Verifying Richard Bird's “On building trees of
minimum height”

L.T. van Binsbergen J.P. Pizani Flor

Department of Information and Computing Sciences, Utrecht University

Wednesday 26" June, 2013

i
7 =
N

&
u

Universiteit Utrecht

g,

1

“Combining a list of trees”

The pearl

Given a list of trees, build a tree (of minimum height) that has
the elements of the list as frontier (preserving order).

» We want to minimize cost, where cost means:
cost t = (max i: 1< i< N:depth;+ h;)

» depth; is the length of a path from root to tip /
» h; is the height of the it element of the input list

N
- 2
% & % Universiteit Utrecht

KN}

2

Simpler but equivalent problem

The pearl
The problem can be stated with natural numbers instead of
trees being the elements of the input list.
» hs = [hl,hg,...,h/\/]
» Each element of the list is then considered the height of
the tree.
» We use this “simplified” form of the problem in an
example, but the “full” form is the one verified.
<3 vy.
§ U% Universiteit Utrecht

&
“

3

LMP - Local Minimum Pair

The basis of the algorithm proposed is the concept of a “local ~ The algorithm
minimum pair”:
» A pair (t;, tit1) in a sequence tj(1 < i < N) with heights
h; such that:
* max (h,'_,', h,) > max (/’l,‘7 h,'+1) < max (h/+1, h,‘+2)
» An alternative set of conditions, used in the proof of
correctness:
e hip1 < hi < hiya, or
* (hi < hiy1 < hizo) A(hiz1 > higa)

%
N

¢ Universiteit Utrecht

/A
|

&
U

4

Greedy algorithm - example

The algorithm

» There is at least one LMP, the rightmost one.
» The algorithm combines the rightmost LMP at each stage.

» Example in the whiteboard. ..

W,
N

¢ Universiteit Utrecht

/A
|

&
%

5

Correctness of the algorithm

The correctness of this algorithm relies fundamentally on the The algorithm
so-called “Lemma 1":

“Suppose that (t;, ti+1) in an Imp in a given sequence of trees
tj(1 <j < N). Then the sequence can be combined into a tree
T of minimum height in which (t;, t;+1) are siblings.”

N
- 2
% & % Universiteit Utrecht

KN}

6

Correctness of the algorithm

The correctness of this algorithm relies fundamentally on the The algorithm
so-called “Lemma 1":

“Suppose that (t;, ti+1) in an Imp in a given sequence of trees
tj(1 <j < N). Then the sequence can be combined into a tree
T of minimum height in which (t;, t;+1) are siblings.”

» In the paper, the proof of this lemma is done by
contradiction and case analysis on whether the trees are
critical.

A
25
AN

Universiteit Utrecht

6

Correctness of the algorithm

How we expressed “Lemma 1" in Coq:

The algorith
Theorem Lemmal: forall (1 s : list tree) (a b : tree) ¢ sleerthm

(sub : 1 = [a;b] ++ s),

Impabl —>

exists (t : tree), siblings t a b -> minimum 1 t.
Proof.
Admitted.

Fixpoint siblings (t : tree) (a b : tree) : Prop :=
match t with

| Tip _ => False
| Bin _ x y =>a=x/\ b=y \/ siblings x a b \/ siblings y a b
end.

Definition minimum (1 : list tree) (t : tree) : Prop :=
forall (t’ : tree), flattemn t’ =1 -> ht t <= ht t’.
Y

= U = Universiteit Utrecht

KN}

The “build” function and foldl1

The “top level” function of the algorithm looks like this:

build = foldll join . foldr step []
Implementation

» The first big issue we face is how to describe a total
version of foldll in Coq.

¢ Universiteit Utrecht

8

The “build” function and foldl1

The “top level” function of the algorithm looks like this:

build = foldll join . foldr step []

Implementation

» The first big issue we face is how to describe a total
version of foldll in Coq.

» We modeled this by passing a proof that the list is
non-empty:
Definition foldll (f : tree -> tree -> tree) (1 : list tree)
(P : 1 <> nil) : tree.
case 1 as [| x xs].
contradiction P.
reflexivity.
apply fold_left with (B := tree).
exact f. exact xs. exact x.
Defined.

A%
W

/A
|

Universiteit Utrecht

8

Non-structural recursion in step

The other BIG issue faced by us is the use of non-structural
recursion in the function step:

step t [1 = [t]

step t [u] Implementation
| ht t < ht u = [t,u]
| otherwise = [join t ul

stept (u: v : ts)
| ht t<htu=t :u:v:ts
| ht t < ht v = step (join t w) (v : ts)
| otherwise = step t (step (join u v) ts)

We tried:

» “Function” keyword.
» Bove-Capretta
e Termination predicate and step are mutually recursive.

» Define step using structural recursion on a natural <
n 2 /en(/) %U% Universiteit Utrecht

KN}

9

	The pearl
	The algorithm
	Implementation

