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“Combining a list of trees”

Given a list of trees, build a tree (of minimum height) that has
the elements of the list as frontier (preserving order).

I We want to minimize cost, where cost means:

cost t = (max i : 1 ≤ i ≤ N : depthi + hi )

I depthi is the length of a path from root to tip i

I hi is the height of the i th element of the input list
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Simpler but equivalent problem

The problem can be stated with natural numbers instead of
trees being the elements of the input list.

I hs = [h1, h2, . . . , hN ]

I Each element of the list is then considered the height of
the tree.

I We use this “simplified” form of the problem in an
example, but the “full” form is the one verified.
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LMP - Local Minimum Pair

The basis of the algorithm proposed is the concept of a “local
minimum pair”:

I A pair (ti , ti+1) in a sequence ti (1 ≤ i ≤ N) with heights
hi such that:

• max (hi−i , hi ) ≥ max (hi , hi+1) < max (hi+1, hi+2)

I An alternative set of conditions, used in the proof of
correctness:

• hi+1 ≤ hi < hi+2, or
• (hi < hi+1 < hi+2) ∧ (hi−1 ≥ hi+1)
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Greedy algorithm - example

I There is at least one LMP, the rightmost one.

I The algorithm combines the rightmost LMP at each stage.

I Example in the whiteboard. . .
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Correctness of the algorithm

The correctness of this algorithm relies fundamentally on the
so-called “Lemma 1”:

“Suppose that (ti , ti+1) in an lmp in a given sequence of trees
tj(1 ≤ j ≤ N). Then the sequence can be combined into a tree
T of minimum height in which (ti , ti+1) are siblings.”

I In the paper, the proof of this lemma is done by
contradiction and case analysis on whether the trees are
critical.
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Correctness of the algorithm

How we expressed “Lemma 1” in Coq:

Theorem Lemma1: forall (l s : list tree) (a b : tree)

(sub : l = [a;b] ++ s),

lmp a b l ->

exists (t : tree), siblings t a b -> minimum l t.

Proof.

Admitted.

Fixpoint siblings (t : tree) (a b : tree) : Prop :=

match t with

| Tip _ => False

| Bin _ x y => a = x /\ b = y \/ siblings x a b \/ siblings y a b

end.

Definition minimum (l : list tree) (t : tree) : Prop :=

forall (t’ : tree), flatten t’ = l -> ht t <= ht t’.
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The “build” function and foldl1

The “top level” function of the algorithm looks like this:

build = foldl1 join . foldr step []

I The first big issue we face is how to describe a total
version of foldl1 in Coq.

I We modeled this by passing a proof that the list is
non-empty:
Definition foldl1 (f : tree -> tree -> tree) (l : list tree)

(P : l <> nil) : tree.

case l as [| x xs].

contradiction P.

reflexivity.

apply fold_left with (B := tree).

exact f. exact xs. exact x.

Defined.
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Non-structural recursion in step

The other BIG issue faced by us is the use of non-structural
recursion in the function step:

step t [] = [t]

step t [u]

| ht t < ht u = [t,u]

| otherwise = [join t u]

step t (u : v : ts)

| ht t < ht u = t : u : v : ts

| ht t < ht v = step (join t u) (v : ts)

| otherwise = step t (step (join u v) ts)

We tried:

I “Function” keyword.
I Bove-Capretta

• Termination predicate and step are mutually recursive.

I Define step using structural recursion on a natural
n ≥ len(l).
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