Verifying Richard Bird's "On building trees of minimum height"

L.T. van Binsbergen J.P. Pizani Flor

Department of Information and Computing Sciences, Utrecht University

Wednesday 26th June, 2013

Universiteit Utrecht

Given a list of trees, build a tree (of minimum height) that has the elements of the list as frontier (preserving order).

• We want to minimize *cost*, where *cost* means:

 $\operatorname{cost} t = (\max i : 1 \le i \le N : \operatorname{depth}_i + h_i)$

- depth_i is the length of a path from root to tip i
- ► *h_i* is the height of the *ith* element of the input list

The pearl The algorithm

Implementation

Simpler but equivalent problem

The problem can be stated with natural numbers instead of trees being the elements of the input list.

- $hs = [h_1, h_2, \dots, h_N]$
- Each element of the list is then considered the *height* of the tree.
- ► We use this "simplified" form of the problem in an example, but the "full" form is the one verified.

LMP - Local Minimum Pair

The basis of the algorithm proposed is the concept of a "local minimum pair":

• A pair (t_i, t_{i+1}) in a sequence $t_i (1 \le i \le N)$ with heights h_i such that:

• $\max(h_{i-i}, h_i) \ge \max(h_i, h_{i+1}) < \max(h_{i+1}, h_{i+2})$

An alternative set of conditions, used in the proof of correctness:

•
$$h_{i+1} \le h_i < h_{i+2}$$
, or

•
$$(h_i < h_{i+1} < h_{i+2}) \land (h_{i-1} \ge h_{i+1})$$

Greedy algorithm - example

- There is *at least* one LMP, the rightmost one.
- The algorithm combines the rightmost LMP at each stage.
- Example in the whiteboard...

Correctness of the algorithm

The correctness of this algorithm relies fundamentally on the so-called "Lemma 1":

"Suppose that (t_i, t_{i+1}) in an *Imp* in a given sequence of trees $t_j (1 \le j \le N)$. Then the sequence can be combined into a tree T of minimum height in which (t_i, t_{i+1}) are siblings."

Correctness of the algorithm

The correctness of this algorithm relies fundamentally on the so-called "Lemma 1":

"Suppose that (t_i, t_{i+1}) in an *Imp* in a given sequence of trees $t_j (1 \le j \le N)$. Then the sequence can be combined into a tree T of minimum height in which (t_i, t_{i+1}) are siblings."

In the paper, the proof of this lemma is done by contradiction and case analysis on whether the trees are critical.

Correctness of the algorithm

How we expressed "Lemma 1" in Coq:

```
The algorithm
Theorem Lemma1: forall (1 s : list tree) (a b : tree)
  (sub : l = [a;b] ++ s),
  lmp a b l ->
  exists (t : tree), siblings t a b -> minimum l t.
Proof.
Admitted.
Fixpoint siblings (t : tree) (a b : tree) : Prop :=
  match t with
  | Tip _ => False
  | Bin _ x y => a = x /\ b = y \/ siblings x a b \/ siblings y a b
  end.
Definition minimum (1 : list tree) (t : tree) : Prop :=
  forall (t' : tree), flatten t' = 1 \rightarrow ht t \leq ht t'.
```


Universiteit Utrecht

The "build" function and foldl1

The "top level" function of the algorithm looks like this:

build = foldl1 join . foldr step []

The first big issue we face is how to describe a total version of *foldl1* in Coq.

The "build" function and foldl1

The "top level" function of the algorithm looks like this:

build = foldl1 join . foldr step []

- The first big issue we face is how to describe a total version of *foldl1* in Coq.
- > We modeled this by passing a proof that the list is non-empty: Definition foldl1 (f : tree -> tree -> tree) (l : list tree) (P : 1 <> nil) : tree. case l as [| x xs]. contradiction P. reflexivity. apply fold_left with (B := tree). exact f. exact xs. exact x. Defined.

Non-structural recursion in step

The other BIG issue faced by us is the use of non-structural recursion in the function *step*:

We tried:

- "Function" keyword.
- Bove-Capretta
 - Termination predicate and step are mutually recursive.
- ▶ Define step using structural recursion on a natural n ≥ len(l).

Universiteit Utrecht

Implementation