Experimentation project report:
Translating Haskell programs to Coq
programs

Gabe Dijkstra

December 19, 2012

1 Introduction

Haskell programmers like to say that well-typed programs do not go wrong. How-
ever, if our Haskell program type checks, it does not give us any guarantees
about termination or that it actually computes the right thing. If we for example
have written a function sort :: [Int] — [Int] that type checks, we do not know
whether it actually returns the sorted version of the input list: sort = const []
also type checks. The usual Haskell way to go for checking properties like these
is to use a tool such as QuickCheck (Claessen and Hughes, 2000) to test the
properties on randomly generated input. If we want to go a step further and ac-
tually verify our Haskell software using a proof assistant, we need to model our
Haskell code in the assistant’s specification language. We can then formulate
the properties and begin proving them.

Choosing Coq for the proof assistant is an attractive option, because its specifi-
cation language, Gallina, is a functional programming language that in many
respects is a lot like Haskell: in most cases we can very easily map our Haskell
code to the Gallina equivalent. Manually translating Haskell code into Gallina
code, however, quickly becomes a tedious job once the code size grows and more
importantly, it is prone to subtle mistakes. Therefore, it would be nice if we had
a tool that automates (parts of) this process.

During the verification process, it sometimes so happens that we have to change
our Gallina code in order to be able to prove that certain properties hold. In-
stead of changing the original Haskell code to reflect these changes, new Haskell
code can be generated from our Gallina specifications using Coq’s extraction
mechanism. This gives us another constraint on how we translate our Haskell
program: we need do this in such a way that the extracted Haskell code has the
same interface (i.e. the types of the definitions are the same) so we can plug the
verified module back into the rest of our Haskell code base.

The goal of this experimentation project is to find answers to the following
questions:

“Can we automate the process of translating Haskell code into a Coq
script? Can we do this in such a way that if we extract the Haskell
code from the Coq script, we get back a module with the same inter-
face and semantics?”

2 Method

We implemented our translation tool HsToGallina ! using Haskell and the UUAGC
system. As Haskell parser, we used the haskell-src-exts parser. The abstract
syntax tree of the Haskell module is then mapped to the corresponding Gallina
code. We use Gallina’s own constructs to give the definitions, instead of writ-
ing a deep embedding of Haskell in Gallina. For the most part, Haskell’s type
system and syntax coincide with a subset of that of Coq, so we can translate a
lot of constructions in a very straightforward manner. However, in many places
there are also subtleties and intricacies that we have to take care of, which is the
focus of the sections 3-9.

Another aspect of this approach, which is both a positive and a negative one, is
that we get Coq’s totality checking for free. This is done by checking whether all
pattern matches are exhaustive and whether all recursive calls are structurally
recursive. These restrictions imply that we cannot map every valid Haskell pro-
gram to a Gallina counterpart without drastically changing the definition. For
definitions with non-exhaustive pattern matches (e.g. head) or non-structural re-
cursion (e.g. quicksort), we implemented the Bove-Capretta method (section 10).

Apart from non-exhaustive pattern matches and non-structural recursion, Haskell
also allows us to work with infinite data structures. In Haskell, we do not dis-
tinguish between inductive and coinductive interpretations of data type defi-
nitions, e.g. the list type both has finite lists as well as infinite lists (or streams)
as its inhabitants. In Coq there is a clear distinction between these two inter-
pretations. Our tool defaults to translating Haskell data types to inductive data
types, but we also provide means to translate them to coinductive data types
(section 11).

One of the reasons we did not go for a deep embedding of Haskell in Coq is
that this makes it a lot easier to produce a Coq script that, if we extract it back
to Haskell, produces code that is similar “on the outside” to our original code:
the names of the definitions remain unchanged as do the types (albeit up to
a-equivalence). In section 12 we show how we can make this work. Section 13
shows how we can have support for a fragment of the Haskell Prelude, in such
a way that the extracted code has the same references to the same Prelude defi-
nitions.

IThe HsToGallina tool can be found online: https://github.com/gdijkstra/hs-to-gallina

3 Supported language fragment

Since Haskell is a language with a lot of features, it is unrealistic to expect that
we can support every single one of them right away. The language fragment
that we currently support is Haskell 98 without the following features:

e modules

e type classes

e do-notation

e list comprehensions
e record syntax

e infix notation

e tuple syntax

e guards

Even though Coq does have some notion of type classes, it is very experimen-
tal at the moment, therefore we have chosen to disregard type classes for the
time being. Since do-notation depends on type classes, we also do not support
this.

Currently we only support translating a single module without any imports,
except for the (implicit) Prelude import (see section 13). One way to support
modules, is to also translate all the modules the current module depends on,
but this breaks down as soon as there are dependencies on modules of which
we do not have the source code. It also does not fit nicely in the use case where
we want to verify a single module of a large project. Instead of translating the
modules we depend on, we can generate axioms for all the definitions we import,
so we can pretend, in our Coq script, that we have those definitions of the right
type. Usually, having only the type of the imported definitions is not enough
to be able to prove properties of our own definitions. The user will probably
have to define extra axioms that sufficiently characterise the behaviour of the
imported definitions.

The other features that we do not support should all be relatively straightforward
to implement, but have not been implemented due to time constraints.

4 Type signatures

In Haskell we leave out type signatures and let the compiler figure out the type
for us. For Coq's type system, type inference is undecidable, so we have to explic-
itly annotate at least our top-level definitions. Instead of doing the type inference
for the Haskell code ourselves, we assume that the user has written explicit type
signatures for every top-level definition and use these annotations.

Type signatures for local definitions are ignored when translating to Gallina.
These are usually not needed if we already have the type signature for the corre-
sponding top-level definition. Polymorphic local definitions are not supported

as the current translation of parametric polymorphism does not play nicely with
Gallina’s 1et-construct. The user has to lift the local definition to the top-level
instead.

5 List notation

Our tool supports Haskell’s built-in list notation. It is supported both at the type
level (e.g. the type [a]) and at the term and pattern level (e.g. the terms/patterns
[a,b,c],a:b:[c],[]). For the terms and patterns we translate the infix notation
to prefix notation in order to simplify some parts of the code (specifically the
implementation algorithm presented in section 10.1.3): we can now assume that
every pattern has a unique representation up to a-equivalence.

The Haskell list notation is mapped to Coq’s list notation as defined in its stan-
dard library, so that when we want to interactively prove something about a
definition involving lists, Coq uses the more convenient syntax for lists, when
pretty printing. It also means that we can more easily map the list functions
from the Haskell Prelude to those of the standard library of Coq.

6 Data types and type synonyms

Haskell data types can be straightforwardly translated. For example:

data List a = Nil | Cons a (List a)

translates to:

Inductive List (a : Set) : Set :=
| Nil : List a
| Cons : a -> List a -> List a.

In the Gallina definition we have to be explicit about the type (or in Haskell terms:
kind) of the type parameters. Instead of doing actual kind inference, we simply
assume all type parameters to have type Set, which corresponds to the Haskell
kind . Higher-kinded data types, e.g. data types that have type parameters of
kind * — x, are therefore not supported.

One important thing to note here is that in Coq names of data constructors
cannot coincide with the name of the data type itself, since both can be used
in exactly the same places: terms can be used in types and vice versa. Our tool
does not check whether there is such an overlap and assumes the names of data
constructors and those of type constructors are distinct.

Type synonyms can also be translated easily:

type SillySynonym a b ¢ = Silly b c

becomes:
Definition SillySynonym (a b ¢ : Set) : Set := Silly b c.

Just as with data types, type parameters that do not have kind * are not sup-
ported.

6.1 Strictly positive data types

Coq does not allow us to have negative recursive positions in our data types,
whereas Haskell does. To illustrate why we do not want this in a system like
Coq, we will try to express the following lambda terms using a negative data
type in Haskell:

w = Ar.ax

Q = ww

If we perform a S-reduction on (2, we will get Q2 again. We can keep on doing
this indefinitely: ©2 has no normal form.

Consider the following Haskell data type:

data Term = Lam (Term — Term)

Using this data type we can write the following:

omega :: Term — Term

omega f = (case f of (Lam z) — z) f
loop :: Term

loop = omega (Lam omega)

We can see the exact same thing happening with loop as with {2: after a couple of
reduction steps loop reduces to loop. Therefore allowing negative data types in
Coq means that we can construct terms that have no normal form. Constructions
like the above can then be used to define terms of the empty type False, which
would make the system inconsistent.

Our tool does not check for these kind of constraints on data types and defers
the error messages about this to Coq.

7 Parametric polymorphism and implicit parameters

Coq's type theory does not have the notion of parametric polymorphism. It can
be simulated, however, using implicit parameters, e.g.:

const::a—b—a
constt _==x

can be translated to:

Definition const { a b : Set } (x0 : a) (x1 : b) : a :=
match x0 , x1 with
| x, _ =>x
end.

The curly braces indicate that the parameters a and b are implicit.? These implicit
parameters need not be provided when calling the function const.

Something we did not mention in section 6, is that we also need implicit parame-
ters for data constructors. If we for example have the following data type:

Inductive List (a : Set) : Set :=
| Nil : List a
| Cons : a -> List a -> List a.

then the type of Cons is
Cons : forall a : Set, a -> List a -> List a

This means that every time we call Cons, we have to specify the type a. Using the
contextual implicit parameters option, we can tell Coq to infer these parameters
instead.

The simulation of parametric polymorphism as described above is not perfect.
There are cases where Coq cannot infer the value of the implicit parameters.
Consider the following example:

su(a—=b—c)=>(a—b)—>a—c
spqgr=pr(qr)
kza—b—a

kr _==z
10— a
i=skk

Coq will not be able to infer the type parameter b of the second call to k in the
definition of i. If we do the type checking by hand, we will notice that we can
fill in any type we want in that position, no matter what arguments ¢ gets. GHC
solves this problem by filling in the type GHC'.Prim.Any. Something similar
can be done in Coq, by defining a type Any as the empty type and manually
filling in the parameters it could not figure out by itself:

2Here we assume, just as with the type parameters of data types and type synonyms, that all the
type variables are of kind *.

Inductive Any : Set := .

Definition i { a : Set } : a > a :=
s k (k (b:=Any)).

Of course, it would be better if our tool could automatically figure out which
implicit parameters it needs to fill in explicitly, but this means that we would
have to implement a type inference mechanism for Haskell, which we refrained
from doing.

8 Ordering definitions

When writing definitions in Coq, we can only use terms that have been defined
previously. In the case of recursive functions, we need to explicitly mark the
definition as such using the Fixpoint command.

In Haskell, the ordering of our definitions does not matter, so when translating
we need to order the definitions according to their dependencies and check
whether they are recursive or not. This corresponds to finding all the strongly
connected components of the dependency graph in a topological order. If such
a strongly connected component consists of more than one definition, we have
mutually recursive definitions. Coq supports these constructions by grouping
the definitions together with the with keyword. We can only group functions
with other functions and data types with other data types. Since Haskell does
not allow us to write data types and functions that mutually depend on each
other, this is not a problem.

8.1 Recursion in let-bindings

Local definitions inside lets and wheres, as is the case with top-level definitions,
need to be ordered and grouped. For recursive definitions we have the let fix
construct, but this does not extend to mutually recursive definitions. Our tool
therefore does not support mutually recursive local definitions. The user has to
lift the mutual recursion to the top-level so that we are be able to translate the
program.

9 Pattern matching

Haskell allows us to pattern match in a lot of places. In some cases this does
not map nicely to Gallina constructs. For example, when writing a lambda ex-
pression, we are allowed to immediately pattern match on the argument, e.g.
Az, y) — z. In Gallina we would have to write something like:

fun xy => match xy with (x,y) => x end

Instead of translating it this way, we assume that the patterns occurring in
lambda expressions are variables. Our tool will throw an error if it encounters
any other pattern.

Another situation in which we can pattern match are pattern bindings, e.g.
(z,y) = e. Coq has some support for these bindings if the pattern on the left-
hand side happens to be an irrefutable pattern and the definition happens to be
inside a let construct. For top-level definitions this cannot be done, hence we
assume for pattern bindings that the pattern occurring on the left-hand side is
a single variable.

10 General recursion and partiality

Coq demands that all our definitions be total. This is enforced by checking
whether the pattern matches are exhaustive. For recursive definitions we are
restricted to structural recursion: there should be at least one argument that
decreases structurally in every recursive call, i.e. we pattern match on this argu-
ment and call the function recursively on the constituents of the patterns.

Haskell does not enforce these properties: definitions that violate either of these
are commonplace. A typical example of a function that has non-exhaustive pat-
tern matches is head. Of course, we can rewrite partial functions like these to
total ones by using the Maybe data type, but there are cases in which we know
that a particular call to head never fails and that the additional overhead of using
Maybe is not worth it in terms of readability. We therefore need a way to translate
functions like head in such a way that Coq can be convinced that the call is safe
and that the extracted code looks a lot like the original Haskell code.

As an example of a program that does terminate, but is not structurally recursive,
consider the following Haskell definition:

quicksort it [Nat] — [Nat]

quicksort [] =]

quicksort (x : xs) = append
(quicksort (filter (gt) xs))
(quicksort (filter (le) xs))

7

where Nat is the natural numbers, append is (+), gt and le are the “greater than’
and “less than or equal” relations on Nat, i.e. they are of type Nat — Nat — Bool.
If we translate this directly to Gallina, we will run into the problem that Coq
cannot discover a parameter that structurally decreases every recursive call. It
cannot infer that filter (gt x) zs is indeed structurally smaller than z : s.

There are numerous ways of translating a general recursive definition in such
a way that Coq does accept it. A popular method is to use well-founded recur-
sion, for example using the Program tactic (Sozeau, 2007). This method has the
property that we do not need to change the type of our definition. Furthermore,
the translation can be done in such a way that the proofs of termination get
erased during extraction. This means that the extracted code will both have the
same type as the original Haskell code and do not pass around any irrelevant

proof objects. However, we did not choose well-founded recursion as it does
not allow for definitions with non-exhaustive pattern matches or functions that
only terminate for certain inputs.

Another approachis to encapsulate the return value in a non-termination monad,
such as Capretta’s coinductive delay monad (Bove and Capretta, 2007). These al-
low for both definitions with non-exhaustive pattern matches as definitions that
are not structurally recursive. Unlike well-founded recursion, these approaches
need us to change the type of our original definition. Apart from this, the body
of the definition needs to be rewritten in monadic style to reflect the change in
return type. These changes in type can still be seen in the extracted code, hence
it might not be compatible with the other Haskell modules any longer.

The method we chose is the Bove-Capretta method (Bove and Capretta, 2005).
Instead of having a general purpose accessability predicate as we have for well-
founded recursion, an ad-hoc one is made for the definition we want to translate.
The idea is that the function definition can be rewritten to take proofs of this
ad-hoc predicate as an extra argument and that we now recurse structurally on
these proofs. This means that we do have to change the type of our function, but
this can be done in such a way that the proofs get erased again during extraction.
The big advantage point of this translation is over well-founded recursion that
it also allows for partial functions.

All the good stuff does come with a price: every time we call a function (in our
Coq script) translated with the Bove-Capretta method, we need to provide a
proof of our ad-hoc accessability predicate. This technique does not magically
prove termination for our programs, it just makes it possible to prove termina-
tion.

10.1 Bove-Capretta method

Suppose f :: 09 = ... = 0, — 7T is a Haskell function defined by the following
equations:

fPoo ... Pon= €0

fme <o Pmn = €m

We want to make a special purpose predicate on the input (i.e. an inductive
data type that is indexed by the function parameters) that only has inhabitants
whenever the function terminates on the given input. If we add this predicate
as an argument to our function and pass the right values along recursively, we
will see that we are recursing structurally on the proofs of our predicate, that
essentially encode the call graphs for the corresponding input.

What does it mean for this function f to terminate? How can we express this
as a predicate depending on our input zy ... 2,,? We inspect all the equations
of our definition and can derive the constructors of our predicate as follows:
looking at the i-th equation, we can tell that f terminates for input p; ... pin, (as
terms instead of patterns) if it terminates for all the recursive calls to f in ;. The

constructor for the i-th equation consists of a context induced by the patterns
(i.e. all the pattern variables and their types) and a termination proof for every
recursive call.

Currently we support a very small fragment of Haskell for the right-hand sides
of the equations of the function definition: only variables and applications are
allowed. It is also required that all recursive calls be fully-applied. Support for
guards and case statements can be added, but since this increases the complex-
ity of our tool without really improving on the expressiveness of the language
fragment we allow, we did not implement this.

10.1.1 Generating the inductive data type

Given a Haskell function f::09 — ... = 0,, = 7, we need to generate a predicate
f_acc parametrised by (the translations of) the free type variables of oy, ...,
o, and indexed by oy, ..., 0,,. The parameters and indices can be determined
directly from the type of the function.

In order to generate the constructor corresponding to the i-th equation, the con-
text induced by the left-hand side (the patterns) needs to be determined and
every recursive call occurring in the right-hand side has to be found. The con-
text consists of all the variables that occur in the patterns of the equation along
with their types. This is done by first annotating the patterns, namely by asso-
ciating to each pattern variable its type. To be able to do this, the specification
of every constructor used in the patterns must be known, i.e. the types of all
its arguments. Once we have annotated the patterns, we can easily collect the
pattern variables along with their types. Note that only the specifications of the
data constructors defined in the module that is currently being translated are
available, and the specifications of the list constructors.

After we have determined the context for the constructor for the i-th equation,
we need to find all the recursive calls in the right-hand side e;. Every (fully-
applied) recursive call f a¢ ... a, translates to a field f_acc a_0 ... a_n of
the constructor we are generating, where every a_i is the translation of a;.

Note that we run into problems in the case of nested recursion, i.e. when some
a; again contains a call to f. This means that we have to refer to the function £
in our definition of the predicate f_acc, which in turn is used to define f. To
be able to write such definitions that have a mutual dependency between data
types and functions, we need the so-called induction-recursion scheme (Dybjer,
2000).

10.1.2 Generating the new function definition

The Bove-Capretta translation of our Haskell function f 109 — ... = 0, = 7
takes a proof of the accessability predicate f_acc as an extra argument. The
type of the Coq definition £ becomes forall (x0 : s_0) ... (xn : s_n),
f_acc x0 ... xn -> t. One caveat of this new dependent type is that since
we have enabled the contextual implicit parameters option, Coq will make the
s_0, ..., s_n implicit arguments since they can be inferred from a proof of

10

f_acc x0 ... xn. We actually only need the contextual implicit arguments for
data constructors, so we can safely disable this for function definitions, as we
already denote which parameters are implicit.

Now that we have adapted the type of our function, we need still need to re-
flect these changes in the body of the function. One way of doing this is to
pattern match only on the f_acc x0 ... xn value. This then introduces the
same context as we would get from the original pattern matches and gives us
the appropriate arguments for the recursive calls. It is easy to see that directly
pattern matching on the proofs of the predicate gives us a structurally recur-
sive definition. However, we want f_acc x0 ... xnto be of sort Prop, so it gets
erased during extraction, hence we cannot take this approach. Instead of pattern
matching directly on the proofs, we generate (and proof) theorems that essen-
tially do this for us, which is the subject of section 10.1.4. Using these theorems,
we can pattern match on our original input and call the appropriate generated
theorems for the recursive calls.

If the pattern matches of our original function definition were not exhaustive, we
still need to add the missing patterns. We can prove that these missing patterns
never occur, given a proof of f_acc x0 ... xn. Given such an impossibility
proof, we can then use False_rec to write a term of the correct type for the
right-hand side of the match.

10.1.3 Calculating the missing patterns

In order to make the pattern matches of the given function definition exhaustive,
we need to determine the missing patterns. The algorithm we implemented is
part of an algorithm for compiling pattern matching (Augustsson, 1985). Note
that throughout the presentation of the algorithm below, we assume that all
patterns are well-typed and linear: every pattern variable occurs only once. Being
valid Haskell code implies that the patterns satisfy these conditions, hence our
tool does not check this.

The problem we want to solve is: given the set of original patterns® {pp, . .., pn },
we want to determine whether this set covers all possible input values, and if
this is not the case: find the patterns we need to add to this set such that it does
become a covering set.

The main idea of the algorithm is that we want to check whether the current set
of actual patterns covers the given current ideal pattern. This is done by repeatedly
splitting the ideal pattern on the most general pattern and recursively invoking
the algorithm on these new ideal patterns with the appropriate new actual
patterns. The invariant that we have to maintain is that every actual pattern p;
can be unified with the ideal pattern ¢.

We start of by calculating the initial ideal pattern, i.e. the pattern that covers all
possible patterns. For the initial ideal pattern we choose g'tobe ¢y ... ¢, where

3We also use the word pattern for multipattern: n-tuples of patterns. Arrows above letters indicate
that we are talking about multipatterns.

11

every ¢; is a pattern variable of type o;. The fact that ¢ covers {pg,...,p,} is
established by substitutions* s; = 7+ p;.

The first substitution sq is inspected to see whether it is a injective renaming of
pattern variables. In our implementation we do not actually check whether the
renaming is injective, since this is implied by the linearity of the patterns and
the way we generate our substitutions. If this is the case, then the ideal pattern
¢ is a-equivalent to the actual pattern pg. If it happens that the current set of
actual patterns has size > 1, then we have overlapping patterns, which is also
something we do not allow.

If the substitution s, does not simply rename variables, there exists a pattern
variable v in the ideal pattern ¢ that gets mapped to a constructor pattern. The
ideal pattern gets split into several new patterns by mapping v to all the possible
constructor patterns. The algorithm is then recursively invoked on these ideal
patterns with the refined actual patterns, i.e. the current actual patterns that can
be unified with the new ideal pattern, in order to maintain the invariant. The
results of these invocations are then concatenated and returned.

Since we need to know the types of every pattern variable, we need to again
work with annotated patterns. Apart from that, we also need to know into which
constructor patterns a pattern variable can be split, given its type. For this we
need a mapping from type constructors to their data constructors. These are
looked up using the name of the type constructor, currently disregarding type
synonyms, so even though type synonyms are syntactically supported, they will
result in errors when we try to apply the Bove-Capretta method to functions
that make use of type synonyms in their type signatures. A solution would be
to also keep track of the type synonyms in our tool and performing the right
substitutions on the types when needed.

10.1.4 Inversion theorems and their proofs

As mentioned in section 10.1.2, we cannot pattern match on proofs of the access-
ability predicate to access the constituents that we need to do the recursive calls.
Instead, we generate inversion theorems that give us the appropriate values: the
theorems select the field corresponding to the recursive call of the constructor
corresponding to the current match. Apart from the theorem, a proof is also
generated.

For the missing patterns we also need theorems telling us that these can never
occur when we have a proof of our accessability predicate. For a missing pattern

Do - .. pn of our function f : 09 — ... = 0, — 7, we need to generate a theorem
of the form:
forall ctx (x0 : s_0) ... (xn : s_n),
f_acc x0 .. xn -> (x0 = p0) -> ... => (xn = pn) -> Logic.False.
where ctx is the context induced by the pattern py ... p,. Proofs of these

theorems are also automatically generated by the tool.

4This slight abuse of notation is justified by the fact that § consists solely of pattern variables.

12

10.1.5 Examples

Consider the quicksort example given above. We can tell the HsToGallina tool
to apply the Bove-Capretta translation to that definition using the following
pragma:

{-# OPTIONS_HsToGallina bc: quicksort #-}

The tool will then generate the following (we renamed quicksort to gs to make
it all fit on paper and have left out the proofs of the inversion theorems as they
are rather long and not very interesting):

Inductive gs_acc : List Nat -> Prop :=
| gs_acc_0 : gs_acc nil
| gs_acc_1 : forall (x : Nat) (xs : List Nat) ,
gs_acc (filter (gt x) xs) ->
gs_acc (filter (le x) xs) ->
gs_acc (cons x xs).

Theorem gs_acc_inv_1_0 : forall (x0 : List Nat) (x : Nat) (xs : List Nat),
gs_acc x0 -> (x0 = cons x xs) -> gs_acc (filter (gt x) xs).

Defined.
Theorem gs_acc_inv_1_1 : forall (x0 : List Nat) (x : Nat) (xs : List Nat),
gs_acc x0 -> (x0 = cons x xs) -> gs_acc (filter (le x) xs).

Defined.

Fixpoint gqs (x0 : List Nat) (x1 : gs_acc x0) : List Nat :=
match x0 as _y0 return (x0 = _y0) -> List Nat with

| nil => fun _hO0 =>
nil

| cons x xs => fun _hO =>
append (gqs (filter (gt x) xs) (gs_acc_inv_1_0 x1 _hO0))

(gs (filter (le x) xs) (gs_acc_inv_1_1 x1 _h0))
end (refl_equal x0).

As we can see above, there are no missing patterns hence no theorems to handle
these. There are two recursive calls with two corresponding inversion theorems.
The function definition still has the same shape as before the translation, ex-
cept for the extra arguments being passed around and some dependent pattern
matching to make everything work.

13

As an example of a definition with non-exhaustive patterns, the translation of
head as outputted by our tool:

Inductive head_acc (a : Set) : List a -> Prop :=
| head_acc_0 : forall (x : a) (_xs : List a), head_acc (cons x _xs).

Theorem head_acc_non_0 : forall (a : Set) (x0 : List a),
head_acc x0 -> (x0 = nil) -> Logic.False.

Defined.
Definition head { a : Set } (x0 : List a) (x1 : head_acc x0) : a :=
match x0 as _y0 return (x0 = _y0) -> a with
| cons x _xs => fun _hO0 => x

| nil => fun _hO => False_rec a (head_acc_non_0 x1 _hO)
end (refl_equal x0).

There are no recursive calls, hence no inversion theorems, and one theorem
proving that we cannot have nil as input.

The definition itself is not too exciting, but when we want to use this function
on some inpute : List a, we still have to give a proof p : head_acc e. The
refine tactic is particularly useful here. Consider for example the function
headReverse x xs = head (reverse (z : xs)): we know that reverse preserves
the length of a list, so the pattern match in head will never fail in this case. The
Coq translation of this would become:

Definition headReverse {a : Set} (x: a) (xs : List a) : a.
refine (head (reverse (x :: xs)) _).

Defined.
We have left out the proof as it is rather involved: we have to proof that we can
construct a h and t such that reverse (x :: xs) = h :: t,forany x and xs.

If we have such a h and t we can construct the required proof of the predicate
head_acc (reverse (x :: xs).

The extracted Haskell code of this fragment has none of the proofs and looks
almost the same as our original code:

headReverse :: al — (List al) — al
headReverse x xs =
head (reverse ((:) z xs))

11 Coinduction

A limitation of a direct translation is that in Coq there is a distinction between
inductive and coinductive data types. If we for example want to work with
infinite lists in Coq, we have to make a separate coinductive data type. With
the codata and cofix pragmas, we can indicate that we want a coinductive

14

translation of our top-level definitions. For example, if we want to define an
infinite stream of zeroes, we can write something as follows:

{-# OPTIONS_HsToGallina codata: Stream #-}
{-# OPTIONS_HsToGallina cofix: zeroes #-}

data Stream a = Cons a (Stream a)

zeroes :: Stream Nat
zeroes = Cons 0 zeroes

translates to:

CoInductive Stream (a :Set) : Set :=
| Cons : a -> Stream a —-> Stream a.

CoFixpoint zeroes : Stream Nat :=
Cons 0 zeroes.

Just as we have restrictions as to what recursive definitions we can specify in
Coq, we have similar restrictions for corecursive definitions: every corecursive
call should be guarded by a constructor. Our tool will not check whether this is
the case and will just blindly translate the Haskell definitions.

12 Extraction

Once we have verified and possibly modified the Gallina code, such that it actu-
ally satisfies the properties we wanted to prove, we can translate the code back
to Haskell using Coq’s extraction mechanism. The translation from the original
Haskell module to Gallina specifications has been done in such a way that the
extracted code will still have the same types as before (up to a-equivalence),
the Bove-Capretta proofs are also removed (since they all the predicates live in
Prop), and the coinductive definitions are extracted to normal Haskell defini-
tions.

Since Coq’s type system does not map nicely to Haskell’s, it sometimes uses
unsafeCoerce to convince GHC’s type checker. However, Coq produces broken
Haskell code when it needs unsafeCoerce. Even though this is just a minor syn-
tactic fault that we can fix by applying a very simple sed script, it does leave a
sour taste.

13 Prelude

Now that we have a mapping from a subset of the Haskell syntax to Gallina
syntax, we also want to have some support for the Haskell Prelude. We have
achieved this by writing our own Coq prelude which implements definitions
from the Haskell Prelude as defined in the Haskell Report. Apart from imple-
menting the functions, which sometimes just means picking a definition from

15

the Coq standard library and filling in the correct parameters, we also specify
how these definitions should be extracted.

Since we do not support all of Haskell 98, we also cannot support all of the
Haskell 98 Prelude. For example, we skipped all the definitions that need type
classes such as the numeric operations.

More interesting cases are functions that have non-exhaustive pattern matches,
e.g. head and tail. For these functions we have used the Bove-Capretta method
to define them.

So far we have only considered the list functions on finite lists, but sometimes
we want to perform a take on an infinite list. With the current approach of only
translating everything as inductive data types or recursive functions, this is not
possible. We could define two versions of take: a recursive and a corecursive
definition, but this means that whenever we call take in our Haskell code, our
tool needs to infer whether we want the recursive or the corecursive definition,
which gets complicated very quickly. We also do not support functions such as
iterate and repeat, that always produce infinite lists. We can implement similar
functions, but they would then work on streams instead of lists.

The function until is not supported as its termination behaviour depends non-
trivially on the given input. The user therefore has to resort to providing their
own special purpose functions and apply the Bove-Capretta translation to those
instead.

14 Future work

We currently assume that every top-level definitions has an explicit type signa-
ture. Ideally, we want to be able to infer this kind of information, but we do not
want to go through the trouble of doing the type inference ourselves. One way
to solve this is to make use of the GHC API. Apart from type inference, it also
provides us with kind inference that we need when dealing with parametric
polymorphism.

If we want to support modules, the GHC API can be very helpful here as well
to provide us with the necessary information, such as the type signatures of
the definitions we want to import. Using these type signatures, we can make
axioms in Coq postulating that we have definitions of that type.

Right now, our tool produces invalid Coq code whenever we call a function that
has been defined using the Bove-Capretta method, as the translated version ex-
pects an extra argument: a proof of the accessability predicate. It would be better
if we could do automatically generate scripts in which we apply the refine tac-
tic, as we saw in section 10.1.5. We can then put holes wherever we need these
Bove-Capretta proofs. The problem with this, however, is that the refine tactic
does not play nicely with mutually recursive definitions: we cannot wrap the
definitions grouped by with in a single refine command.

16

15 Conclusion

We have seen that it is possible to automatically translate a sizable subset of
Haskell 98 to a Coq script. This can also be done in such a way that if we extract
the Coq script back to Haskell code, we will get a module in which the definitions
have the same types as the corresponding original definitions.

Using the Bove-Capretta method, it is also possible to translate partial Haskell
definitions in such a way that we can reason about them in Coq in a natural way,
while also preserving the types during extraction. It is possible to automate
the menial parts of this translation: the accessability predicate and the new
definition can be generated automatically from the Haskell module, leaving
only the actual termination proof up to the user.

The result may still need some post-processing in some cases to deal with for
example higher-kinded types, but it is viable that these cases can be automated.
Our tool currently does not support all of Haskell 98, but we do believe that
the current approach can be extended to support things like type classes and
modules.

References

L. Augustsson. Compiling pattern matching. In Functional Programming Lan-
guages and Computer Architecture, pages 368-381. Springer, 1985.

A. Bove and V. Capretta. Modelling general recursion in type theory. Mathemat-
ical Structures in Computer Science, 15(4):671-708, 2005.

A. Bove and V. Capretta. Computation by prophecy. Typed Lambda Calculi and
Applications, pages 70-83, 2007.

K. Claessen and J. Hughes. Quickcheck: a lightweight tool for random testing
of haskell programs. In Acm sigplan notices, volume 35, pages 268-279. ACM,
2000.

P. Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. Journal of Symbolic Logic, pages 525-549, 2000.

M. Sozeau. Subset coercions in coq. Types for Proofs and Programs, pages 237-252,
2007.

17

