}

to a set of most specific methods. Comparing foo4 with foo7 results in the removal of

foo4, because List <: Collection. Similarly, foo7 and foo10 are removed in favour of

foo13. For the second and third invocation in Figure 22 the same set of candicates is

obtained.

In all cases, we ended up with a singleton set, but our resolution method does not

demand this, contrary to the original resolution method. For example, for the code

fragment of Figure 28, which we shall discuss in more detail later, both declarations of

bar pass method resolution.

5.2 Constraint generation

Constraint generation is our version of the phase of constraint decomposition. Recall

that the original type inference phase does not check for inconsistencies. Inconsistencies

are discovered later during the type checking phase. This choice leads to type error

messages that cannot explain very well what the problem is, because information has

been lost between the type inferencing and type checking phase.

Consider the code fragment in Figure 23. Here, the type parameter T is instanti-

ated to Number, because l1 is passed as the first argument. But unfortunately, List<?



28

<T> void foo(List<T> a, List<? super T> b){
...
List<Number> l1 = ...;
List<? extends Number> l2 = ...;
foo(l1, l2);

Fig. 23 Inference succeeds to find instantiations for all variables, but then checking fails.

extends Number> is not a subtype of List<? super Number>. In this situation, an im-

plementation based on the JLS will typically say that foo cannot be applied to the

variables l1 and l2, but it cannot for example explain to the programmer why the

error occurred or how to fix it: it does not have enough knowledge to do so.

In our extension, we provide the constraint solver, introduced in detail below, with

more constraints that will ensure that a type is inferred only if all type constraints are

satisfied and no type-checking error will occur. To that purpose, the original constraint

decomposition algorithm is extended to keep track of constraints that were left alone

during decomposition, because they did not match any of the cases of the constraint

decomposition procedures. In fact, the new procedures can be obtained from the old

ones (based on §15.12.2.7 of (Gosling et al. 2005)), simply by adding cases that store

the non-atomic constraints for which no case is defined, into a special set of constraints.

In the following we therefore keep track of two sets of constraints X and Y by writing

X d Y . Here, the left operand X contains the decomposed constraints, and Y contains

those constraints that could not be decomposed.

For the example in Figure 23, the new constraint generation algorithm will collect

the following constraints:

{T = Number} d

{List<? extends Number> <: List<? super T>}

Coming back to the example of Figure 22, we generate constraints for the invocation

of foo at line 20 to type check. The only remaining candidate method is foo13, in which

case we obtain

{T = Integer, Integer <: T, T <: Number} d ∅

For the second invocation we obtain

{T = Double, Number <: T, T <: Integer} d ∅

and for the third

{T = Number, Double <: T} d

{LinkedList<? extends Number> <: LinkedList<? super T>}

5.3 The constraint solving phase

In Figure 24 we summarize the constraint solving phase. In the pre-check for bounds,

we check that all types in the atomic constraints of a type parameter T satisfy the

bounds of T. If not, a type error message is generated for each failed check. Then it

infers the instantiations for every type variable, based on the decomposed constraints

(the left operand of d). This either results in a substitution or, in case of failure, a list



29

Fig. 24 The constraint solving phase

<T, S extends T> void foo(Map<S, S> a, T a){
...
Map<Integer, String> m = ...;
foo(m, 1);

Fig. 25 The order of inference for type variable matters.

of type error messages. If there are still bounds for T left unchecked, e.g., they involve

also other type variables, then these bounds checks are performed next. Finally, we

verify that the non-atomic constraints (the right operand of d) are satisfied.

The reason for doing the pre-check is best illustrated by an example. Consider the

following set of constraints

{String <: T, Integer <: T, T <: Number} .

The original algorithm instantiates T to Object, the lub of String and Integer.4 Later,

during type checking it finds that Object is not a subtype of Number. Since the type

checker does not have information available about how T got its type, it cannot really

say what went wrong. If on the other hand, the bound had been checked immediately

(or alternatively, information about the inference of T had been retained), we would

have found that String <: T is not consistent with T <: Number; and choosing any type

that is a supertype of String is not going to help. In other words, for constraints of

the given form, it can be determined at an early stage that an inconstency will result,

and a type error message can be generated immediately.

The second modification we made is to tune the order in which type inference in-

stantiates the type variables. It is well known that for the polymorphic lambda-calculus

the different implementations of the type system solve constraints in different orders

and that the order influences the error message the implementations provide (Heeren

2005; Lee and Yi 2000). In our inference algorithm, type variables are considered sep-

arately, but because we involve the bounds constraints at an early stage, the inferred

type for a particular type variable may impact that of another.

To illustrate, consider the code fragment in Figure 25. If we first infer the type

of S, then we cannot exploit the information that the bound S extends T might give

us. On the other hand, if we first infer T (to be Integer, obviously), then we obtain

an additional pre-check bound for S: S <: Integer. During the pre-check we can then

4 Actually, the type is somewhat more complicated, but never mind that now.



30

T

S

U

V

R

Fig. 26 A type variable dependency graph, with solid edges denoting a direct dependency,
and dashed edges for indirect ones.

establish that the constraint S = Integer is consistent with the bound and S = String

is not.

It should not be a surprise, therefore, that we have chosen the degree heuristic for

determining the order of inference (Russell and Norvig 2003). This heuristic selects

first the type variables that determines the largest number of other variables. Consider

the following generic parameter:

<T, S extends T, R, U extends Map<R, S> & T, V extends Map<U, T>>

From this generic parameter we can construct the graph in Figure 26 as follows:

the type variables form the vertices of the graph, and we have a solid edge from S

to T if T occurs in a bound for S. The dashed edges in the graph are edges that

additionally result from taking the transitive closure of the direct dependencies. The

degree heuristic now specifies that we should first instantiate the type variable that

has the highest number of incoming edges, whether solid or dashed. The reasoning is

that an instance for such a type variable provides the most information, i.e., the largest

number of type variables can potentially profit from the additional information. Hence,

in the example type inference should start by inferring T.

5.4 The inferencer

The large rounded rectangle in Figure 24 is the core of the constraint solving phase,

where inference takes place. The algorithm processes the type variables one at the time,

in the order obtained using the dependency graph, as described in Section 5.3.

Suppose we now deal with type variable T, and E, P and B contain the type equality,

supertype and subtype constraints involving T, respectively. Then Figure 27 gives the

pseudocode to describe the inference process.

We conclude this section by revisiting the running example of Figure 22.

For the first invocation we find

{T = Integer, Integer <: T, T <: Number} d ∅ .



31

i f empty E then
i f empty P then

i f empty B then
set T = Object

else
set C = constraints from the context
i f T inferred on the basis of union(B,C)
set T = inferred type

else
generate error message

else
set A = { alpha | alpha <: T in P }
set T = lub(A)
i f B are satisfied then
okay

else
generate error message

else
i f all constraints in E of the form T = X then
set T = X
i f union(P, B) are satisfied then
okay

else
generate error message

else
generate error message

Fig. 27 A pseudocode algorithm for type inference

In this case, there is a single equality constraint for T, so we infer T to be Integer and

proceed to verify the remaining constraints: the supertype and subtype constraints

turn out to be satisfied as well. Because the set of non-atomic constraints is empty,

and therefore trivially satisfied, the invocation on line 20 invokes the method on line

13 correctly and unambiguously.

For the second invocation we obtained

{T = Double, Number <: T, T <: Integer} d ∅ .

The type variable T is inferred to be Double, but in this case both subtype and supertype

constraints fail to be satisfied. Hence an error message is generated.

Finally, for the third

{T = Number, Double <: T} d

{LinkedList<? extends Number> <: LinkedList<? super T>}

we infer T to be Number, and since Double <: Number, the constraints are satisfied.

However, the non-atomic constraint is not satisfied, so the method invocation fails to

type check.

For a somewhat different example, consider the code fragment in Figure 28. Because

in both cases the names match, and the number of formal parameters matches the num-

ber of actual arguments in the call, both methods are considered candidates and will

be considered further. Since weak method resolution ignores all generic information,

both method signatures are implicitly converted to void bar(Object a, Object b).



32

class BarUtil{
static <T extends Number>void bar(T a, T b){}
static <T extends Integer>void bar(T a, T b){}
void dummy() {
BarUtil.bar(’0’, 3.14);

}
}

listings/Listing7.java:5: internal error; cannot instantiate <T>bar(T,T) at
BarUtil to (char,double)

BarUtil.bar(’0’, 3.14);
^

javac

1. WARNING in listings/Listing7.java (at line 3)
static <T extends Integer>void bar(T a, T b){}

^^^^^^^
The type parameter T should not be bounded by the final type Integer. Final
types cannot be further extended
----------
2. ERROR in listings/Listing7.java (at line 5)

BarUtil.bar(’0’, 3.14);
^^^

Bound mismatch: The generic method bar(T, T) of type BarUtil is not applicable
for the arguments (Character, Double).
The inferred type Object&Serializable& Comparable<?> is not a valid substitute
for the bounded parameter <T extends Number>

ejc

listings/Listing7.java:5
Method <T extends Number>bar(T, T) of type BarUtil is not applicable for the
arguments of type (char, double), because:

[*] The type char of the expression ‘’0’’ on 5:18 is not a subtype of T’s
upper bound Number in ‘T extends Number‘.

listings/Listing7.java:5
Method <T extends Integer>bar(T, T) of type BarUtil is not applicable for the
arguments of type (char, double), because:

[*] The type char of the expression ‘’0’’ on 5:18 is not a subtype of T’s
upper bound Integer in ‘T extends Integer‘.

[*] The type double of the expression ‘3.14’ on 5:23 is not a subtype of T’s
upper bound Integer in ‘T extends Integer‘.

ours

Fig. 28 A code fragment with two candidate methods, both of which fail to qualify. javac
and ejc provide only one message, but our system provides a diagnosis for both failures.

Because the arguments to the call happen to be of primitive type, weak method res-

olution will attempt to match the call to a method by means of method invocation

conversion (§5.3 of Gosling et al. (2005)). This results in both methods to be consid-

ered applicable. Then the type checking process will consider each method in turn to

determine which of these, if any, matches the call.

Let us consider the first definition of bar. Matching the types of the invocation

with that of the first definition of bar results in the following constraints, in which the

primitive types are automatically promoted to their corresponding reference type:

{Character <: T, Double <: T} d ∅ .



33

Because only one type variable is involved, the ordering phase for type variables

can be ignored, and we proceed to perform bounds checking. Bounds checking ensures

that for all types S with S <: T, that S is a subtype of all the types U that bound

T from above. Choices for S in this particular case are Double and Character, the

only possibility for U is Number. The combination Double and Number is fine, but since

Character ≮: Number, the method does not match. Notwithstanding, the process does

set T equal to the lub of Double and Character. This type is not returned as the type

for T, but, instead, used to further uncover potential type conflicts. For example, if

there would be another constraint on T, say T <: Integer, then this may help establish

more firmly that the types used in computing the lub to obtain T are not the right ones.

When we provide an error message to fix the problem, we can then avoid to suggest

fixing it in a way that in the next compile a clash with the constraint T <: Integer

can occur.

For the second definition of bar, we similarly obtain an inconsistent set of con-

straints. In this case U ranges over the set {Integer}, and neither the constraint

Double <: T nor the constraint Character <: T can be satisfied. For both method

definitions an error message will be provided by our implementation, as seen in Fig-

ure 28. Both ejc and javac give only a single type error message for the invocation.

It is not made clear why the method call matches neither, and, in the case of javac

it is even not clear to which of the two method definitions the method invocation has

been compared.

As an aside, ejc also warns that it makes little sense to have T extend a final class.

This is quite similar to one of the heuristics we describe in (el Boustani and Hage 2010).

However, before we would give such a hint, we make sure that replacing T by its upper

bound actually solves the problem. Since that is not the case here, our implementation

does not provide such a hint.

6 Implementation

We have implemented our work as an extension to the JastAdd Extensible Java Com-

piler (JastAdd EJC) (Ekman and Hedin 2007), which in turn was built on top of

JastAdd (Hedin and Magnusson 2003). The latter is an attribute grammar compiler

that allows specifying compiler semantics in an aspect-oriented way by means of declar-

ative attributes and semantic rules using ordinary Java code. Some more information

on this implementation can be found in Appendix A.

For the convenience of the weak method resolution, the ordering of type variables

and the computation of greatest lower bound have been implemented using JastAdd.

We have contributed the module that we have developed for computing the greatest

lower bound to the maintainers of JastAdd EJC; it has been added to the repository.

The architecture of the resulting compiler is shown in Figure 29: the type checker

sends a method invocation which fails to typecheck to the weak method resolution

which returns a set of methods. The type checker then generates type constraints for

the method invocation and each method declaration using the constraint generation

algorithm described in Section 5. The type checker passes these constraints along to

our constraint solver together with the return type of the method declaration under

consideration and the type of the lvalue if the invocation appears in an assignment con-

text. The constraint solver will then solve the constraints and return an error message

to the type checker if the constraints are unsatisfiable. The error messages returned by



34

Fig. 29 Architecture of our extension to the JastAdd EJC

the constraint solver are maintained and collected by a separate error manager. This

is mainly to facilitate the implementation of a number of heuristics that we use to

suggest fixes for the type error (el Boustani and Hage 2010).

Although we have only discussed method invocations, our extension already gives

some limited support for constructor invocations.

7 Related Work

Thus far, work on improving type error diagnosis has concentrated on strongly typed,

higher-order, polymorphic functional languages, such as ML and Haskell. Indeed, one

of the reasons we set out to do the current study was to see how far our experience in

improving type error diagnosis for Haskell would help us in a different setting.

The PhD thesis of Bastiaan Heeren (Heeren 2005) compiles a number of papers

with the second author and includes an extensive bibliography on improving type error

messages for functional languages. We mention a few of the more important papers.

We omit (Yang et al. 2000), which was already discussed in the introduction.

Heeren categorises papers based on their approach. The simplest approach to im-

prove type error messages is to change the order in which unifications take place, i.e.,

constraints are solved, because that will change the unification that will be held respon-

sible for the inconsistency (Lee and Yi 2000, 1998; McAdam 1998; Hage and Heeren

2009).

The second category consists of explanation systems, which in one way or another

keep track of how a conclusion about a particular type was derived in order to provide

that explanation to the programmer (Wand 1986; Duggan and Bent 1996; Yang 2000;

Yang et al. 2002; Hage and Heeren 2007). We make in particular note of (Yang et al.

2002), because at its basis lies algorithm H, which was inspired by how human subjects

(in an experimental setting) perform type checking. In particular, they discovered that

human subjects focus on the concrete types derived from the use of literals, and make

heavy use of the two-dimensional inspection of code. Contrary to how most algorithms

work, humans avoid type variables when explaining the type of an expression.

A potential problem of explanation systems is that explanations can quickly become

very verbose, because type information can potentially propagate to all corners of the

program. This is less of a problem in the context of Generic Java, because each method

invocation is considered in isolation; reasoning is thereby much more localised.

Repair systems try to isolate a particular cause of a problem, suggesting that this

part of the program should be changed to remedy the mistake. Particular examples



35

are (Walz and Johnson 1986; McAdam 2002; Hage and Heeren 2007; el Boustani and

Hage 2010). The danger of these systems is that they are heuristic: there are always

situations where they will suggest the wrong fix. Thus, some researchers prefer to report

a set of program locations, usually with some guarantee that no location outside this

set can be responsible for the problem. Such a set forms a program slice, and such

approaches are said to perform type error slicing (Dinesh and Tip 1998; Haack and

Wells 2003; Rahli et al. 2010). It is still unknown, however, whether such a system can

be useful in practice as there is not enough information yet on how large slices can

become, and how well the system works in the presence of multiple independent and/or

somewhat related mistakes. We believe that the combination of type error slicing with

type error repair to be very promising, but we have not yet seen any substantial work

in this direction.

A final category consists of systems that allow the programmer to interactively

investigate the types of expressions in the program. Such a system can usually give

more precise feedback, because from the interaction it may obtain more information

from the programmer about his/her intentions. The most well-known attempts in this

direction are Typeview (Huch et al. 2000) and Chameleon (Stuckey et al. 2003, 2004).

Characteristic of all these attempts is that the authors redesign the type inference

process to come up with better error messages. A totally different approach can be

found in (Lerner et al. 2006), which uses a Caml compiler as a black box, and presents

programmers with complete program fixes for parts of their program. This is done by

enumerating variations on the faulty program and submitting these to the compiler to

decide on type correctness.

We consider the current paper to belong to the category of explanation systems,

although our explanations typically will not be long. Our work also has some elements

from (Lerner et al. 2006): although our work is implemented directly in a Java compiler,

we do leave the original type inference process intact.

What sets our work somewhat apart from the literature above is that we need to

deal with subtyping and overloading. Because a programmer may be attempting to

call any number of methods, our method compares the invocation to multiple method

definitions, and for each describes why the call is inconsistent with that method. For

the languages that are the subject of the papers above, such a situation never occurs.

Moreover, our work is complicated by the fact that instead of the elegant Hindley-

Milner type system for the polymorphic lambda-calculus (Milner 1978), we have to

cope with the large, operational specification of Java’s type system, which actually

coincides with its type checking process.

We are not aware of any other work on improving type error messages for languages

besides functional ones, except for (el Boustani and Hage 2009), which is a shorter

version of the current paper, and a follow-up paper that deals with heuristics that can

offer suggestions on how to fix the type error (el Boustani and Hage 2010). Changes with

respect to the former can be summarized as follows: since we have fewer restrictions on

length we have recompiled all the programs with the three tools and have included all

the outcomes without changing the content of the messages. We made one exception:

our implementation also sometimes suggests how to change the program to get rid of

a type error. Since these suggestions are the subject of (el Boustani and Hage 2010),

we have omitted these from our messages, and replaced them with (...). We have

also added quite a few examples including a realistic one, and a related work section.

Finally, we describe more details of the processes involved.



36

Somewhat related to our work is that of Jadud who performed an extensive study

of parse errors and compiler usage for Java (Jadud 2005).

8 Conclusions, Reflections and Future Work

We have described how the type checking process of Generic Java can be extended

to provide more informative type error messages, particularly for method invocations

that involve generics. We have illustrated our work by a sizable number of examples

and have made a download available in which our work is implemented as an extension

to the JastAdd Extensible Java Compiler.

Our work follows three design principles: Principle number one is to leave the (very

complicated) type checking process intact, because any modification of the process

risks changing the set of typable programs. The second principle is to avoid acting on

what you trust the least, e.g., a major hurdle to obtain good type error messages when

following the JLS, is that candidate methods may be disqualified at an early stage of

the type checking process. In this paper, we chose to ignore the generic parts of types,

based on the assumption that this is where programmers make the most mistakes. The

third and final principle is to hold on to type information longer than is necessary

for following the JLS. In our particular case, we kept some of the original constraints

around to make a more informed decision on the causes of the inconsistencies.

There are plenty of directions for future work. The first is to perform a more

global analysis to come up with an even better estimate of what might be the mistake.

For example, type inference is highly compartmentalized in the JLS: each method

invocation is considered more or less in isolation and independent of others. However,

if a lack of understanding of this particular fact is the reason for a mistake, we can

only find that out by going beyond these compartments. This is an often observed

pattern, and one that makes type error diagnosis significantly more complicated than

type checking by itself: to find out what kind of faulty reasoning on the part of the

programmer is responsible for a type error, the improved type inference process must be

able to distinguish between these forms of reasoning, and therefore be able to maintain

and manipulate what, according to the original type system, is inconsistent information.

Beyond method invocations, a particularly interesting and complicated language

construct is that of inner classes. In that case, we have the additional problem of

dealing with the scope/shadowing of type variables, and all the mistakes programmers

can make in these situations.

Furthermore, although we have weakened method resolution somewhat so that we

may determine the method the programmer might have wanted to invoke, there are

plenty of variations left unconsidered: why not also consider methods that are not

visible or accessible and suggest to modify the program so that they become visible

and accessible? There is, in fact, a huge number of possibilities here, and thus far we

have barely scratched the surface.

To have some idea in which direction to look it would be really helpful to know what

kind of mistakes programmers make. Program logging systems like BlueJ might be able

to help us there (Jadud 2005). Having consulted Jadud on the subject, however, we have

learned that the programs he has collected do not contain generics. One promising idea,

suggested by Pierre-Evariste Dagand in private communication, is to offer our system

as a web-based service for Java programmers, and, as part of the service, ask them to

rate the output of our system and that of the standard compilers. As a bonus, we obtain



37

a collection of programs that we can use to validate and improve on our work. Recently,

we found another valuable source of information which is Angelika Langer’s FAQ on

Java Generics (Langer 2008). Based on this FAQ, we plan to perform a systematic

study of the kind of mistakes programmers make, and misunderstandings they might

have about Java Generics. As a more labour-intense alternative to the two previous

two, the empirically based route followed in (Yang et al. 2002) could be explored to

find out, e.g., what kind of mistakes programmers make, and how they themselves

derive the types of expressions in their program. The work presented here can serve to

prepare the way for such further studies.

We note that our work takes the JLS as a starting point, and we have yet to

consider alternative approaches to combining generics with subtyping, as part of, e.g.,

Scala (Odersky 2008) and Timber (Nordlander et al. 2008). However, the second author,

together with the developers of the Timber language, has recently started to look at

the latter language, as an example of a language that adds subtyping to a language

based on the polymorphic lambda-calculus.

Finally then, in (Smith and Cartwright 2008) it is shown how the generics of Java

might be “fixed” to obtain a process that is sound and complete. Although soundness

and completeness are clearly important issues, we believe that intuitiveness and ele-

gance of the type system is important too, particularly for a language that may well

be the first programming language novice programmers encounter. We therefore hope

that any fix will take those properties into consideration as well.

Acknowledgements We acknowledge the involvement of Martin Bravenboer during the early
stages of this project, and thank the anonymous referees for their suggestions and corrections.

References

el Boustani N, Hage J (2009) Improving type error messages for Generic Java. In: Puebla G,
Vidal G (eds) Proceedings of the ACM SIGPLAN 2009 Symposium on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM ’09), ACM Press, pp 131–140

el Boustani N, Hage J (2010) Corrective hints for type incorrect Generic Java programs. In:
Gallagher J, Voigtländer J (eds) Proceedings of the ACM SIGPLAN 2010 Workshop on
Partial Evaluation and Program Manipulation (PEPM ’10), ACM Press, pp 5–14

Damas L, Milner R (1982) Principal type-schemes for functional programs. In: Conference
Record of the Ninth Annual ACM Symposium on Principles of Programming Languages,
Albuquerque, New Mexico, January 1982, ACM Press, pp 207–212

Dinesh TB, Tip F (1998) A slicing-based approach for locating type errors. In: 264, Centrum
voor Wiskunde en Informatica (CWI), ISSN 1386-369X, p 24

Duggan D, Bent F (1996) Explaining type inference. In: Science of Computer Programming
27, pp 37–83

Ekman T, Hedin G (2007) The JastAdd extensible Java compiler. In: OOPSLA ’07: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, ACM, pp 1–18

Gosling J, Joy B, Steele G, Bracha G (2005) Java(TM) Language Specification, The Third
Edition. Addison-Wesley Professional

Haack C, Wells JB (2003) Type error slicing in implicitly typed higher-order languages. In:
Proceedings of the 12th European Symposium on Programming (ESOP), Springer, Lecture
Notes in Computer Science, vol 2618, pp 284–301

Hage J, Heeren B (2007) Heuristics for type error discovery and recovery. In: Horváth Z,
Zsók V, Butterfield A (eds) Implementation of Functional Languages – IFL 2006, Springer
Verlag, Heidelberg, vol 4449, pp 199 – 216



38

Hage J, Heeren B (2009) Strategies for solving constraints in type and effect systems. Electronic
Notes in Theoretical Computer Science 236:163 – 183, proceedings of the 3rd International
Workshop on Views On Designing Complex Architectures (VODCA 2008)

Hedin G, Magnusson E (2003) The JastAdd system – an aspect-oriented com-
piler construction system. Science of Computer Programming 47(1):37–58,
http://www.cs.lth.se/˜gorel/publications/2003-JastAdd-SCP-Preprint.pdf

Heeren B (2005) Top quality type error messages. PhD thesis, Universiteit Utrecht, The Nether-
lands, http://www.cs.uu.nl/people/bastiaan/phdthesis

Heeren B, Hage J, Swierstra SD (2003) Scripting the type inference process. In: Eighth Inter-
national Conference on Functional Programming, ACM Press, New York, pp 3 – 13

Huch F, Chitil O, Simon A (2000) Typeview: a tool for understanding type errors. In: Mohnen
M, Koopman P (eds) Proceedings of 12th International Workshop on Implementation of
Functional Languages (IFL 00), Aachner Informatik-Berichte, pp 63–69

Jadud MC (2005) A first look at novice compilation behaviour using BlueJ. Computer Science
Education 15(1):25 – 40

Langer A (2008) Java generics faqs - frequently asked questions.
Http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html

Lee O, Yi K (1998) Proofs about a folklore let-polymorphic type inference algorithm. ACM
Transactions on Programming Languages and Systems 20(4):707–723

Lee O, Yi K (2000) A generalization of hybrid let-polymorphic type inference algorithms.
In: Proceedings of the First Asian Workshop on Programming Languages and Systems,
National university of Singapore, Singapore, pp 79–88

Lerner B, Grossman D, Chambers C (2006) Seminal: searching for ml type-error messages. In:
ML ’06: Proceedings of the 2006 workshop on ML, ACM, New York, NY, USA, pp 63–73

McAdam BJ (1998) On the Unification of Substitutions in Type Inference. In: Hammond K,
Davie AJT, Clack C (eds) Implementation of Functional Languages (IFL ’98), London,
UK, Springer-Verlag, LNCS, vol 1595, pp 139–154

McAdam BJ (2002) How to repair type errors automatically. In: Hammond K, Curtis S (eds)
Trends in Functional Programming, Intellect, Bristol, UK, vol 3, pp 87–98

Milner R (1978) A theory of type polymorphism in programming. Journal of Computer and
System Sciences 17:348–375

Nordlander J, Carlsson M, Gill A, Lindgren P, von Sydow B (2008) The Timber homepage.
http://www.timber-lang.org

Odersky M (2008) The Scala homepage. http://www.scala-lang.org/
Rahli V, Wells JB, Kamareddine F (2010) A constraint system for a SML type error slicer.

Tech. Rep. HW-MACS-TR-0079, Herriot Watt University, Edinburgh, Scotland
Russell S, Norvig P (2003) Artificial Intelligence: A Modern Approach, 2nd edn, Pearson

Education, chap 5, pp 137–151
Smith D, Cartwright R (2008) Java type inference is broken: can we fix it? In: Proceedings of the

23rd Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’08), ACM, New York, NY, USA, pp 505–524

Stuckey PJ, Sulzmann M, Wazny J (2003) Interactive type debugging in Haskell. In: Haskell’03:
Proceedings of the ACM SIGPLAN Workshop on Haskell, ACM Press, New York, pp 72–83

Stuckey PJ, Sulzmann M, Wazny J (2004) Improving type error diagnosis. In: Haskell’04:
Proceedings of the ACM SIGPLAN Workshop on Haskell, ACM Press, pp 80–91

Torgersen M, Hansen CP, Ernst E, von der Ahé P, Bracha G, Gafter N (2004) Adding wildcards
to the Java programming language. In: Proceedings of the 2004 ACM Symposium on
Applied Computing (SAC ’04), ACM Press, New York, NY, USA, pp 1289–1296

Walz JA, Johnson GF (1986) A maximum flow approach to anomaly isolation in unification-
based incremental type inference. In: Conference Record of the 13th Annual ACM Sym-
posium on Principles of Programming Languages, St. Petersburg, FL, pp 44–57

Wand M (1986) Finding the source of type errors. In: 13th Annual ACM Symp. on Principles
of Prog. Languages, pp 38–43

Yang J (2000) Explaining type errors by finding the sources of type conflicts. In: Michaelson G,
Trinder P, Loidl HW (eds) Trends in Functional Programming, Intellect Books, pp 58–66

Yang J, Michaelson G, Trinder P, Wells JB (2000) Improved type error reporting. In: In
Proceedings of 12th International Workshop on Implementation of Functional Languages,
Springer Verlag, LNCS, vol 2011, pp 71–86

Yang J, Michaelson G, Trinder P (2002) Explaining polymorphic types. The Computer Journal
45(4):436–452



39

A Using the system

To compile the system you need subversion (http://subversion.tigris.org/) and Ant obtain-
able from http://ant.apache.org. Once you have these installed on your system, checkout the
repository

staff.jur.javagenerics/project

on the subversion server located at

https://subversion.cs.uu.nl/

(click on info to get the exact location for the checkout). The README file that you obtain in
the process explains how to proceed: run ant in the Java1.5Backend directory, and afterwards
proceed to the bin directory where the invocation java JavaCompiler -help tells you how the
compiler should be invoked. The subdirectory testing contains a large number of example
programs on which to try out the compiler. Most of these programs also explain in comments
which constraints are generated and how these are used to determine type (in)correctness.
Note that many error messages also suggest a problem fix using heuristics; that part of our
work is discussed in another paper (el Boustani and Hage 2010). The examples in the current
paper have all been included in the special subdirectory testing/listings. To compile, e.g.,
Listing1.java simply write the following at the command prompt while inside the testing
subdirectory:

java -cp ../bin JavaCompiler -d /tmp listings/Listing1.java


