
Security-Typed Programming
within Dependently Typed Programming

Jamie Morgenstern∗ Daniel R. Licata ∗
Carnegie Mellon University

{ja amiemmt, ,d drl}@cs. . cmu. .edu

Abstract

SAwfoeeurvrceesa ,rha oaP lcwCc rMee tchsseaLnt5 ct, soen a sctneurcdoruiltyF ria -tinytnyd-ept,yi enpa delfoldp orwrmp ogap rtroriaoogmgnramrf malimomnwgmine cp graosnll it acb onieege su xe.ampI grnbeeesst ds,hdia s seundp cdhaa pse ean a rs-,
tlldauiebrncgeraesunryot agrf aweli, eitxzeh Aiisdngtdia n aacg.cg ee O ssensucerurc ar olilit-nbyptr-uartorrylypp,o,es A tdyepgp ed lredoetp,gp era ranocmdcoeomfn-uctinlnaytgsrrt yyl f aiopnnreggdt uh ap auergtoehm gsoar,raijs omzuarmcthif oeinnaa g,-s
oeptdipoferphon tohee,mnfe saden ofe drnofal lit alontan y fwnop adiruemnsgt dh.ayoSt innireogiacnzmroaetf niidldcooiew,np nw .ol tolT esig:chi iimeceF s,pii r, Gmsleta ap,murlew gethmne aetnenar dnteitpcp aP rartetofieoisoonnefnnn,s o itenfs t agphA rc’aesgthiB las ep lyLtrnd o0c tiac,osxeu ntrdssia uibisnrnuetdg-s,
sibtnadrsueecxdteindo gnb p ya rpo f orofecs-u.a s Tnehddi rsp deo,qsuw t-eecno trnec pdarilteciosuennlsutsd c ,roat mowpne uasf tearotimt ohnet shb u eusa rindugethna oo rm ifzoac tnoiaondn-
tloiogni.c, W wehid cehscp reibrmeit thsee pi mhepmleemraeln tpaotiloicnieo sft ho autrc l hibarnagreyd a unrdini gllue sxtercatue-
lititse ruasetuor en.a n umbero ft heb enchmarke xamplesc onsideredi nt he

OFfCy.a3fitn.1P eggro ao [Lrngoidrega Rsmice assna]sa:d on nS SdituunbM gdjeiea ecabstnoD o iuntefgs PscP rrorO iopggftrarP oamrmrossgC raFom.n3ss.3t]r:u[LS cotpsge—iccisTfyya ipnnedgM s a tnreudacnV tiunergreis;-
1. Introduction

Security-typed p rogramming l anguages a llow p rogrammers t o
specify and enforce security p olicies, w hich describe b oth a ccess
control—who i s p ermitted t o a ccess s ensitive r esources?—and in-
formationf low—what are t hey p ermitted t o d o w ith t hese r esources
once t hey get t hem? A ura [24] and P CML5 [9] enforce a ccess c on-
trol u sing d ependently t yped p roof-carrying a uthorization (PCA):

∗ This research was s ponsored i n p art b y the National Science F oundation
under g rants C CF-0702381 and C NS-0716469, and b y the Pradeep S indhu
Computer Science F ellowship. The v iews and c onclusions c ontained i n t his

sidoennsctitutimungtie otnhtne,a tro hfeefi thUc ia.oSsl.ep g oo olfvicet ihreens,ma eueittnhhtoe orrre a a xnnpydreo s shtsoheeudrldo ernn ti iomtytp.b leiei dn,teo rfpa rentyeds p oasnsr oerpinreg-

fPcoelarrsm psrrioosofsitimo onr us ct ooe i mmsmag kerraecnd itaiegldiat wad vlia tohnrot uahgatf ereda enc dp oprt ohiveasitd o ceofdpa it lehlsao tb rc eap orapri ttehs iosfa nrt ehoitn iscoetw a m onradkdt ef hoeo rrf p ud elilsrsc troiitnbaaulttieoo dnr
on the f irst tp age .T o c opy o therwise ,t o r epublish ,t o p ost to n servers o r t o r edistribute

to l ists ,r equires sp rior rs pecific p ermission a nd/or ra fee
ICFP’10 September r2 7–29 ,2 010 ,B altimore ,M aryland ,U SA

Copyrigh t? c 2 010 ACM 9 78-1-60558-794-3/10/09 . ..$5.00
the run-time system requires every access to a sensitive resource

tFtbaheenimadn taeJc ar [cie fidso3t 8m[s1r]icpp4 c]a rto neot ihgnmeefrdboaumi r nbcsymeees iae o ntpr ff hsreov oi rsaeonmlfuc t aeo otesfcinoa ht snuhtnrafi tqulhtocuod wteriensip zpgaert otonc ipoode enrno rr[t fne7iocer]p ts,crp w u eivrshoib aintoolegfethsi t t .y.nhfF epT eoaht byrs emlpyseeseatt[el isaoy3mnsn7s--.]
gsuuachge ass’ t dyeppeens dyesnttelmyst ye pmedploa uyta hon riuzmatiboenrp o rfoa odfsv,an incdeedxet edch mnoiqnuaedss,
omfat cDiooemnppf elunotwdaetni totylnpysest ay,t apa nedd plp aafrcofeinga ernamt dypm oeinsngf b oerl hae anplgfhueo amfgeae rs paplr irs noecvciiupdraeiltya [8p r]i,coi hlnicl faieonsr-.-
gtceuamtaiosgena s oo fl fidb tyerappreieen-lsd,eevr naetlth td yepratte ahsaa i snn ndc eoc nwoslt mraunpcgutiutnaagtgioed nod .mesO aiignnen-s sp—preotcmhifiiisscia nt lyglopwea pss pyt lhis-e-
lgtttoayorpona slgemseudco maup gfirren tiothgy dgerc t eha asymonpisgem btndel eiarn pe ngrmg tooul gabea ernaxgdgpemudl.eomaI dingtiew nt t h,hgiiA t,seha gp ii dnnmadap apes [lg erh3,eom2nw w]ee.eWrn t aa htlpae-atppitoi lumys nrept ,pcholm ueissrmeeim ttyed a-netehtttpyhea epoonedrl ddiyboe,rlnp a aotrnrgoylyyd-,
tAypglDeedte,p c wreonhgtircraahlmia zmcedcinouA gncl tacsne gfsosuraC t ghoeenst,m rs oulac:jhoA ra cf sceA eatsuusrraec o,sP no tCfroMe lxLp is5ot,ilnia cgnieds seF a cirunereie :txy--
pnirnesgs’esdB aL s0 p[r2o1p].oT sihtiisonp ser inma itnsd a euctehnotrraizlaizteiodn acl ocgeiscs,c G onartrgola np doliP cfeiens,-
repexasplesrne astbs BoeduLt0 at ’ssht ehp r reoesap ogosgurriectiegosnatst eha o enfyds c top arntoetormoflse.nu I tnssinm o guardd ee empb yebned ddiedffnientrget y,npw tep esr,ir na encpdi--
explDoeipteA ngddean’tsly tyT pyepc ehdecP kCeArt :oP rvimaliidtiavteest t hheatc aocrrceecstsnr eesssoo ufrpc reoso,s fusc.h
awofsef al lilu-etfhos ormyrsizteeadmtpi or oonp,oe wfrao htfiioct hnhes,i sc or eg rqurueacriatrepn rtp eorepodogsrb iatymiot mhnee.rt sypt oep s ryosvteidmet a op b reoofa

Ephemeral a ndD ynamic P olicies: Whether o r not one may ac-

cess a resource i s o ften d ependent u pon the s tate o f a system. For
example, i n a c onference m anagement server, authors may s ubmit
a p aper, but o nly b efore the s ubmission d eadline. F ine accounts for
ephemeral policies u sing a t echnique c alled a ffine t ypes, w hich re-
quires a s ubstructural n otion o f v ariables. Because A gda d oes not
currently provide substructurality, w e s how t hat one can instead

Harceocsaeonrutenst Ta yfpoc eroe mT phhpueemotareytiro a[nl3p 1t o]h,lawi tc,eieg s div euefsinninep grea a cnt oyi npneddiet? xioendΓ m Γ A ,orn Γ ea0td,u.rw nF hsoilca lohv wr aielnupeg-
of t ype A , w ith p ostcondition Γ0. H ere, Γ and Γ 0 are p ropositions
from the a uthorization l ogic, ,d escribing the s tate o fr esources i n the
system. For example, consider the o peration i n a c onference m an-

?aGtreugiprevnrem(senseIa e tnnv hnPtaeths t lc auheorisesvneeo fb rfeyrSt tehyua pnabcec tmeoc iU mli ossnipssi ieuntp,stoa a s nthuin)oabdnsmeUt o hS niefsuit ss bitytmoapint e(essIso na infPodt hhnab e,esct hgeoiinsnR fsc eer orveemvinipeceuwewtih ainntaigsgo).nb W er eeen-
changed to Reviewing. For comparison between the approaches,
we adapt F ine’s conference management example t o our indexed
monad. Aglet also permits dynamic acquisition and generation of
policies—e.g., generating a policy based on reading the state of the
conference management server from a database on startup.

Authentication: Following previous work by Avijit and Harper
[8], we model authentication with an indexed monad of computa-
tion on b ehalf of a p rincipal, which tracks the currently authen-
ticated user. This monad is equipped with a sudo operation for
switching users, given appropriate credentials. W e show that com-
putation on b ehalf of a p rincipal is a special case of our policy-
indexed monad ? Γ A Γ ’ .

Sexpeadtiam lo ndaidstr ?ibuΓ tionA : ΓW’.e also show that our p olicy-indexed

monad can b e u sed to model spatial distribution as in PCML5.
Information F low: Information flow policies constrain the use

of values b ased on what went into computing them, e.g. tainting
user input t o avoid SQL injection attacks. W e represent informa-
tion flow using well-established techniques, such as indexed mon-
ads [36] and applicative functors [38].

Compile-time and Run-time Theorem Proving: Dependently
typed PCA admits a sliding scale between static and dynamic ver-
ification. At the static end, one can verify, at compile-time, that a
program complies with a statically-given authorization policy. This
verification consists of annotating each access to a resource with an
authorization proof, whose correctness is ensured by type checking.
However, in many p rograms, the policy is not known at compile
time—e.g., the p olicy may depend upon a system’s state. Such pro-
grams may dynamically test whether each operation is p ermitted
before performing it, in which case dependently typed PCA ensures
that the correct dynamic checks are made and that failure cases are
handled. A program may also mix static and dynamic verification:
for example, a program may dynamically check that an expected
policy is in effect, and then, in the scope of that check, deduce con-
sequences statically. Security-typed languages use theorem provers
to reduce the burden of static p roofs (as in F ine) and to implement
dynamic checks (as in PCML5). W e have implemented a certified
theorem prover for BL0, b ased on a focused sequent calculus. Our
theorem prover can be run at compile-time and at r un-time, fulfill-
ing b oth of these roles. The theorem p rover also saves p rogrammers
from having to understand the details of the authorization logic, as
they often do not need to write proofs manually.

The r emainder of this paper is organized as follows: In Sec-
tion 2, we show a variety of examples adapted from the litera-
ture, which demonstrate that Aglet accounts for programming in

the style of Aura, PCML5, and Fine. In Section 3, we describe the
implementation of A glet, including the r epresentation of the logic
and the implementation of the theorem prover. W e discuss related
work in Section 4 and future work in Section 5. The Agda code for
this paper is available from http ://www . cs . cmu .edu/~drl.

2. Examples

In t his section, we show that Aglet supports security-typed p ro-
gramming in the style of Aura, PCML5, and Fine b y implementing
a number of the benchmark examples considered in the literature.
We briefly r eview Agda’s syntax, referring the r eader to the Agda
Wiki (wiki .portal .chalmers .se/agda/) . Dependent function
types are written as (x : A) ? B. An implicit dependent function
tspypacees airse ewwrritittetenn {sx(x: :A}A)? ?B Bor. A ∀n {imx}p ?ici dB eapnedn daergnutmfuenncttsi oton
stipymappcelesicai irtse ewfuwrnirtcitttetieonnnsa { sax(rxe: :in: Af}e rA)r? ed? . ?BNoo B nr.A ∀-dne{ ipxme}npdl? iecnitt Bdfeua npncedtnia doenrgnsu amfrueen ncwttsiriot ton-
tspena cAe ?s Br.i Atennon{ yxm o:uAs }fun? ctioB no sr a∀re { wxr}it t?en Bλ nxd ? ar ue.m Nenatmset od
tfeunncA tio? ns aBr.e A Adneofinnyemd oculasusf uanllcyt io byn sp aatrteerw n rmitatetnch λingx . L? ist se .aN rea cmoned-

sttenrucA ted? ?b By .[A] anondn y:m m: o(nusotf eu tnhcatti :o iss a urseedw froirt tteynpeλ λanx no ?tate io.nN s)a. mSeetd
is the classifier of classifiers in Agda.

Admin says (∀r.∀o.∀f.
m(iHn nRs says ∀emr.∀polo.y∀fee.(r)
∧ System says owns(o, f)
∧∧ oS says m saayysreo adw(nrs, (fo,))f

⊃ m oa ysraeyasd m(r,a yfr)e)a
Sy⊃stem ma says (orw,fns)()Jamie, secret.txt)
HR says employee(Dan)
HR says employee(Jamie)
Jamie says mayread(Dan, secret.txt)
Jamie says mayread(Jamie, secret.txt)

Figure 1. Sample access control policy

2.1 File IO with A ccess Control

First, we show a dependently typed file system interface, a standard
example of security typed programming [8, 38, 39].

2.1.1 Policy

To b egin, we specify an authorization policy for file system opera-
tions in BL0 (Figure 1): F irst, the principal Admin says that for any
reader, owner, and file, if human r esources says the reader is an em-
ployee, and the system administrator says the owner owns the file,
and the owner says the reader may read a file, then the reader may
read the file. Admin is a distinguished principal whose statements
will b e used to govern file system operations. Second, the system
administrator says J amie owns secret.txt. Third, human resources
says both Dan and Jamie are employees. Fourth, Jamie says Dan
and Jamie may r ead the file. This policy illustrates decentralized
access control using the says modality: the p olicy is the aggregate
of statements by different principals about r esources they control.

For the principal Dan to r ead secret.txt, it will be sufficient to
deduce the goal Admin says mayread(Dan, secret.txt). This
proposition is provable from the above p olicy because of three
properties of says : First, says is closed under instantiation of
universal quantifiers (that is, k says ∀x.A(x) entails ∀x.k says
Aun(ixv)e)rs. aSle cqouandn,t says thdiasttri isb,uk tess oayvesr ∀imx.pAli(cxa)tioe nnst (ilks says (sAa ⊃s
AB)(e)n).taS ilesc (on(kd says A di)s ⊃rib u(tke says iBm)p).l cT ahtiirodn,s every yp srin (cAip⊃ al
Bbe)li eevnetsa ltsh a((t every st Aat)em⊃ en(t kofs every o))t.he Trh iprrdi,nce viperayl hp arsin cbiepeanl
made (k says A entails k0 says (k says A))—though it is not
the case that every principal believes that every statement of every
other principal is true. Thus, the goal can b e p roved by using
the first clause of the policy (Admin says . . .), instantiating the

quantifiers, and using the other statements in the p olicy to satisfy
the preconditions.

In Agda, we r epresent this first clause as the first element of the
following context (list of propositions):

Γpolicy =
(Prin "Admin" says

(∀e principal · ∀ e p rincipal · ∀ e filename ·

lpreti cowipnearl ·= ∀.e (ip rSi (niciSp ai0l))·
reader = .(iS i0)
file = .i0 in

(((Prin "HR" says (a- (Employee · reader)))
∧ (Prin "System" says -(a(-E m(pOlwonyeere e· (roewandeerr ,)file))))
∧∧ ((oPrwniner says m(a"- (ayMasyr(ea-ad(·O (nreerad· er(, feirl ,e))f)i)l)e

⊃
(a- (Mayread · (reader , file)))))) : :

(Prin("-Ad (mMiany"r says
(∀e p rincipal ·

∀∀ee fpirilenncaimpea l·

e(Pf riinl "n Saymeste ·m" says (a- (Owner · (. iS i0 , .i0))))
⊃(

(a- (MayChown · (. iS i0 , .i0))))) ::
[]

The second element of the list expresses an additional p olicy
clause, not discussed above, which states that an owner of a file
may change its ownership. Variables are represented as de B ruijn
indices (i0, iS), constants are r epresented as injections of strings
(Prin "Admin"), and atomic propositions are tagged with a po-
larity (a+ or a-), which can b e thought of as a hint to the theorem
prover. Quantifiers are written ∀e τ · A, where τ is the domain of
qpuroavnetir.ficQ autiaonnti faiendrs Aa ries wthreit tbeond∀y eofτ τt h·e Aqu,w anhteifireer.τ A istt ohmeicd op mroapionso i-f
tions are written p · t, where p is a p roposition constant such as
Mtiaoynrsea ared wanridt te nisp pa ·tet rm, w(sheeer Seep cti sion a p3.r 1o pfoors itdieotanic lso).n

Next, we define a context representing a p articular file system
state. This context includes all the employee, ownership, and may-

read facts mentioned above, with one additional clause saying that
Dan may su as Jamie.

Γstate =
(Prin "System" says

(a- (Owner · (Prin "Jamie " , File "secret·txt "))))
: : (Pri(na "H (OR"w says (rai-n (" EJmapmlioey"ee, ,· i(lPerin" e"Dcrane"t ·)t t)x x)t t)"
: : (Prin "HR" says ((aa-- ((EEmmppllooyyeeee ·· ((PPrriinn "" JDaanmi"e)")))))))
: : (Prin "Jamie " says

(a- (Mayread · (Prin "Dan" , File "secret·txt "))))
: : (Pri(na "(MJaaymiree "a says

(a- (Mayread · (Prin "Jamie " , File "secret·txt "))))
: : (Pri(na "(MAdamyirne"a says

(a- (MaySu · (Prin "Dan" , Prin "Jamie"))))
: : []

Γall = Γpolicy ++ Γstate

Finally, we let Γall stand for the append of Γpolicy and Γstate.

2.1.2 Compile-time Theorem Proving

We now explain the use of our theorem prover:

goal = a- (Mayread · (Prin "Dan" , File "secret·txt "))

proof? : Maybe (Proof Γall goal)
proof? = prove 15

theProof : Proof Γall goal
theProof = solve p roof?

The term p roof? sets up a call to the theorem prover, attempting
to p rove mayread(Dan, secret.txt) u sing the p olicy specified b y
Γall. Sequent calculus p roofs are r epresented by an Agda type
family (Ω ; ∆ ; Γ ; k) ‘ A, where Ω b inds individual vari-
afabmleisl,y ∆(Ωis a; c ∆ont ;extΓ Γo;f cl ka)im‘ s a As,suw mheptrieonΩ s,b Γin diss ci nondtiveixdt uoafl v traurthi-
assumptions, and k, the view, is a p rincipal from whose p oint of

view thej udgement is made. Informally, the role of the view is that,
in a sequent whose view is k, k says A entails A; see Section 3.1
for details about the logic. In t his example, Ω and ∆ will always
be empty, Γ will represent a policy, as above, and the view k will
be Prin "Admin"—we abbreviate such a sequent b y Proof Γ A.
The context and proposition arguments to prove can b e inferred
by Agda, and so are left as implicit arguments. The term theProof
checks that the theorem prover succeeds at compile-time in this in-
stance. The function solve has type:

solve : ∀ {A} (s : M aybe A) ? {p : Check (isSome s)} ? A

sTohlev earg: um∀ e{ ntA }p , osf :tyM pea yCbheeAc)k ?(is {Spom: e C hse)c c,k kis(ai sp Sroomoef st h)a}t s? ?isA
equal to Some s ’(sfo: r some s ’A . B ? ec {aupse: th Chise argument ies implicit,
Agda will attempt to fill it in b y unification, which will succeed
when s is definitionally equal to a term ofthe form Some s ’ . In this
example, the call to the theorem p rover in the term proof? proves
the goal, computing definitionally to Some s ’ for a proof s ’ of
mayread (Dan, secret.txt). T hus, we can use solve to extract this
proof s ’ . In general, a call to the theorem prover on a context and
a proposition that have no free Agda variables will always be equal
to either Some p or to None.
Generic o perations:
? : TCtx+ [] ? (A : Set) ? (A ? TCtx+ []) ? Set

?ret: urnT :t ∀+ [{]]Γ? ?A(} A?: :AS e?t)?? (ΓA A? (T\ _t ?+ Γ]))

r_>et>=u_r :: ∀∀ { {{ΓA BA }Γ ?Γ ’A Γ? ?’ ?’? ?}
?: ∀(?{ A BΓ ΓA ΓΓ’ ’’A ’)Γ
?? (((?x : A) ? ? (Γ ’ x) B Γ ’ ’)
??? ?(((? Γ: AB) Γ ’? ?’

weakenPre? ?:? ?∀ {A Γ Γ ’? Γn }
?: ∀(G {oAodΓ Γ Γn’ ’?Γ nGo} od Γ)

?? (?G oΓd dAΓ Γn n’ ??G oΓo d⊆ Γ)n ? ? Γn A Γ ’

weakenPost ?: ?∀ { ΓA AΓ ΓΓ’ ’’? ?ΓnΓ }
t?: ?∀ {ΓA AΓ ΓΓ Γ’’’
?? (? ?(x Γ: AA)Γ ? (Γn x ⊆ Γ ’ x))
??? ((? ?((xx Γ:: AAA))Γ -?> (ΓGono dx (⊆Γ ’Γ ’x)x ?) Good (Γn x)))
??? ?((((xxΓ:: ::AAA))Γn-?

getLine : ∀? {? Γ} Γ? ?Γ Γ String (\ _ ? Γ)

gpretinLti :e : ∀ ∀{Γ{ }Γ }?? St ?ri nΓg ?tr i?ng gΓ(\Un_ it? (Γ\ _ ? Γ)

error : ∀ {A Γ Γ? ?’ }S ?ri nSgtr ?ing? ??Γ ?U iΓt tA(\Γ ’_

aercrquoirre: :∀ { ∀ A{ΓA ΓΓ Γ} }’ }? ?S (rΓinng g: ?TC? tx+Γ [A] A)Γ
?: ∀(G {oAodΓ ΓΓΓ ’?} G? oo d(Γ (nΓ:n +TC+t xΓ+) +)[
??: ∀?(G{ Ao(dΓΓ nΓ Γ++? ’} Γ G?)o (dA Γ(n n’Γ n:?T+ t? Γx+ Γ)[A) Γ ’
??? (??G Γ(oΓd dAnΓ ΓΓ+?+ ’?+’}

File-spec?i?fic ??o pe (ΓrΓa nAtio+ Γ n+’s:Γ

sudo : ∀ { Γ A Γ ’ ∆ ∆ ’ } ? (k1 k2 : _)
u?d R :ep ∀la{ ce Γ (aA + Γ (’A∆s ∆· ∆k’1)} }) (a (+k 1(Ak s2 2· k _2))) Γ ∆
u??d o((R: xe ∀:l {Ac)eΓ Γ?(Aa +RΓ e ’(pAls∆ ac· ∆ e (’1)}a)+ ? ((Aa (+sk 1·(Akks22)· ·): (_2a)))+ (ΓAs∆ · k1))

a(∆+ ?’(Axs) ·(k Γ2 22’)x) ()
?? ((P(xroo :f Γ) ?(a-R (pMlaaycSeu (·a +(k(1A s, k k22)))))))(
?? (?P o∆o fA Γ∆(?’(
??? (??P o∆Γo fAA ΓΓ∆ Γ∆’

re?ad? ?: Γ∀ A{ΓΓ }’ (k : _) (file : _)
:?∀ P{ rΓoo}f(Γk :()(a(-f (lMeay :re_ a)d · (k , f ile)))

∧ (aa-+ (MAasy r· ak)d d))·
?? P?r oΓf S Γtr i(∧ng (aλ+ _ ?s ·Γk)

create ?: ?∀ { ΓΓ} S (rki :g _ ()λ
r?e aPtreoo: f ∀Γ (Γ (ka-: (_U)ser · k))

∧ (aa-+ (UAsse r· k·)k k)))))
?? P?r oΓf SΓ tr i(ng∧

?(λ ΓneS wt r?i (gPrin "System" says
r(ian- ("OSwynsetre m· "(sk ,y File n ew)))) : : Γ)

chown : ∀ { Γ ∆} ? (k k1 k2 : _) ? (f : _)
h?o wRnep :la∀ ce { (ΓPr i∆n} "? ?Sys (tkemk "1 ska2y s: _(a)- ?(Ow(nfer: :·)(k1 , f))))

((Γ ΓPPrr ∆ i∆inn} ""?SSyys (stkteemk m"1" sksa2ayy s:s (a)a--(? (OOww(nfneer r: ·_·) ((kk12 ,, ff))))))))
? (Proof Γ ((a+ (As · k))

∧ (aa+- (AMsay· Chk o))wn · (k , f)))))
?? (?P oΓo fU nΓ it (∧\ _ -? ∆Ma)y

Figure 2. File IO with Authorization

2.1.3 Computations

We present a monadic interface for file operations in Figure 2.
This figure shows both the generic IO operations, as well as three
file-specific operations for reading, creating, and changing the
owner of a file. The type ? Γ A Γ ’ r epresents a computation
owwitnhe prroe cfoa nd fiitlieo.nT Γh eant dy ppeos? tcoΓ ndi tAionΓ ’Γ’r . Tphrees Aengtsdaa atyc poem opfu ata actioonn-

text is TCtx+ [] (a context of positive truth assumptions, with no
free individual variables—see Section 3.1). The postcondition is
a function from A’s to contexts, so the p ostcondition may depend
on the computation’s r esult (see create below). The generic op-
erations are typed as follows: Because return is not effectful, its
postcondition is its precondition. Bind (>>=) chains together two
computations, where the p ostcondition of the first is the precondi-
tion of the second. Both pre- and postconditions can b e weakened
to larger and smaller contexts, respectively; the Good p redicate

can be ignored until Section 2.1.4 b elow. Primitives like getLine
(reading a line of input) and print do not change the state and
do not require proofs. The postcondition of error is arbitrary, as
it never t erminates successfully. The remaining computations are
defined as follows:

Read The function read takes a principal k, a file f,and a proof
argument. The proof ensures that the p rincipal k is authorized to
access the file (Mayread (k ,f)) and that the principal k is the
currently authenticated user (As (k)). W e use the p roposition As
to model computation on behalf of a p rincipal [8]. The proof is
checked in the context Γ that is the precondition of the computa-
tion, ensuring that it is valid in the current state of the world. read
delivers the contents of the file and leaves the state unchanged.

An example call to read looks like this:

Γj = Γall as "Jamie "

jread : ? Γj String (λ _ ? Γj)
jjrreeaadd =: r?eaΓd j(PS rtirni "g gJa (mλie_ _")? (F Γji)le "secret ·txt ")

j((PsS ortilrnvien g(Jpa(rmλioev_ "e ?17(FΓ) i)j

jreadprint : ? Γj U nit (λ _ ? Γj)
jjrreeaaddpprriinntt =: j? ?reΓ adj > U>n=i tλ xλ ?_

jp?rrieΓn atdj >(U >"n=tihtλ e s xλec? _ re? t Γisj :) " ^ x)

The function call Γall as k is shorthand for adding the proposi-
tion As (k) to the context Γall. The computation jread reads the
file secret .txt as principal Jamie; the p roof argument is sup-
plied b y a call to the theorem prover, which statically verifies that
the required fact is derivable from the policy given b y Γall. The
computation jreadprint reads the file and then prints the result.

Create The type of create is similar to read, in that it takes a

principal and a p roof that the principal can create a file (in this case,
the fact that the principal is a registered user is deemed sufficient).
It returns a String, the name of the created file, and illustrates
why postconditions must be allowed to depend on the return value
of the computation: the postcondition says that the principal is the
owner of the newly created file. Thus, after a call to create (k) ,
the p ostconditions signify System says Owner (k ,f),where f is
the name of the new file.

Chown To specify chown, we use a type Replace x y Γ ∆,
which means that ∆ is the r esult of r eplacing exactly one occur-
rence of x in Γ with y. Replace (whose definition is not shown) is
defined b y saying that (1) there is a de Bruijn index ishowing that
x is inΓ and (2) ∆ is equal to the output of the function replace y
i,which r ecurs on the index iand replaces the indicated element
by y. The type of chown should be r ead as follows: if the principal k
as whom the computation is running has the authority to change the
owner of a file, and replacing owns (k ,f) with owns (k’ ’ , f) in Γ
produces ∆, then we can produce a computation which changes the
owner of f from k to k ’ , leaving the r emaining context unchanged.

Next, we show an example call to chown, u sing a context
Γstate ’ that is the result of replacing the fact that Jamie owns
secret .txt with Dan owning that file. The computation dchown
runs as D an; it changes the owner of the file from Dan to Jamie,
and then runs a computation drdprnt, defined below, that reads the
file. proveReplace is a tactic u sed to p rove that Γall ’ is Γall
with the ownership of secret .txt changed. solve (prove 15)
calls the theorem prover to statically verify that Dan has permission
to chown secret .txt.

Γstate ’ = replace {_} {Γstate}
(Prin "System" says

(a- (Owner · (Prin "Dan" , File "secret·txt "))))

i0

Γall ’ = Γpolicy ++ Γstate ’

dchown : ? (Γall ’ as "Dan") U nit (λ _ ? Γall as "Dan")
ddcchhoowwnn =: c?ho(w nΓ (lPlr’ina s"D" aDna"n)")(PU rniint "(Dλan_ " _)? (PΓ arilnl a" sJa" miDea "n)"

?(F(ilΓea "l s’eca rset" ·Dtaxnt" "")))
((sFiolleve psrecorveetR·etpxlta"c)e) (solve (prove 15))

>> drdprnt

Sudo Following Avijit and Harper [8], we now give a well-typed
version of the Unix command sudo, which allows switching princi-
pals during execution. A first cut for the type of sudo is as follows:

sudo 1 : ∀ { Γ A Γ ’ } ? (k1 k 2 : _)
? (Proof∀ Γ{ (Γa- A (Γ M’ay}Su? ?·((kk11 k ,2 k _2)))))
?? (?P (o o(fa∀+ {(A(Γ sa -·A (kΓ M2a’)} y}) u?: u?: Γ (k)k1 1kA2 (:λ __) ? (a+ (As · k2)) : : Γ ’)
??? (??P ((o (o(afa++ ((AA (ssa -·· (kkM21a)) y)) u:: u:: ΓΓ (k)) 1AA ((λλ __ ?? ((aa++ ((AAss ·· kk21)))) :: :: ΓΓ ’’))

If?? ??th?? ere ((i s((a++ p ((rAoAssof·· ··th k ka12t)))k)1:: m::a ΓΓ y)) s A uAdo ((λλ λλas__ k ?? 2 (((eaa.g++., aAA ssp a ·· ssk k w12))or))d w::aΓΓ s
pr?ov? ided((),a a+nd(AAss (·k 1k1) i)s : in: :thΓ e))pAr ec(oλnd _iti? on,(tah+en (Aits sis· · pk er1)m)is s:i:bleΓ
to run a subcomputation as k2. This subcomputation has a postcon-
dition saying that it terminates running as k2, and then the overall
computation returns to running as k1. Because our contexts are or-
dered (represented as lists r ather than sets), sudo has the type in
Figure 2, which allows the As facts to occur anywhere in the con-
text. sudo’s type may be read: if replacing As (k1) with As (k2)
in Γ equals ∆, and if r eplacing As (k2) with As (k1) in ∆’ equals
Γ’, and k 2 has p ermission to su as k1, then a computation with
preconditions ∆ and p ostconditions ∆’ can produce a computation
with p reconditions Γ and postconditions Γ’.

The following example call to sudo defines a computation as
Dan that su’s as Jamie to run the computation jreadprint de-
fined above:

drdprnt : ? (Γall as "Dan") U nit (λ _ ? Γall as "Dan")
ddrrddpprrnntt =: s?ud(o (aPlrlina s"D" aDna"n)) (UPnriitn "λ λJa_ mi? e ?")Γ

((sΓoallvle p sro" vDeaRne"p)laU cnei)t
(λ _ ? solve p roveReplace)
((λso l_ve? (sporlovvee p1r5o) v)
(jλre_ ad? pri snotl

This requires proving that Γstate as "Jamie" and Γstate as
"Dan" are related b y replacing As (Prin "Jamie") with As (Prin
"Dan") (in b oth directions). Our tactic p roveReplace proves all
of these equalities. Additionally, the theorem prover statically ver-
ifies Dan may su as Jamie u nder the policy Γall as "Dan" .

Acquire The function acquire allows a program to check
whether a proposition is true in the state of the world. This con-
struct is inspired by acquire in PCML5, but there are slight dif-
ferences: in PCML5, acquire does theorem proving to prove an
arbitrary p roposition from the policy, whereas here acquire only
verifies the truth of state-dependent atomic facts (which have no
evidence) and statements of principals (whose only evidence is a
digital signature [9, 24]). The function acquire takes two contin-
uations: one to run if the check is successful, whose precondition
is extended with the p roposition, and an error handler, whose p re-
condition is the current context, to run if the check fails. In fact, we
allow acquire to test an entire context at once: given a context Γn,
a computation with preconditions Γ extended with Γn (the success
continuation), and a computation with p reconditions Γ (the error
continuation), acquire returns a computation with preconditions
Γ. We use the notation acquire Γn / _ no⇒ s yes⇒ f t o
wΓr.i Wte ea uc salel ttho eac nqotuaitrioen nina caq qp uaittreern Γ-mnatc/ hi_ ngn osty⇒le. sThy ee _ ⇒elidf est ao
Good argument, which is explained b elow.

main : ? [] Unit (λ _ ? [])
mmaaiinn =: ?acq[ui]reU (iΓta (lλl a_s ?" J[a]m)ie ") / _

?no[⇒] eUrnirtor "λac _qu? ir[i]n)g p olicy failed"
ynoes⇒⇒ wrreaokre" naPocsqtu jrirenagdp porilnitc (fλa _ (e)d)" _

This example call begins and ends in the empty context. The call to
acquire examines the system state to check the truth of each of the
propositions in Γall as "Jamie " . If all of these are true, then we
run jreadprint and use weakening to f orget the p ostconditions.
If some p roposition cannot b e verified, then m ain calls error.

2.1.4 Verifying Policy Invariants

When authoring the above monadic signature for file IO, the p ro-
grammer may have in mind some i nvariants to which policies Γ
must adhere. For example, a call to chown (above) would h ave un-
expected consequences if there ever were more than one copy of
System says owns (k ,f) in Γ (only one copy would be r eplaced,
leaving a file with two owners in the p ostcondition). Our interface
permits programmers to specify context invariants using a predicate
Good Γ. The intended i nvariant of our interface is that a monadic
computation ? Γ A Γ ’ should have the property that Γ’ satis-
fcioesm Gpoutoadti oifn nΓ? ?doeΓ s. AT oΓ Γa’ch siehvoeu ldthi sh,a vthee hweeap kroenpienrgty yot pheartat iΓo’nss atnisd-
acquire require preconditions Γ b e accompanied by a proof of
Good Γ, and the programmer m ust verify that operations such as
read, chown, and sudo preserve the invariant. Because of this in-
variant, it is not necessary t o make each monadic operation require
a p roof that the precondition is Good. This means, that when writ-
ing a client program, the p rogrammer needs only to verify that the
initial p olicy and those in calls to weakening and acquire satisfy
the invariants.

In the above examples, we took Good t o be the trivially true
invariant, so the p roofs could be elided with an _ . As mentioned
above, a useful invariant to enforce is that for every file f there is at
most one statement of the form System says Owner (_ , f) in
the context. This is defined in Agda as follows:

Good : TCtx+ [] ? Set
GGoooodd Γ: T=C t ∀x +{k[]k’? ?fS}

?oooo dd(aΓ: Γ:T (t ∀Pxr+i{ nk[]"k S’ ?ysf t }Seetm" says (a- (Owner · (k , f)))) ∈ Γ)
?? ((ba :: ((PPrriinn]"" SSyysstteemm"" ssaayyss ((aa-- ((OOwwnneerr ·· ((kk k’ ,, f))))))))) ∈∈ Γ))
??? (E(qbau a ::l aPPrr i bi

T E(hbqeuna: lw (eaP rm biany " pSryosvtee tmh"at s tahyes sp (oas-tco(nOdwitnieorn o·f(eka’ch , o fp)e)ra)t)io ∈n iΓs
Go?oEd qifu athle aprb econdition is; e.g.

ChownPreservesGood : ∀ {Γ ∆ k1 k 2 f}
h?o wRnePprleasceer (ePsrGiono d" S :ys ∀te{ mΓ" says (ka2- (f O}wner · (k1 , f))))

((PPrriinn " "SSyysstteemm"" ss aayyss ((aa-- ((OOwwnneerr r· ((kk21 1,, ,ff f)))))))))))
Γ((P r∆rii

? Good Γ ? Good ∆
In? ?thG eo ocdomΓ pa? nio Gno coodd ∆e, we r evise the above examples so t hat they
m?ain Gtoaiond th Γis ? ?invG aoroiadn t∆, using a tactic to generate the proofs.

2.2 File IO with Access Control and I nformation F low

Next, we extend the above file signature with i nformation flow,
adapting an example from Fine [38]. First, we define a type
Tracked A L which represents a value of type A tracked with
security level L, where L is a list of filenames and t appends two
sliesctsu.r iF tyoll leovweilnL g, Fw ihnee,r w Le sdae fil inset Torfaf ilcekneadm eass aannd a tbs tarpapcte nf dusnct twoor
that distributes over functions (though different type structures for
information flow, such as an indexed monad [36], can b e used in
other examples):
Tracked : Set ? Label ? Set
fTmraapc :e d∀ : { SAe Bt L?} ?a e(Al ?? SB)e ? Tracked A L ? Tracked B L
T_fm?raa_pc :: e d∀ ∀ :{ {AAS BB t L L? 1} LL? 2ab}e A?l ??Tr SB ac)etk? ed (rAa c?k Bd) ALL1

:?: ∀∀T{r { AaAcB kB e dL L 1}A ?2L}2 ??A ?T TrrBa acc)kke?e dd T (Br a(c? Lk1e Bdt) AL L21L)

A_?n_ _ap :?pl∀ icT a{ rtaiAocnB k BefLd 1? AL x2 2 j? oinsT rrtahacce kkseeedcdu(B r Ait(y L? ?l1evB te)lsL L2o1f) the function and
Athen aaprgpulmicaentiot.

Next, we give flow-sensitive types to read and write: read t ags

the value with the file it was r ead from, and write requires a p roof
of MayAllFlow provs file, r epresenting the f act that all of the
files upon which the written string depends may flow into file.

read : ∀ {Γ} (k : _) (file : _)
? Pro:of∀ Γ{ (} }(a(-k (:Ma _y)re(afdi l· (:k , file))) ∧ (a+ (As · k)))
?? P?r oΓf (ΓTr a(c(ka-ed SMtayrirnega d[f (ikle,])f (lλe _)?∧ ∧Γ()

wr?it? e Γ: (∀T r{aΓc kp erdovS st}r (nkg :[_ f)i (efi] l)e :λ _ _)
? Trac:ke∀ d {SΓtr ipnrgov p rovs
?? TPrraoocfk Γd S(t r(ian-g (pMraoyvwsrite · (k , file)))

S(∧t (iaan-g+ (pMAraosy w·s i k)t)e
∧∧(((aMa-a+y((AMlAalsyFw· lrok iw)t e pr· o(vsk f,ile))

? ? Γ Unit∧ ((λM _ ?ll ΓFl)o

F? or eΓ xa Umnpitle, (wλe c_a?n r eΓ a)d two files and write t heir concatenation
to secret .txt:

go : ? (Γ as "Jamie ") U nit (\ _ ? (Γ as "Jamie "))
ggoo =: r?ea(d (Pa rsin" "aJmaimei"e))")U (iFtil (e\ " _fi ?le1(Γ .Γ Γta xts s")"

(s aoslv" eJ (mpireo"v)e 1n5i)t t) >\>=_ \? ?s(?Γ

read ((Psorilnv " J(pamrioev)"e e) 5()F)ile> "=f\i les 2· ?txt s")
(((sPsoorlilnvvee J((apprrmiooevv"ee 11 (55F)) i)) >>e>>"= = i\\ ess s’2 t?x

write s(Polrivne ("(pJaromivee")1 ()F)i l>e> ==" s\e scr’et? ·txt ")
((s Po(flrivmanep JSptarormiiveen"g .1)5s t()r)Fiin> lg>e=-a" s\p epcs er’ned s·t)x t?" s ’)
((s(folmvaep (Sptrroivneg 1st5)r)i

Here the theorem prover shows that both file1.txt and file2 .txt
may flow into secret .txt, according to the policy. This p roof
obligation results from the fact t hat
(fmap String .string-append s) ? s ’

h(fasm tayppe S
Tracked String ["file1 .txt " , "file2 .txt "] .

2.3 Spatial Distribution with Information Flow

PCML5 investigates PCA for the spatially distributed programming
language ML5 [29]. Here, we show how to embed an ML5-style
type system, which can be combined with the above techniques for
access control and information flow. PCML5 considers additional
aspects ofdistributed authorization, such as treating the policy itself
as a distributed resource, which we leave t o future work.

ML tracks where r esources and c omputations are located using
modal types of the form A @ w. For example, database .read :
(key ? value) @ server says that a function that r eads from

t(hkee ydat?a bav sea lmueus)t b @e rsuenr vate trhse syesrv tehra,t tw ahf iulne cjt aiovna sthcartir peat .d salf reormt
:(e(yst r?inv ga l?u) un@ it)s @r cerli seanyst hsaaytsa tf huantc tai cnot mhaptu traetaidosn trohamt

:po(pss turpi an gbr?o wsu enri atl)ert @ @bc oxl menustt bs aey rsutn h aatt tahec ocmlipenutt.a Ntioentwt ohrakt
c:om (smturniicnagtio? n uisn ietx)pre@ ssc edl ienn t MLs 5ay susti nhgat a an coopmerpauttiaonti nget th :t

(unit ? A) @ w ? A @ w ’e that (under some conditions which
w(uen eiltide ? ?h eA re)) g@ oe ws t?o ?w tAo @r un w ’tht eh gaitv (eunn dcoerms poumtaetioc onn adnitdi o bnrsinw gsh ticheh
r(eusnulitting? ?vaA l)ue b@ac wk t?o wA A’ A. @Inw wo’th thear wt(uonrkd [e2r7 so], mwee choanvdei tsiohonwswn h hoicwh
to b uild an ML5-like type system on top of an indexed monad of
computations at a place, ? w A, with a r ule get : ? w ’ A ?

?com wp Ata. t Hioenres,a otba sep rlvaec eth, a?t th iws Am ,onw iatdh ina d reuxliengg ectan : :b e? ?r epr we’seA nte ?d
c?usominw gp ua At ap .trH iooepnroses, aio ttbia osnpe rlAvatec (et hw,) a? ?, wth whise m rAe,o onw geiatdth hi inas dg reuixvlieenngg gae c ttaynp: b e ea ?nr eaplrow eg’soeAu nst e? tod
sudo:

get : (w1 w 2 : _) ? ∀ {Γ A Γ ’ ∆ ∆ ’ }
:?(wR1ep wl2ac: e ()a+? (A∀t ·Γ w 1A))Γ (a∆+ ∆(A’t} · w2)) Γ ∆
:??(wRR1eepp wll2aacc: ee (()aa++? ((A ∀Att ··Γ ww1A2))))Γ ((a ∆a++ ∆((AA’tt} ·· ww21)))) ∆Γ Γ’∆ Γ ’
??? ?RRee ∆llaa Aee (((\aa ++_ ?AAtt ∆ ·· Γ··’ ww)21
??? R??e l∆Γa c(AeTr((a\ac+k _e (d? A ?tA ·w’2w))2 ()\ _a +?(AΓt tt’ t)·

Additionally, we combine spatial distribution with information
flow, tagging the return value of the computation with the world
it is from. The postcondition m ust b e independent of the return
value, as there is in general no coercion either way between A and
Tracked A L.

Information flow can be used in this setting to force strings to

be escaped before they are sent back to the client—e.g. to prevent
SQL injection attacks:

sanitize : Tracked String (client) ? HTML
ssatrn :t Tzera c:keT dr cSkteridngS (rsienrgve(rc)l e?n tH)TM ?L

Stsrsintangrsi :tfriTz omera t:chkeeT dcrlaic Sentkret idmnuS gstt(r sbi een rgevse(crca)lpie?e d nbt He)fToMr? Le tH hTeMyL can b e included
in satnr H :T MTraLc kdeodcuS mterinnt, gw (hseerreavse s)tr? ingsH fMroLm the server are as-
sumed to b e n on-malicious, and can be included directly.

In our technical report [28], we extend this example with a sim-
ple database interface that enforces both authorization and spatial
distribution—database handles are only used at the server.

2.4 ConfRM: A Conference Management System

Swamy et al. [38] present an example of a conference management
server, ConfRM, adapted from CONTINUE [26] and its access con-
trol policy [18]. Here, we show an excerpt of an authorization p ol-
icy for ConfRM, a proof-carrying monadic interface to the com-
putations which perform actions, and the main event loop of the
server. This example uses ephemeral p olicies: authorization to p er-
form actions, such as submitting a p aper or a review, depend on the
phase of the conference (submission, notification,. . .).

2.4.1 Policy

We formalize ConfRM’s p olicy using terms of various types:
actions represent requests to the web server; p rincipals r ep-
resent users; p apers and strings are used to specify actions;
roles define whether a user is an Author , PCMember, and so on.
The p olicy is also dependent on the p hase of the conference (e.g.,
an Author may submit a paper during the submission phase).
The proposition May · (k , a) states that k may perform ac-
tTiohne pa.r Epaoschit oancti oMna yis· ·a(fkirs ,t-oa r)de rst atteermst hcaotnsk trm ucateyd ferrofmor msoa mc-e
arguments (e.g., Submit , Review , Readscore , Read all have

papers, while Progress has two phases, the phase the conference
is in before and after it is p rogressed).

Fine specifies the policy as a collection of Horn clauses, which
are simple to translate to our logic, as in the following clause:

clause1 =
((∀e principal · ∀ e string ·

elp etr
author = .iS i0
papername = .i0

in
(((a- (InPhase · (Submission))) ∧

((a(a-- (I PInhaRosele ·· (Suaubtmhiosrs , A)u)t ∧hor)))))
(⊃((-a-((I MnaRyo l· (a·u (tahuotrh , (Submit · p apername)))))))

This p roposition reads: for all authors and paper names, if the
conference is in the submission phase, and the principal is an
author, then the principal may submit a paper. We have also begun
to r eformulate the policy using the says modality, e.g. to allow
authors to share their paper scores with their coauthors.

saysClause =
((∀e principal · ∀ e paper · ∀e p rincipal ·

∀leet p ririnmcairpya l= ·.∀ ie0p
paper = .(iS i0)
coauthor = .(iS (iS i0)) in

((((a- (InPhase · (Notification)))) ∧
((((aa-- ((IAuntPhhoars e· ·(p(rNiomtaifriy , ipoanpe)r))))))∧) ∧
((p(rai-ma(rAyu says ((ap-r (mMaaryy y· (pc oaapuetr)hor) ,

(oRaeuatdhsocror, e · paper))))))
⊃ (a- (May · (coauthor , (Rea(Rdsecaodsrce ·r ep a· pep ra)p)e)r))))))))

This r ule states that, for any p rincipal author, p aper paper, and
principal coauthor, if the conference is in notification phase, and
author is the author of paper, and author says coauthor may
read the scores for paper, then coauthor may r ead the scores

for p aper. Similarly, using says, it is straightforward to specify
a policy allowing PC members to delegate r eviewing assignments
to subreviewers.

2.4.2 Actions

Rather than defining a command for each action—doRead, doSubmit,
etc.— we use type-level computation to write one command for
processing all actions; this simplifies the code for the main loop
presented below and allows for straightforward addition of actions.
The generic command for p rocessing an action, doaction, has the
following type:

doaction : ∀ {Γ} (k : _) (a : _) ? (e : ExtraArgs Γ a)
d?o aPcrtoioofn Γ: ∀(a{ -Γ }(M(aky :· _(k) ,(aa:) :))_)∧? ((a+e (:AEs ·t rka) A)r
d??o a?Pcrt ioΓof n(Γ :R es∀ (ual{ -tΓ }a()M(ky(λ: · r (_ k)?(, aPa os):)tC)_o)∧ n d?(iat(+ieo(: n asE ·Γt ae))kr rs)

??doa ? PcrtoΓ oifo n(Γ R teaskuelst ta ap)ri n(cλipr al ?k, aons taCcotinodni tai oton pa er Γfore m ,k a rn)d some
ExtraArgs for a, along with a proof that the computation is run-
ning as k, and that k may perform a. In this example, a Proof ab-
breviates a sequent whose view is PCChair, rather than Admin. It
returns a Result, and has a PostCondition, b oth of which are de-
pendent upon the action being performed. In Agda, ExtraArgs,
Result, and PostConditions are functions defined b y r ecursion
on actions, which compute a Set, a Set, and a context, respectively.

Several actions, such as Submitting a paper, require extra data
that is not p art of the logical specification (e.g., the contents of the
paper should not be p art of the proposition which authorizes it to
be submitted). ExtraArgs produces the set ofadditional arguments
each action requires.

ExtraArgs : TCtx+ [] ? Term [] (action) ? Set
EExxttrraaAArrggss Γ: T(CRtexv+ie[w]]· ?_) e=r mTe[r]m [a] t(isotnr)in? g)
EEExxxtttrrraaaAAArrrgggsss ΓΓ: T((CSRteuxvb+imei[wt]]·· ?__)) e==r mTTee[rr]mm [[a]] t((issottnrr)iinn? gg))
EExxttrraaAArrggss ΓΓ ((PSruobgmritess· _· (p=1 , pm2[))] =(tΣr (nλg ∆ ?

RtrepalAarcges (Γa-((rIongPrheassse ·· p11), ,)

((Γaa--(((rIIonngPPrhheaassssee ··· p12), ,) Γ2 ∆))=
ExtraArgs (Γa _ (=I nU Pnhiats

Reviews and p aper submissions require their contents, r epresented
as t erms of type string (the Agda type Term [] (string) is
an injection of strings into the language of first-order terms that
we use to r epresent p ropositions, as described in Section 3 below).
Progressing the phase of the conference requires a p roof that the
conference is in the first p hase, along with a new context in the
resulting phase, which we represent by a p air of a new context ∆
and a p roof of Replace.

Next, we specify the r esult type of an action:

Result : Term [] (action) ? Set
RReessuulltt :(STu bemrmit ·] _ ()a =t iToenr)m ?[] e(tpaper)
RRReeesssuuulllttt :((RS Teubevmrimietw ··] __ ())a ==t iUToennri)tm
RReessuulltt ((BReevAiseswign· e_ d))· =_U) =i U nit
RReessuulltt ((BReeaAdsssicogrnee d· ·__))= =SU tnriitng
RReessuulltt ((RReeaadds ·c o_r)e =· _S)tr i=ngS
RReessuulltt ((PReroadgr· es_ s))· =_S) =r n Ungit

Readscore and Read r eturn a paper’s reviews and contents, while
submit produces a Term [] paper, a u nique id for the paper.

Finally, we define the PostCondition of each action, which
is dependent upon the action itself, the precondition, the extra ar-
guments for the action, the principal performing the action, and
the Result of the action. Submitting a p aper extends the p re-
conditions with two propositions: one saying the paper has b een
submitted, and one saying the submitting p rincipal is its author.
Reviewing and Assigning a paper add that the paper is reviewed
fix : ∀ {A Γ ’ }

i?x (: (∀∀ {{AΓ }Γ ?} ? Γ A Γ ’) ? (∀ {Γ} ? ? Γ A Γ’))
?? ((∀(∀{Γ{ }Γ ?} ??? ?ΓΓ ΓA AΓΓ Γ’)’ })

ma??in(((∀:({∀ ∀Γ {{}ΓΓ?} } ?? ?? ΓΓ A UnΓ it’) (?λ _ ∀?{ Γ[]} })
mma?aiinn(∀:={ ∀Γf i{}xΓ ? }lo? op? ?whΓ ereU

laioonp :: ({∀ {}Γ?} ?? ??Γ ΓU U inti t((_λ _? ?[[)])) ?

((∀∀ {{ΓΓ}} ?? ?? ΓΓ U U nniitt ((λλ __ ?? [[]]))))
lloooopp :re((c ∀∀{{ {Γ }ΓΓ }}=

{-1-} p rom(p∀t "ΓE}nt ?er? ?anΓ ΓaU cntiiton :(λ"λ > _>= ? ?λ[]a)s)tr ?

craomsep (p"EarntseerActa inona c tasiotrn):
oNmopnet⇒" enrterror n"Una kcntoiownn: a"ct> i>o=n"λ
NSoonmee⇒⇒ eλr arcotri o"UnnArkgnsow ?n

lomete ⇒a =λ (afctsti anActrigosnA ?rgs)
⇒arg λs =c (isonndA agcst ?ionArgs) in

{-2-} prompt "Who are you? " >>= λ ustring ?

lroetm ut =" ph aor asreePr iynou ?us"t r>i>=ng λiun
{-3-} oamcqputir" eW [o (a r(ae- o(uM?ay"Su> ·= (λPr uisnt r"iAndgmi? n" , u))))]

/[_
no⇒ error "Unable to su"

{-4-} yes⇒ craroser m" Uankeab-lreeplt aoces
eNso⇒ne⇒c esrer omra e"o-ropesp , cnoet running as admin"
NSoonmee⇒⇒ eλr raosradm" ionop s?,

{-5-} coamese⇒ ⇒(iλnap ustaTdomEi na ?_ args)
mNeo⇒ne⇒λ aesrardomr "nBa ?d input (e .g . not in p hase) "
NSoonmee⇒⇒ eλr args B?a

{-6-} (osmeu⇒do λ(Pa rirng s"? Admin") u
λ(sa ndr sasa ?dmin)
(\x ? (snd (repAsPost (snd asadmin)

{ (as}n dx)a a)s s)a
((\lxfoc? i (0s nidni (tr-e)p

{-7-} (prove/dyn 15 _ _ >>=
none⇒ error "Unauthorized action"
nsoonmee⇒⇒ eλr rcaornD o"UAnctaiuotnho r?i

{-8-} doomea⇒ct i oλn ua aD aArctgsi nca? nDoAction))
{-9-} >>= λ _ s?o ree⇒c

>>=λ _ ? r ec

Figure 3. ConfRM Main Loop

by or assigned to the principal, respectively. Readscore and Read

leave the conditions unchanged. The p ostcondition of Progress is

the first component of its ExtraArgs, i.e. the context determined
by replacing the current phase with the r esulting one.

PostCondit ion : (a : Term [] (action)) (Γ : TCtx+ [])
? ExtraArgs Γ a ? (k : Term [] (principal))
?? REextsurlatA gas ?Γ aTC? tx+(k[]:

Po?s?tC ERoxentsdruialttAiroa gns (Γ?Su a TbCm? tixt +(·k [y]): nΓc iep akl)r) =
(os?a-t (oenSsuduibltmtiiota tned(?S ?·u TrmC ti)tx xt)+ +·:[[y:] (a- (Author · (k , r))) : : Γ

Po(sat-Co(Snudibtm iitont (dRe ·vr ie) w))· y:) Γ(ke ,k r) =:
(osa-t (oRndeviiteiwoned ·R (vki , y ·))y)) : : Γ

Po(as-tC(o Rnedivtiieowne (B· e (Akss, igy n)e)d))· y:) Γ e k r =
(osa-t (oAndssiitginoned ·B (Aks , gyn)e e)d d) ·: :y Γ

Po(as-tC(o Ansdistiigonne (R· e (akds, coy r)e))· :y): Γ e k r = Γ
PPoossttCCoonnddiittiioonn ((RReeaadd ·c oyr)e Γ e k r = Γ
PPoossttCCoonnddiittiioonn ((PReroadgr· esy s) · (ph1 , p h2)) Γ e k r =

(ofststC ne)d

In writing the main server loop, we will use the following
monadic wrapper of our theorem prover, in order to test at run time
whether a given proposition holds in the current state of the server:

prove/dyn : ∀ {Γ1} ? Nat ? (Γ : TCtx+ []) ?

o(Av :/ yPnro p:o-∀ {[]Γ)1 }??

?(oAv :Γ/d1Py nr(oMp: aoy-∀ be[{ Γ(])P1}r? oo? f NΓa tA)? ?) ((λΓ _: T?C tΓx1+)

2.4.3? ΓS1er v(eMray yMbeai(nP Lroooofp

In Figure 3 we show the code for the main loop of the ConfRM
server, implemented using the interface described above. The main
loop serves requests made by principals who wish to perform ac-
tions. Because the requests are not determined u ntil run-time, and
authorization depends on the system state (the phase of the confer-
ence, the role of a principal), this example uses entirely dynamic
verification of security policies: the server dynamically checks that
each request is authorized j ust b efore performing it, u sing our the-
orem p rover at run-time. The type system ensures that the appro-
priate dynamic check is made. Informally, the server loop works b y

(1) reading in an action and its arguments, (2) reading in a princi-
pal, (3) acquiring the credentials to su as that p rincipal, (4) comput-
ing the p recondition of the su, (5) computing the postconditions of
performing the action, (6) su-ing as the principal, (7) proving the
principal may perform the action, (8) performing the action, and
(9) recurring. The fact that we have coalesced all of the actions into
one primitive command makes this code much more concise than it
would be otherwise, when we would have to r epeat essentially this
code as many times as there are actions.

This code is rendered in Agda as follows. fix permits an IO
computation to b e defined by general r ecursion. Because its type
is r estricted to the monad, it does not p ermit non-terminating ele-
ments of other types, such as Proof. This fixed-point combinator
abstracts over the p recondition, so it may vary in recursive calls,
but leaves the p ostcondition fixed throughout the loop; we leave
more general loop invariants to future work. First, m ain is given the
type ∀ {Γ} ? ? Γ U nit (λ _ ? []): given any p recondi-
tion, th∀e c{ oΓm}p?u tat ?ion ΓretU urnnist tu(niλt a n_d ?an [em])p:tgy v peonstac noyndp itrieocno n(wdie-
do not∀ ∀ex{ pΓe}ct t?o r ?un aΓny U cniodte (fλollo _wi? ng [m]a)i:ng isvoe nit aisn ynp otr wcoonrtdhi--
while to track the postconditions). m ain is defined by taking the
fixed p oint of the axillary function loop, which is abstracted over
the r ecursive call. On line (1), the loop prompts the user to en-
ter an action to perform, p arseAction then parses the string to
produce a : action and args : InputArgs, and r aises an er-
ror otherwise. (2) The loop prompts for a username, p arses it into
a Term [] principal. (3) The loop attempts to acquire creden-
tials that "Admin" may su as the p rincipal (e.g., by prompting for
a p assword). (4) The loop calls the functions m ake-replace to
produce the preconditions for the su, by replacing (As (Prin
"Admin")) with a+ (As u) . (5) The loop calls inputToE to p ro-
duce the ExtraArgs for the action from the args; for Progress,
this function computes the p ostcondition of the action from the cur-
rent context. (6) The loop su-s as the p rincipal. The first replace
argument to su is the result of step (4), the proof argument is the

assumption acquired in step (3), the second replace argument is
discussed b elow. (7) The loop calls the theorem p rover at run-time
to p rove the p rincipal may perform the r equested action. (8) The
loop calls doaction and (9) recurs.

The second replace argument to su is generated u sing a proof
that As is p reserved in the PostCondition of an action:

postPreservesAs : ∀ {a Γ e k r k ’ }
?: ∀(a{ +a (ΓAs e e· kk ’r r) ∈’ Γ})
?? ((a(a++ A(Ass ·· k’ ’))))∈ ∈Γ PostCondition a Γ e k r)

This is another exa??mp ((l(aea+ +o+(f (AusAsisn ·· gk ’Ak’)g)d)∈a ∈Γto) PvoesritfCyo inndviatriioanntsa aoΓf t hee
pre- and p ost-cond?itio(ns(,a a+s (inA sSe· ctk i’o)n))2∈ .1.4P .o

2.4.4 Dynamic Policy A cquisition

Finally, we describe an example of dynamic policy acquisition
in Figure 4: we read the reviewers’ paper assignments from a
database, p arse the result into a context, acquire the context, and
start the main server loop with those p reconditions. This is simple
in a dependently typed language because contexts themselves are
data. The function getReviewerAsgn takes a string, r epresenting
a p ath to the database, and returns the list of reviewers for each
paper. The function p arseReviewers then turns each of these
lists into lists of propositions, each stating the parsed reviewer is
a reviewer of the paper. A more realistic ConfRM implementation
would read a variety of other p ropositions from the database as well

getReviewerAsgn : ∀ {Γ} ? String ?

t?R vΓi e(wLeirsAts g(nLi :st∀ S{t Γri}n?g) ?) t(rλi n_g ?? Γ)

pars?eRΓ evi(eLwiesrts :L Lsitst S Srtirnign)g) ? (λ TC _t ?x+ [)]

mpkarPosleiRceyv :e e∀r {sΓ: } L?i ?t tΓr i(TngCtx ?+ [C]t)x +(λ[_ ? Γ)
mmpkkaPrPoosleliRicecyyv :=e ∀gr e{sΓt :R}e Lv ?iies? wteS rΓ tArsi(gnTn "txp ?+ap T[eC]rt)sx). +(d λb["] _>>? = λΓ asgn ?

rPeoltuircny (:Li ∀gst{ eMΓt R.} }fevo ?lide? ?e[r] (sλ(g n nxC " ?pxa+ λe[sy) ? d(λb

dwpe [ar]rsA es(gλRnex v"i ? peawpeλ errs yx. ? b++" >y)> =aλ sgan s)

start = mkPolicy {[] } >>= λ ctx ?

amkcqPuoilriec c {tx[/} _>

nPool⇒i yer{ ro[r] ">p >ol=iλc y tnoxt ?accepted"
yes⇒ m raroinr

Figure 4. ConfRM Policy Acquistion

(which p apers h ave been submitted, r eviewed, etc.) The computa-
tion mkPolicy calls getReviewerAsgn and parses the results. The
computation start uses mkPolicy to generate an initial policy, ac-
quires t hese p reconditions, and starts the main sever loop.

3. Implementation

Our Agda implementation consists of about 1400 lines of code. W e
have also written about 1800 lines of example code in the embed-
ded language, including policies, monadic interfaces to primitives,
and example programs. In this section, we describe the implemen-
tation of the logic, the theorem prover, and the indexed monad.

3.1 Representing BL0

BL0 [21] extends first-order intuitionistic logic with the modal-
ity k says A. While a variety of definitions of says h ave been
studied (Abadi [2] overviews some of the approaches), in BL0,
says is treated as a necessitation (2) modality, and not as a
lax modality (i.e. a monad) [1, 8, 22, 24]. The definition of
says in BL0 supports exclusive delegation, where a principal

delegates responsibility for a p roposition to another principal,
without retaining the ability to assert that proposition himself.
For example, consider a policy that payroll says ∀t. (HR says
Femorp eloxyaeme(ptl)e), c⊃o sMidaeyrBa ePp oaliidc c(yt) .t Uatn pdeary rwolhlats acyirscu∀ mt.st(aHnRcess acyasn

ewme lcooynecelu(td)e) ⊃payM rolaly says M(ta)y.BU enPdaeird(w Ahlaitcec)i?r uTmhset fnaccets ct haant
HR says employee(Alice) should be sufficient. However, the
fact that payroll says employee(Alice) should not, as the in-
tention of the policy is that payroll delegates r esponsibility for
the employee p redicate to h uman resources, without retaining
the ability to assert employee instances itself. When says is
treated as a lax modality, payroll says employee(Alice) im-
plies payroll says HR says employee(Alice), which is enough
to conclude the goal. Abstractly, we wish k says A to imply
k0 says (k says A), but not k says (k0 says A). The modal-
ity satisfies several other axioms: for example, principals say all
consequences the statements they h ave made (k says (p ⊃ q) en-
tcaoinlss (eqku says p ⊃e skta says tqs)) t haenyd hparivnecim paaldse b(eklies vaey sw(hpat⊃ ⊃thq ey) say
tisa tlrsu e(k k(ks says (⊃(kk says s q))⊃a sn)d) .p

3.1.1 Terms, Types, and Atomic Propositions

In the above examples, we used a variety of atomic p ropositions
(Mayread, Owns, etc.), which refer to several datatypes (principals,
papers, conference phases, etc.). We have parametrized the repre-
sentation of BL0 and its theorem prover over such datatypes and
atomic propositions b y defining a generic datatype of first-order
terms, with free variables, over a given signature. This allows us to
specify the types, terms, and propositions for an example concisely,
while exploiting a datatype-generic definition ofweakening, substi-
tution, etc., which are necessary to state the inference rules of the
logic. The following excerpt from the signature for ConfRM illus-
trates what p rogrammers write to define an i ndividual example:

data BaseType : Set where
string p aper role action p hase principal : BaseType

data Const : BaseType -> Set where

Prin : String -> Const p rincipal
Paper : String -> Const p aper
PCChair Reviewer Author Public : Const role
Init Presubmission Submission . . . : Const p hase

data Func : BaseType -> Type -> Set where
Review BeAssigned . . . : Func action (paper)
Progress : Func action (phase ⊗ p hase)

data Atom : Type -> Set where
InPhase : Atom (phase)
Assigned . . . : Atom (principal ⊗ p aper)
MAsays :g dAt. om.. (p: riA ntocmipa(lp i⊗n caicptailon⊗)
As : AtoAmto m(pr (iprnicnipcailp)a

The p rogrammer defines a datatype of base types, a datatype giving
constants of each type, a datatype of function symbols, and a
datatype of atomic propositions over a given type. Additionally,
the p rogrammer must define a couple of operations on these types
(equality, enumeration of all elements of a finite type) which in a
future version of Agda could be generated automatically [5].

Types are BaseTypes, u nit and pair types (τ1 ⊗ τ2) . The
termTsy poevsear rae s BiagnsaetuTyrep aesre, guinvietn ba nyd dap daaitrat tyyppees T(eτr1m ⊗Ω ττ2,)w.h Tehree
Ω, an individual context (ICtx), represents the free variables of the
term. A n ICtx is a list of BaseTypes, and represents a context of
individual variables—e.g. the context x1 : τ1 , . . . ,xn : τn will
be r epresented by the list τ1 :: ... :: τn :: [] . Variables are r ep-
resented by well-scoped de Bruijn indices, which are pointers into
such a list—i0 says x ∈ (x : : l), and iS says that x ∈ (y : :
slu) ihfa axl s∈t— li. 0Tse armyss x xar∈ e e (ixther: :val ri)a,ba lensd i(.S ia)y , wt hhaterx e i∈ :(yτ ∈:
lΩ))isi fa xde∈ ∈Br lu.ijnT e irnmdsexa , ecoen istthaenrtsv , aaripapblliecasti(o.nsi o)f, ,fuw nhcetrieoni isy: mbτ o∈l s
(f · t), or [] and (t 1 , t2) for unit and product types. Atomic
p(fro· pot s)it,ioo nrs[]ara en rde(ptre1se, ntet d2)b yf oar u dnatiatta ynpde pArpordoucp Ωty.p Aes.n Aattoommiicc

proposition p · t consists of an Atom p aired with a term of the ap-
pprroopproisaitteio tynpp e. ·Wt e choanvsei sdtesfo infe adn w Ateaomkep nianirge danw di sthu bast etitrumtioo nf gener-
ically on terms and propositions, and proved several properties of
them (e.g. functoriality of weakening).

3.1.2 Propositions

BL0 propositions include conjunction, disjunction, implication,
universal and existential quantification, and the says modality:

A, B, C ::= P | A ∧ B | A ∨ B | A ⊃ B | >
|P P⊥| A| ∀ ∧x B: τ |. sA A| ∨∃Bx B: τ A.A ⊃ ⊃| kB says A

InFigure 5, we represent this syntax in Agda. Propositions (Propo)
are indexed b y a context of free variables, and additionally by ap o-
larity (+ or -), which will be helpful in defining a focused sequent
calculus below. Because the syntax of propositions is polarized,
there are two injections a- and a+ from atomic propositions Aprop
to negative and positive propositions, respectively. Additionally, the
shifts ↓ and ↑ include negative into positive and vice versa. The re-
mshaiifntsin ↓ga ndadt ↑atyi npcel ucdoenns etrgucattoivres cnotorre pospsoitnivde t aon dthv ei cvea rvioeurssa ways eof-
forming propositions in the above grammar. For example, the _ ∧ _

cfoornmsitnrugctp orro tpaokseist townos itner mthes aofb otvyepeg Prarmopmoa+r .ΩF oarn dex raemtuprnles, t ah teer_ m∧ o_f
type Propo+ Ω. The constructor ∃i (existential quantification over
itnypdievP idruoaplso)+, ta Ωk.eT s hae epc oosintsitvreu cptroorp ∃oisit(ieoxni,s teinn tai caol nqtueaxntt wifiicthat oionne onveewr
free variable of type τ, and returns a positive proposition in the
original context Ω.

We have suppressed the shifts up to this p oint in the paper for
readability. W e could suppress shifts i n our Agda code by imple-
menting a simple translation that, given an unpolarized proposition

data Propo : Polarity ? ICtx ? Set where
t⊃a P :o p ∀o {: Ω }Po l?a Pirtoypo? + IΩC ?x ?ProS peot- wΩh r?e Propo- Ω
∀_tia⊃__ r:: ∀ p ∀o { {Ω: Ω }τo}? l ??rP i tPoyrpoo ?p+oΩI - (t ?τx P:? ?:r SΩpe)ot - ?wΩ h eP r?reoP por-o oΩ-
∀a_-i⊃ _::: :∀ ∀ ∀ { { {ΩΩΩ}} ?}? ?AP prrP oorpopo +oΩ- Ω?(τ?Pr P: o:rpooΩ p-)o)-Ω ?
↑∀ ::: ∀ ∀ ∀ {{ {ΩΩΩ}} ??} ?APrpoPr porpoop+ ΩΩ- ?(?τ Pr: ro:oppoΩ -o)- Ω?

∨ ∀: {∀Ω {}Ω? } P ?r oPproo+poΩ + ?Ω P ?r oPproo-poΩ + Ω ? Propo+ Ω
__∨∧__ :: ∀∀ {{ΩΩ}} ?? PPrrooppoo++ ΩΩ ?? PPrrooppoo++ ΩΩ ?? PPrrooppoo++ ΩΩ
_⊥∧ ::: ∀ ∀∀ {{{ΩΩΩ}}} ??? PPPrrrooopppooo+++ ΩΩΩ
>⊥ ::: ∀ ∀∀ {{{ΩΩΩ}}} ??? PPPrrrooopppooo+++ ΩΩΩ
>∃i_ ::: ∀∀ ∀ {{{ΩΩΩ}} τ ?? } ?PPrr ooP pprooo++poΩΩ + (τ : : Ω) ? Propo+ Ω
says ::: ∀∀∀ {{ {ΩΩΩ}} ??} ?PTreo rPpmro +pΩo +pri(τnci: :palΩ)??

∀∀Pro {{ΩΩpo}-τ ?Ω} ?T?e mrPropΩ opoo+p +r iΩnτ
_a+s :: P∀ ∀r o{{ΩΩpo}}- ??Ω AT ?eprromP pro ΩpΩo +?riΩ nPcrioppaol+ ?Ω
↓ :: P∀∀r {o{ΩΩpo}}- ??Ω PA? rprop oPproo- ΩoΩ+ ??Ω Prorpopoo++ Ω

Figur:e ∀5. AΩg}d a? R Perporpeos-entΩ atio? n Porfo oBpLo+0 ΩP ropositions

and an intended polarization of each atom, computes a polarized
proposition with minimal shifts.

3.1.3 Proofs

Sequent c alculus. Sequents in BL0 have the form Ω; ∆; Γ − →k A.
The context Ω gives types to individual variables (e.g. it is ext→e− ndeA d.
by ∀), and the context Γ contains propositions that are assumed t o
bbey ∀tr)u,ea (ned.g t.h iet ciso enxtetxetnΓ dedc o bnyta i⊃n)s—p rthoeposse tairoen stht eh asttana rdea radss cumonetedxt tos
bofe ft irruset-o(red.ge.r itlo gisiec .x tTehned cedon bteyx⊃ t ∆)— ctohnetsaeina sr cela thiems s,ta ansdsaurmdpc toionntesx otfs
the form k0 claims A; claims is the j udgement underlying the
says connective [21, 33]. Finally, k, the view of the sequent, is the

principal on behalf of whom the inference is made.
p The rules for says are as follows:

Ω;∆Ω;;Γ∆−− ;k →[0]−kk → s aA ysA SAYSR

Ω;∆,(kΩ;c ∆la;imΓ,s(Ak)s ;aΓy,s(A k)s a− ky− 0s→A C)−k− → 0C SAYSL

Ω;(∆,kΩc ;l(ai∆m,sk Ac)la;i(mΓs,A A));−− kΓ →0− k−→ C0 Ck≥ k 0CLAIMSL

In order to show k says A, one empties the context Γ of true
assumptions, and reasons on b ehalf of k with the goal A (rule
saysR). It is necessary to empty Γ because the facts in it may
depend on claims by the p rincipal k0, which are not valid when
reasoning as k. The rule saysL says that if one is reasoning from
an assumption k says A, one mayp roceed using an ew assumption
that k claims A. Claims are u sed by the rule claimsL, which
allows passage from a claim k claims A to an assumption that A is
actually true. This rule makes use of a preorder on p rincipals, and
asserts that any statements made b y a greater p rincipal are accepted
as true by lesser p rincipals.

Focused sequent c alculus. To help with defining a proof search
procedure, we present BL0 as a weakly-focused sequent calculus.
Garg [21] describes b oth an unfocused sequent calculus and a fo-
cused proof system for FHH, a fragment of BL0; here we give a
focused sequent calculus for all of BL0. Focusing [6] is a proof-
theoretic technique for reducing inessential non-determinism in
proof search, b y exploiting the f act that one can chain together cer-
tain proof steps into larger steps. In the Agda code above, we po-
larized the syntax of propositions, dividing them into positive and
negative classes. Positive propositions, such as disjunction, require
choices on the right, but are invertible on the left: a goal C is p rov-
able under assumption A+ if and only if it is provable u nder the
left rule’s p remises. Dually, negative p ropositions involve choices
on the left but are invertible on the right. Weak focusing [34] forces

focus (choice) steps of like-polarity connectives to b e chained to-
gether, but does not force inversion (pattern-matching) steps to b e
chained together. W e use weak, rather than full, focusing because
it i s slightly easier t o r epresent in Agda, and because it can some-
times lead to shorter proofs if one internalizes the identity princi-
ples (which say that A entails A)—though we do not exploit this
fact in our current prover.

The polarity of k says A is as follows: A is negative, but
k says A itself is positive. As a simple check on this, observe that
k says A is invertible on the left—one can always immediately
make the claims assumption—but not on the right—because saysR
clears the true assumptions. For example, a policy is often of
the form k1 says A1, . . . kn says An, with a goal of the f orm
k0 says B. It is necessary t o use claimsL to turn all propositions
of the form k says A in Γ into claims in ∆ b efore u sing saysR on
the goal—if one uses saysR first, the p olicy would be discarded.
This p olarization is analogous to 2 in Pfenning and Davies [33]
and t o ! in linear logic [6], which is reasonable given that says is
a necessitation modality.

Our sequent calculus has three main j udgements:

• Right focus: Ω; ∆; Γ − →k [A+]

• Left f ocus: Ω; ∆; Γ − →k [A-] > C

• Neutral sequent: Ω; ∆;Γ − →k C-

Here ∆ consists of claims k claims A- and Γ consists of p osi-
tive p ropositions. For convenience in the Agda implementation, we

break out a one-step left-inversion j udgement Ω; ∆; Γ − →k A+ >I
C, which applies a left r ule to the distinguished proposit→i− on AA+ and
then reverts t o a neutral sequent. The r ules are a fairly simple inte-
gration of the idea of weak focusing [34] with the focusing i nter-

pretation of says described above. The interested r eader can find
the inference rules for these j udgements in the extended version of
this paper [28].

Agda R epresentation In Figure 6, we show an excerpt of the
Agda representation of this sequent calculus. First, we define a
record type for a Ctx, which tuples together the Ω, ∆, Γ, and k p arts
of a sequent—we write Θ for such a tuple. Γ is r epresented as a list
of propositions; ∆ is represented as a list of pairs of a principal and
a p roposition, written p claims A; k is a term of type principal.
Record fields are selected b y writing R. . x, where the t ype of the
record is R and the desired field is x (e.g., Ctx . rk selects the
principal from a Ctx record). Note that Ctx is a dependent record:
the true context, the claims context, and the view can mention
the variables bound in the individual context rΩ. W e write TCtx+
Ω for List (Propo+ Ω) . W e define several h elper functions on
Ctxs: sayCtx clears the Ctx of true p ropositions, and changes the
view of the context to its second argument. ictx (not shown) is
shorthand for Ctx . rΩ. addTrue and addClaim (not shown) add
a true proposition onto Γ or a claim onto ∆, respectively. addVar
adds a variable to Ω, and weakens the rest of the context.

When writing down the calculus on p aper, i t is obvious that
extending Ω does not affect Γ or ∆; any variables bound in Ω will
be b ound in Ω0 ⊇ Ω. However, in Agda, it is necessary to explicitly
coerce F Ω to ⊇F ΩΩ. 0H ofowr tvyerpe,i nfAa mgidliae,si F is dneepceesnsdaernytt ooe nx Ωpli. Witley
have defined weakening functions for many of the types indexed
by Ω: terms (weakenTerm), propositions, claims, true contexts
(weakenT+), claims contexts (weakenC), and so on.

There are 4 j udgments in our weakly-focused sequent calculus;
analogously, there are 4 mutually recursive datatype declarations
representing thesejudgements inAgda, with one datatype construc-
tor for each inference r ule. W e show the constructors ∀ L (for the

ltoefrt ffoorceu as cj hud ingfeemreenncte), ∃ruLl a.nW d esas hyoswL (t fhoer tcohen sletrfut cintovrser∀ sioLn(fj ourdgt he-e
mlefetnft o),c suas yjusdRg (emfore ntht)e, ∃riLg hatn dfos cuasy s jLud (gfoermt ehnet)l e, fatn idn vcelrasiiomnsj uL d(fgeor-
record Ctx : Set where

field rΩ : ICtx
rΓ+ : List (Propo+ rΩ)

-- pairs written (k claims A)
r∆ : List (Term rΩ principal × Propo- rΩ)
rk : TL eirsmt r (ΩT p rmrin rcΩipp arli

addVar : (θ : Ctx) ? (A : T ype) ? Ctx
aaddddVVaarr θ: (τθ θ=: r Cetcoxr)d? ?{r(ΩA := (ypτe :)): ?CtC xt .x xrΩ θ) ;

:rC Γt+x)= ?(we (aAke: nT T+y (eC)tx ? ?. rΓC t+x θ) iS) ;
r∆ = (weakenC (Ctx .r∆ θ) iS) ;
rk = (weakenTerm (Ctx .rk θ) iS) }

sayCtx : (θ : Ctx) ?

((kθ :: TCetxrm) (?Ctx .rΩ θ) p rincipal) ? Ctx
ssaayyCCttxx θ: (k(kθ= (r C Tteecrxm)or(? d {trx.Ωr Ω= θCt)x .p rriΩn cθi p;a

:rT Γe+r m= ([C] x; rrΩ∆ θ=) C ptrxi i.n nrc∆ip aθl ;) r?k =t xk})

mutual
data _‘L_>_ : (θ : Ctx) ? Propo- (ictx θ)

:? (Pθro :poC -t ()ic? tx rθ)o o?- S (eitc twxhe θr)e
t∀La :_ ∀_ :{?θ θτr :Ap CC-}t ?)ic ?t(xt θ:r Tp?eo -rmS (it(cictw txhexθ)θe) τ) ?

{θ? θ‘ Pτ Lr A(psoC u-b}s(? tilcat(sxtt :A) Tt ?e)r m>S (tCi c?wth

{θθ θ‘‘τLL A(∀ si_ Cub }{s?it clat(sxtt θ: A} { Tτt e)}r mA> C>i c?Ct
. . .

data _‘I_>_ : (θ : Ctx) ? (Propo+ (ictx θ))
_?‘ IP_r>o_po: - ((θic :txC tθx)) ?? S (ePtr owphoe+re(

t∃La ?:_ ∀ I P_ >{oθ_p :-τ θAi C:t}xC
:?? ∀P(ra{ odθdpoT-ru e((catxddθ V)ar ?θ Sτe)t A w)h ‘r (weakenP C iS)
?? θ(‘ddIT (ru∃ee (τa dAd)V a>r rCθ

say?s?L (θ:a ‘d∀ Id { (rθ∃u eke τsa dBAd})V
θ?: ∀aId { (dθC∃lk eais τ m ABθ}) (>k claims s) ‘ C
?? θa ‘dCIl (aikm sa θy s(k sc) a>i mCs

. . .

data _‘R_? :θ (‘θI I:(kCts xa)y s?)Pr> opo C+ (ictx θ) ? Set where
staay s_R‘ :_ : ∀ ({θθ :k CAt}

:?_ ∀:(s({ aθθyCk : tx AC t}θx)k)? ?‘ Ar
?? θ(‘ayRC t(kx θsak ys) A‘)

. . .
data _‘_? ?: (‘θR R:(kCts xa)y s? P)ropo- (ictx θ) ? Set where

tclaa i_m‘_sL : ∀(θ{:θ Ck Ax)C?}
?: (∀(θk{ :θclk CatiA xm)sC ?}A) ∈r Cpotx- -. r(i∆c θx
?? θ(k‘c Ll aAi m>s sCA)?∈ Ckt x≥. C∆txθ θ. rk θ
??? θθ(k‘‘c LlCa

. . .

Figure 6. Agda representation of p roofs (exceprt)

the neutral sequent j udgement). For the most p art, the r ules are a
straightforward transcription of the sequent calculus r ules [28]. In
∀L, the function substlast substitutes a term for the last variable
∀inL a, hpero fpuonscittiioonn; wueb sh talvea simts pulbemsteitnutteeds asut ebrsmtitu ftoiornt h efol ra isntv diavriidaublael
variables for each of the syntactic categories. I n ∃L, it is necessary
vtoa wriaebalkeesnf tohre e agcohalo owf tihthe ets hey n ntaewct ivcar ciaatbegleo, iweshi.cI nh i ∃s Lt,ac iitti isnn on-paper
presentations.

Properties Because the sequent calculus is cut-free, consistency
of closed proofs is immediate:

Consistency: For all p rincipals k, there is no derivation o f

[];[]; [] − →k↑ ⊥.
Proof: no rule concludes ⊥ in r ight focus, and in the empty context

nProo loefft: nfooc ruusl eocr olnefct iundveesrs⊥ io nin r urilgehst a foppcluys.,
Identity and cut can b e proved u sing the usual syntactic meth-

ods, adapting Garg’s p roof [21] for an unfocused sequent calculus
to weak focusing, following Pfenning and Simmons [34].

3.2 Proof Search

We have implemented a simple proof-producing theorem prover for
BL0:

prove : Nat ? (θ : Ctx) ? (A : Propo- (ictx θ))
?: NMaatyb? e ((θθ ‘: CA)t

prove :?takN Meaasty bae d (eθpth‘ Ab)ound, a context, aon-d (a proposition, and
attempts to find a p roof of θ ‘ A with at most the given depth.
aTttheem prover oif si cnedrt aifip erdo: owfh oefn θth‘e prover shua cctem eodss,t i tth hreet ugrinvesn na pdrepoothf,.
which is guaranteed b y type checking to b e well-formed. W hen the
prover fails, i t simply returns None. The prover is implemented b y
around 200 lines of Agda code.

Our prover is quite naïve, but it suffices to prove the examples in
this paper. For the most part, the p rover backchains over the focus-
ing rules. However, whereas the above sequent calculus was only
weakly focused, the prover is fully focused, in that it eagerly applies
invertible rules, which avoids backtracking over different applica-
tions of them. If the goal is right-invertible, the prover applies right
rules. Once the goal is not right-invertible (an atom or a shift ↑ A+),
trhulee prover ef uthlleyg gloeaftl- iisnvn eorttrs galhl o-ifn tvheer tiasblseu(mapntai otonms ion rΓa . sIhnvifetr ↑tiAn g a
context Γ b reaks up the positive p ropositions using left r ules, gen-
erating a list of non-invertible contexts Θ1 , ..., Θk such that, if for
every i, Θi ‘ C, then Θ ‘ C. Once the sequent has been fully
inverted, the prover htreinesΘ Θrig‘ htC -fo.c Ousninceg (thife ths eeq guoenalt ihs as s bheifetn n↑f uAl+ly)
iannvde rlteefdt,-ft ohceusp irnogv eorn t aiells raisgshutm-fpotciounsisn ign(iΓf ahned g coalalimi ss a s inh i∆ft,↑ ↑uA ntil
one of these choices succeeds. The focus p hases involves further
backtracking over choices (e.g., which b ranch of a disjunction to

take). The f ocus r ules for quantifiers (∀E and ∃I) require guess-
itnakge a)n. Tinhsetafn otciautisor nu olefs stf heor rqq uuaannttifiifeierr. Osu (∀r Ecura rnednt∃ ∃imI)prl eeqmueinretatg iuoens sis-
brute-force: it simply computes all terms of a given type in a given
context and tries each of them in turn—we have only considered
individual types with finitely many inhabitants.

The prover achieves tolerable compile times on the small ex-
amples we have considered so far (1 to 13 seconds). If it proves
too slow for some examples, we h ave several options: First, we
can improve our implementation—e.g. b y implementing unifica-
tion, which will eliminate much of the branching from quantifiers,
or by doing a better job of clause selection. Second, we could con-
nect Agda with an external theorem prover, following Kariso [25].
Garg has implemented theorem p rover for BL0 in ML [21], which
we could integrate soundly b y writing a type checker for the certifi-
cates it produces. T hird, we could optimize Agda itself, by fixing
some k nown inefficiencies in Agda’s c ompile-time evaluation.

3.3 Computations

The monadic interfaces presented in Section 2 are currently treated
as refinement types on Haskell’s IO monad, which is exposed
through the Agda foreign function interface. The implementations
of proof-carrying file operations simply ignore their p roof argu-
ments. fix is compiled using general recursion in Haskell. In this
operational m odel, programs written in Aglet adhere to the secu-
rity p olicies, but no guarantees are made about programs that can
access, e.g., the raw file system operations. We discuss alternatives
in Section 5 below.

4. Related Work

Aglet implements security-typed p rogramming in the style of
Aura [24], P CML5 [9], Fine [38], and previous work b y Avijit

and Harper [8] (henceforth AH), which integrate authorization log-
ics i nto functional/imperative programming languages. Our main
contribution relative to these languages is to show how to support
security-typed programming within an existing dependently-typed
language. There are also some technical differences between these
languages and ours:

First, A ura, PCML5, and AH interpret says as a lax modality,
whereas BL0 interprets it as a necessitation modality to support ex-
clusive delegation; Fine uses first-order classical logic and does not
directly support the says modality. The context-clearing necessita-
tion modality is more challenging to r epresent than a lax modality.

Second, unlike these four languages, our language treats p ropo-
sitions and p roofs as inductively defined data, which has several
applications: In Aura, all proof-carrying p rimitives log the supplied
proofs for later audit; the programmer could implement logged
operations on top of our existing interface b y writing a function
toString : Proof Γ A -> String b y recursion over proofs.
Recursion over p ropositions is also essential for writing our theo-
rem prover inside of Agda.

Third, our indexed monad of computations allows us to encode
computation on b ehalf of a principal, following AH. In Aura, all
computation proceeds on behalf of a single distinguished principal
self. In PCML5, a program can authenticate as different princi-
pals, but the credentials are less precise: in PCML5, the program
authenticates as k, whereas in AH the program acquires only the
ability to su from a given k0 to k—which may be a useful restric-
tion if the program is subsequently no longer running as k0. Fine
does not track authentication as a p rimitive notion, though it seems
likely it could be encoded using an As p redicate and affine types.

Fourth, in PCML5, acquire uses theorem proving to deduce
consequences of the policy, whereas in our language acquire only
tests whether a state-dependent atom or a statement by a principal

is literally in the policy, and a separate theorem prover deduces
consequences from the policy. W e separate theorem proving from
acquire so that we may also use the same theorem prover at
compile-time to statically discharge proof obligations. PCML5 and
AH make use of a theorem p rover only at run-time, whereas Fine
uses theorem proving only at compile-time.

Fifth, PCML5 is a language for spatially distributed authoriza-
tion, where r esources and policies are located at different sites on a
network. We have shown how to support ML5-style spatial distri-
bution using our indexed monad, but we leave spatial distribution
of policies to future work.

Sixth, the operational semantics of both PCML5 and AH in-
clude a p roof-checking reference monitor; we have not yet consid-
ered such an implementation.

Several other languages provide support for verifying security
properties by type checking. For example, Fournet et al. [19] de-
velop a type system for a process calculus, and Bengtson et al. [11]
for F#, both of which can b e used t o verify authorization policies
and cryptographic protocols. This work addresses important issues
of concurrency, which we do not consider here. A technical dif-
ference is that, in their work, p roofs are k ept behind the scenes
(e.g., in F7, propositions are p roved by the Z3 theorem prover). In
contrast, our language makes the p roof theory directly available to
the programmer, so that propositions and p roofs can be computed
with (for logging or run-time theorem proving) and so that p roofs
can b e constructed manually when a theorem p rover fails. Another
example of a language that does not give the p rogrammer direct ac-
cess to the p roof theory is PCAL [13], an extension of BASH that
constructs the proofs required by a proof-carrying file system [23];
proofc onstruction is entirely automated, but sometimes inserts run-
time checks.

Our indexed monad was inspired by HTT [30]. RIF [12] also

investigates applications of indexed monads to security-typed pro-
gramming, but there are some technical differences: First, RIF is
a new language where refinement types (using first-order classical
logic) and a refined state monad are primitive notions, whereas we
embed an authorization logic and an indexed monad in an existing
dependently typed language. Second, RIF’s monad is indexed b y
predicates on an explicit r epresentation of the system state, whereas
we index b y policies Γ that describe an implicit ambient state.

Many security-typed languages address the problem of enforc-
ing information flow policies (see Abadi et al. [4], Chothia et al.
[15] for but a couple of examples). We follow R usso et al. [36],
Swamy et al. [38] in representing information flow using an ab-
stract type constructor (e.g., a monad or an applicative functor).
Fable [37] takes a different approach to verifying access-control,
information flow, and integrity properties, by providing a type of
labelled data that is treated abstractly outside of certain p olicy p or-
tions of the program. T his mechanism facilitates checking security
properties (by choosing the labels appropriately and implementing
policy functions) and proving bi-simulation properties of the pro-
grams that adhere to these policies.

DeYoung and Pfenning [16] describe a technique for r epresent-
ing access control policies and stateful operations in a linear autho-
rization logic. Our approach to verifying context invariants, as in
Section 2.1.4, is inspired b y their work.

The literature describes a growing b ody of authorization log-
ics [1, 2, 3, 17, 20, 21]. We chose BL0 [21], a simple logic that
supports the expression of decentralized policies and whose says
connective permits exclusive delegation.

Appel and Felten [7] pioneered the use of p roof-carrying autho-
rization, in which a system checks authorization proofs at run-time.
Several systems h ave b een b uilt using PCA [10, 23, 40]. Like many
security-typed languages, we use dependently typed PCA to check

authorization p roofs at compile-time through type checking.

5. Conclusion

In this paper, we h ave described Aglet, a library embedding
security-typed p rogramming in a dependently-typed p rogramming
language. There are many interesting avenues for future work:
First, we may consider embedding an authorization logic such as
full BL [20] that accounts for resources that change over time.
Second, we h ave currently implemented the monadic computation
interface on top of unguarded Haskell IO commands, which p ro-
vides security guarantees for well-typed programs. To maintain
security in the presence of ill-typed attackers, we may instead im-
plement our interface using a proof-carrying run-time system such
as P CFS [23]. Following PCML5 [9], we may then b e able to prove
a progress theorem showing that well-typed programs always pass
the reference monitor. Another intriguing possibility is to formalize
the operational behavior of computations directly within Agda—
e.g. u sing an algebraic axiomatization [35]. Third, in this paper we
have shown examples of entirely static and entirely dynamic verifi-
cation; we would like to consider examples that mix the two. This
will require using reflection to r epresent Agda j udgements as data,
so that our theorem p rover does not get stuck on open Agda terms.
Fourth, we have shown a few small examples of using Agda to
reason about the class of contexts that is possible given a particular
monadic interface. In future work, we would like to explore ways of
systematizing t his reasoning (e.g., by using linear logic to describe
transformations between contexts, as in DeYoung and Pfenning
[16]). W e would also like to use Agda to analyze global p roperties
of a particular monadic interface (such as proving a principal can
never access a resource). Once we have circumscribed the contexts
generated b y a particular interface, we can prove such properties b y

induction on BL0 proofs. Fifth, we would like to implement more
significant examples, such as a larger portion of ConfRM.

Acknowledgements We thank Frank Pfenning, Robert Harper,

Kumar Avijit, Deepak Garg, and Rob Simmons for helpful discus-
sions about this work. We thank Frank Pfenning, Robert Harper,

and several anonymous referees for feedback on previous drafts of
this article.

References
[1] M. Abadi. Access control in a core calculus of dependency. In

Internatonal Conference on Functional Programming, 2006.

[2] M. Abadi. Variations in access control logic. In International Confer-
ence on Deontic L ogic in Computer Science, pages 96–109. Springer-
Verlag, 2008.

[3] M. A badi, M . Burrows, B. Lampson, and G. Plotkin. A calculus for
access control in distributed systems. ACM Transactions on Program-
ming L anguages and Systems, 15(4):706–734, September 1993.

[4] M. Abadi, A. Banerjee, N. Heintze, and J . G. Riecke. A core calculus
of dependency. In ACM Symposium on Principles of Programming
Languages, pages 147–160. ACM Press, 1999.

[5] T. A ltenkirch and C. McBride. Generic programming within depen-
dently typed programming. In I FIP TC2 Working Conference on
Generic P rogramming, Schloss D agstuhl, 2003.

[6] J.-M. Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[7] A. W. Appel and E. W. Felten. Proof-carrying authentication. InACM
Conference on Computer and Communications S ecurity, pages 52–62,
1999.

[8] K. Avijit and R. Harper. A language for access control. T echnical
Report CMU-CS-07- 140, Carnegie Mellon University, Computer Sci-
ence Department, 2007.

[9] K. Avijit, A. Datta, and R. Harper. Distributed p rogramming with
distributed authorization. In ACM SIGPLAN-SIGACT Symposium on
Types in Language D esign and I mplementation, 2010.

[10] L. Bauer, S. Garriss, J. M. Mccune, M . K. Reiter, J . Rouse, and
P. Rutenbar. Device-enabled authorization in the Grey System. In
Proceedings of the 8th I nformation Security Conference, p ages 431
445. Springer Verlag LNCS, 2005.

[11] J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, and S. Maffeis.
Refinement types for secure implementations. In Computer Science
Logic, 2008.

[12] J. Borgström, A. D. Gordon, and R. Pucella. Roles, Stacks, Histories:
A Triple for Hoare. Technical R eport MSR-TR-2009-97, Microsoft
Research, 2009.

[13] A. Chaudhuri and D. Garg. PCAL: Language support for proof-
carrying authorization systems. In Proceedings of the 14th European
Symposium on Research in Computer S ecurity, September 2009.

[14] S. Chong, A. C. Myers, K. Vikram, and
L. Zheng. Jif reference manual. Available from
http ://www . cs .cornell .edu/j if/doc/j if -3 .3 .0/manual .html,
February 2009.

[15] T. Chothia, D. Duggan, and J. Vitek. T ype-based distributed access
control (extended abstract). In Computer Security F oundations Work-
shop, 2003.

[16] H. DeYoung and F. Pfenning. Reasoning about the consequences of
authorization policies in a linear epistemic logic. In Workshop on
Foundations of Computer Security, 2009.

[17] H. DeYoung, D. Garg, and F. Pfenning. An authorization logic with
explicit time. I n IEEE Computer Security Foundations Symposium,
2008.

[18] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and
reasoning about dynamic access-control policies. In I nternational
Joint Conference on A utomated R easoning, pages 632–646. Springer,

2006.

[19] C. Fournet, A. D. Gordon, and S. Maffeis. A t ype discipline for
authorization in distributed systems. In Computer Science L ogic,
2007.

[20] D. Garg. ProofT heoryf orA uthorization L ogic and its A pplication to a
Practical File System. PhD thesis, Carnegie Mellon University, 2009.

[21] D. Garg. Proof search in an authorization logic. Technical R eport
CMU-CS-09-121, Computer Science D epartment, Carnegie M ellon
University, April 2009.

[22] D. Garg and F . Pfenning. Non-interference in constructive authoriza-
tion logic. In Computer Security Foundations Workshop, pages 183–
293, 2006.

[23] D. Garg and F . Pfenning. PCFS: A p roof-carrying file system. T ech-
nical Report CMU-CS-09-123, Carnegie Mellon U niversity, 2009.

[24] L. J ia, J . A. Vaughan, K. Mazurak, J. Zhao, L. Z arko, J . Schorr, and
S. Z dancewic. Aura: A programming language for authorization and
audit. In ACM SIGPLAN I nternational Conference on F unctional
Programming, 2008.

[25] K. Kariso. Integrating Agda and automated theorem proving tech-
niques. Talk at Dependently Typed Programming W orkshop, 2010.

[26] S. Krishnamurthi. The CONTINUE server (or, How Iadministered
PADL 2002 and 2003). In I nternational Symposium on P ractical
Aspects ofDeclarative Languages, pages 2–16. Springer-Verlag, 2003.

[27] D. R. Licata and R. Harper. A monadic formalization of ML5.
In P re-preceedings of Workshop on Logical Frameworks and M eta-
languages: Theory and P ractice, July 2010.

[28] J. Morgenstern and D. R. Licata. Security-typed programming within
dependently typed p rogramming. T echnical Report CMU-CS-10-1 14,
Carnegie Mellon University, 2010.

[29] T. Murphy, VII. M odal Typesf or M obile Code. PhD thesis, Carnegie

Mellon, January 2008. Available as technical report CMU-CS-08-126.

[30] A. Nanevski, G. Morrisett, and L. Birkedal. P olymorphism and sep-
aration in Hoare Type Theory. In ACM SIGPLAN International Con-
ference on F unctional Programming, p ages 62–73, Portland, Oregon,
2006.

[3 1] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L . Birkedal.
Ynot: Reasoning with the awkward squad. In ACM SIGPLAN I nter-
national Conference on Functional P rogramming, 2008.

[32] U. Norell. Towards a p ractical p rogramming language based on de-
pendent type theory. PhD thesis, Chalmers University of T echnology,
2007.

[33] F. Pfenning and R. Davies. A j udgmental r econstruction of modal
logic. Mathematical Structures in Computer Science, 11:5 11–540,
2001.

[34] F. Pfenning and R. J. Simmons. Substructural operational semantics
as ordered logic programming. In I EEE Symposium on L ogic I n Com-
puter Science, p ages 101–1 10, Los Alamitos, CA, USA, September
2009. IEEE Computer Society.

[35] G. Plotkin and M. Pretnar. Handlers of algebraic effects. In European
Symposium on Programming, pages 80–94. Springer-Verlag, 2009.

[36] A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-flow security in Haskell. In ACM SIGPLAN Symposium
on Haskell, pages 13–24. ACM, 2008.

[37] N. Swamy, B. J. Corcoran, and M . H icks. Fable: A language for en-
forcing user-defined security p olicies. I n I EEE Symposium on Security
and Privacy, p ages 369–383. IEEE Computer Society, 2008.

[38] N. Swamy, J . Chen, and R. Chugh. Enforcing stateful authorization
and information flow policies in F ine. In European Symposium on
Programming, 2010.

[39] J. A. Vaughan, L. Jia, K. Mazurak, and S. Z dancewic. Evidence-

based audit. In I EEE Computer Security F oundations Symposium,
June 2008.

[40] E. Wobber, M. Abadi, M. Burrows, and B.Lampson. Authentication in
the T aos operating system. ACM Transactions On Computer Systems,
12(1):3–32, 1994.

