
Verification Challenge, On Building Trees of
Minimum Height

Liewe Thomas van Binsbergen João Paulo Pizani Flor

July 5th, 2013

Coq files distributed:
• Main.v: Main function and proof
• SInc.v: Proofs needed for fold_rightstep[]
• StepN.v: Definition of step using an amortizing argument
• Minimum.v: Proofs about foldl1join

• Tree.v: Definition of (functions on) trees
• Helpers.v: Helper lemmas that come in handy in the other files
• FoldStep.v: Trying to define fold_rightstep[] as a single function
• Function.v: Trying to define step using the Function keyword

Introduction

The functional pearl “On Building Trees of Minimum Height” by Richard S.
Bird solves the problem of building a tree out of a list of sub-trees, in such a way
that the resulting tree has the input list as its frontier while being of minimum
height. The height of a tree is defined as the maximum depth of any node node
in the tree.

Local minimum pairs

When we are joining pairs together repeatedly, we always end up with a tree
that has the input list as its frontier. This paper introduces the concept of ‘local
minimum pairs’ (LMP), for which it is always ‘safe’ to join them, in respect to
the height of the resulting tree.

1



Lemma 1

The author proves a lemma (which we will call ‘Lemma 1’) that says that we
can safely join a local minimum pair in the process of building a tree. Where
safely means that we do not lose the opportunity of constructing a tree that has
a minimum height.

In other words, to find a tree of minimum height we can always select the first
lmp that we encounter in our input list and join it. Since any list has always at
least one lmp this process will halt in a single tree that is of minimum height.

The main definition

The author provides us with an algorithm that consists of two steps. One ‘pre-
processing’ step that will produce a list of trees which is strictly increasing (using
the height of the trees as the cost function), and a final step that will transform
this pre-processed list (which might already contain but a single element) into a
single tree.

Since we show that for any strictly increasing list, the leftmost pair is always an
lmp, using foldl join on this list will create a tree of minimal height.

build = foldl1 join . fold_right step []

This algorithm works in linear time due to the pre-processing. In order to prove
the correctness of this algorithm we will split up the work in two phases (each
on one end of the function composition operator):

• First that fold_right step [] produces a strictly increasing list.
• Second that foldl1 join, given a strictly increasing list, produces a tree of

minimum height

Proving that the tree is of minimum height

Proving that foldl1 join produces a tree of minimum height relies strongly on
‘Lemma 1’. We can take two approaches to prove this:

• Proving Lemma 1 is correct and that foldl1 join always selects an lmp,
when given a strictly increasing list.

• Proving that foldl1 join produces a tree of minimal height, when given a
strictly increasing list

2



Both approaches will be equally correct, however in the first approach the link
between Lemma 1 and foldl1 join is not explicit (only implied). This, however,
makes it easier to prove, due to separation of concerns.

We assume that the definition of fold_left that we have imported is indeed
correct.

The loop foldl1 join will always use join, unless the input list contains but a
single element. From the definition of fold_left we know that foldl1 join will
always join the first pair of a list.

All we have to show is that every join operation performed by fold_left is ‘safe’
(invariant), where a safe join means that the joined pair is a LMP in the given
input list. Which comes down to showing that the left-most pair in a strictly
increasing list is always an LMP (precondition) and that appending the join of
the leftmost pair of a strictly increasing list preserves the fact that the leftmost
pair of this list is an LMP - even though a list produced this way does not
necessarily have to be strictly increasing anymore (invariant is preserved).

The proofs can be found in the file Minimum.v and are named s_inc_leftmost_lmp
and join_preserves_leftmost_lmp. Lemma 1 can also be found at this
location.

Definition of foldl1

We have defined foldl1 (which is usually not total) by making it take as argument
a proof that the input list is not empty, which allows us to ignore the usual base
case of foldl.

Proving strict increasingness

In order to prove that fold_right step [] produces a strictly increasing list we
have to do perform case analysis on the step function.

Function step acts very much like the list constructor cons, except that it analyzes
the first elements of the list that it will add to by pattern matching.

When the newly element is smaller then the element currently on top of the list
we can just add it, otherwise we will join the new element and the head of the
list together and add this joined tree to the list instead (again using step). If
we try to use step as a compositional operator for creating a decreasing list (by
giving it values in decreasing order), the result will simply be a single tree since
join will be applied to all elements.

Using join is only safe (looking at the properties that the entire algorithm should
have) when the joined pair is an LMP. This is not, however, the reason why

3



the author chose to examine the first two elements of the list, as we will discuss
later.

In order to define the step function (which uses nested recursion and is therefore
not clearly structurally decreasing), we have tried several methods used for
expressing ‘general recursion’ in Coq, including:

• Using the keyword Function

• Define fold_right step [] as a single function, since fold_right has an
obviously decreasing argument.

• Using the Bove-Capretta method (pattern-matching on a proof of termina-
tion).

• Using well-founded recursion.
• Using a syntactically alternative definition, which is semantically equivalent
• Using a decreasing natural number and ensuring that it is always at least

as big as the length of the input list, which we know is decreasing. We
pattern match on this number and return a bogus result when it is zero.
This means that if we want to prove that step has certain properties, it
can not return this bogus result (the result is only bogus when the length
of the worklist is zero itself). This corresponds very much to an amortizing
argument, giving the function step a limit on the number of recursive calls
it can use.

Keyword Function

Using the Function keyword seemed like a good approach, since we expected
to be able to {measure length input}, where input is the input list. However,
Function can not be used to define functions with nested recursion (a recursive
call of which the result is an argument to a recursive call).

(This attempt can be found in file Function.v)

Bove-Capretta

The same problem was encountered when using the Bove-Capretta method.
Similar to Bove and Capretta’s example of QuickSort in their paper on ‘General
Recursion’, they provided an example of a function that has a nested recursive
call. Bove and Capretta described in their paper a problem about nested recursive
calls, namely that the predicate and function we want to define depend on each
other mutually. This is exactly the problem we encountered while defining the
function step. The solution provided in the paper is based on the work of Dybjer
(2000), who introduced a method of defining a termination predicate and the
function it supports “at the same time”, even though they depend on each other.
This method does, however, not help us to define the function / predicate pair
in Coq.

4



Defining FoldStep

Another unsuccessful approach was trying to define fold_right step [] as a single
function (see FoldStep.v). The function is defined as to have two lists of trees
as arguments. One being the worklist, while the other is the accumulated result.
When the worklist is empty we simply return the accumulated result, otherwise
we add the first element to the worklist to the accumulated result in such a way
that it should match the definition of step in Bird’s paper.

This new accumulated result is then given as argument to a recursive call of
the fold_step function together with the decreased worklist. When we reach
the cases of step where we need a nested recursive call, due to the nature of the
definition of fold_step, we have to invent a new worklist which contains only a
single element.

This seems to be the problem of this definition, since we have no certainty that
the worklist of the current function call is actually larger then a single element.
Which means that we can not be sure that the old worklist is always larger then
the new worklist, since the old and the new worklist can both be of length one.

Amortizing argument

A method used successfully was to use something very similar to an amortizing
argument. Namely, we give the step function a natural number as additional
argument and make sure that this number is always decreased when being passed
on with every recursive call. In order to assure that this can happen we need to
pattern match on it and provide a function result when the number is zero. The
result we give in this case is arbitrary and to prevent this result from ever being
returned we must give the initial call a value high enough natural number to
begin with.

This number has to be related to the length of the input list, and can not be
arbitrary since we always increase the size of the input list to such an extent
that any arbitrary number is not enough. However, we can see, by analyzing
the algorithm (the paper suggests an amortizing approach), that the input list
decreases at least by one in every recursive call. And since our natural number
will exactly decrease by one every recursive call, we can use the length of the
input list as the initial value of this extra argument. We were successful in
defining the step function using this method, although unable to prove the
properties that we wanted, as will be discussed later.

Well-founded recursion

Studying the chapter on ‘Well-founded recursion’ by Adam Chlipala, we came
to the conclusion that we might well run into the same problem we faced when

5



attempting the Bove-Capretta method. The function that ‘splits’ the recursive
argument is namely the function we are trying to define itself, unlike the filter
used for defining QuickSort in the Bove-Capretta example and also unlike split
that is being used in the MergeSort example in the chapter on ‘Well-founded
recursion’.

Alternative Definition

Thinking about how to show that our nested recursive call gives back a list which
is smaller then the input case we did came up with an alternative definition of
the step function, which is semantically the same. Looking back at the original
definition of the step function in the paper, there is only one problem to solve,
namely the case:

t >= u /\ t >= v

since it is not obvious that

step (join u v) ts

is structurally smaller then u :: v :: ts. However, Coq also complains about the
case:

t >= u /\ t < v

since the recursive call should have an argument ts as opposed to v :: ts. We
solved this issue by separating the case analysis of the input list into:

match xs with
| nil => ...
| u :: vs =>

match vs with
| nil => ...
| v :: ts => ...

which allows us to give vs as an argument to step (join t u) instead of (v :: ts),
which is accepted by Coq (since it is not a function application). However, the
real problem, as mentioned before, is defining:

step t (step (join u v) ts)

where

6



step (join u v) ts

should be structurally smaller then u :: v :: ts. We solved this problem by
replacing this recursive call by a call to another function which behaves in the
same way.

Lets take a look at how this function should behave. As mentioned before, the
step function acts exactly like the cons constructor of a list, except that it will
join the new element to be inserted with the head of the list when the new
elements height is not smaller the that of the head of the list. This behavior
corresponds directly to the definition of the function called join_until_smaller
which can be found in SInc.v

Proofs about the results of fold step []

We have to show that fold step [] produces a non-empty list (in order to use
foldl1) and have to show that this list is strictly increasing (to guarantee that
foldl1 join will always join LMPs). The proofs can be found in SInc.v and their
theorems are named fold_step_not_nil and fold_step_inc, respectively. Both
proofs rely heavily on the fact that these properties hold for the step function
itself, which is shown in the proofs of theorems step_inc and step_not_nil.

We were able to give these proofs for our alternative definition of step (see
SInc.v), but not for the definition using an amortizing argument (see StepN.v).
The difference lies in the fact that the alternative definition of step no longer
has a nested recursive call, then requiring only the right induction hypothesis,
and being therefore much easier.

Open endings

Given the theorems and definitions, we have shown that the algorithm proposed
in the paper ‘On building trees of minimum height’ by Richard S. Bird is indeed
correct, meaning that the algorithm produces a tree of minimum height from an
input list of subtrees and does so in such a way that the frontier of the result
tree is the same as the input list. However, there are some open endings to our
story. Namely:

• We have not proved the correctness of Lemma 1, which can be considered
a big miss (since the correctness of the algorithm relies on it). However,
Bird has proven it to be correct in the paper itself, which made us decide
to focus on (the correctness of) other definitions.

• Prove foldl1 join ⇒ minimum using Lemma 1 and a definition of
minimum explicitly, in such a way that it can be used in the proof

7



for build. We have only shown this implicitly, meaning that we did not
relate foldl1join directly to Lemma 1 or the definition of minimum.

• Proving explicitly that join is only applied to local minimum pairs.

Proving explicitly that join is only applied to local mini-
mum pairs.

So far we have always assumed that join is only applied to local minimum pairs.
Except for the joins used in foldl1 join, we have shown that they are always
LMPs. Relying on the fact that in every case a join is used, it should be clear
which of the LMP constructors (cases) apply.

To be more correct we could have made this explicit by changing the definition
of join in such a way that it only works on pairs of which a proof that they
are an LMP can be given. However, two trees are only a local minimum pair
in respect to their context, meaning that we have to change join not only to
receive two trees as input but also the list in which the two trees are a member.

Not only will this definition make all other definitions (and proofs) much more
cluttered, but we can also fool this definition by always giving it the list with
only the two elements of the pair and using the s_inc_two constructor to build
the proof that they are a local minimum pair (for the list in which only they are
present).

8


	Coq files distributed:
	Introduction
	Local minimum pairs
	Lemma 1

	The main definition
	Proving that the tree is of minimum height
	Definition of foldl1

	Proving strict increasingness
	Keyword Function
	Bove-Capretta
	Defining FoldStep
	Amortizing argument
	Well-founded recursion
	Alternative Definition
	Proofs about the results of foldstep[]


	Open endings
	Proving explicitly that join is only applied to local minimum pairs.


