IDRIS — Systems Programming Meets Full Dependent Types

Edwin C. Brady

Schoal of Computer Science, University of St Andrews, St Andrews, Scotland.
Email: eb@cs.st-andrews.ac.uk

Abstract

Dependent types have emerged in recent years as a promising ap-
proach to ensuring program correctness. However, existing depen-
dently typed languages such as Agda and Coq work at a very high
level of abstraction, making it difficult to map verified programs to
suitably efficient executable code. This is particularly problematic
for programs which work with bit level data, e.g. network packet
processing, binary file formats or operating system services. Such
programs, being fundamental to the operation of computers in gen-
eral, may stand to benefit significantly from program verification
techniques. This paper describes the use of a dependently typed
programming language, IDRIS, for specifying and verifying prop-
erties of low-level systems programs, taking network packet pro-
cessing as an extended example. We give an overview of the dis-
tinctive features of IDRIS which allow it to interact with external
systems code, with precise types. Furthermore, we show how to in-
tegrate tactic scripts and plugin decision procedures to reduce the
burden of proof on application developers. The ideas we present
are readily adaptable to languages with related type systems.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) Lan-
guages;, C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol Verification

General Terms Languages, Verification

Keywords Dependent Types, Data Description

1. Introduction

Systems software, such as an operating system or a network stack,
underlies everything we do on a computer, whether that computer
is a desktop machine, a server, a mobile phone, or any embedded
device. It is therefore vital that such software operates correctly
in all situations. Dependent types have emerged in recent years
as a promising approach to ensuring the correctness of software,
with high level verification tools such as Coq [8] and Agda [25]
being used to model and verify a variety of programs including
domain-specific languages (DSLs) [26], parsers [9], compilers [16]
and algorithms [34]. However, since these tools operate at a high
level of abstraction, it can be difficult to map verified programs to
efficient low level code. For example, Oury and Swierstra’s data
description language [26] works with a list of bits to describe file

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLPV'I1, January 29, 2011, Austin, Texas, USA.
Copyright ©) 2011 ACM 978-1-4503-0487-0/11/01... $5.00.

formats precisely, but it does not attempt to store concrete data
compactly or efficiently.

This paper explores dependent type based program verifica-
tion techniques for systems programming, using the IDRIS pro-
gramming language. We give an overview of IDRIS, describing in
particular the key features which distinguish it from other related
languages and give an extended example of the kind of program
which stands to benefit from type-based program verification tech-
niques. Our example is a data description language influenced by
PADS [19] and PACKETTYPES [22]. This language is an embedded
domain-specific language (EDSL) [14] — that s, it is implemented
by embedding in a host language, exploiting the host’s parser, type
system and code generator. In this EDSL, we can describe data for-
mats at the bit level, as well as express constraints on the data.
We implement operations for converting data between high level
IDRTS data types and bit level data, using a foreign function inter-
face which gives IDRIS types to C functions. This language has a
serious motivation: we would like to implement verified, efficient
network protocols [1]. Therefore we show two packet formats as
examples: Internet Control Message Protocol (ICMP) packets, and
Internet Protocol (IP) headers.

1.1 Contributions

The main contribution of this paper is to demonstrate that a high
level dependently typed language is capable of implementing and
verifying code at a low level. We achieve this in the following
specific ways:

® We describe the distinctive features of IDRIS which allow in-
tegration of low level systems programming constructs with
higher level programs verified by type checking (Section 2).

® We show how an effective Foreign Function Interface can be
embedded in a dependently typed language (Section 2.6).

® We introduce a serious systems application where a program-
ming language meets program verification, and implement it
fully: a binary data description language, which we use to de-
scribe ICMP and IP headers precisely, expressing the data lay-
out and constraints on that data (Section 3).

We show how to tackle some of the awkward problems which can
arise in practice when implementing a dependently typed applica-
tion. These problems include:

* Dealing with foreign functions which may have more specific
inputs and outputs than their C types might suggest — e.g. we
might know that an integer may lie within a specific range.

* Satisfying proof obligations which arise due to giving data and
functions precise types. As far as possible, we would like proof
obligations to be solved automatically, and proof requirements
should not interfere with a program’s readability.

Type Meaning

Int Machine integers
Float Floating point numbers
Char Characters

String | Strings of characters
Ptr External pointers

Table 1. Primitive Types

2. An Overview of IDRIS
IDRIS is an experimental functional programming language with_

dependent types, similar to Agda [25] or Epigram [7, 21]. It is ea-
gerly evaluated and compiles to C via the Epic supercombinator
compiler'. IDRIS has monadic I/O in the style of Hancock and Set-
zer [13], and a simple foreign function interface. It is implemented
on top of the IVOR theorem proving library [4], giving direct access
to an interactive tactic-based theorem prover. In this section, we
give an overview of the main features of IDRIS. It is not intended
as a tutorial® on dependently typed programming, or even IDRIS
specifically, but rather to show in particular the features which al-
low program verification to meet practical systems programming.

2.1 Simple Types and Functions

IDRIS data types are declared using a similar syntax to Haskell data
types. However, IDRIS syntax is not whitespace sensitive and dec-
larations must end with a semicolon. For example, natural numbers,
an option type and lists are declared in the standard library:

data Nat =0 | 8 Nat;
data Maybe a = Nothing | Just a;
data List a = Nil | Cons a (List a);

Functions are implemented by pattern matching, again using a
similar syntax to Haskell. The main syntactic difference is that
IDRIS requires type declarations for any function with greater than
zero arguments, using a single colon : (rather than Haskell’s double
colon :). For example, addition on natural numbers can be defined
as follows, again taken from the standard library:

plus : Nat -> Nat -> Nat;

plus O ¥y=Y;

plus (S k) y = 8 (plus k y);
Additionally, IDRIS has a number of primitive types, summarised
in Table 1. Note in particular that String is a primitive, rather than

a sequence of characters, for efficiency reasons. Ptr is used as a
simple means of referencing C values.

2.2 Dependent Types

Dependent types allow types to be predicated on values. IDRIS uses
Jull-spectrum dependent types, meaning that there is no restriction
on which values may appear in types. For example, Vectors are lists
which carry their size in the type. They are declared as follows in
the standard library, using a syntax similar to that for Generalised
Algebraic Data Types (GADTs) in Haskell [28]:

infixr 5 ::;

data Vect : Set -> Nat -> Set where
VNil : Vect a O
| (::) : a -> Vect a k -> Vect a (8 k);

This declares a family of types. We explicitly state the type of the
type constructor Vect — it takes a type and a Nat as an argument,

'http://www.idris—lang.org/epic/

2 A tutorial is available at http: //www.idris-lang.org/tutorial/
and returns a new type. Set is the type of types. We say that Vect is
parameterised by a type, and indexed over Nats. Each constructor
targets a different part of the family — VNil can only be used to
construct vectors with zero length, and : : to construct vectors with
non-zero length.

Note also that we have defined an infix operator, : :, and de-
clared it as right associative with precedence 5. Functions, data
constructors and type constructors may all be given infix operators
as names.

We can define functions on dependent types such as Vect in
the same way as on simple types such as List and Nat above, by

pattern matching. The type of a function over Vect will describe
what happens to the lengths of the vectors involved. For example,
vappend appends two Vects, returning a vector which is the sum
of the lengths of the inputs:

vappend : Vect a n -> Vect a m -> Vect a (plus n m);

vappend VNil VNil = VNil;

vappend (x :: xs) ys X :: vappend Xs ys;

Implicit Arguments

In the definition of vappend above, we have used undeclared
names in the type (e.g. a and n in Vect a n). The type checker
still needs to infer types for these names, and add them as implicit
arguments. The type of vappend could alternatively be written as:
vappend : {a:Set} -> {n:Nat} -> {m:Nat} ->
Vect a n -> Vect am -> Vect a (plus n m);

The braces {} indicate that the arguments a, n and m can be omitted
when applying vappend. In general, if an undeclared name appears
in an index to a type (i.e. a, n and m in vappend) IDRIS will
automatically add it as an implicit argument, and attempt to infer
its type.

using notation

If the ordering of implicit arguments is important (e.g. if one de-
pends on another) it is necessary to declare the implicit arguments
manually. The Elem predicate, for example, is a type which states
that x is an element of a vector xs:
data Elem : a -> Vect a n -> Set where
here : {x:a} -> {xs:Vect a n} —>
Elem x (x :: x8)
| there : {x,y:a} -> {xs:Vect a n} —>

Elem x xs -> Elem x (y :: xs);

We give the implicit arguments x and y because they depend on
another implicit argument a, and xs because it depends on two
implicit arguments a and n. IDRIS will add a and n automatically
before the arguments which were given manually.

To avoid excessive repetition (as with x, y and xs above) and to
improve the clarity when reading type declarations, IDRIS provides
the using notation:

using (x:a, y:a, xs:Vect a n) {

data Elem : a -> Vect a n —> Set where

here : Elem x (x :: xs)
| there : Elem x xs -> Elem x (y :: x8);
}
The notation using (x:a) { ... } means that in the block of

code, if x appears in a type it will be added as an implicit argument
with type a.

Termination Checking

In order to ensure termination of type checking (and therefore its
decidability), we must distinguish terms for which evaluation defi-
nitely terminates, and those for which it may not. We take a simple
but effective approach to termination checking: any functions that
do not satisfy a simple syntactic constraint on recursive calls will
not be reduced by the type checker. The constraint is that each re-
cursive call must have an argument that is structurally smaller than
the input argument in the same position, and that these arguments
must belong to a strictly positive data type. We check for torality
by additionally ensuring that the patterns cover all possible cases.

2.3 Syntactic sugar

IDRIS has syntactic sugar for some of the more common data types,
and allows the user to extend syntax using syntax macros.

Sugar for data types

One common data type is the Pair:
data Pair a b = mkPair a b;

Pair types can instead be abbreviated to (a & b), with pair values
written (a, b). Dependent pairs, where the type of the second
value depends on the first, are declared as follows:
data Sigma : (A:Set) -> (P:A —-> Set) —-> Set where
Exists : {P:A -> Set} -> (a:A) -> P a -> Sigma 4 P;

Dependent pair types can be abbreviated to (x : a ** P x),
which stands for Sigma a (\x => P x). A value in a dependent
pair is written <| a, b |>. Often, the first value can be inferred
from the type of the second, so the value is written <| _, b [>.
IDRIS also allows lists to be written with a Haskell-like notation,
[a, b, ¢, ...]insteadofCons a (Cons b (Cons ¢ ...)).

Syntax Macros

Syntax macros allow more complex syntactic forms to be given
simpler syntax, and take the following form:

syntax £ x1 x2 ... Zn = e

This defines a macro £ with n arguments x1 to xn. Wherever an
f appears in a program (whether a pattern or an expression), with
n arguments, it will be replaced with e, substituting x1 to xn in e.
Macros are type checked at the point they are expanded. It is an
error to apply the macro with fewer than n arguments.

There are two main uses of syntax macros. Firstly, since they

are applied in patterns as well as programs, they can be used as pat-
tern synonyms. Secondly, when implementing embedded languages
they can be used to define a clearer syntax, taking advantage of the
fact that they are not type checked until they are expanded. In par-
ticular, they are useful for hiding proof obligations as we will see
in Section 2.8.

2.4 The with rule

Very often, we need to match on the result of an intermediate
computation. IDRIS provides a construct for this, the with rule,
modelled on a similar construct in Epigram [21] and Agda [25]. It
takes account of the fact that matching on a value in a dependently
typed language can affect what we know about the forms of other
values. In its simplest form, the with rule adds another argument
to the function being defined, e.g. the vector filter function:

viilter : (a -> Bool) —> Vect a n -> (p ** Vect a p);

viilter p VNil = <| _ , VNil |>;
viilter p (x :: xs) with vfilter p xs {
| <1 _, x8* |>=14if (p x) then <| _ , x :: x8* |>
else <| _ , s’ |>;
}

If the intermediate computation itself has a dependent type, then
the result can affect the forms of other arguments — we can learn
the form of one value by testing another. For example, a Nat is
either even or odd. If it is even it will be the sum of two equal Nats.
Otherwise, it is the sum of two equal Nats plus one:
data Parity : Nat -> Set where
even : Parity (plus n n)
| odd : Parity (S (plus n n));

We say Parity is a view of Nat. Its covering function tests whether

its input is even or odd and constructs the predicate accordingly.
parity : (n:Nat) -> Parity n;

‘We can use this to write a function which converts a natural number
to a list of binary digits (least significant first) as follows:
natToBin : Nat -> List Bool;
natToBin 0 = Nil;
natToBin k with parity k {
natToBin (plus j j) | even
= Cons False (matToBin j);
natToBin (8 (plus j j)) | odd
= Cons True (natToBin j);

}

The value of the result of parity k affects the form of k, because
the result of parity k depends on k. Therefore as well as the
patterns for the result of the intermediate computation (even and
odd) we also state how the results affect the other patterns. Note
that there is a function in the resulting patterns (plus) and repeated
occurrences of j — this is permitted since the form of these patterns
is determined by the form of parity k.

2.5 Evaluation and Compilation

IDRIS consists of an interactive environment with a read-eval-
print loop (REPL) and a compiler. The interactive environment
allows inspection of types and values and provides an interface to
the theorem proving tools in IVOR([4]. For example, at the IDRIS
prompt we can evaluate:

$ ddris test.idr

Idris> natToBin (intToNat 6)

[False, True, True] : List Bool

With the : t command, we can check types:

Idris> :t Elem O
Vect Nat y0 -> Set

It is particularly important in systems programming to understand
the internal representation of values. With the :d command (stand-
ing for “definition), we can inspect the internal form of a function
or data structure. Using this, we can see how erasure transforma-
tions such as forcing and collapsing [3, 6] and optimisations such
as partial evaluation [5] affect the compiled representation. These
transformations are applied to each definition independently. Vec-
tors, for example, need not store their length:
Tdris> :d Vect
Vect constructors:
VNil
(::) a (Vect a k)

A proof that an item is an element of a list reduces to a natural num-
ber (which has an optimised representation) since it corresponds to
the index at which the item appears:
Idris> :d Elem
Elem comstructors:
0
S (Elem x xs)

Some types, such as the following “less than” predicate LT on Nats,
carry no run-time information at all. Such collapsible types have no
run-time representation:
data LT : Nat -> Nat -> Set where
1t0 : LT 0 (S y)
| 188 : LT x y -> LE (8 x) (8 y);

Tdris> :d LT

LT constructors:

The interactive system also provides commands for compiling to
an executable (: c), and theorem proving (:p).

2.6 I/O system and Foreign Functions

Input and output in IDRIS, like Haskell, is achieved using an I0
monad. This is implemented in the style of Hancock and Set-
zer [13], where an I/O operation consists of a command followed
by a continuation that defines how to process the response:
data I0 : Set -> Set where
I0Return : a -> (I0 a)
| I0Do : (c:Command) -> (Response ¢ -> I0 a) ->
(10 a);

In this way, we preserve purity in that a program which performs

I/O does not do so directly, but rather generates an I/0 free which

describes the actions to be executed when the program is run.

Commands include a number of primitive operations, for example:
data Command : Set where

PutStr : String -> Command
| GetStr : Command

A Response to a command is provided by the run-time system.
Executing each Command gives a response of an appropriate type:
Response : Command -> Set;
Response (PutStr s) = ();
Response GetStr = String;

We define the usual bind and return operations:
(>>=) : I0 a -> (a -> I0 b) -> I0 b;
(>>=) (IOReturn x) k = k x;
(>>=) (I0Do ¢ p) k = I0Do ¢ (\y => (bind (p y) K));

return : a -> I0 a;
return x = I0OReturn x;

do-notation

Rather than using the (>>=) operator to sequence IYO operations,
IDRIS provides de-notation, like Haskell, which expands to the
(>>=) and return functions by default. For example:
greet : I0 ();
greet = do { putStr "What is your name? ";
name <- getStr;
putStrln ("Hello " ++ name); };

Unlike Haskell, however, we do not (yet) provide a Monad type
class for more general do-notation. Instead, we allow do-notation
to be rebound locally. For example, we can write a bind operation
for Maybe as follows:

maybeBind : Maybe a -> (a -> Maybe b} -> Maybe b;

maybeBind Nothing mf = Nothing;

maybeBind (Just x) mf = mf x;

For the return operation, we can use Just. We can use these
inside a do block with a do using declaration, which takes the
bind and return operations as parameters. For example, a function
which adds two Maybe Ints, using do-notation, could be written
as follows:

do using (maybeBind, Just) {
m_add : Maybe Int -> Maybe Int -> Maybe Int;
madd x vy = do { x° < x;
y' <y
return (x’ + y'); 1};

1

This is, however, a temporary solution. We plan to implement type
classes for overloading functions following the style of Sozeau and
Oury in Coq [33].

Foreign Functions

‘When an I/O program is compiled, the compiler generates code for
each of the Commands using appropriate standard C library func-
tions. Conveniently, using this approach to I/O we can describe for-
eign functions directly in IDRIS without introducing any language
extensions, deferring details of how the functions are executed (and
how values are marshaled to and from C) to the run-time system.
We begin by defining a universe of types FType which can be
passed to foreign functions, and a decoding function i_ftype:
data FType = FUnit | FInt | FStr | FPtr | FAny Set;

i_ftype : FType -> Set;
i_ftype FUnit = ();

i_ftype FInt = Int;
i_ftype FStr = String;
i_ftype FPtr = Ptr;

i_ftype (FAny ty) = ty;

Each of these types has a representation in C; these are int, char*
and void* (or in practice, any pointer type) for FInt, FStr and

FPtr respectively. For FAny, we use the run-time system’s internal
representation of values. FUnit is used as the return type of a void
function. Then a foreign function has an external name, a list of
argument types, and a return type:

data ForeignFun = FFun String (List FType) FType;

To call a foreign function, we will need a concrete list of arguments
corresponding to the expected argument types. We will also find it
convenient to append foreign argument lists:
using (xs,ys:List FType) {
data FArgList : List FType -> Set where
fNil : FArgList Nil
| fCons : i_ftype x -> FArglist xs ->
FArgList (Cons x xs);

fapp : FArgList xs -> FArglList ys —>
FArglList (zs ++ ys);
fapp fNil fxs = fxs;
fapp (fCons fx fxs) fys = fCons fx (fapp fxs fys);
}

For example, consider the C function fopen:
FILE# fopen{(char* filename, char* mode);

This is represented as follows:

fopen_fun : ForeignFun;
fopen_fun = FFun "fopen" [FStr, FStr] FPtr;

In order to run such functions, we need to extend the Command type,
and correspondingly the Response function, with foreign function
descriptions. A foreign function call takes the function description
and a concrete argument list, and the response gives us a value of
the declared return type:

data Command : Set where

| Foreign : (f:ForeignFun) ->
(args:FArglist (f_args f)) -> Command;

Response (Foreign (FFun _ _ t) args) = i_ftype t;

Finally, we give foreign functions a higher level IDRIS type and
definition. We calculate high level types from foreign function
descriptions:

mkFType’ : List FType -> FType -> Set;

mkFType’ Nil rt I0 (i_ftype rt);

mkFType’ (Cons t ts) rt = i_ftype t -> mkFType’ ts rt;

mkFType : ForeignFun -> Set;
mkFType (FFun fn args rt) = mkFType’ args rt;

For example, mkFType fopen_fun gives String -> String ->
I0 Ptr. We generate an executable definition which applies the
Foreign command by using mkForeign, detailed in Figure 1.

mkFDef : String -> (ts:List FType) -> (xs:List FType) —>
FArgList xs -> (rt:FType) -> mkFType’ ts rt;
mkFDef nm Nil accA fs rt
= I0Do (Foreign (FFun nm accA rt) fs)
(\a => I0Return a);
mkFDef nm (Cons t ts) accA fs rt
= \x:i_ftype t =>
mkFDef nm ts (accA ++ Cons t Nil)
(fapp fs (fCons x fNil)) rt;

mkForeign : (f:ForeignFun) -> mkFType f;

.mkForeign (FFun fn args rt) = mkFDef fn args Nil £fNil rt;

Figure 1. Generating Foreign Functions

Since the foreign function descriptions are statically known, IDRIS
evaluates mkForeign at compile-time. This leaves just an applica-
tion of the Foreign constructor in the code. I0 describes a domain-
specific language for executing IYO operations. Conceptually, the
compiled code executes programs written in this DSL by interpret-
ing an I/O tree. In practice, for efficiency, an I/O tree is compiled
to direct execution of the I/O operations — the only overhead asso-
ciated with calling foreign functions is the marshaling between C
and IDRIS values.

Example — File Handling via C

Using foreign functions involves creating a description with FFun
and converting it to an IDRIS function with mkForeign. In practice,
instead of using external pointer types directly we prefer to wrap
them in a higher level abstract data type. For a small file handling
library, we define a type for holding external file handles:

data File = FHandle Ptr;

We add descriptions of external functions for opening, closing
and reading files. freadStr is defined in the run-time system to
simplify reading a line from a file safely:

_fopen

= mkForeign (FFun "fopen" [FStr, FStr] FPtr);
_fclose

= mkForeign (FFun "fclose" [FPtr] FUnit);
_fread

= mkForeign (FFun "freadStr" [FPtr] FStr);

User level functions simply manage the wrapping and unwrapping
of the external pointer in the file handle.
fopen : String -> Strimg -> I0 File;
fopen str mode = do { ho <- _fopen str mode;
return (FHandle ho); };

fclose : File => I0 ();
fclose (FHandle h) = _fclose h;

fread : File -> I0 String;
fread (FHandle hn) = _fread hn;

2.7 Metavariables and theorem proving

Sooner or later when programming with dependent types, the need
to prove a theorem arises. This typically happens when using an
indexed data type, if a value’s index does not match the required
type but is nevertheless provably equal. Since IDRIS is built on a
tactic based theorem proving library, IVOR, we are able to provide
access to the tactic engine. Suppose we would like to prove the
following theorem about plus:

plusReducesD : (n:Nat) -> (n = plus n 0);

'We can declare just the type, and prove the theorem interactively
in the IDRIS environment. The : p command enters the interactive
proof mode and displays the current Goal:

Idris> :p plusReducesO

HO ? (n : Nat) > n = plus n O

In proof mode, we are given a list of premisses (initially empty)
above the line, and the current goal (named HO here) below the line.
At the prompt, we can enter tactics to direct the construction of a
proof. Here, we use the intro tactic to introduce the argument n
as a premiss, followed by induction on 1.

plusReduces0> intro

n : Nat

HO ? n = plus n O
plusReduces0> induction n

n : Nat

H2 7 O=plus 0 O

The resulting goal 0 = plus 0 0 can be solved by reflexivity
(the refl tactic), since plus 0 0 normalises to 0. This leaves the
inductive case:

plusReducesl> refl

n : Nat

H1 ? (k:Nat) -> (k = plus k 0) ->
(S k =plus (S k) 0)

plusReduces0> intro k, ih
n : Nat

k : Nat
ih : k = plus k O

H1 7 Sk = plus (S k) O

If we reduce this goal to normal form (using the compute tactic)
we can apply the inductive hypothesis ih, and complete the proof
by reflexivity.

plusReduces0> rewrite 1ih
n : Nat

k : Nat
ih : k = plus k O

H3 ?8k=Sk

plusReducesl> refl

No more goals

Finally, entering qed will verify the proof and output a log of the
proof script which can be pasted directly into the source file.
plusReducesl proof {
%intro; %induction n; %refl; %intro k,ih;
Yicompute; Yrewrite ih; %refl; Yqged;

};

Proof by Pattern Matching

It is often more convenient to write proofs using pattern matching
functions than to write a tactic based proof (c.f. the Equations
extension to Coq [32]). Suppose for example we wish to prove that
appending two lists is associative:
app_assoc :
(xs:List a) -> (ys:List a) -> (zs:List a) ->

(xs ++ (ys ++ zs) = (xs ++ ys) ++ zs);

(++) is implemented in the library by pattern matching and recur-
sion on its first argument. A good approach to proving a function’s
properties is often to follow the structure of the function itself. It
is therefore easier to break this down by writing down a pattern
matching definition, and using the theorem prover to add the final
details. We can do this by leaving holes (or metavariables) in the
proof, marked by 7name:

app_assoc Nil ¥ys zs = Tapp_assocNil;

app_assoc (Cons x xs) ys zs

= let ih = app_assoc xXs ys zs in 7app_assocCons;

In the Cons case we have gained access to an induction hypothesis
by making a recursive call corresponding to the recursive call in
the definition of (++). When we invoke IDRIS, it will report which
proof obligations are to be satisfied:

Proof obligations:
[app_assocNil,app_assocCons]

These can be proved using the tactic engine, and the scripts pasted
in as before. In practice, it is often clearer to write definitions with
metavariables as above, which give a “sketch” of a proof, and leave
the remaining proof scripts with the precise details to the end of a
program file. In some ways, this resembles a paper which gives the
outline of a proof and postpones the details until an appendix or an
accompanying technical report.

2.8 Plugin Decision Procedures

Many proof obligations which arise in practice are solved by
straightforward applications of simple rewriting rules (e.g. appli-
cations of list associativity) or by applying known decision proce-

dures such as a Presburger arithmetic solver [31]. In these cases,
we would like to avoid writing proofs by hand and where appro-
priate we might prefer to hide from the programmer the fact that
a proof was required at all. IDRIS provides two basic mechanisms
for achieving this: firstly, a decide tactic, which applies a deci-
sion procedure implemented in IDRIS; and secondly, an embedded
domain specific language for constructing user defined tactics.

decide tactic

The decide tactic, when given a goal of the formT a b ¢, and a
function £ : (a:4) -> (b:B) -> (c:C) -> Maybe (T a b
c), will apply £ to a b c. If the result is Just p, it will solve the
goal with p. For example, we could write a function which deter-
mines whether a value is an element of a list and returns a proof of
the Elem predicate if so:

isElem : (x:a) -> (xs:Vect a n) -> Maybe (Elem x xs);

If the relevant values are statically known — which is not unlikely
when implementing an EDSL for example [5] — the decide tactic
could fill in required proofs of Elem automatically using isElem.

Tactic EDSL

data Tactic : Set where

Fill : {a:Set} -> a -> Tactic

Refine : String -> Tactic

Trivial : Tactic

Decide : {a:Set} -> Maybe a -> Tactic
SearchContext : Tactic

Try : Tactic => Tactic -> Tactic
Fail : String -> Tactic

=

Figure 2. EDSL for Tactic Construction

More generally, when the relevant values are not statically known,
a simple decision procedure will not be suitable. In such cases,
we can dynamically construct a tactic script using an EDSL for
tactic construction similar to Coq’s Ltac language [8], a fragment
of which is shown in Figure 2. Each constructor corresponds to a
tactic, or a means of combining tactics. Try, for example, applies
the first tactic, and if that fails, applies the second.
The decide tactic, when given a goal of theform T a b c, and
a function £ : (a:4) -> (b:B) -> (c:C) -> Tactic, will
apply £ to a, b and ¢ and execute the resulting tactic. For example,
we can write a slightly extended version of a tactic to search for
proofs of vector membership as follows:
isElemTac : a -> Vect a n -> Tactic;
isElemTac x xs = Try (Decide (isElem x xs))
(Try SearchContext
(Fail "Can’t find element"));

This tactic first tries to apply the isElem proof search. If it suc-
ceeds, it uses the resulting proof. If it fails (or if it simply does not
have enough information) the tactic uses the searchcontext tac-
tic which searches the local and global contexts for a term which
will solve the goal directly. If searching the context fails, it will use
the fail tactic to report an appropriate, domain-specific error.

Aside — Parameters

To compute a proof that a value is an element of a vector, we need
to construct equality proofs between two elements of a type. Rather
than pass around a function which does so, we parameterise a block
of code over such a function:

params (eq:(x:a) -> (y:a) -> (Maybe (x = y))) {

}

This is similar to Coq’s Section mechanism. isElem and isElemTac
are parameterised over eq.

Example — Safe Access Control Lists

Consider a security policy which requires a user’s ID to appear in
an access control list before the user is given access to a resource.
Using a dependent type based approach [24], we could require a
proof (using Elem) that a user is in a list of allowed users before
being able to read a resource:

allow : List User;

read_ok : (u:User) -> Resource ->

Elem u allow -> I0 Data;

To use read_ok we also need to provide a proof that the user is

allowed access to the resource. Rather than provide this directly,

we will leave a metavariable and provide a proof separately:
answers = read_ok edwin exams 7;

Alternatively, we can invoke isElemTac directly, which will either
construct a proof if possible, or search through the context for an
existing proof if not, using the following syntax:

answers = read_ok edwin exams
[proof Yintro; %decide isElemTac; %qed];

The [proof ...] syntax allows a tactic based proof to be inserted
directly into a program. In practice, this is most useful when com-
bined with syntax macros. We can define syntax for reading a re-
source, statically constructing a proof that access is permitted:

syntax read u r
= read_ok u r [proof %intro; %decide isElemTac; ¥qedl;

Wherever read u r appears, the system tries to construct a proof

of Elem u r using isElemTac, and reports a compile-time error
if the tactic fails. An alternative syntax [tryproef ...] does not
report an error if the tactic fails, but instead leaves the metavariable
unsolved. This can be useful for implementing partial decision
procedures.

Using this approach, we can construct functions with domain-
specific correctness requirements, solved by domain-specific tac-
tics, without the notational overhead of writing explicit metavari-
ables and invoking tactics manually.

3. Extended Example: Binary Data Formats

In this section we present an extended example, an EDSL for de-
scribing, marshaling and unmarshaling binary data, which applies
many of the techniques described in Section 2. We have chosen this
example because it is a component of a real research project, rather
than a contrived example, although we have omitted some of the
details due to space restrictions. We are developing this embedded
data description language as part of a project to describe and verify
network protocols using dependent types [1].

Oury and Swierstra describe how a similar language could be
implemented in principle [26]. In this section, we should how such
a language can be implemented in practice, if it is to be imple-
mented efficiently, and show some realistic data formats which it
can encode.

3.1 Primitive Binary Chunks

We are interested in parsing, manipulating and generating data to
be transmitted across networks through verified network protocols.
This involves manipulating data at the bit level. For example, im-
plementing a TCP/IP stack would involve dealing with IP pack-

ets [30], the header of which is illustrated in Figure 3. To begin, we
define Chunk, a universe of primitive components of binary data:
data Chunk : Set where
bit : (width: Int) -> so (width>0) -> Chunk
| Cstring : Chunk
| Lstring : Int => Chunk
| prop : (P:Prop) -> Chunk;
Primitive data can be a bit field, of a defined length greater than 0
(bit), a null-terminated C-style string (Cstring), a string with an
explicit length (Lstring) or a proposition about the data. Proposi-
tions are defined as follows, covering the basic logical connectives
and relations, as well as a generic equality test p_bool:
data Prop : Set where
p.1lt : Nat -> Nat -> Prop
| p_.eq : Nat -> Nat -> Prop
| p_bool : Bool -> Prop
| p.and : Prop -> Prop -> Prop
| p_or : Prop —» Prop -> Prop;

Chunk and Prop each have a decoding to IDRIS types. In packet
descriptions, we often need to work with numbers of a specific
bit width (bit n), so we create a type based on machine integers,
carrying a proof that the number is within required bounds.
data Bounded : Int -> Set where
BInt : (x:Int) -> so (x<i) -> Bounded i;

An instance of the so data type used above can only be constructed
if its index is True. Effectively, this is a static proof that a dynamic
check has been made:
data so : Bool -> Set where
oh : so True;

Rather than insert such proofs by hand, we construct a tactic which,

like isElemTac in Section 2.8, tries to construct a proof (oh)
which succeeds if the bounds are statically known. If this fails, the
SearchContext tactic searches for a proof which already exists in
the context:
isThatSe : (x:Bool) -> Tactic;
isThatSo x = Try (Fill oh)
(Try SearchContext
(Fail "That’s not so!"));

We define a syntax macro for bounded numbers which automati-
cally invokes this tactic. Since the tactic only does a basic proof
search, we use the tryproof construct, so that if the tactic fails
then the programmer is free to construct a more complex proof by
hand:

syntax mk_so = [tryproof %intro;

%decide isThatSo; Yqed];
syntax bounded x = BInt x mk_so;

The decoding function for Chunk either gives a bounded number of
the appropriate bit width (in the case of bit), a primitive String
(in the case of CString or LString) or decodes a proposition.

chunkTy : Chunk -> Set;

chunkTy (bit w p) = Bounded (1 << w);

chunkTy Cstring = String;

chunkTy (Lstring i) = String;

chunkTy (prop P) = propTy P;

Similarly, decoding propositions gives an appropriate IDRIS type:
propTy : Prop -> Set;

propTy (p_1t x y) = LT % y;
propTy (p_eq x y) = z=y;
propTy (p_bool b) = so b;

propTy (p_and s t) = (propTy s & propTy t);

propTy (p_or s t) = Either (propTy s) (propTy t);

Given a proposition, we can also write a function which decides
whether than proposition is true, suitable for use by the decide
tactic, or for run-time checking. This proceeds structurally over a
Prop:

testProp : (p:Prop) -> Maybe (propTy p);

o 1516 n
4 bit 4 bit B hit type 16 kit total length
version length of service {in bytes)
16 bit 3 bit 13 bit fragment offset
identification flags
8 bit 8 hit 16 bit
time to live protocol header 20 bytes
32 hit
source IP address
32 hit
destination IP address

options
Gfany) T

Packet content

Figure 3. P Heuder

3.2 Packet Descriptions

Packet formats are composed of combinations of binary Chunks.
We define a language of combinators, PacketLang, in Figure 4.
This is an inductive-recursive definition — the data type is defined
simultaneously with its decoding function. This is a standard tech-
nique [10], and is particularly effective for implementing embedded
languages [20]. The decoding function mkTy is shown in Figure 5.

mkTy : Packetlang -> Set;

data PacketLang : Set where

CHUNK : (c:Chunk) -> PacketLang
| IF : Bool -> Packetlang -> PacketlLang -> PacketLang
| ¢(//) : PacketLang -> PacketLang -> PacketLang
| LIST : PacketLang -> PacketLang
| LISTN : (n:Nat) -> PacketLang -> PacketLang
| BIND : {(p:PacketLang) ->

(mkTy p -> Packetlang) -> Packetlang;
Figure 4. Packet Descriptions

mkTy : Packetlang -> Set;

nkTy (CHUNK c)

chunkTy c;

nkTy (IF x t e) = if x then (mkTy t) else (mkTy e);
mkTy (1 // 1) = Either (mkTy 1) (mkTy r);
mkTy (LIST x) List (mkTy x);

mkTy (LISTN i x)
nkTy (BIND ¢ k)

Vect (mkTy x) i;
(x ** mkTy (k x));

Figure 5. Decoding Packets

At their simplest, packet formats are a sequence of Chunks, com-
bined with a BIND operator to allow the form of later chunks to

depend on

values in earlier chunks:

CHUNK : (c:Chunk) -> PacketLang;

BIND

(p:PacketLang) ->
(mkTy p -» PacketLang) -> PacketLang;

We overload do-notation to use BIND and CHUNK instead of (>>=)
and return, and provide syntax macros for decluttering the syntax,
in particular for automatically inserting proofs that bit widths are
greater than 0:

syntax bits n = CHUNK (bit n mk_so);

syntax check n
syntax lstring n

CHUNK (prop (p_bool mn));
CHUNK (Lstring n);

For example, a data format containing an 8-bit number, guaranteed
to be greater than zero, followed by a string of that length would be
described as follows, where value is a function which extracts an
integer from a Bounded number:
string_format = do { len <- bits 8;
check (value len > 0);
lstring (value len); });

The decoding function for string format yields nested depen-
dent pairs, containing a length (with bounds proof), a proof that the
length is greater than zero, and the string itself. We always write
this type as mkTy string format, and to work with it, we use a
slightly different syntax x # y, which is more appropriate in this
context in that we think of the # as a field separator:

syntax (#) x y=<| x , y |>;

showString : mkTy string_format -> String;
showString (len # prf # str) = str;

For greater flexibility, the language also includes a number of com-
pound constructs. IF expressions allow alternative packet formats
depending on a boolean value (e.g. computed from the form of ear-
lier data):

IF : Bool —> PacketLang —> PacketLang -> PacketLang

We allow alternatives; a // b describes a packet format which can
be either a or b:

infixl 5 // ;

(//) : PacketLang -> PacketLang -> PacketLang

'Finally, there are two list constructs. LIST describes lists of arbi-
trary length, and LISTN describes lists of a specific length, perhaps
computed from earlier data:

LIST : PacketLang —> PacketLang
LISTN : (n:Nat) -> Packetlang -> PacketLang

3.3 Marshaling and Unmarshaling

Given a data format described in a PacketLang, we would like to
read and write concrete data in the format. Since there is no easy
way to represent bit level data directly in IDRIS we represent it in
C, as a pointer to a block of 32 bit words. In IDR1S, we wrap this
pointer, and the length of the block, in the RawPkt type:

typedef word32+ PACKET; // C representation
data RawPkt = RPkt Ptr Int; -- Pointer to a PACKET

Packet descriptions can be sent and received over a network socket
using the following foreign functions:

send : Socket -> RawPkt -> I0 ();
recv : Socket -> ID (Maybe Recv);

Top level functions marshal and unmarshal then use packet de-
scriptions to convert between the raw packet data and the high level
representation of the packet type. We can think of these functions
as “interpreters” for the packet language, whose semantics is to
convert data from one form to another.
marshal : (p:PacketLang) -> mkTy p -> RawPkt;
unmarshal : (p:PacketLang) -> RawPkt -> Maybe (mkTy p);

In order to implement marshal and unmarshal we will need to
read and and modify the contents of raw packets. This is achieved
using C functions, which access packets by a location (as a bit
offset) and a length in bits:

void setPktBits(PACKET p, int s, int len, int val);

int getPktBits(PACKET p, int s, int len);

Since we have given a length in bits, there is a clearly defined
limit to the size of the number which can be sent or received.
We therefore give a more precise type on the IDRIS side which
expresses this limit. First, we give the foreign function description
so that IDRIS programs can access the C definitions:
_setPktBits = mkForeign
(FFun "setPktBits" [FPtr, FInt, FInt, FInt] FUnit);
_getPktBits = mkForeign
(FFun "getPktBits" [FPtr, FInt, FInt] FInt);

Next, we write functions for packing and unpacking the raw pointer

data in a RawPkt. Setting bits in a packet modifies the packet

contents, since we aim to avoid expensive copying operations:
setPktBits : RawPkt -> Int -> Int -> Int => I0 ();
setPktBits (RPkt p 1) s b dat = _setPktBits p s b dat;

getPktBits : RawPkt -> Int -> Int -> I0 Int;
getPktBits (RPkt p 1) s b = _getPktBits p s b;

These functions now have high level types, but they do not express
the constraints on the integers precisely. Therefore, we give precise
types which explicitly specify the size of number which fits in the
range of bits. For setField, we give a number bounded according
to the number of bits b available. Calling setField is valid only if
we have checked that there are enough bits available in the packet,
which is a precondition expressed in the type:
setField : (pkt:RawPkt) -> (s:Int) -> (b:Int) ->
(so (s+b <= len pkt)) ->
Bounded (1 << b) -> I0 ();
setField pkt start bits _ (BInt v _)
= setPktBits pkt start bits v;

For getField, we should have a guarantee that the result will fit
in the number of bits available. However, this data originates in
the C program, so this guarantee depends on the C function being
implemented correctly. This is, unfortunately, not something we
can easily check in general — all we can do is trust that the external
code is implemented correctly, and make an assertion:
getField : (pkt:RawPkt) -> (s:Int) -> (b:Int) ->
(so (s+b <= len pkt)) ->
Bounded (1 << b);
getField pkt start bits _
= BInt (unsafePerformIO
(getPktBits pkt start (start+bits)))
(unsafeCoerce oh);

We have used two “unsafe” functions here: unsafePerformIO,
since the C function has no side effects; and unsafeCoerce which
converts the proof we can construct to the proof we need:

unsafeCoerce : {a:Set} -> {b:Set} -> a -> b;

The low level bit manipulation functions, setField and getField,
are implemented externally because they require close attention to
low level, possibly system specific, details. It is possible that we
could optimise these operations by exploiting the instruction set of
a specific architecture.

Aside — Contracts and Dynamic Checks

It is a little unsettling that we have used unsafeCoerce to create
an efficient verified implementation. On the one hand, we argue
that it is safe because we have access to the external C function’s
implementation, which we can verify by hand; on the other hand,
there ought to be a better way. For example, what if we change the
C implementation and forget to update the IDRIS type?

‘We plan to improve this situation in the short term by extending '
FType to include constraints on foreign values, for example:
data FType = ... | FIntP (Int -> Bool);

i_ftype (FIntP p) = (x:Int ** so (p x));

The predicate p is effectively a contract which the foreign value
must satisfy, similar to an assert in C. Like assert we would
expect to be able to switch off checking when we are certain (either
through extensive testing or verification of the external code) that
the predicate will never return False.

3.4 A Simple Example

To show how packet formats work in practice, we give a simple
packet format containing an IP address, followed by a list of strings
with explicit lengths. The address is a sequence of 4 8-bit numbers:

IPAddress = do { bits 8; bits 8; bits 8; bits 8; };

To represent strings with explicit lengths, we have an 8-bit number,
followed by a string of exactly the given length. We will use a zero
length to indicate the end of the list, so zero itself is an invalid
length, which we will express as a constraint:
stringlist = LIST (do { lem <- bits 8;
check (value len > Q);
LString (value len); 1);

The packet format is then an IP address, followed by a string list,
followed by the end marker, which must be zero:
strings = do { IPAddress;
stringlist;
endmarker <- bits 8;
check (value endmarker == 0); };

This packet format gives us a data type (using mkTy), and con-
version functions between a RawPkt and its IDRIS representation,
mkTy strings. Using marshal and unmarshal to convert the
data, and send and recv to transmit the data over a network con-
nection, we can guarantee that data is formatted using the correct
bit representation by the sender, and verified by the receiver. We
have implemented marshal and unmarshal in such a way that
when the format is statically known, as it typically would be in
specific applications, the abstraction overhead of the generic data
conversion is removed by partial evaluation [5].

High level type conversion

To work with an instance of mkTy strings, we need to know
howmkTy strings is concretely represented as a high level IDRIS
type. In principle, it is enough to know that two elements a and
b which appear in sequence in a PacketLang description will
be concretely represented as a # b. For example, from a nkTy
strings we can extract the components of the IP address, the list
of strings, the end marker and the proof that the marker is zero as
follows:

readPkt : mkTy strings -> ...;

readPkt ((a # b # c # d) # xs # mark # prf) = ...;

In general, however, it would be much easier to work with a high
level type rather than the generic types generated by mkTy. There-
fore, we additionally define a high level type and conversion func-
tions. These conversion functions will only be type correct if they
do the appropriate validation when building the packet format:
data StringData
= SData (Int & Int & Int & Int) (List String);

readPkt : mkTy strings -> StringData;

writePkt : StringData -> Maybe (mkTy strings);

One fragment of the conversion converts a 4-tuple of integers to an
IP address. The format specifies that the integers must be 8-bits,
however, so we must construct a proof that the integers are within
range. We write a dynamic checking function which, given a Bool
constructs either a proof that it is false, or a proof that it is true:
choose : (x:Bool) -» Either (so (not x)) (so x);

Using this, we convert integers to an IP address, shown in Figure
6. If the dynamic checks fail, and no proof can be constructed, the
conversion fails. If they succeed, the bounded macro will retrieve
the proofs generated by choose from the context.

intIP : (Int & Int & Int & Int) ->
Maybe (mkTy IPAddress);
intIP (a, b, c, d) with
(choose (a < 2B6), choose (b < 2B6),
choose (c < 256), choose (d < 256)) {
| (Right _, Right _, Right _, Right _) =
Just (bounded a # bounded b #
bounded ¢ # bounded d);
| _ = Nothing;

Figure 6. 1P Address Conversion

3.5 Network Packet Formats

More realistic packet formats follow the approach given above —
describe the format and convert to an appropriate high level repre-
sentation. Furthermore, in practice, while the PacketLang descrip-

tions may be longer, they are rarely significantly more complex. We '
outline two: ICMP and IP headers.

ICMP

Figure 7 illustrates the layout of an ICMP (Internet Control Mes-
sage Protocol) packet [29].

0 15 16 31

8 bit type 8 bit code 16 bit checksum

Message content depending on type and code

Figure 7. ICMP message

Valid codes, stored in bits 8-15, depend on the type, in bits 0—7. The
16-bit checksum depends on the content of the rest of the packet,
and an invalid checksum renders the contents of the packet invalid.
If we provide the checksum as part of the packet description, the
unmarshaller will automatically verify the checksum, and the mar-
shaller will automatically construet a valid checksum. The format
of the message content also depends on the type and code. Figure
8 shows how this could be represented in PacketLang.

ICMP = do { type <- bits §;
code <- bits 8;
check (validCode (value type) (value code));
checksum <- bits 16;

msg <- ICMPformat (value type) (value codel;
check (verify checksum type code msg); };

Figure 8. ICMP Packet Description

The ICMP type and code determine what form the message will
take. Only certain combinations are valid:

validCode : Int -> Int -> Bool;

validCode O x = x == 0;
validCode 3 x = x >=0 && x <= 13;
validCode 4 x = x == 0;
validCode 5 x = x >=0 && x <= 2;
validCode = False;

We could also define valid codes using the IF construct, but this
check, by pattern matching, is more convenient given the number
of available codes. The message format also depends on the code
and type, and is calculated by ICMPformat (the details of which
we have omitted).

1P

Recall Figure 3, which gave an illustration of the IP header. Figure
9 gives code to represent an IP header as a PacketLang. Reading
data from a concrete IP header is then simply a matter of calling
unmarshal IP_header.

The verify function, as before, verifies that the header’s
checksum field corresponds to a checksum calculated from the
remaining fields in the header. This is managed by unmarshal and
marshal; the proof, if it exists, simply has the form oh. Through
the packet EDSL, reading, writing and verifying an IP header is
no more complex than any either the ICMP format or the simple

strings format.
IP_header
= do { version <- bits 4; length <- bits 4;
tos <- bits 8; tlength <- bits 16;

id <- bits 16;

rsvd <- bits 1; check (value rsvd == 0);
df <- bits 1;

mf <- bits 1;

offset <- bits 13;

ttl <- bits 8; protocol <- bits 8;
checksum <- bits 16;

source <- IPaddress;
dest <- IPaddress;

opts <- IPoptioms;

check (verify checksum version length tos
tlength id rsvd df mf offset
ttl protocol source dest opts);

Figure 9. IP Header Packet Description

4. Related Work

Xi's ATS [36] is a systems programming language with a form
of dependent types. In ATS, there are separate static and dynamic
components, where the static component is used for constructing
and reasoning about types, and the dynamic component for evalu-
ating programs. In contrast we allow types and values to be freely
mixed. The compiler identifies the phase distinction between static

and dynamic values, erasing static values at run-time [6]. Freely
mixing types and values allows us to write generic programs by
universe constructions [20], such as packet format descriptions.

An alternative approach could be taken using Coq and its extrac-
tion mechanism [17, 27]. Extraction generates an ML or Haskell
program from a Coq proof, which we can then incorporate in a
larger system which deals with the low level details (such as bit
processing through foreign functions).

Our data description language is related to monadic parsers such
as Parsec [15] in that we provide a set of combinators for lan-
guage descriptions. Oury and Swierstra take a similar approach us-
ing Agda [26], under the assumption that there are external func-
tions for dealing with the details of bit processing. More generally,
they propose dependently typed languages as a host for embedding
domain specific languages with precise type systems. In this paper,
we have taken this work further: not only do we embed a domain
specific language for data description, we complete the implemen-
tation for processing real bit level data and show how the language
can be used in practice. We expect the embedded domain specific
language approach to be applicable to other problems in systems
programming, such as device driver verification [23, 35].

Qur embedded data description language is inspired by previous
tools such as PACKETTYPES [22] and Mirage [18] (both specif-
ically targetting network packet formats), and more general data
description languages [11] such as PADS/ML [19]. One advantage
of taking a generic programming approach in a dependently typed
host is that we can use features of the host language directly. We
exploit this in particular to express dependencies and constraints
between data, Furthermore, the framework is extensible — we are
not limited to the marshal and unmarshal functions. For exam-
ple, we could extend the framework with pretty printing of packets
or XML conversion, directed by a PacketLang format. Of course,

as well as exploiting the features of the host language, we must
also work with the limitations of the host language. Disadvantages
of the generic approach, which we hope to address in future work,
include the difficulty of producing good error messages and good
error recovery in the parser.

5. Discussion

We have given an overview of the IDRIS programming language,
including the most important language constructs and the distinc-
tive features which make it suitable as a host language for a DSL.
Our motivation is the need for systems software verification — pro-
grams such as operating systems, device drivers and network pro-
tocol implementations which are required for the correct operation
of a computer system. Therefore it is important to consider not only
how to verify software, but also how to do so without compromis-
ing on efficiency, and how to inter-operate with concrete data as it
is represented in the machine or on a network wire. Our approach
is to implement a generic data description language using a for-
eign function interface to access the concrete data. We use partial
evaluation [5] to eliminate the abstraction overhead of the generic
marshal and unmarshal functions. We have implemented some
simple examples using this language, and tested them by marshal-
ing and unmarshaling data over a real network connection.

Further Work

Our examples demonstrate the feasibility of using a dependently
typed language to implement and verify systems software. To eval-
nate the approach fully, however, we will need significant examples
with benchmarks, ideally implemented by systems programmers
and network practitioners. There are some problems to be solved
before we can apply our data description language in practice:

1. The current implementation of IDRIS uses the Boehm-Demers-
Weiser conservative garbage collector [2], which is fine for
most applications, but may not be suitable for low level code
which may need to run in very limited memory. A much simpler
solution, of which we have a prototype implementation, would
be to allocate a single pool of memory which is freed on return
from a top level function. This region based approach is used to
good effect in Hume [12].

2. In its current form PacketLang does not deal completely with
bounds checking on integers. For example, we do not check that
an integer is positive, or that it does not exceed an upper bound
of 32 bits.

3. The error messages generated for incorrect EDSL programs can
be hard to understand, particularly in cases where we have used
syntactic sugar to make the EDSL programs more readable. To
some extent we can mitigate the problem by generating more
specific messages in domain-specific decision procedures but
in general we will need to devise a mechanism for producing
domain-specific error messages.

4. The path to adoption by systems programmers and network
practitioners is not clear. Typically, they would use C or Java,
and in order to be adopted any new approach would have to
inter-operate with existing tools. A possible path to adoption
would involve generating C headers for exported IDRIS func-
tions, providing an API for accessing packet data. A good, sim-
ple, foreign function interface will be important here.

Systems software verification is vital — bugs in network and sys-
tem software lead to security risks. We plan to use IDRIS and
PacketLang formats to implement network applications, and gen-

erate benchmarks to compare our implementations with more con-
ventional systems. The Domain Name Service (DNS) is a good
candidate: it has a complex packet format with a built in string com-
pression scheme which is hard to express in existing data descrip-
tion languages, and has been the source of serious bugs in DNS
servers. Our hope is that language based verification techniques
will help prevent such bugs in the future.

Acknowledgments

This work was partly funded by the Scottish Informatics and Com-
puter Science Alliance (SICSA) and by EU Framework 7 Project
No. 248828 (ADVANCE). I thanks James McKinna, Kevin Ham-
mond and Anil Madhavapeddy for several helpful discussions, and
the anonymous reviewers for their constructive suggestions.

References

[1] S. Bhatti, E. Brady, K. Hammond, and J. McKinna. Domain specific
languages (DSLs) for network protocols. In fnternational Workshop
on Next Generation Network Architecture (NGNA 2009), 2009,

[2] H.-J. Boehm, A. J. Demers, Xerox Corporation Silicon Graphic, and
Hewlett-Packard Company. A garbage collector for C and C++, 2001.

[3] E. Brady. Practical Implementation of a Dependently Typed
Functional Programming Language. PhD thesis, University of
Durham, 2005.

[4] E. Brady. Ivor, a proof engine. In Implementation and Application of
Functional Languages 2006, LNCS. Springer-Verlag, 2007.

[5] E. Brady and K. Hammond. Scrapping your inefficient engine: using
partial evaluation to improve domain-specific language implementa-

tion. In JCFP '10: Proceedings of the 15th ACM SIGPLAN Interna- .
tfional Conference on Functional Programming, pages 297-308, New
York, NY, USA, 2010. ACM.

[6] E. Brady, C. McBride, and J. McKinna. Inductive families need not
store their indices. In S. Berardi, M. Coppo, and F. Damiani, editors,
Types for Proofs and Programs 2003, volume 3085 of Lecture Notes
in Computer Science, pages 115-129. Springer, 2004.

[7] J. Chapman, P--E. Dagand, C. McBride, and P. Morris. The gentle art
of levitation. In ICFP '10: Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, pages 3—14,
New York, NY, USA, 2010. ACM.

[8] Coq Development Team. The Coq proof assistant — reference
manual. http://coq.inria.fr/, 2009.

[9] N. A. Danielsson. Total parser combinators. In JCFP '10: Proceedings
of the 15th ACM SIGPLAN International Conference on Functional
Programming, pages 285-296, New York, NY, USA, 2010. ACM.

[10] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In Tyed Lambda Calculi and Applications, volume 1581 of
Lecture Notes in Computer Science, pages 129-146. Springer, 1998.

[11] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. SIGPLAN Not., 41(1):2-15, 2006.

[12] K. Hammond and G. Michaelson. Hume: a Domain-Specific
Language for Real-Time Embedded Systems. In Proc. Conf
Generative Programming and Component Engineering (GPCE '03),
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[13] P. Hancock and A. Setzer. Interactive programs in dependent type
theory. In P. Clote and H. Schwichtenberg, editors, Proc. of 14th
Ann. Conf. of EACSL, CSL’00, Fischbau, Germany, 21-26 Aug 2000,
volume 1862, pages 317-331. Springer-Verlag, Berlin, 2000.

[14] P. Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28A(4), December 1996.

[15] D. Leijen. Parsec, a fast combinator parser. http://www.cs.uu.
nl/~daan/parsec.html, 2001.

[16] X. Leroy. Formal certification of a compiler back-end. In Principles
of Programming Languages 2006, pages 42-54, ACM Press, 2006.

[17] P. Letouzey. A new extraction for Coq. In H. Geuvers and F. Wiedijk,
editors, Types for proofs and programs, LNCS. Springer, 2002.

[18] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan.
Melange: creating a "functional” internet. In EuroSys '07: Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, New York, NY, USA, 2007. ACM.

[19] Y. Mandelbaum, K. Fisher, D. Walker, M. F. Fernindez, and
A. Gleyzer. PADS/ML: a functional data description language.
In M. Hofmann and M. Felleisen, editors, POPL '07: Proceedings
of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2007, Nice, France, January 17-19,
2007, pages 77-83. ACM, 2007.

[20] C. McBride. Outrageous but meaningful coincidences: dependent
type-safe syntax and evaluation. In WGP "10: Proceedings of the
6th ACM SIGPLAN workshop on Generic programming, pages 1-12,
New York, NY, USA, 2010. ACM.

[21] C. McBride and J. McKinna. The view from the left. Journal of
Functional Programming, 14(1):69-111, 2004,

[22] P. J. McCann and S. Chandra. Packet types: Abstract specification of
network protocol messages. In SIGCOMM ’00. ACM, 2000.

[23] F. Mérillon, L. Réveillére, C. Consel, R. Marlet, and G. Muller. Devil:
An idl for hardware programming. In 4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2000), 2000.

[24] J. Morgenstern and D. R. Licata. Security-typed programming within
dependently typed programming. In ICFP '10: Proceedings of
the 15th ACM SIGPLAN International Conference on Functional
Programming, pages 169-180, New York, NY, USA, 2010. ACM.

[25] U. Norell. Towards a practical programming language based
on dependent type theory. PhD thesis, Chalmers University of
Technology, September 2007.

[26] N. Oury and W. Swierstra. The power of Pi. In J. Hook and
P. Thiemann, editors, ICFP '08: Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming,
ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, pages
39-50. ACM, 2008.

[27] C. Paulin-Mohring. Extraction de programmes dans le Calcul des
Constructions. PhD thesis, Paris 7, 1989.

[28] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn.
Simple unification-based type inference for GADTs. In Proc. 2006
International Conf. on Functional Programming (ICFP 2006), 2006.

[29] J. Postel. Internet Control Message Protocol. RFC 792 (Standard),
Sept. 1981. Updated by RFCs 950, 4884.

[30] J. Postel. Internet Protocol. RFC 791 (Standard), Sept. 1981. Updated
by RFC 1349,

[31] W. Pugh. The Omega Test: a fast and practical integer programming
algorithm for dependence analysis. Communication of the ACM,
pages 102-114, 1992,

[32] M. Sozeau. Equations: A dependent pattern-matching compiler. In
First International Conference on Interactive Theorem Proving (ITP
2010), pages 419-434, 2010.

[33] M. Sozeau and N. Oury. First-class type classes. In TPHOLs '08:
Proceedings of the 21st International Conference on Theorem Proving
in Higher Order Logics, pages 278-293, Berlin, Heidelberg, 2008.
Springer-Verlag.

[34] E. van der Weegen and J. McKinna. A machine-checked proof of
the average-case complexity of quicksort in coq. Lecture Notes in
Computer Science, pages 256271, Springer, 2009,

[35] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider.
Device driver safety through a reference validation mechanism.
In 8th USENIX Symposium on Operating Systems Design and
Implementation ({OSDI 2008), 2008.

[36] H. Xi. Applied Type System (extended abstract). In S. Berardi,
M. Coppo, and F. Damiani, editors, Types for Proofs and Programs
2003, volume 3085 of Lecture Notes in Computer Science, pages
394-408. Springer, 2004.

