
Journal of Functional Programming
http://journals.cambridge.org/JFP

Additional services for Journal of Functional Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

FUNCTIONAL PEARL On building trees with minimum height

RICHARD S. BIRD

Journal of Functional Programming / Volume 7 / Issue 04 / July 1997, pp 441 445
DOI: null, Published online: 08 September 2000

Link to this article: http://journals.cambridge.org/abstract_S0956796897002803

How to cite this article:
RICHARD S. BIRD (1997). FUNCTIONAL PEARL On building trees with minimum height. Journal of Functional
Programming, 7, pp 441445

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JFP, IP address: 145.107.94.193 on 21 May 2013

J. Functional Programming 7 (4): 441–445, July 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

441

F U N C T I O N A L P E A R L

On building trees with minimum height

RICHARD S. BIRD
Programming Research Group, University of Oxford,

Wolfson Building, Parks Rd, Oxford OX1 3QD, UK

1 Introduction

A common solution to the problem of handling list indexing efficiently in a functional

program is to build a binary tree. The tree has the given list as frontier and is of

minimum height. Each internal node of the tree stores size information (actually,

the size of its left subtree) to direct the search for an element at a given position

in the frontier. One application was considered in my previous pearl (Bird, 1997).

There are two complementary methods for building such a tree, both of which can

be implemented in linear time. One method is ‘recursive’, or top down, and works

by splitting the list into two equal halves, recursively building a tree for each half,

and then combining the two results. The other method is ‘iterative’, or bottom up,

and works by first creating a list of singleton trees, and then repeatedly combining

the trees in pairs until just one tree remains. The two methods lead to different trees,

but in each case the result is a tree with smallest possible height.

The form of the bottom-up algorithm suggests the following intriguing generali-

sation: given an arbitrary sequence of N trees together with their heights, is there an

O(N) time algorithm to combine them into a single tree of minimum height? The

restriction, of course, is that the given trees should appear as subtrees of the final

tree in the order they appear in the sequence. An alternative but equivalent version

of the problem is to ask: given a sequence hs = [h1, h2, . . . , hN] of natural numbers,

can one find an O(N) algorithm to build a tree t with frontier hs that minimises

cost t = (max i : 1 ≤ i ≤ N : depthi + hi) ?

The depth, depthi, of the ith tip is the length of the path in t from the root to tip

number i. The height of a tree is the maximum of the depths of its tips.

Since cost is a regular cost function in the sense of (Hu, 1982), the Hu-Tucker

algorithm (Knuth, 1973) is applicable to the problem, but the best implementation

of that algorithm has a running time of O(N logN). Our aim in this pearl is to give

a direct construction of a linear-time algorithm.

442 R. S. Bird

2 A greedy algorithm

Given a sequence ti (1 ≤ i ≤ N) of trees with heights hi (1 ≤ i ≤ N), say that the

pair (ti, ti+1) for 1 ≤ i < N is a local minimum pair (abbreviated: lmp) if

max (hi−1, hi) ≥ max (hi, hi+1) < max (hi+1, hi+2),

where, by convention, h0 = hN+1 = ∞. Thus an lmp is a point in the sequence

mi = max (hi, hi+1) (0 ≤ i ≤ N) where the sequence stops descending and starts

increasing. Equivalently, it is easy to show that (ti, ti+1) is an lmp if and only if either

1. hi+1 ≤ hi < hi+2, or

2. hi < hi+1 < hi+2 and hi−1 ≥ hi+1.

This alternative characterisation is used in a case analysis in the final program.

There is at least one lmp, namely, the rightmost pair (ti, ti+1) for which mi is a

minimum, but there may be others. In outline, the greedy algorithm is to combine

the rightmost lmp at each stage, repeating until just one tree remains. It is worth

mentioning, for the greater comfort of imperative programmers, that there is a dual

variant in which the notion of an lmp is modified by replacing ≥ by > and < by ≤.

Then the greedy algorithm combines the leftmost lmp at each stage. But this pearl is

designed for functional programmers who, other things being equal, like to process

from right to left.

To illustrate the greedy algorithm, consider the following computation in which

the numbers denote the heights of the trees, and the braces denote the lmps at each

stage (recall that the height of a tree is one more than the greater of the heights of

its two subtrees):

4, 2, 3︸︷︷︸, 5, 1, 4︸︷︷︸, 6

⇒ 4, 2, 3︸︷︷︸, 5, 5︸︷︷︸, 6

⇒ 4, 2, 3︸︷︷︸, 6, 6︸︷︷︸
⇒ 4, 2, 3︸︷︷︸, 7

⇒ 4, 4︸︷︷︸, 7

⇒ 5, 7︸︷︷︸
⇒ 8

The correctness of the greedy algorithm rests on the following definition and lemma.

Say that two trees are siblings in a tree T if they are the immediate subtrees of some

node of T .

Lemma 1

Suppose (ti, ti+1) is an lmp in a given sequence of trees tj (1 ≤ j ≤ N). Then the

sequence can be combined into a tree T of minimum height in which (ti, ti+1) are

siblings.

Functional pearl 443

X1 Y1

Xm Ynti ti+1

Fig. 1. ti and ti+1 not siblings.

X1 Y1

Xm Yn

ti ti+1

Yn–1

Fig. 2. Case m ≤ n.

Proof

Suppose by way of contradiction that there is no optimum tree (i.e. a tree of

minimum height) in which (ti, ti+1) are siblings. Let T be an optimum tree for the

sequence. Since (ti, ti+1) are not siblings in T it follows that T contains some subtree

of the form depicted in Figure 1 in which not both m and n can be zero. In the figure,

X1, . . . , Xm are subtrees erected on some final segment of t1, . . . ti−1, and Yn, . . . , Y1

are subtrees erected on some initial segment of ti+2, . . . , tN .

Say that a subtree of T is critical if increasing its depth increases the height of

T . There are three cases to consider:

(i) Neither ti nor ti+1 are critical.

In this case, if m <= n (so n 6= 0), then we can move ti+1 to be a sibling of ti,

as in figure 2. The resulting tree is still optimal since the depth of ti is increased by

one, and the depth of ti+1 by at most one. This contradicts the assumption. Dually,

if n ≤ m we can move ti to be a sibling of ti+1.

(ii) ti is critical, ti+1 is not critical.

In this case the height of the tree of figure 1 is m+1+hi. If m > n, then we can move

ti to be a sibling of ti+1 without increasing the height of the tree. This contradicts

our assumption. If m ≤ n (so n 6= 0), then the tree Yn exists and is either ti+2 or

contains ti+2 as its leftmost subtree. In either case, we have hi ≥ max (hi+1, hi+2).

Hence

max (hi, hi+1) ≥ hi ≥ max (hi+1, hi+2),

contradicting the assumption that (ti, ti+1) is an lmp.

(iii) ti+1 is critical.

This time we have m+ 1 + hi ≤ n+ 1 + hi+1. If n < m (so m 6= 0), then hi < hi+1.

Moreover, since m 6= 0, the tree Xm exists and is either ti−1 or has ti−1 as its rightmost

444 R. S. Bird

subtree. In either case hi−1 < hi+1, so

max (hi−1, hi) < hi+1 ≤ max (hi, hi+1).

This contradicts the assumption that (ti, ti+1) is an lmp.

Finally, if n ≥ m (so n 6= 0), then Yn contains ti+2 and so hi+1 ≥ hi+2. Hence

max (hi, hi+1) ≥ hi+1 ≥ max (hi+1, hi+2),

again contradicting our assumption.

3 Implementation

There are a number of ways the algorithm can be implemented. Since lmps cannot

overlap, i.e. it is not possible for both (ti, ti+1) and (ti+1, ti+2) to be lmps, one

possibility is to scan the list of trees repeatedly from right to left, combining all lmps

found during each scan. However, it is possible that only one lmp will be found

during each scan, so this method may take Ω(n2) steps on a list of length n.

Instead we will implement a stack-based algorithm. For simplicity let us ignore

tip values and suppose that trees are given as elements of the datatype

data Tree = Tip | Bin Int Tree Tree,

in which height (Bin n x y) = n. Below we will use the two functions

join :: Tree→ Tree→ Tree

join x y = Bin (max (ht x) (ht y) + 1) x y

ht :: Tree→ Int

ht T ip = 0

ht (Bin n x y) = n

The algorithm for building a tree, build say, is given as the composition of two

loops:

build = foldl1 join · foldr step []

The main processing loop foldr step [] produces a list of trees in strictly increasing

order of height. This constraint is the invariant of the loop. Thus, the expression

foldr step stack rest represents a partially processed list of trees rest + +stack in

which the trees in stack appear in strictly increasing order of height. In particular,

if rest is empty, then the first two trees in stack are the unique lmp of the sequence.

After joining them, the first two remaining trees are again the unique lmp of the

sequence; and so on. The loop foldl1 join therefore combines these unique lmps into

the final tree.

Suppose now that t is the next tree to be processed, i.e. t is the last element of rest.

For simplicity, we consider first the case when stack contains at least two trees; thus

stack = u : v : ts. If ht t < ht u, then t is added to stack, maintaining the invariant.

If, on the other hand, ht t ≥ ht u, then either (t, u) or (u, v) is the rightmost lmp. If

ht t ≥ ht v, then (u, v) is an lmp because

max (ht t, ht u) = ht t ≥ ht v = max (ht u, ht v) < max (ht v, ht w),

Functional pearl 445

where w is the next (possibly fictitious) tree on the stack. The height of w is greater

than that of v by the invariant. If, on the other hand, ht t < ht v, then (t, u) is the

rightmost lmp because, whatever tree s is next in the remaining input, we have

max (ht s, ht t) ≥ ht t ≥ max (ht t, ht u) < max (ht u, ht v).

Combining either of these lmps may create new lmps, so the list has to be processed

again.

The full definition of step is

step t [] = [t]

step t [u] = [t, u], if ht t < ht u

= [join t u], otherwise

step t (u : v : ts) = t : u : v : ts, if ht t < ht u

= step (join t u) (v : ts), if ht t < ht v

= step t (step (join u v) ts), otherwise

A standard amortisation argument shows that the program for build takes linear

time: each input adds at most one tree to the stack, and the time to evaluate step

is proportional to the number of trees removed from the stack. All in all, a neat

solution to a nice problem.

Acknowledgement

I would like to thank Sharon Curtis and a referee for help in improving the

presentation.

References

Bird, R. S. (1997) On merging and selection. J. Functional Programming.

Hu, T. C. (1982) Combinatorial Algorithms. Addison-Wesley.

Knuth, D. E. (1973) The Art of Computer Programming, Vol 4: Searching and Sorting. Addison-

Wesley.

