
The pearl

The algorithm

Implementation

1

Verifying Richard Bird’s “On building trees of
minimum height”

L.T. van Binsbergen J.P. Pizani Flor

Department of Information and Computing Sciences, Utrecht University

Wednesday 26th June, 2013



The pearl

The algorithm

Implementation

2

“Combining a list of trees”

Given a list of trees, build a tree (of minimum height) that has
the elements of the list as frontier (preserving order).

I We want to minimize cost, where cost means:

cost t = (max i : 1 ≤ i ≤ N : depthi + hi )

I depthi is the length of a path from root to tip i

I hi is the height of the i th element of the input list



The pearl

The algorithm

Implementation

3

Simpler but equivalent problem

The problem can be stated with natural numbers instead of
trees being the elements of the input list.

I hs = [h1, h2, . . . , hN ]

I Each element of the list is then considered the height of
the tree.

I We use this “simplified” form of the problem in an
example, but the “full” form is the one verified.



The pearl

The algorithm

Implementation

4

LMP - Local Minimum Pair

The basis of the algorithm proposed is the concept of a “local
minimum pair”:

I A pair (ti , ti+1) in a sequence ti (1 ≤ i ≤ N) with heights
hi such that:

• max (hi−i , hi ) ≥ max (hi , hi+1) < max (hi+1, hi+2)

I An alternative set of conditions, used in the proof of
correctness:

• hi+1 ≤ hi < hi+2, or
• (hi < hi+1 < hi+2) ∧ (hi−1 ≥ hi+1)



The pearl

The algorithm

Implementation

5

Greedy algorithm - example

I There is at least one LMP, the rightmost one.

I The algorithm combines the rightmost LMP at each stage.

I Example in the whiteboard. . .



The pearl

The algorithm

Implementation

6

Correctness of the algorithm

The correctness of this algorithm relies fundamentally on the
so-called “Lemma 1”:

“Suppose that (ti , ti+1) in an lmp in a given sequence of trees
tj(1 ≤ j ≤ N). Then the sequence can be combined into a tree
T of minimum height in which (ti , ti+1) are siblings.”

I In the paper, the proof of this lemma is done by
contradiction and case analysis on whether the trees are
critical.



The pearl

The algorithm

Implementation

6

Correctness of the algorithm

The correctness of this algorithm relies fundamentally on the
so-called “Lemma 1”:

“Suppose that (ti , ti+1) in an lmp in a given sequence of trees
tj(1 ≤ j ≤ N). Then the sequence can be combined into a tree
T of minimum height in which (ti , ti+1) are siblings.”

I In the paper, the proof of this lemma is done by
contradiction and case analysis on whether the trees are
critical.



The pearl

The algorithm

Implementation

7

Correctness of the algorithm

How we expressed “Lemma 1” in Coq:

Theorem Lemma1: forall (l s : list tree) (a b : tree)

(sub : l = [a;b] ++ s),

lmp a b l ->

exists (t : tree), siblings t a b -> minimum l t.

Proof.

Admitted.

Fixpoint siblings (t : tree) (a b : tree) : Prop :=

match t with

| Tip _ => False

| Bin _ x y => a = x /\ b = y \/ siblings x a b \/ siblings y a b

end.

Definition minimum (l : list tree) (t : tree) : Prop :=

forall (t’ : tree), flatten t’ = l -> ht t <= ht t’.



The pearl

The algorithm

Implementation

8

The “build” function and foldl1

The “top level” function of the algorithm looks like this:

build = foldl1 join . foldr step []

I The first big issue we face is how to describe a total
version of foldl1 in Coq.

I We modeled this by passing a proof that the list is
non-empty:
Definition foldl1 (f : tree -> tree -> tree) (l : list tree)

(P : l <> nil) : tree.

case l as [| x xs].

contradiction P.

reflexivity.

apply fold_left with (B := tree).

exact f. exact xs. exact x.

Defined.



The pearl

The algorithm

Implementation

8

The “build” function and foldl1

The “top level” function of the algorithm looks like this:

build = foldl1 join . foldr step []

I The first big issue we face is how to describe a total
version of foldl1 in Coq.

I We modeled this by passing a proof that the list is
non-empty:
Definition foldl1 (f : tree -> tree -> tree) (l : list tree)

(P : l <> nil) : tree.

case l as [| x xs].

contradiction P.

reflexivity.

apply fold_left with (B := tree).

exact f. exact xs. exact x.

Defined.



The pearl

The algorithm

Implementation

9

Non-structural recursion in step

The other BIG issue faced by us is the use of non-structural
recursion in the function step:

step t [] = [t]

step t [u]

| ht t < ht u = [t,u]

| otherwise = [join t u]

step t (u : v : ts)

| ht t < ht u = t : u : v : ts

| ht t < ht v = step (join t u) (v : ts)

| otherwise = step t (step (join u v) ts)

We tried:

I “Function” keyword.
I Bove-Capretta

• Termination predicate and step are mutually recursive.

I Define step using structural recursion on a natural
n ≥ len(l).


	The pearl
	The algorithm
	Implementation

