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ABSTRACT
Standard inference algorithms for type systems involving
ML-style polymorphism aim at reconstructing most general
types for all let-bound identifiers. Using such algorithms
to implement modular program optimisations by means of
type-driven transformation techniques generally yields sub-
optimal results. We demonstrate how this defect can be
made up for by using algorithms that target at obtaining
so-called minimal typing derivations instead. The result-
ing approach retains modularity and is applicable to a large
class of polyvariant program transformations.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Polymorphism; F.3.2 [Logics and Mean-

ings of Programs]: Semantics of Programming
Languages—Program analysis; F.3.3 [Logics and Mean-

ings of Programs]: Studies of Program Constructs—Type
structure

General Terms
Languages, Theory

Keywords
annotated type systems, type-driven program transforma-
tion, minimal typing derivations

1. INTRODUCTION
Type-driven program transformation typically proceeds in
two logical phases:

1. an analysis phase in which the program under trans-
formation is annotated in accordance with a (nonstan-
dard) type system capable of expressing certain prop-
erties of interest; and

2. a synthesis phase in which the annotations from the
previous phase are used to drive the actual transfor-
mation of the source program into a target program.

Often such a transformation establishes some form of pro-
gram optimisation.

A manifest advantage of using types in the analysis phase is
that a wide range of techniques and idioms from type sys-
tems can be adopted in the design and implementation of
transformations. Of particular interest is the use of para-
metric polymorphism—as found in modern functional pro-
gramming languages like ML [18] and Haskell [20]—to boost
the precision of type-based analyses and to yield transforma-
tions that naturally support separate compilation. However,
when incorporating ML-style polymorphism into the analy-
sis phase of a type-driven transformation, carefulness is in
order: although it seems natural to base implementations
of such analyses on standard inference algorithms for recon-
structing types in the Hindley-Milner discipline, in practice
the use of such algorithms easily leads to suboptimal trans-
formations. This paper offers a closer look at the problem:

• We demonstrate where adaptations of standard type-
reconstruction algorithms for analysis in optimising
type-driven program transformations fall short. In
particular, we argue that the incentive of such algo-
rithms to associate each let-bound identifier with the
principal type scheme of its definiens is at odds with
the objective to deliver transformations that are as
good as possible.

• To be able to substantiate this claim, we formalise, in
the context of modular program optimisation, the no-
tion of “best” transformations with respect to a given
polymorphic type system. Concretely, we require such
transformations, foremost, to guarantee full correct-
ness in the presence of separate compilation and, next,
to subject isolated compilation units to as agressive as
possible intramodular optimisation.

• In the process, we articulate the connection between
our notion of best transformations and minimal typing
derivations [6], which aim at circumventing “unneces-
sary” polymorphic type assignments.

Throughout the paper we consider, as an example, a sim-
ple type-driven transformation for removing dead code from
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Evaluation t ⇓ w

c ⇓ c
[e-const ]

λx . t1 ⇓ λx . t1
[e-abs]

t1 ⇓ λx . t11 [x 7→ t2 ]t11 ⇓ w

t1 t2 ⇓ w
[e-app]

[x 7→ t1 ]t2 ⇓ w

let x = t1 in t2 ⇓ w
[e-let ]

Figure 1: Natural semantics.

programs written in what is essentially an extended version
of the call-by-name lambda-calculus. We stress, however,
that the concepts under discussion apply to a whole class
of type-driven program transformations, including, for in-
stance, parallelisation [12], dethunkification [2], and update
avoidance [21]. Indeed, we consider the most important con-
tribution of this paper its depiction of a general type-based
methodology for modular optimising program transforma-
tions.

2. ELEMENTARY DEAD-CODE ELIMINA-
TION

Let c range over an abstract set of constant symbols and
x over a countable infinite set of variable symbols. Then,
consider the set of terms given by

t ::= c | x | λx . t1 | t1 t2 | let x = t1 in t2 | ⊥.

That is, terms are built from constants, variables, lambda-
abstractions, function applications, (nonrecursive) local def-
initions, and the special constant ⊥ representing a failing
computation. As usual, function application associates to
the left and lambda-abstractions extend as far to the right
as possible.

Terms are evaluated under a call-by-name strategy. Success-
ful evaluation of a closed term t yields a weak-head normal
form w , which is either a constant or a lambda-abstraction:

w ::= c | λx . t1.

Formally, t evaluates to w if the judgement t ⇓ w can be
produced from the set of inference rules in Figure 1. Note
that, under this nonstrict semantics, the evaluation of the
program (λx . λy . x) t1 t2 does not require the second argu-
ment term t2 to be reduced to weak-head normal form. It is
the goal of dead-code elimination to, within a given program,
identify as many of such nonrequired terms as possible and
subsequently remove them from the program.

In the sequel, we consider a type-driven approach to dead-
code elimination for our term language that breaks down
into a type-based liveness analysis and a translation that
replaces dead terms by the special constant ⊥.

In the analysis phase we make use of types τ , annotated with
liveness properties D and L, ranged over by ϕ. The idea is

Transformation Γ ` t . t ′ : τϕ

Γ ` c . c : baseϕ
[t-const ]

Γ(x) = τϕ

Γ ` x . x : τϕ
[t-var ]

Γ[x 7→ τ1ϕ1 ] ` t1 . t ′
1
: τ2ϕ2

Γ ` λx . t1 . λx . t ′
1
: τ1ϕ1

ϕ
−→ τ2ϕ2

[t-lam]

Γ ` t1 . t ′
1
: τ2ϕ2

ϕ
−→ τϕ Γ ` t2 . t ′

2
: τ2ϕ2

Γ ` t1 t2 . t ′
1
t ′
2
: τϕ

[t-app]

Γ ` t1 . t ′
1
: τ1ϕ1 Γ[x 7→ τ1ϕ1 ] ` t2 . t ′

2
: τϕ

Γ ` let x = t1 in t2 . let x = t ′
1
in t ′

2
: τϕ

[t-let ]

Γ ` t . t ′ : τL

Γ ` t . t ′ : τD
[t-sub]

Γ ` t . t ′ : τD

Γ ` t . ⊥ : τD
[t-elim]

Figure 2: Monovariant dead-code elimination.

to associate the property D with dead code, i.e., code that
is guaranteed not to be evaluated, and the property L with
live code, i.e., code that may be evaluated. Types are then
constructed from a base type base and annotated function
types τ1

ϕ1 → τ2
ϕ2 :

ϕ ::= D | L

τ ::= base | τ1
ϕ1 → τ2

ϕ2 .

Initially, having type environments Γ map from variables x
to pairs τϕ consisting of a liveness type τ and an annotation
ϕ, the transformation is expressed through judgements of
the form

Γ ` t . t ′ : τϕ,

indicating that, in the type environment Γ, the source term
t can be safely transformed into the target term t ′ as its
liveness properties are captured by the type τ and the anno-
tation ϕ. As a notational convenience, pairs (τ1

ϕ1 → τ2
ϕ2)ϕ,

of which the first component denotes a function type, will

be written as τ1
ϕ1

ϕ
−→ τ2

ϕ2 and the now annotated function-
space constructor

·

−→ associates to the right.

The rules for deriving transformations are given in Figure 2.
The axiom [t-const ] expresses that constants are considered
to be of base type and, depending on the context in which
they appear, can be either dead or live. The rule [t-var ]
states that the type and annotation assigned to a variable
have to agree with the corresponding entry in the type envi-
ronment. In the rule [t-lam], assumptions are made for the
type and annotation for the formal parameter of a lambda-
abstraction and the body of the abstraction is analysed and
transformed in a type environment that reflects these as-
sumptions; note that the body is analysed independent from
the liveness of the abstraction itself. The rule for applica-
tions, [t-app], requires that the type and annotation for the
argument have to match the type and annotation for the
formal parameter of the function; moreover, if the applica-
tion is live (i.e., if its result may be evaluated), then so is
the function. In the rule [t-let ] for transforming local defini-
tions, the type and annotation obtained for the definiens are
added to the type environment and the extended type en-
vironment is used to analyse and transform the body of the



definition. Rule [t-sub] introduces subeffecting : it allows for
variables that are live at their binding sites to be considered
dead at some of their use sites, effectively allowing for more
subterms to be identified as dead. As far as the transfor-
mation from source to target terms is concerned, all of the
aforementioned rules simply carry out the identity transfor-
mation; hence, crucial to the intended optimisation is the
rule [t-elim], which states that a dead term may be elimi-
nated and replaced by the special constant ⊥. Note that we
have not included any rule that deals with occurrences of ⊥
in source terms; such terms are simply considered ill-typed.

Assuming that a given program as a whole may be eval-
uated (and thus has to receive the annotation L), trans-
formation proceeds by identifying and eliminating as many
D-annotated terms as possible.

Example 1. Consider again the program (λx . λy . x) t1 t2
and assume that t1 and t2 are closed subterms of arbitrary
types τ1 and τ2, respectively. Then, as the derivation in
Figure 3 demonstrates, the second argument term t2 is in
fact dead and can be safely eliminated, yielding the target
program (λx . λy . x) t1 ⊥.

Here, “safely” means that the transformation preserves the
semantics of the source program. For instance, in the ex-
ample above, we have that for any weak-head normal form
w with t1 ⇓ w , both the source and the target program
evaluate to w .

3. POLYVARIANT LIVENESS ANALYSIS
Liveness, as determined in the analysis phase of the trans-
formation from the previous section, is not an intrinsic prop-
erty: whether a term is live or dead depends on the context
in which it appears. As the following two examples illus-
trate, this is a concern especially for higher-order functions.

Example 2. Let t1 and t2 be closed terms of base type in
the program

let twice = λf . λx . f (f x) in twice (λy . t1) t2,

in which twice is applied to a function that never evalu-
ates its argument. Then, twice is assigned the liveness type

(baseD
L
−→ base

L)
L
−→ base

D L
−→ base

L and dead-code elimina-
tion results in let twice = λf . λx . f ⊥ in twice (λy . t1) ⊥.

Example 3. But in the program

let twice = λf . λx . f (f x) in twice (λz . z) t ,

with t a closed term of base type, twice is applied to a func-

tion of type base
L L
−→ base

L and, so, analysis of twice yields

(baseL
L
−→ base

L)
L
−→ base

L L
−→ base

L, leaving no terms to be
identified as dead.

These examples show that what liveness type to assign to
a higher-order function depends on the functions to which
it is applied. However, in scenarios that require separate

compilation, the arguments to which a function is applied
are, in general, not known at compile-time. So, if a higher-
order function like twice in the previous examples is exported
by a separately transformed module, its liveness analysis
becomes a delicate matter.

Since our aim is to facilitate safe, i.e., semantics-preserving,
transformations, a straightforward approach to analysing ex-
ported or open-scope functions is to subject them to what
Wansbrough [22] calls pessimisation. That is, we simply
assume that any formal parameters of functional type are
to be bound to functions that may use all of their argu-
ments in order to produce a result. For instance, if the
function twice from Examples 2 and 3 above were to be
analysed pessimistically, it would receive the liveness type

(baseL
L
−→ base

L)
L
−→ base

L L
−→ base

L (cf. Example 3). Obvi-
ously, this strategy leads to a safe transformation as there
can be no harm in binding a live argument to a dead pa-
rameter: it will just not be used. The other way around,
i.e., binding a dead argument to a live parameter, would,
however, be unsafe as dead arguments are to be replaced by
⊥.

Unfortunately, the effects of pessimisation propagate to the
use sites of higher-order functions, causing fewer subterms
to be identified as dead:

Example 4. Assume that

Γ ` twice . twice : (baseL
L
−→ base

L)
L
−→ base

L L
−→ base

L

and that t1 and t2 are closed subterms of base type. Then,
in the program twice (λy . t1) t2 (cf. Example 2), the sec-
ond argument term t2 is to be assumed live and cannot be
eliminated during dead-code elimination.

A better but more involved solution to the problem of deal-
ing with open-scope higher-order functions is to opt for a
transformation that is polyvariant or context-sensitive. In
type-driven transformation, this is typically achieved by al-
lowing abstraction over the properties of interest in the anal-
ysis phase. The resulting type system makes essential use of
polymorphic types, much like those of ML and Haskell, but
with the important difference that terms are polymorphic in
their annotations rather than their types.

To make our dead-code elimination polyvariant, we extend
the annotation language with annotation variables drawn
from a countable infinite set ranged over by β. Moreover,
the set of concrete annotations is thought of as a two-point
join-semilattice with D < L and least upper bounds ϕ1tϕ2:

ϕ ::= D | L | β | ϕ1 t ϕ2.

The type language is stratified into monomorphic types τ

and possibly polymorphic type schemes σ:

τ ::= base | τ1
ϕ1 → τ2

ϕ2

σ ::= τ | ∀β. σ1.

The annotation variable β is bound in ∀β. σ1; we write
fav(Γ) for the set of annotation variables that appear free



[x 7→ τ1L, y 7→ τ2D ](x) = τ1L

[x 7→ τ1L, y 7→ τ2D ] ` x . x : τ1L

[x 7→ τ1L ] ` λy . x . λy . x : τ2D
L
−→ τ1L

[ ] ` λx . λy . x . λx . λy . x : τ1L
L
−→ τ2D

L
−→ τ1L

.

..

[ ] ` t1 . t1 : τ1L

[ ] ` (λx . λy . x) t1 . (λx . λy . x) t1 : τ2D
L
−→ τ1L

...

[ ] ` t2 . t2 : τ2D

[ ] ` t2 . ⊥ : τ2D

[ ] ` (λx . λy . x) t1 t2 . (λx . λy . x) t1 ⊥ : τ1L

Figure 3: Example derivation.

Transformation Γ ` t . t ′ : σϕ

Γ ` c . c : baseϕ
[t-const ]

Γ(x) = σϕ

Γ ` x . x : σϕ
[t-var ]

Γ[x 7→ τ1ϕ1 ] ` t1 . t ′
1
: τ2ϕ2

Γ ` λx . t1 . λx . t ′
1
: τ1ϕ1

ϕ
−→ τ2ϕ2

[t-lam]

Γ ` t1 . t ′
1
: τ2ϕ2

ϕ
−→ τϕ Γ ` t2 . t ′

2
: τ2ϕ2

Γ ` t1 t2 . t ′
1
t ′
2
: τϕ

[t-app]

Γ ` t1 . t ′
1
: σ1

ϕ1 Γ[x 7→ σ1
ϕ1 ] ` t2 . t ′

2
: τϕ

Γ ` let x = t1 in t2 . let x = t ′
1
in t ′

2
: τϕ

[t-let ]

Γ ` t . t ′ : σ1
ϕ β /∈ fav(Γ) ∪ {ϕ}

Γ ` t . t ′ : ∀β. σ1
ϕ

[t-gen]

Γ ` t . t ′ : ∀β. σ1
ϕ

Γ ` t . t ′ : ([β 7→ ϕ0 ]σ1)ϕ
[t-inst ]

Γ ` t . t ′ : σϕtϕ0

Γ ` t . t ′ : σϕ
[t-sub]

Γ ` t . t ′ : σD

Γ ` t . ⊥ : σD
[t-elim]

Γ ` t . t ′ : σϕ′

ϕ ≡ ϕ′

Γ ` t . t ′ : σϕ
[t-eq ]

Figure 4: Polyvariant dead-code elimination.

in Γ and ∀(β1, · · · , βn). τ1
ϕ for the pair consisting of the

type scheme ∀β1. (· · · (∀βn. τ1) · · · ) and the annotation ϕ.
Transformations are now expressed through judgements of
the form

Γ ` t . t ′ : σϕ,

with type environments Γ mapping from variables x to pairs
σϕ.

The rules that constitute the polyvariant transformation are
given in Figure 4. Rules [t-const ], [t-lam], and [t-app] are
identical to their monovariant counterparts, while, in com-
parison to Figure 2, rules [t-var ] and [t-elim] just make men-
tion of type schemes rather than types. Rule [t-let ] indicates
that let-bound identifiers can have polymorphic types. In
rule [t-sub ], subeffecting is expressed in terms of the least-
upper bound operator t. Rule [t-eq ] expresses that def-
initional equivalent annotations are interchangeable; here,
equivalence, formally defined in Figure 5, simply conveys
that annotations are indeed interpreted as elements of a join-
semilattice.

Example 5. Using the rules from Figure 4, the function

Annotation Equivalence ϕ ≡ ϕ′

ϕ ≡ ϕ
[q-refl ]

ϕ′ ≡ ϕ

ϕ ≡ ϕ′
[q-symm]

ϕ ≡ ϕ′′ ϕ′′ ≡ ϕ′

ϕ ≡ ϕ′
[q-trans]

ϕ1 ≡ ϕ′

1
ϕ2 ≡ ϕ′

2

ϕ1 t ϕ2 ≡ ϕ′

1
t ϕ′

2

[q-join]
D t ϕ ≡ ϕ

[q-bot ]

L t ϕ ≡ L
[q-top]

ϕ t ϕ ≡ ϕ
[q-idem]

ϕ1 t ϕ2 ≡ ϕ2 t ϕ1

[q-comm]

ϕ1 t (ϕ2 t ϕ3) ≡ (ϕ1 t ϕ2) t ϕ3

[q-ass]

Figure 5: Definitional equivalence of annotations.

twice, defined as

λf . λx . f (f x),

can now be assigned the polymorphic liveness type

∀β. (baseβ
L
−→ base

L)
L
−→ base

β L
−→ base

L,

indicating that the liveness of its second argument depends
on the liveness properties of its first argument.

Example 6. Assume that twice has the polymorphic live-
ness type

∀β. (baseβ
L
−→ base

L)
L
−→ base

β L
−→ base

L

and that t1 and t2 are closed subterms of base type. Then,
in the program twice (λy . t1) t2, the liveness variable β can
be instantiated with D. Consequently, the argument t2 is
annotated with base

D as well, yielding the target program
twice (λy . t1) ⊥.

A crucial observation with respect to polymorphically driven
transformations is that, although pessimisation is no longer
propagated to the use sites of open-scope higher-order func-
tions (cf. Example 4), these functions are themselves still
transformed pessimistically. For instance, having associ-

ated the polymorpic type ∀β. (baseβ
L
−→ base

L)
L
−→ base

β L
−→

base
L with the function λf . λx . f (f x), we need to consider

all possible instantiations of the liveness variable β. In par-
ticular, we need to prepare for β being instantiated with L,
meaning that the function bound to f requires its argument



in order to produce a result. Hence, to keep the transforma-
tion safe, no terms can be eliminated from the definition of
the higher-order function.

Now, let us formalise our notion of safety. To this end, we
first make precise what it means for two terms to have the
same semantics.

Definition 1. Two weak-head normal forms w1 and w2

are extensionally equal, written w1 ∼ w2, if

1. w1 = w2, or

2. for all terms t0 and weak-head normal forms w ′

1, it is
implied from w1 t0 ⇓ w ′

1 that there exists a weak-head
normal form w ′

2 such that w2 t0 ⇓ w ′

2 and w ′

1 ∼ w ′

2.

We say that two terms have the same semantics if they
evaluate to extensionally equal normal forms. Safety of the
transformation then follows from the following correctness
theorem:

Theorem 2 (Semantic Correctness). If Γ ` t . t ′ :
σL and t ⇓ w, then there exists a w ′, such that t ′ ⇓ w ′ and
w ∼ w ′.

4. MINIMAL TYPING DERIVATIONS
A clear advantage of a type-driven approach to program
transformation is that a wide range of techniques and re-
sults from type systems can be readily adapted to a trans-
formational setting. An example was given in the previ-
ous section, where an adaptation of ML-style polymorphism
was used to render type-driven dead-code elimination more
context-sensitive. Now, when implementing the resulting
transformation, it may seem natural to consider an anal-
ogous adaptation of the standard Algorithm W [7] or any
other off-the-shelf algorithm for reconstructing types in ML-
like languages. However, as it turns out, carefulness is in
order as straightforward adaptations of Algorithm W and
other standard inference algorithms, in general, result in
transformations that are suboptimal in a sense that will be
made precise below.

As we will demonstrate shortly, the main defect of standard
inference algorithms in a transformational setting is their in-
centive to associate all let-bound identifiers with their prin-
cipal types [11].

For the polymorphic type system from Section 3, principal
types may be defined in terms of a partial order on annotated
type schemes, presented in Figure 61.

Theorem 3 (Principal Types). If Γ ` t . t ′ : σL,
then there exists a type scheme σ? such that Γ ` t . t ′◦ : σ?

L

for some t ′◦ and σ? 6 σ′′ for all σ′′ and t ′′ with Γ ` t . t ′′ :
σ′′L.
1Note that, in addition to giving priority to the more poly-
morphic of any two equally shaped types, the order in Fig-
ure 6 favours base types over function types (rule [s-bot ])
and, hence, is covariant in both type arguments of the
function-space constructor (rule [s-arr ]).

Type-scheme ordering σ 6 σ′

σ 6 σ
[s-refl ]

σ 6 σ′′ σ′′ 6 σ′

σ 6 σ′
[s-trans]

τ1 6 τ ′
1

ϕ1 ≡ ϕ′

1
τ2 6 τ ′

2
ϕ2 ≡ ϕ′

2

τ1ϕ1 → τ2ϕ2 6 τ ′
1

ϕ′

1 → τ ′
2

ϕ′

2

[s-arr ]

base 6 σ′
[s-bot ]

[β 7→ ϕ ]σ1 6 σ′

∀β. σ1 6 σ′
[s-inst ]

σ 6 σ′

1
β /∈ fav(σ)

σ 6 ∀β. σ′

1

[s-skol ]

Figure 6: Partial order on annotated type schemes.

Intuitively, a principal type σ? of a term t is the most
polymorphic type assignable to t , guaranteeing the highest
degree of context-sensitivity. However, assigning principal
types to all let-bound identifiers, as Algorithm W and the
like aim at, typically results in analyses that are “too poly-
variant”:

Example 7. Consider again the program

let twice = λf . λx . f (f x) in twice (λy . t1) t2

from Example 2, in which t1 and t2 are closed subterms of
base type. Assigning twice its principal type

∀(β1, · · · , β6).

(baseβ1
β1tβ2tβ3tβ4−−−−−−−−−→ base

β1tβ2tβ3)
L
−→

base
β1tβ5

β6−→ base
β2

results in a conservative transformation that accounts for
the possibility that β1 will be instantiated with L. Conse-
quently, the given program is transformed into let twice =
λf . λx . f (f x) in twice (λy . t1) ⊥, missing out on the oppor-
tunity to eliminate the subterm (f x) from the definiens of
twice (cf. Example 2).

As the example demonstrates, context-sensitivity here comes
at the expense of conservativeness. Hence, when assigning
a possibly redundant polyvariant liveness type to a locally
defined function (or, more general, a function with a closed
scope), one risks reducing the opportunities for dead-code
elimination unnecessarily.

Note, however, that that is not to say that polyvariance is
to be avoided for closed-scope functions altogether. Indeed,
polyvariance still plays a valuable rôle in keeping pessimisa-
tion from propagating to the use sites of higher-order func-
tions.

Example 8. Let t0 be a binary operation on terms of base
type, and t1 and t2 closed subterms of base type. Then,
assigning a polyvariant liveness type to the locally defined
higher-order function twice in the program

let twice = λf . λx . f (f x) in
t0 (twice (λy . t1) t2) (twice (λz . z) t2)

allows for the elimination of the dead argument term t2 in
the first application of twice, yielding



let twice = λf . λx . f (f x) in
t0 (twice (λy . t1) ⊥) (twice (λz . z) t2).

If we were to assign a monomorphic type to twice instead,

the only safe choice would be (baseL
L
−→ base

L)
L
−→ base

L L
−→

base
L, which forces the analysis to identify both occurrences

of t2 as live, preventing the elimination of the first occur-
rence.

The problem that a single application of a monomorphi-
cally typed higher-order function to a live argument forces
all arguments to that function to be live, is known as the
poisoning problem [23] and the example above shows how
it is solved by allowing close-scoped functions to have poly-
morphic types.

In summary, the problem of standard inference algorithms
is not so much that they assign polymorphic types to local
functions, but rather that they associate local functions with
their most polymorphic type. A better approach would be
to assign local functions types that are only as polymorphic
as needed:

• If a closed-scope higher-order function is only applied
to dead arguments, the relevant formal parameter is
to receive the monomorphic annotation D, so that the
body of the function can be optimised as agressively
as possible.

• If a closed-scope higher-order function is only applied
to live arguments, its formal parameter could just as
well receive the monomorphic annotation L as nothing
can be gained by making it context-sensitive.

• If a closed-scope higher-order function may be applied
to both dead and live arguments, its formal parameter
should be annotated with a polymorphic annotation
variable in order to avoid the poisoning problem.

At the same time, to ensure the highest degree of safety and
flexibility, exported (i.e., open-scope) functions should be
assigned their principal types.

Now, the approach outlined above is suggestive of adapting
Bjørner’s notion of minimal typing derivations [6] to our
transformational setting. A typing derivation for a given
term and type is minimal if no other typing derivation for the
same term and type would avoid type abstractions where the
derivation under consideration could not. In our situation,
we are interested in derivations for the principal types of
separately compiled terms; these derivations then need to be
minimal with respect to abstraction over liveness properties.

By definition, the minimality of a typing derivation can not
be read from the type that is assigned to a term. Instead,
in order to state that a given transformation is not only
correct, but also the “best” of all possible transformations of
a term, we also need to take into account, as an abstraction
of the derivation, the target term that is produced by the
transformation. In this target term, unnecessary liveness
abstractions that trigger suboptimal transformations, show
up as uneliminated terms that could have otherwise been
replaced by ⊥.

Term ordering t 6 t ′

t 6 t
[u-refl ]

t 6 t ′′ t ′′ 6 t ′

t 6 t ′
[u-trans]

t1 6 t ′
1

λx . t1 6 λx . t ′
1

[u-abs]
t1 6 t ′

1
t2 6 t ′

2

t1 t2 6 t ′
1
t ′
2

[u-app]

t1 6 t ′
1

t2 6 t ′
2

let x = t1 in t2 6 let x = t ′
1
in t ′

2

[u-let ]
⊥ 6 t ′

[u-bot ]

Figure 7: Partial order on terms.

To make our notion of best transformations precise, we de-
fine a partial order on terms, given in Figure 7. Note that
the ordering is congruent and has ⊥ as its least element. In-
tuitively, we have that t 6 t ′ if t has more code eliminated
than t ′.

Now, in addition to the correctness of the transformation
(Theorem 2), we have that dead-code elimination yields a
target term that is at least as “good” as the corresponding
source term:

Proposition 4. If Γ ` t . t ′ : σϕ, then t ′ 6 t.

However, we actually wish for a stronger result: in general,
a term admits multiple transformations and we are inter-
ested in the best of these transformations. But what consti-
tutes the best transformation? First of all, to support sepa-
rate transformation, we demand that a transformation is as
context-sensitive as possible. Therefore, it seems natural to
require that the best transformation for an exported term
corresponds to the term’s principal type (cf. Theorem 3).
But still, there may be many derivations that result in a
principal type for a given term. From these derivations, we
will favour the one that maximises the number of eliminated
subterms. Paramountly, the following theorem guarantees
the existence of such derivations:

Theorem 5 (Principal Solutions). If Γ ` t . t ′ :
σL, then there exists a type scheme σ? and a term t ′? such
that

1. Γ ` t . t ′? : σ?
L,

2. σ? 6 σ′′ for all σ′′ and t ′′ for which Γ ` t . t ′′ : σ′′L,
and

3. t ′? 6 t ′′ for all t ′′ for which Γ ` t . t ′′ : σ?
L.

It then remains to come up with an algorithm that computes
such principal solutions. As argued, straightforward adap-
tions of AlgorithmW and the like will not do as these are pri-
marily concerned with computing principal types. Instead,
one needs an algorithm that computes minimal derivations
for principal types. An example of such an algorithm is
an adaptation of the two-pass algorithm of Bjørner [6]. A
one-pass algorithm appears in the first author’s forthcoming
PhD thesis.



5. RELATED WORK
Minimal typing derivations were considered in the context
of ML by Bjørner [6] as an alternative to the typing deriva-
tions produced by standard inference algorithms such as
Algorithm W. Applications that benefit from minimal typ-
ing derivations for traditional (i.e., nonannotated) type sys-
tems, include unboxing analysis and resolution of overload-
ing. Bjørner gives an algorithm for computing minimal typ-
ing derivations, that postprocesses suboptimal derivations
produced by conventional algorithms such as Algorithm W.

In this paper, we have focussed on enhancing transformation
systems that exploit ML-style let-polymorphism as a means
to support separate compilation. Orthogonally, others have
made efforts toward increasing the modularity of type-based
analyses, most notably by considering type systems that ad-
mit, in addition or in lieu of mere principal types, so-called
principal typings [14] and that allow for genuine composi-
tional analysis. Such systems have been succesfully devel-
oped on top of rank-2 intersection types [10, 3, 13, 4] and,
at the cost of increased implementation effort, approaches
based on the work of Kfoury and others [16, 15] seem to al-
low for analyses that involve intersection types of arbitrary
finite rank. We believe that such systems are amendable to
notions of intramodular optimality that are similar to our
notion of prinicipal solutions.

Although dead code does not occur often in hand-written
code, it does arise frequently as a result from optimising
program transformations such as inline expansion and con-
stant propagation (see, for instance, Aho et al. [1]). Also,
programs extracted from proofs conducted in logical frame-
works typically carry a significant share of dead code [19].

Dead-code elimination is a special instance of useless-code
elimination which intends to avoid computations that have
no effect on the outcome of a computation, thus reduc-
ing execution time. Dead-code elimination only aims to
identify expressions that never need to be evaluated and
is mainly intended to reduce program size. A related analy-
sis is useless-variable elimination, which intends to discover
variables and arguments to functions that are not relevant
to the outcome. Damiani and Giannini [9] suggest that
an effective approach to useless-code elimination is to first
replace unneeded computations by ⊥ (dead-code elimina-
tion) and then apply useless-variable elimination to further
optimise the program. Many authors have contributed to
the investigation of type-driven useless-variable elimination.
Kobayashi [17], for example, defines a type and effect sys-
tem for useless-variable elimination and presents a recon-
struction algorithm that closely follows Algorithm W, en-
joying similar properties in terms of ease of implementa-
tion and efficiency. Kobayashi is the first to provide exam-
ples of the interaction between useless-variable elimination
and polymorphism: useless-variable elimination can make
functions more polymorphic and polymorphism allows for
more useless-variable elimination. For a more comprehen-
sive overview of the field, the reader is referred to Berardi
et al. [5] and Daminani [8].

6. CONCLUSION
Within the context of modular type-driven program trans-
formation, we have considered how minimal typing deriva-

tions may amplify program optimisation.

In the interest of separate compilation, selecting the princi-
pal type for an exported function implies that no assump-
tion is made about the contexts in which the function will be
used, and, thus, ensures that full flexibility is maintained.
The choice for a minimal typing derivation, on the other
hand, ensures that, local to a module, the number of oppor-
tunities for optimisation is maximised. Importantly, this is
done without endangering safety and without changing the
principal types of any exported functions.

We have illustrated our approach by means of an intention-
ally easy polyvariant transformation for dead-code analysis.
We stress, however, once more that our ideas also apply to
other, more involved, type-based transformations such as
parallelisation, dethunkification, and update avoidance.
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