
Isomorphism Is Equality

Thierry Coquand Nils Anders Danielsson

Abstract

The setting of this w ork is dependent type t heory extended w ith the
univalence axiom. We prove that, for a large class of algebraic struc-
tures, isomorphic instances of a structure are equal—in fact, isomorphism
is in bijective correspondence with equality. The class of structures in-
cludes monoids whose underlying types are “sets” , and also posets where
the underlying types are sets and the ordering relations are pointwise
“propositional” . For instance, equality of monoids on sets coincides w ith
the usual notion of isomorphism from universal algebra, and equality of
posets of the kind mentioned above coincides with order isomorphism.

1 Introduction
De Bruijn argued t hat it is more natural for mathematicians to w ork with a
typed language than with the untyped universe of set theory (1975) . In this
paper we explore a possible mathematical advantage of working in a type t he-
ory—inspired by the ones designed by de Bruijn and his coworkers1 (de Bruijn
1980)—over working in set theory.

Consider the following two monoids:

(N, λmn. m + n,0)

and
(N \ { 0 } ,λmn. m + n −1 , 1) .

These monoids are isomorphic, as witnessed by the isomorphism λn. n + 1.
However, in set theory they are not equal: there are properties t hat are satisfied
by only one of them. For instance, only the first one satisfies the property that
the carrier set contains the element 0.

In (a certain) type theory extended w ith the univalence axiom (see Section 2)
the situation is different. This is the focus of the present paper:

• We prove that monoids M1 and M2 that are isomorphic, i.e. for w hich t here
iWs a hroovmeo tmhaotrpm hoinc obidijesMc tion f : M1 → M2 , are equal (see Section 3.5) .
In fact, we show that isomorphism →is iMn bijective correspondence with
equality.

Note that the equality that we use is substitutive. This means that, unlike
in set theory, any property that holds for the first monoid above also holds
for the second one.

1The AUTOMATH project team included van Benthem Jutting, van Daalen, Kornaat,
Nederpelt, de Vrijer, Zandleven, Zucker, and others (Nederpelt and Geuvers 1994) .

1

(The result is restricted to monoids whose carrier types are “sets” . This
term is defined in Section 2.5. Many types, including the natural numbers,
are sets.)

• The result about monoids is an instance of a more general theorem (see
STehcetior ens u3l.t3)a , b wohuicthm aopnpoliiedss t ios a nlari gnes tcalnascse o off faal gem borareic structures, oinrecmlud(sinege
posets and discrete fields (defined as in Section 3.5) .

All the main results in the paper have been formalised using the proof assis-
tant Agda2 (Norell 2007; Agda Team 2013) , which is based on Martin-Lo ¨f type
theory (Martin-Lo ¨f 1975; Nordstro ¨m et al. 1990) . Unlike in regular Martin-Lo ¨f
type theory we use a “non-computing” J rule (i.e. the computation rule for
J only holds propositionally, not definitionally) ; this choice, which makes the
result more generally applicable, is motivated in Section 2.3. We believe that
our arguments carry over to other variants of type theory, but do not make any
formal claims in this direction.

Note that our theorem is proved inside the type theory, using the univalence
axiom. In the absence of this axiom we can still observe, meta-theoretically,
that we cannot prove any statement that distinguishes the two monoids above
(given the consistency of the axiom) . A related observation was made already
in the 1930s by Lindenbaum and Tarski (1983, see also Tarski (1986)) : in one
variant of type theory every sentential function is invariant under bijections.

The formulation of “isomorphism is equality” that is used in this paper is not
intended to be as general as possible; we try to strike a good balance between
generality and ease of understanding. Other variations of this result have been
developed concurrently by Aczel and Shulman (2013) . See Section 4 for further
discussion of related work.

2 Preliminaries
This section introduces some concepts, terminology and results used below. We
assume some familiarity with type theory.

The presentation below is close to the Agda formalisation, but differs in
minor details. In particular, we do not always use proper Agda syntax.

2.1 Hierarchy of Types

We assume that we have an infinite hierarchy of “types of types” Type0 : Type1

: Type2 : . . . (and use the synonym Type = Type0) . Below we define some
concepts using certain types Typei and Typej . These definitions are applicable
to arbitrary “universe levels” iand j .

In Agda a member of Typei is not automatically a member of Typej for
i< j, but one can manually lift types from one level to another. In this paper
we omit such liftings.

2Using the --without-K flag; the code of the formalisation can currently be downloaded
from h ttp ://www . cse . chalmers .se/~nad/.

2

2.2 Quantifiers

If we have A : Typei and B : A → Typej , then we can introduce the Π-type,
or dependent functiona t ype, (:x A : A→) T→yp B x (sometimes written ∀ x. B x). If
we dheapveen fd : t(xf : cAti)o n→t pBe x axn:d At : A→, tB he nx t(shoem maeptpimliceastiw onri t ft tn h ∀as x type)B. It.f
wSiem hpalev e(n fon :-(dxep: eAn d)en→ t) B fun xcta ionnd types are ewnr itthteen a pAp i→ca Bion.

Ipnl eo(rndoenr -tdoe preednudceen ct)lu ftutnerc we st oympeetsi marees use “enim Aplic→ it” Bfu.nction types. The
notations {x : A} → B x and ∀ {x} . B x mean the same as (x : A) → B x
annotda t∀ io x. sB{ x, A res}pe→ ctiB velx y, except t}h. aBt t xhe m feuannctt ihoen’ss argument :isA n)o→t given
aenxdpli∀ citx ly.:B we , w rreistpee fc riavethlye,r etxhcaenp ft y, awtit thh ethf eu innctteinont’iosna trhguatm y can sbne ointf egrivreedn
from the context.

Sometimes we combine several quantifiers into one: (x y : A) → B x y
means the same as (x : A) → (y : A) → B x y, and x∀ x {:yA z)} . →B x y z
means tht hee same as a ∀s x. x∀ :{yA }) . → ∀ →{z(}y . :BA x y z.

aΣn-styt pheess, or d aesp e∀nx d.e∀ nt{ yp}a .ir∀ s, are wBrxi tty enz Σ x : A. B x (or Σ x. B x). If
we have t : A and u : B t, then (t, u) has type Σ x : A. B x. Σ-types come
with two projection functions. The first projection is written proj1 and the sec-
ond proj2 . Cartesian products (non-dependent pairs) are defined as A ×B =
Σ : A. .BC.

We make use of η-equality for both Π-types and Σ-types: the function
f : (x : A) → B x is definitionally equal to λ x. f x (where x is not free in f) ,
afn:d txhe: pair p : BΣx x : Ae.f nBi x nisa ldlyefine qiutioanlat ollyλ ex q.uf axl t (ow (hperroej1x p,proj2 pre)e . (inD fe)f ,-
initional equality is discussed below.) We suspect that the use of η-equality is
not essential, but have used it in our formalisation.

2.3 Equality

Following de Bruijn (1975) we distinguish between definitional (or j udgemental)
and propositional (or book) equality. Definitional equality (βη-equality plus un-
folding of user-made definitions) is inferred automatically by the type checker,
and comes with no term formers. If we have t : A, and A is definitionally equal
to B, then we have t : B as well: definitional equalities are “invoked automat-
ically” . Propositional equality, on the other hand, is a type with corresponding
term formers.

The propositional equality type, containing proofs of equality between x
and y, is written x ≡ y. Here x and y must both have the same type A, w ith
aAn : Typei . rTithteenre xis one i.nH treordeu xcta ionnd ry ul me ufosrt e bqouthalh itiaevse:

refl : {A : Typei} → (x : A) → x ≡ x

The corresponding eliminator is traditionally called J:

J : {A : Typei} →
{(PA : T(xy y : }A→) → x ≡ y → Typej) →
(∀ x. P x x (refl x)) →
(∀∀ ∀{x x. y P} . x(x eq : x ≡)) y →) → P x y eq

Typically J and refl come together with a “computation rule” , a definitional
equality stating how applications of the form J P r (refl x) compute (Martin-
L o¨f 1975) . We include such a rule, but stated as a propositional equality:

3

J-refl : {A : Typei} →
{(PA : T(xy y : }A→) → x ≡ y → Typej) →
(r : ∀ x. P x x (refl x)) →

(∀r x. J∀ xP. r (x re xfl x(r)e l≡x r x

The reason for using a propositional computation rule is the ongoing quest
to find a computational interpretation of the univalence axiom: perhaps we
will end up with a computational interpretation in which J-refl does not hold
definitionally.

As mentioned in the introduction the propositional equality type is substi-
tutive. This follows directly from the J rule:

subst : {A : Typei} → (P : A → Typej) →

{x y : A} → x ≡ y → P x → P y
subst P =x yJ: (Aλ} u v .xP≡ u y→→ →P Pv)x x(λ→ p. py)

We sometimes make use of axioms stating that propositional equality of
functions is extensional:

Extensionality : (A : Typei) → (B : A → Typej) →
(f g : (x : A) → B x) →
((∀f x. :f x :≡A g x →) →B x f) ≡→ g

When we use the term “extensionality” below we refer to extensionality of func-
tions. In the formalisation we explicitly pass around assumptions of extension-
ality (foo : Extensionality → . . .), thus making it clear w hen t his assumption
aisl tnyot (fuoosed: . ETxot anvsoiiodn aclliuttyter→ we .d.)o, nthotu sdmo so bngelo iwtc.

The type of bijections between the types A : Typei and B : Typej is written
A ↔ B. This type can be defined as a nested Σ-type:

A ↔ B = Σ to : A → B. Σ f rom : B → A.
(Σ∀ x. t :o A A(fr→ om Bx). Σ≡f ox)m m×: B(∀ x. f rA o.m (to x) ≡ x)

If we have f : A ↔ B, then we use the notation to f for the “forward” function
Ioff type vAe f→: BA, ↔andB fr,ot mhe nf wfoer utsheet “hbean coktwaatirodn” fou fncf toiront h oef“ type aBr ”→f nAc.

yAp keeA y property odf feroqmualf ity fo orft hΣe-t “ybpaecsk iws atrhda”t fueqnucatiliotny ooff pairs p, q o Af type
Σ x : A. B x is in bijective correspondence with pairs of equalities:

p ≡ q ↔ Σ eq : proj1 p ≡ proj1 q. subst B eq (proj2 p) ≡ proj2 q

This property can be proved using J and J-refl . By assuming extensionality we
can prove a similar key property of equality of Π-types (Voevodsky 2011) :

f ≡ g ↔ ∀ x. f x ≡ g x

2.4 More Types

The unit type is denoted > (with sole element tt : >), and the empty type
T⊥.h eAu gndiat comes swd itehn η-equality itfohr >sol: eae lll evmaelunets totf :t h >is) type are edee fminpittyiont aylplye
e⊥q.u aAl.g

4

The binary (disjoint) sum of the types A and B is written A + B. If we
have t : A and u : B, then we also have inj1 t : A + B and inj2 u : A + B.

The natural numbers are defined as an inductive data t ype N with con-
structors zero : N and suc : N → N. Natural numbers can be eliminated using
ssttrruuccttourraslz ererocu: rsN iona .n

Two types A and B are logically equivalent, written A ⇔ B, if there are
funTctiwoonst going Afra omnd AB tao Be aongidc abllaycke q: uAiv a⇔le tB, w=r (tAen →A B ⇔) ×B ,(i Bf h→e eAa) .

2.5 Univalent Foundations

Let us now introduce some terminology and results from the “univalent foun-
dations of mathematics” , largely but not entirely based on work done by Voe-
vodsky (2010, 2011) , and verified to apply in our setting (with a propositional
computation rule for J).

Contractibility is defined as follows:

Contractible : Typei → Typei
Contractible A = Σ x : TAy. p ∀e y. x ≡ y

Homotopy levels or h-levels are defined by recursion on a natural number:

H-level : N → Typei → Typei
HH--lleevveell zero AT =pe Co→ntr Tacytpieble A
H-level (suc n) A = (x y : A) → H-level n (x ≡ y)

Types at level 0 are contractible. We call types at level 1p ropositions and types
at level 2 sets:

Is-proposition : Typei → Typei
Is-proposition = H-leve→l →1

Is-set : Typei → Typei
Is-set = H-leve→l →2

The following results can be used to establish that a type has a certain
h-level:

• A type which has h-level n also has h-level suc n.

• A type A is contractible iff it is in bijective correspondence with the unit

type: e>A ↔ is cAon.

• A type A is a proposition iff all its values are equal: (x y : A) → x ≡ y.
IAn tpyapretiA cu ilsaar , p⊥r ips a proposition.

• A type A is a set iff it satisfies the “uniqueness of identity proofs” property
A(Ut IyPp):e (Ax y : sAet) →fi s(pa q : x h≡e “yu) →iqu p ≡ss q.

• If a type A has decidable equality, (x y : A) → (x ≡ y) + (x ≡ y → ⊥) ,
tIhfe an yitp seaAt isfh ieass Ud eIPci d(Habeldebe eqrug 1li9t9y8,)(, so i:t Ais) a se (tx. ≡Iny p)a +rt(ixcu ≡lary , N→ i ⊥s a
set.

• H-level n A is a proposition (assuming extensionality) .

5
• If A has h-level n, and, for all x, B x has h-level n, then Σ x : A. B x

Ihfa sA hh -laesveh l- n.

• If, for all x, B x has h-level n, then (x : A) → B x has h-level n (assum-
ing oerx atelln sxio,nB alx ity h)a .

• If A and B both have h-level n, where n > 2, then A + B has h-level n.

• If A has h-level n > 1, then W x : A. B x has h-level n (assuming ex-
Itefn Asioh naaslith y-)le . eHle rne >W1 x : eAn. WB x xis: a W-type, or -wleevlel-lfo nun(daesdsu tmreien type
(Nordstro ¨m et al. 1990) .

• When proving that a type A has a positive h-level one can assume that A
iWs hinehnabp ritoevdi:n g(At h a→t H ty-lpeveeA l (s huacs na) p Ao)s →ive Hh--lleevveell o(snuecc na)n Aa s.

• If there is a “split surjection” from A to B (i.e. a triple consisting of
tIwf ot efurencti sio nas“ stop : As →rje Btio nan”d f formom A : tBo B→ Ai.e along pwleitc ho a pistrionogf ooff
t∀w x. ftou n(fctroiomn sxt) o≡: Ax)→, →anBd BAa nhdas hro-mleve: l n, →theAn Ba honasg h w-iletvhela n.

If a type is known to be propositional, then one can use this knowledge to
simplify equalities involving this type; propositional second components of pairs
can be dropped:

(p q : Σ x : A. B x) →
(Isp-q pro :p Σosix tio: nA (.BB (p x)roj→ 1 q)) →

(p ≡ q) ↔ (proj1 p ≡q proj1 q)

A function is an equivalence if all its “preimages” are contractible:

Is-equivalence : {A B : Typei} → (A → B) → Typei
IIss--eeqquuiivvaalleennccee ef : =A B∀ y. TCyopnetr}ac→ tible(A A(Σ→ x. Bf x →≡ Ty)y

Observe that Is-equivalence f is a proposition (assuming extensionality). One
example of an equivalence is subst P eq : P x → P y (for any P, x, y and
eq : x ≡e yf)a .

:T xwo≡ types A and B are equivalent, written A ’ B, if there is an equivalence
fromT wAo t toy pBe:s

Σ f : A → B. Is-equivalence f

If we have eq : A ’ B, then we use the (overloaded) notation to eq for the
fIifrs wt projection :oA f eq. G Bi,vet nh eq : eA s’e tBh eit oisv ealrlsooa easy t noo ctaontsiotrnu ctot a qfuf nocrtt ihone
ofirf type Bjec →ion Ao f. qW.e G use nth eqe o: vA erl’ oad Bedi n iosta altsioone f sryom to eq nfostrr utchtisa ff uunnccttiioonn:
forfo mty eq B= →λ y. proj1 (proj1 (proj2 eq y)).

One can prove that to eq and f rom eq are inverses, so A ’ B is logically
equiOvanleenc at ntop Aov e↔t aBt. oWe qhea nn dA iosm a sqeat we can, assuming extensionality,
seqtruenivgatlhenent tthois A Alo↔ gicaB l .equivalence to a bijection: (A ’ B) ↔ (A ↔ B) . If
sbtortehn gAt aennd t hBi are picraolp eoqsiutiiovnalse,n tchee nto w e can ttaiokne: :th (Ais one step ↔fur(tAhe↔ r— iBn t.hIi sf
case equivalences are, again assuming extensionality, in bijective correspondence
with logical equivalences: (A ’ B) ↔ (A ⇔ B).

hTl hoeg ifocallloe wqinugiv “lcenocnegsr:ue(nAce”’ property Aillu ⇔straB t)e.s one way in which one can
prove that two types Σ x : A. B x and Σ x : C. D x are equivalent:

6

(eq : A ’ C) → (∀ x. B x ’ D (to eq x)) →

((eΣq x : AA’ . ’BC x)) →’ ((Σ∀ x : C x. D’ x D)

If we assume extensionality, t hen w e can prove a corresponding property for
Π-types:

(eq : A ’ C) → (∀ x. B x ’ D (to eq x)) →

((e(xq : AA) ’→C B) x→) ’ (∀ (x(.x B : xC’) →D D(to oxe)q

Similar properties can be proved for other type formers as well.
It is easy to show that equality implies equivalence:

≡⇒’ : (A B : Typei) → A ≡ B → A ’ B
≡≡⇒⇒’’ =B J: T(λy pAe B) .→AA A’≡ B B) (→λ A→’ id B)

(Here id is the identity equivalence.) The univalence axiom states that this
function is an equivalence:

Univalence : (A B : Typei) → Is-equivalence (≡⇒’ A B)

As immediate consequences of the univalence axiom w e get that equality is in
bijective correspondence w ith equivalence, (A ≡ B) ↔ (A ’ B), and t hat
we can ecoc novrrerets peoqnudivenalceencw esit htoe qequuivaallietinesc:e

’⇒≡ : {A B : Typei} → A ’ B → A ≡ B

The univalence axiom (two instances, one at level j and one at level j + 1) also
implies extensionality (at levels iand j) . Furthermore univalence (at level i)
can be used to prove the transport theorem:

(P : Typei → Typej) →

(resp : {A B : Typei} → A ’ B → P A → P B) →

((rreesspp-i: d{ : A∀ B BA:. (Tpy : P} A →) →A resp Bid→ p ≡P Ap) →→

(∀r eAs pB-i.d d(e: q∀ : A. ’p :BP) A→) →(p : sPp Ai d) p→≡

resp eq p q≡: Asub’ st PB)(’→ ⇒≡(p peq:)P p

This theorem states that if we have a function resp that witnesses that a predi-
cate P respects equivalence, and resp id is the identity function, t hen resp eq is
pointwise equal to subst P (’⇒≡ eq) . By using the fact that subst P (’⇒≡ eq)
piso an weqisueiv eaqleunaclet we get Pt ha (t’ resp eq)is. aBlyso u an geq tuhievf aalecntct eh, atns du bthstaPt Pit(preserves
compositions (if we, in addition to univalence, assume extensionality).

We mentioned above t hat we make use of a global assumption of extension-
ality in the text. We also make use of a global assumption of univalence. To be
precise, below we use univalence at the first three universe levels. These three
instances of univalence can be used to prove all instances of extensionality that
we make use of.

3 Isomorphism Is Equality
In this section we prove that isomorphism is equality for a large class of alge-
braic structures. First we prove the result for arbitrary “universes” satisfying
certain properties, then we define a universe that is closed under function spaces,
cartesian products, and binary sums, and finally we give some examples.

7

3.1 Parameters

We parametrise the general result by four components. The first two form a
universe, i.e. a type U of codes, along with a decoding function El:

U : Type2
El : U → Type1 → Type1

We have chosen to use Type2 and Type1 (rather t han, say, Type and Type) in
order to support the example universe given in Section 3.4. However, other
choices are possible.

The third component is a requirement that El a, when seen as a predicate,
respects equivalences:

resp : ∀ a {B C} . B ’ C → El a B → El a C

Finally the resp function should map the identity equivalence id to the identity
function:

resp-id : ∀ a B. (x : El a B) → resp a id x ≡ x

The idea is that an element a : U corresponds to a kind of structure, that
El a B is the type of elements having this structure and using the “carrier
type” B, and that the operation resp corresponds to “transport of structure”
(Bourbaki 1957) : if x : El a B and eq : B ’ C then resp a eq x is the a-
s(tBrouuctrubarek on C57 o)b:ta ifinx ed: by transporting x along eq.

3.2 Codes for Structures

Given these parameters we define a notion of codes for “extended” structures.
The codes consist of two parts, a code in U and a family of propositions:

Code : Type3
Code =

Σ a : U.
(C : Type1) → El a C → Σ P : Type1. Is-proposition P

The codes are decoded in the following way (values of type Instance c are in-
stances of the structure coded by c) :

Instance : Code → Type2
IInnssttaannccee (:a C, Pod) e=→

Σ C : Type1. -- Carrier type.
Σ x : El a C. -- Element.
proj1 (P C x) -- The element satisfies the corresponding

-- proposition.

We can also define w hat it means for two instances to be isomorphic. First
we use resp to define a predicate that specifies when a given equivalence is an
isomorphism from one element to another:

Is-isomorphism : ∀ a {B C} . B ’ C → El a B → El a C → Type1
IIss--iissoommoorrpphhiissmm a eq x y =C resp a eq x →≡ y

8

Two instances are then defined to be isomorphic if there is an equivalence be-
tween the carrier types that relates the elements; the propositions are ignored:

Isomorphic : ∀ c. Instance c → Instance c → Type1
IIssoommoorrpphhiicc c(: a, ,c) . (I Cns,t x, ,c)e (cD ,→ y, ,In) t=a

Σ eq : C ’ D. Is-isomorphism a eq x y

The following projections, one for carrier types and one for elements, are
easy to define:

Carrier : ∀ c. Instance c → Type1
eClearmreinert : ∀∀ c. I(In : Inncsetac nc→ e →cT) →pe El (proj1 c) (Carrier c I)

We use the projections to state that equality of instances is in bijective corre-
spondence w ith a pair of equalities, one for the carrier types and one for the
elements:

equality-pair-lemma :
∀ c. (IJ : Instance c) →

(I ≡ J)
↔≡

Σ eq : Carrier c I≡ Carrier c J.
se uqbs: tC C(Earlr i(eprroc j1I Ic)≡) eq (a errleimerec ntJ c I) ≡ element c J

Our proof of this statement is straightforward. Assume that c = (a, P), I=
(C, x, p) and J = (D, y, q) . We proceed by “bijectional reasoning” (note that
↔ is a transitive relation) :

(C, x, p) ≡ (D, y, q) ↔
((C, x) , p) ≡≡ (((DD,,y y,)q, q) ↔↔
(((CC, ,xx) ≡≡ (((DD, ,yy) ↔↔
Σ eq : C ≡≡ D(D. s,uyb)st (El a) eq x ≡ y

In the first step we apply a bijection to both sides of the equality, in the second
step we drop the propositional second components of the tuples, and the last step
uses the key property of equality of Σ-types that was mentioned in Section 2.3.

3.3 Main Theorem

Let us now prove the main result:

isomorphism-is-equality : ∀ c IJ. Isomorphic c IJ ↔ (I ≡ J)

Assume that c = (a, P) , I= (C, x, p) and J = (D, y, q) . As above we pro-
ceed by bijectional reasoning (after unfolding some definitions) :

Σ eq : C ’ D. resp a eq x ≡ y ↔
ΣΣ eq : CC ’’ DD.. rseusbpsta a(E eql ax) (’⇒≡ eq) x ≡≡ y ↔↔
ΣΣ eq : CC ≡’ DD.. ssuubbsstt ((EEll aa)) eq x ≡≡ y ↔↔
IΣ e≡q J:

The first step uses the transport theorem instantiated with resp and resp-id,
the second step univalence, and the last step equality-pair-lemma.

An immediate corollary of isomorphism-is-equality (and univalence) is that
Isomorphic c IJ is equal to I≡ J: isomorphism is equality.

9

3.4 A Universe

Let us now define a concrete universe. The codes and the decoding function are
defined as follows:

data U : Type2 where
id : U -- The argument.
type : U -- Type.
k : Type1 → U -- A constant._ : U → U→ →U U -- Function space.
⊗_ : UU →→ UU →→ UU -- Cartesian product.
⊗⊕_ : UU →→ UU →→ UU -- Binary sum.

El : U → Type1 → Type1
EEll i:d CTy p=e C→
El type C = Type
El (k A) C = A
El (a _ b) C = El a C → El b C
EEll ((aa ⊗_ b b)) CC == EEll aa CC ×→ EEll bb CC
EEElll (((aaa ⊗⊕_ bb b))) CCC === EEElll aa CCC →×+ EEll bb CC

Here U is an inductive data type, with constructors id, type, k, etc., and El a is
defined by recursion on the structure of a. The notation _ is used to declare
an infix operator: the underscores mark the argument pos_itioni ss.u

We do not define resp directly, instead we define a “_casi ts” ospedert aoto dre ctlhaaret
shows that El a preserves logical equivalences:

cast : ∀ a {B C} . B ⇔ C → El a B ⇔ El a C

The cast operator is defined by recursion on the structure of the code a:

cast id eq = eq
cast type eq = id
cast (k A) eq = id
cast (a _ b) eq = cast a eq →-eq cast b eq
ccaasstt ((aa ⊗_ b b)) eeqq == ccaasstt aa eeqq ×→--eeqq ccaasstt bb eeqq
cccaaasssttt (((aaa ⊗⊕_ bb b))) eeqq === cccaaasssttt aa eeqq →+-e-eqq cccaaasssttt bbb eeqq

Here id is the identity logical equivalence. We omit the definitions of the logical

equivalence combinators; they have the following types (for arbitrary types A,
B, C, D):

→-eq : A ⇔ B → C ⇔ D → (A → C) ⇔ (B → D)
×-eq : AA ⇔⇔ BB →→ CC ⇔⇔ DD →→ ((AA ×→ CC)) ⇔⇔ ((BB ×→ DD))
+-eq : AA ⇔⇔ BB →→ CC ⇔⇔ DD →→ ((AA +× CC)) ⇔⇔ ((BB +× DD))

Given cast it is easy to define resp. It is also easy to prove that cast maps the
identity to the identity (assuming extensionality) , from which we get resp-id.

Some readers may wonder why we include both type and k in U: in the
development above type is treated in exactly the same way as k Type. The
reason is that we want to discuss the following variant of Is-isomorphism, defined
recursively as a logical relation:

10

Is-isomorphism0 : ∀ a {B C} . B ’ C → El a B → El a C → Type1
Is-isomorphism0 id: eq }=. Bλ x y. Cto eq x ≡a y
Is-isomorphism0 type eq == λλ Xx Y.t . oXe ’x Y≡
Is-isomorphism0 (k A) eq == λλ x y. x X≡ y
Is-isomorphism0 (a _ b) eq == λIsx -isy o.m xor≡ phiy sm0 a eq →-rel

IIss--iissoommoorrpphhiissmm0 ba eq
Is-isomorphism0 ((aa ⊗_ b b)) eeqq == IIss--iissoommoorrpphhiissmm0 a eq ×-rel

IIss--iissoommoorrpphhiissmm0 ba eq
Is-isomorphism0 (a ⊕ b) eq = Is-isomorphism0 a eq +-rel

IIss--iissoommoorrpphhiissmm0 b eq

Note that the type and k cases are not identical. The relation combinators used
above are defined as follows:

(P →-rel Q) f g = ∀ x y. P x y → Q (f x) (g y)

(P ×-rel Q) (x, u) (y, v) = P x y ×Q u v

(P +-rel Q) (inj1 x) (inj1 y) = P x y
(P +-rel Q) (inj1 x) (inj2 v) = ⊥
(P +-rel Q) (inj2 u) (inj1 vy)) == ⊥⊥
(P +-rel Q) (inj2 u) (inj2 yv)) == Q⊥ u v

The definition of Is-isomorphism0 can perhaps be seen as more natural than
that of Is-isomorphism. However, we can prove that they are in bijective corre-
spondence by recursion on the structure of a:

∀ a B C x y. (eq : B ’ C) →
I∀sa- isB om Corx phy i.sm(eq a eq x y C↔) I→ s-isomorphism0 a eq x y

We omit our proof, but note that only the t ype case uses univalence (the _
case uses extensionality).

3.5 Examples

Let us now consider some examples.

Monoids We can define monoids in the following way:

monoid : Code
monoid =

((id _ id _ id) -- Binary operation.
d⊗_

i(did -- Identity.
,λ C (• , e) .

((Is-set C × -- C is a set.
(Is∀- x. e C• x ≡ x) × -- Left identity.
((∀∀ x. x •• e ≡≡ xx)) ×× -- Right identity.
((∀∀ x y z. x •≡ ≡(yx •) z ×) ≡ (x • y) • z) -- Associativity.

)
, . . . -- The laws are propositional (assuming extensionality) .

)
)

11
Note that we require the carrier type C to be a set. We omit the proof showing
that the monoid laws are propositional. The proof makes use of the fact t hat
C is a set (which implies that C-equality is propositional) ; recall t hat, when
proving that a type is propositional, one can assume that it is inhabited (see
Section 2.5) .

If w e unfold Instance monoid in a suitable way, then we see that we get a
proper definition of monoids on sets:

Σ C : Type1.
Σ (• , e) : (C → C → C) × C.
ΣIs-(set• •C, ×)

(Is∀- x. e C• x ≡ x) ×
((∀∀ x. x •• e ≡≡ xx)) ××
((∀∀ x y z. x •≡ ≡(yx •) z ×) ≡ (x • y) • z)

Let us now assume that we have two monoids M1 = (C1, (• 1, e1) , laws1)
and M2 = (C2, (• 2, e2) , laws2). Isomorphic monoid M1 M2, (ha• s the following
unfolding:

Σ eq : C1 ’ C2.
(λ x y. to eq (f Crom eq x •1 from eq y)) , to eq e1) ≡ (• 2, e2)

Monoid isomorphisms are typically defined as homomorphic bijections, whereas
our definition states that an isomorphism is a homomorphic equivalence. How-

ever, these differences are mainly superficial: equivalences and bijections on sets
are in bijective correspondence (assuming extensionality) .

Posets Let us now define posets:

poset : Code
poset =

(id _ id _ type -- The ordering relation.
,(iλd C_ i 6d_ .

d(_(Is-i sde t_ _Ct p×e -- C is a set.
(Is∀- x y. CIs× -proposition (x 6 y)) × -- Pointwise

-- propositionality.
(∀ x. x 6 x) × -- Reflexivity.
((∀∀ x y z. x 6) y → y 6 z → x 6 z) × -- Transitivity.
((∀∀ x y. x 6x y y→→ y 6y x z→→ x ≡ y z)) -- Antisymmetry.

)
, . . . -- The laws are propositional (assuming extensionality) .

)
)

It is easy t o prove that the laws are propositional by making use of the assump-
tions that the carrier type is a set and that the ordering relation is pointwise
propositional.

Instance poset has the following unfolding:

Σ C : Type1.
Σ 6 : C → C → Type.

12
Is-set C ×
(Is∀- x y. CIs× -proposition (x 6 y)) ×
((∀∀ x. x I6s px)r p×o
((∀∀ x y z. x 6) y → y 6 z → x 6 z) ×
((∀∀ x y. x 6x y y→→ y 6y x z→→ x x≡6 y z))

For posets P1 = (C1, ,6 1, laws1) and P2 = (C2 , ,6 2, laws2) we get that
Isomorphic poset P1 P2 is definitionally equal to

Σ eq : C1 ’ C2. (λ a b. f rom eq a 61from eq b) ≡ 62.

This definition is not identical to the following definition of order isomorphism:

Σ eq : C1 ↔ C2 . ∀ a b. (a 61 b) ⇔ (to eq a 62 to eq b)

However, in the presence of univalence the two definitions are in bijective cor-
respondence:

Σ eq : C1 ’ C2 . (λ a b. f rom eq a 61from eq b) ≡ 62 ↔
Σ eq : C1 ↔’ CC2 . (λ a b. f rom eq a 61ffrroomm eq bb)) ≡≡ 62 ↔↔
Σ eq : C1 ↔↔ CC2 . ∀ a b. (from eq a 61ffrroomm eq bb)) ≡≡ (a 62 b) ↔↔
Σ eq : C1 ↔↔ CC2 . ∀ ∀ a bb.. ((far 61 ebq) a≡6 (tfor eq a 62)to≡ eq ab)6 ↔↔
Σ eq : C1 ↔↔ CC2 . ∀ ∀ a bb.. ((aa 61 bb)) ’≡ ((ttoo eq a 62 to eq b) ↔↔
Σ eq : C1 ↔↔ CC2 . ∀ ∀ a bb.. ((aa 61 bb)) ⇔’ ((ttoo eq a 62 to eq b)

The first step uses the fact that bijections between sets are in bijective corre-
spondence with equivalences, the second step uses the key property of equality
of Π-types from Section 2.3, the third step uses the fact that f rom eq and to eq
are inverses, the fourth step uses univalence, and finally the last step uses the
fact that, for propositions, equivalence (’) and logical equivalence (⇔)
are i tnh batij,ecf torivep rcooprorseistpioonnsd,een qceu.i a(Elenvceery step)m aankdesl use aolf tqhuei aaslseunmcep t(io⇔ n o)f
extensionality.)

If we had used Is-isomorphism0 (see Section 3.4) instead of Is-isomorphism
in the definition of Isomorphic, then Isomorphic poset P1 P2 would have been
definitionally equal to

Σ eq : C1 ’ C2.
∀ a b. to eq a C≡ b → ∀ c d. to eq c ≡ d → (a 61 c) ’ (b 62 d) .

One can prove that this expression is in bijective correspondence with the defi-
nition of order isomorphism above without using the univalence axiom.

Discrete Fields In constructive mathematics there are several non-equivalent
definitions of fields. One kind of discrete field consists of a commutative ring
with zero distinct from one, plus a multiplicative inverse operator. We restrict
attention to the specification of this operator, and choose to specify it as a
partial operation:

id _ (k > ⊕ id)

Let usi du_ se t(hke > n ⊕am ide) −1 for the operator. It should satisfy the following laws,
where 0, 1and · stand for the ring’s zero, one and multiplication:

13

∀ x. x −1 ≡ inj1 tt → x ≡ 0
∀∀ x y. x −1 ≡≡ inj2 y →→ x · y ≡≡ 10

These laws are propositional, given the other laws and extensionality, so t his
specification of discrete fields fits into our framework.

(We have proved that our definition of discrete fields is in bijective corre-
spondence with non-trivial discrete fields, as defined by Bridges and Richman
(1987) , using ≡ as the equality relation, and λ x y. x ≡ y → ⊥ as the in-
equality relation≡. Ians ft ahcet, Bquriadlgiteys aenladt oRnic,ha mnadnλ ’s xd yef.inx it i≡on,y r →estri⊥ cta esd tinh eti hni-s
way, also fits into our framework.)

Fixpoint Operators All the examples above use first-order operators. As an
example of the use of higher-order types we consider sets equipped with fixpoint
operators:

set-with-fixpoint-operator : Code
set-with-fixpoint-operator =

((id _ id) _ id
,((λi dC_ _f iix d.

(d(I_ s-si edt) C_ i×d

(Is∀- s fe. tf C C(fi×x f) ≡ fix f)

)
, . . .
)

)

Given the instances F1 = (C1,fix1, laws1) and F2 = (C2, fix2, laws2) we get
that Isomorphic set-with-fixpoint-operator F1 F2 is definitionally equal to

Σ eq : C1 ’ C2. (λ f . to eq (fix1 (λ x. f rom eq (f (to eq x))))) ≡ f ix2.

If we had used Is-isomorphism0 instead of Is-isomorphism in the definition of
Isomorphic, then we could have obtained the following unfolding instead:

Σ eq : C1 ’ C2.
∀ f g. (∀ x y. tCo eq x ≡ y → to eq (f x) ≡ g y) →

ftog eq ∀(fx ixy 1 .ft)o e≡q f ix2 g

This unfolding is perhaps a bit easier to understand.

4 Related Work
The first use of Σ-types—or “telescopes” (de Bruijn 1991)—to formalise abstract
mathematical structures is possibly due to Zucker (1977) , one of the members
of the AUTOMATH project team.

The notion of structure used in Section 3 (instantiated as in Section 3.4)
can be seen as a type-theoretic variant of Bourbaki’s notion of structure (1957) ,
using type-theoretic function spaces instead of power sets. (In Bourbaki’s setting
a function is defined as a functional relation, and a relation is an element of the
power set of a cartesian product.) Furthermore the notion of isomorphism that
Bourbaki associates to a structure is very similar to the one used in this paper.

14

The main theorem in Section 3.3 can be contrasted to what happens for
Bourbaki’s notion of structure formulated in set theory. As observed in the in-
troduction the membership relation can be used to distinguish between isomor-
phic monoids. However, it is possible to restrict attention to relations that are
“transportable” , i.e. relations that respect isomorphisms (Bourbaki 1957) . Mar-
shall and Chuaqui (1991) state that set-theoretical sentences are transportable
iff they are equivalent (in a certain sense) to type-theoretical sentences (for
certain variants of set and type theory) .

The simple result that we present in this paper, a first version of w hich
was formalised in Agda in March 2011, is only a starting point. Aczel and
Shulman’s “Abstract SIP Theorem” (2013) , which at the time of writing is
under development, is more abstract. An important point of our formalisation
is that we do not assume that we have a definitional computation rule for J
(as discussed in Section 2.3) . Based on our experience of working without a
definitional computation rule we expect that Aczel and Shulman’s result can
also be proved in this setting.

Aczel and Shulman (2013) also present a different kind of generalisation. We
can state it as follows: in type theory extended with the axiom of univalence, and
using natural definitions of “category” and “equivalence of categories” , equiva-
lence of two categories C and D is in bijective correspondence with equality of
C and D.

5 Conclusions
We have shown that, for a large class of algebraic structures, isomorphism is in
bijective correspondence with equality.

The results can be generalised further. For instance, the development above
is restricted to a single carrier type, and uses simple types. The accompanying
code contains a development with support for multiple carrier types as well as
polymorphic types. However, this development uses a computing J rule. It is
also more complicated, so in the interest of readability we have chosen not to
present this development.

Acknowledgements
The authors acknowledge financial support from the ERC: “The research leading
to these results has received funding from the European Research Council under

the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement n◦ 247219.”

References
Peter Aczel and Michael Shulman. Category theory. In The HoT TT Book. 2013.

Draft, available at http ://uf- ias-2012 .wikispaces .com/The+book.

The Agda Team. The Agda Wiki. Available at http ://wiki .portal .
chalmers .se/agda/, 2013.

15

N. Bourbaki. Th´e orie des ensembles, volume 1of E´le ´ments de Math e´matique,
chapter 4: Structures. Hermann, 1957.

Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics,
volume 97 of London Mathematical Society Lecture Note Series. Cambridge
University Press, 1987. doi:10.1017/CBO9780511565663.

N. G. de Bruijn. Telescopic mappings in typed lambda calculus. Information
and Computation, 91(2):189–204, 1991. doi:10.1016/0890-5401(91)90066-B.

N.G. de Bruijn. Set theory with type restrictions. In Infinite and Finite Sets, to
Paul Erdo ˝s on his 60th birthday, Vol. I, volume 10 of Colloquia Mathematica
Societatis J a´nos Bolyai, pages 205–214. North-Holland Publishing Company,
1975. A reprint is available (doi:10.1016/S0049-237X(08)70229-5) .

N.G. de Bruijn. A survey of the project AUTOMATH. In To H.B. Curry: Es-
says on Combinatory Logic, Lambda Calculus and Formalism, pages 579–606.
Academic Press, 1980. A reprint is available (doi:10. 1016/S0049-237X(08)
70203-9).

Michael Hedberg. A coherence theorem for Martin-Lo ¨f’s type theory.
Journal of Functional Programming, 8(4) :413–436, 1998. doi:10. 1017/
S0956796898003153.

Adolf Lindenbaum and Alfred Tarski. On the limitations of the means of ex-
pression of deductive theories. In Logic, Semantics, Metamathematics: Pa-

pers f rom 1923 to 1938, second edition. Hackett Publishing Company, 1983.
Translated by J. H. Woodger.

M. Victoria Marshall and Rolando Chuaqui. Sentences of type theory: The only
sentences preserved under isomorphisms. The Journal of Symbolic Logic, 56
(3):932–948, 1991. doi:10.2307/2275062.

Per Martin-Lo ¨f. An intuitionistic theory of types: Predicative part. In Logic
Colloquium ’73, volume 80 of Studies in Logic and the Foundations of Math-
ematics, pages 73–118, 1975. doi:10.1016/S0049-237X(08)71945- 1.

R.P. Nederpelt and J.H. Geuvers. Twenty-five years of Automath research.
Studies in Logic and the Foundations of Mathematics, 133:3–54, 1994. doi: 10.
1016/S0049-237X(08)70198-8.

Bengt Nordstro ¨m, Kent Petersson, and Jan M. Smith. Programming in Martin-
L o¨f’ s Type Theory: An Introduction. Oxford University Press, 1990.

Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology and G ¨oteborg Uni-
versity, 2007.

Alfred Tarski. What are logical notions? History and Philosophy of Logic, 7
(2): 143–154, 1986. doi: 10.1080/01445348608837096. Published posthumously,
edited by John Corcoran.

Vladimir Voevodsky. Univalent foundations project (a modified version of an
NSF grant application) . Unpublished, 2010.

16
Vladimir Voevodsky. Development of the univalent foundations of mathemat-

ics in Coq. Available at https ://github .com/vladimirias/Foundations/,
2011.

J. Zucker. Formalization of classical mathematics in AUTOMATH. In Colloque
International de Logique, Clermont-Ferrand, 18-25 juillet 1975, volume 249
of Colloques Internationaux du Centre National de la Recherche Scientifique,
pages 135–145, 1977. A reprint is available (doi: 10.1016/S0049-237X(08)
70202-7).

17

	Introduction
	Preliminaries
	Hierarchy of Types
	Quantifiers
	Equality
	More Types
	Univalent Foundations

	Isomorphism Is Equality
	Parameters
	Codes for Structures
	Main Theorem
	A Universe
	Examples

	Related Work
	Conclusions

