
The Power of Pi

Nicolas Oury Wouter Swierstra

University of N ottingham
{npo,wss}@cs.nott.ac.uk

Abstract

This paper exhibits the power of programming with dependent
types by dint of embedding three domain-specific languages: Cryp-
tol, a language for cryptographic protocols; a small data description
language; and relational algebra. Each example demonstrates p ar-
ticular design patterns inherent to dependently-typed programming.
Documenting these techniques p aves the way for further research
in domain-specific embedded type systems.

Categories and Subject D escriptors D.1.1 [Programming Tech-
niques]: Functional Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Theory

1. Introduction

Dependent types matter. And not j ust for program verification and
proof assistants: dependent types matter to p rogrammers. Whether
you want t o interface to a database, write a webserver, or manipu-
late b inary data, dependent t ypes can make a difference.

This p aper demonstrates how to program with dependent types.

In p articular, we present three case studies. Each case study de-
scribes a domain-specific language that is difficult to embed in
conventional functional languages such as Haskell (Peyton Jones
2003):

• Wadler (1987) has recognised the importance of defining cus-
tom pattern matching p rinciples for inductive data t ypes. Such
views, when implemented in a language with dependent types,
carefully maintain the relation between the data b eing elimi-
nated and the custom patterns. We illustrate these t echniques b y
showing how t o embed Cryptol (Galois, Inc. 2002), a high-level
specification language for low-level cryptographic algorithms,
in a dependently typed language (Section 2). In p articular, we
will write a domain-specific library for Cryptol’s most charac-
teristic feature: bitvectors of a fixed length equipped with a spe-
cial pattern matching principle.

• To facilitate processing data written in custom file formats,
there has b een a great deal of research on data description
languages (Back 2002; McCann and Chandra 2000; Fisher and
Gruber 2005). Given a file format description, these languages
generate data types t hat represent the data stored in such custom
formats, together with a parser. Using dependent types, we will

Permission t o make digital or hard copies of all o r part of this work for personal or

classroom use is granted without fee provided t hat copies are not made or distributed
for profit or c ommercial advantage and that c opies bear this notice and the full citation
on the first page. T o copy o therwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright !c 2008 ACM 978-1-59593-919-7/08/09. . .$5.00

write a universe capturing a large collection of file formats,

together with a generic p arser and p retty printer for any file
format that can be described in this universe (Section 3).

• Despite numerous efforts (Leijen and Meijer 1999; Bringert
et al. 2004), Haskell does not have an elegant, strongly-typed
database interface. Existing libraries strike an awkward balance
between encoding static invariants using type classes and re-
sorting to dynamic type checking. We will write a type-safe
combinator library for database queries using dependent types
that does not require any kind of preprocessor or external tool
(Section 4).

We will not try to give a complete embedding of each of
these three domain-specific languages. E ach of the above exam-
ples serves to introduce new concepts: the embedding itself is a
means, not an end. Despite this limitation, we make several novel
contributions:

• These examples document some of the emerging design pat-
terns of dependently-typed p rogramming. T his is an incipient
field of research with only a handful of recognised specialists.
Some of the design patterns, such as views and u niverses, h ave
been part of the community’s folklore for some t ime. This is the
first time they have b een presented in a single, uniform fashion
with concrete, r eal-world examples that illustrate their impor-
tance.

• Our case studies show how domain-specific languages are an
important application domain of dependently-typed program-
ming. Besides e mbedding the terms of a domain-specific lan-
guage, we show how to enforce invariants statically. Indeed, we
show how to write d omain-specific embedded type systems. By

embedding such type systems we inherit all the meta-theoretical
properties, such as decidable type checking or subject r educ-
tion, of the host language. W e believe this is a p articularly ex-
citing new field of research, that enables the rapid prototyping
of type systems.

• Finally, we have tried t o identify the key benefits t hat program-
ming with dependent types afford (Section 5). Our examples al-
ready illustrate some of the advantages that dependently-typed
programming languages hold over mainstream functional lan-
guages. We hope that making these advantages explicit will not
only help direct today’s research in the design of tomorrow’s
functional languages, but also e nable p rogrammers to use de-
pendent types to greater effect.

Throughout this p aper, we will use the latest installment of the
dependently-typed programming language Agda (Norell 2007; The
Agda Team 2008) as a vehicle of explanation. The code we present
has b een type-checked and can be executed on the computer sitting
on your desktop.

2. Domain-specific Embedded Cryptol

Cryptol (Galois, Inc. 2002) is a domain-specific language for cryp-
tographic protocols developed by Galois, Inc. in consultation with
cryptographers from the National Security Agency. It provides de-
velopers with a high-level, declarative specification language for
low-level cryptographic algorithms. Such cryptographic algorithms
perform various manipulations on sequences of bits. From a pro-
gramming language designer’s perspective, Cryptol has two distin-
guishing characteristics to facilitate t hese manipulations:

• The length of a sequence of bits is recorded in its type. This
makes it impossible to mistake a 32-bit word for a 64-bit word,

for example. Such sequences may b e written using binary, dec-
imal, octal, or h exadecimal constants. In Cryptol, we could de-
fine a number x as follows:

x : [8] ;
x = 42;

The constant x is an 8-bit word, written [8] ,defined to be equal
to (the b inary r epresentation of) 42.

• Crypto-algorithms often split a word into pieces, manipulate the
pieces, and then j oin t hem together again. Cryptol has special
pattern-matching support that makes it easier to write such
functions. For example, the swab function in Cryptol swaps the
first and second byte of a 32-bit word:

swab : [32] → [32] ;
sswwaabb [: a b2 c →d] 3=2 [] b; a c d] ;

Note t hat the length of the pattern [a b c d] determines the
size of its constituent variables. We could also have written the
pattern [a b] ,and b oth a and b would be 16-bit words.

These are Cryptol’s two most distinguishing characteristics. Apart
from these features, Cryptol consists of a simple, pure, first-order
functional language with various k inds of syntactic sugar, such as
list comprehensions and a special notation for polynomials.

It is important to emphasise t hat Cryptol is not a domain-
specific embedded language. Galois, Inc. h ave specifically devel-
oped a Cryptol interpreter and compiler—a task that certainly en-
tails considerable development effort. To embed Cryptol in any
other language, the principal challenge we must face is facilitating
Cryptol’s pattern matching on bit vectors. Before we tackle this
problem, we need t o describe the syntax of Agda.

2.1 Introducing Agda

In Agda, new data types can b e defined u sing a syntax similar
to Haskell’s syntax for GADTs (Peyton Jones et al. 2006). For
example, we could define the natural numbers as follows:

data Nat : Set where
Zero : Nat
Succ : Nat → Nat

The Nat data type has two constructors: Zero and Succ. Note
that we must explicitly give the type of the Nat data type. In this
instance, Nat : Set means that Nat is a base type. Programmers
familiar with Haskell may want to think of the Agda type Set as !,

the kind of all b ase types. Agda allows us to use integer literals to
write these numbers.

We can define functions over natural numbers using pattern
matching and recursion. For instance, we could define addition as
follows:

+ : Nat → Nat → Nat
Zero a+t n→ →=N na
(Succ k) + n = Succ (k + n)

Agda u ses underscores to denote the p ositions of arguments when
defining new operators. Using this notation, it is possible to define
infix, postfix, or even mixfix operators.

Polymorphic lists are a little bit more interesting than natural
numbers.

data List (A : Set) : Set where
Nil : List A
Cons : A → List A → List A

We can parameterise a data type b y listing its arguments immedi-

ately after the data types name. In this example, we have parame-
terised the type of lists by a type variable A of type Set.

Just as we added natural numbers, we can append two lists:

append : (A : Set) → List A → List A → List A
aappppeenndd :A(AN: ilS ys A= ys
append A (Cons x xs) ys = Cons x (append A xs ys)

Note that the type of append uses the dependentf unction space, or
Π-type, written (x : σ) → τ, where the variable x may occur in the
Πtyp-tey pτe. ,Tw hreit cternuc(xial : σdi)ff →ereτ n,cew fhreorme thhee v uasriuaabl efux ncm tioany space, nats ise
present in Haskell, is its elimination rule:

Γ " e1 : (x : σ) → τ Γ " e2 : σ

Γ " eΓ: "(xe 1: σ e2): →τ [τx →# Γ e" 2]e

The resulting type of the application e1 e2 now depends on the
value of the argument e2 . The use of the dependent function space
in the append function is not very interesting: it corresponds to
parametric p olymorphism.

It can be quite tedious to instantiate type variables, such as A
in the append function, b y hand. Agda allows you to mark certain
arguments as implicit by enclosing them in curly braces. Agda will
automatically instantiate t hese arguments, much in the same way
a Haskell compiler automatically instantiates type variables. Using
implicit arguments, our append function becomes:

append : {A : Set } → List A → List A → List A
aappppeenndd N:{ ilA ys i=s ys
append (Cons x xs) ys = Cons x (append xs ys)

Besides p arameterising data types, we can also index data types
by values. The classic example of an indexed family is the type of
vectors:

data Vec (A :Set) : Nat → Set where
Ntial :V eVcec (AA ZS eerto)

:: : {n : Nat } → A → Vec A n → Vec A (Succ n)

The Vec type takes two arguments: a type and a number. The Vec
type is indexed b y this number, but p arameterised by the type A.
Like GADTs in Haskell, the codomains of the constructors of Vec
are different. Unlike GADTs, however, Agda’s indexed families
cannot only be indexed b y types but may also b e indexed by values.

Just as we declared infix operators, we can declare infix con-
structors by writing underscores to denote the p ositions of argu-
ments. Note that Agda allows us to use the same constructor name,
Nil, for different data types. We will b e asked to add an explicit
type signature if there is any ambiguity.

Once again, we can define an operation to append two vectors:

++ : forall {A m n} →

Vec :Af omr →ll {VAec m mA nn} →→ Vec A (m + n)
NilV +m + ys =V ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Here we use the keyword forall t o group together several implicit
arguments and omit their types. W e will occasionally use the forall-
notation to make our type signatures easier to read. Note that there
is no r estriction on the type of implicit arguments: we have made n
and m implicit arguments, despite being numbers and not types.

When programming with dependent types the type checker
sometimes needs to perform evaluation: it would be r ather unfortu-
nate if Vec A 3 and Vec A (1+ 2) were distinct types. To ensure
type checking remains d ecidable, Agda requires you to write to-
tal functions, t hat is, your function definitions must b e obviously
structurally r ecursive and cover all case alternatives. If you fail to
do so, Agda warns you that your definition is dubious and may

cause the type checker to loop.

2.2 Embedding Cryptol’s Types

We can now begin t o e mbed Cryptol in Agda. A b inary word is
simply a vector of b its:

data Bit : Set where
O : Bit
I: Bit

Word : Nat → Set
WWoorrdd :nN =a V→ ec SBeitt n

Introducing Cryptol’s pattern matching principle on a Word re-
quires a bit more effort. Before we define such a view, we need to
understand how pattern matching works in the presence of depen-
dent types.

2.3 Pattern matching in the presence of dependent types

With the introduction of GADTs, pattern matching in Haskell has
become more subtle. Consider the following Haskell data type:

data Expr a where
B : Bool → Expr Bool
IB :: IBnoto l→→ →EE xpxrp rInB t

We can write a simple evaluation function for this mini-language:

eval :: Expr a → a
eevvaall :e: E=x cpars ae →e o af

B b → b
IB xb →→ xb

The two case branches have different types. This is quite surprising:

pattern matching may suddenly introduce equations between types.
In the presence of dependent types, pattern matching may introduce
equations between values, as we will show next.

Suppose we define the following data type:

data ≡ {A : Set } : A → A → Set where
Refl : ≡{ x : {AA A} :→S ext }≡: Ax

A value of type (x ≡ y) corresponds to a proof that x and y
aArev aelquueal.o Tft hyep ≡e- (tyxpe≡ ≡is ypa)r acomrreetesrpiosendd sbt yo aan pimropolifct ith taytp xe a An adnyd
ianrdeee xqeuda lb.y T Tthweo ≡va-tluyepse oi sft p haarta tmypete.e Irits ehads bay ysai nngli me cpolincsittr utycptoerA, ARa efnld,
that corresponds to a p roof that any x is equal to itself. T his type
plays a fundamental role in type theory (Nordstro ¨m et al. 1990).

Whenever we pattern match on such a p roof, we learn how
two values are related. For example, suppose we want to write the
following function:

f : (x : Nat) → (y : Nat) → (p : x ≡ y) → Nat

What patterns should we write for x, y and p? Clearly, p must
be Refl. As soon as we match on p, however, we learn something
about x and y, i.e., they must be the same. Throughout this p aper,
we will write this as follows:

f x %x& Refl = ...

The pattern %x& means ‘the value of this argument can only be
Teqhuealp atot xer.’n I %nx xA&g dmae you m‘thuest v caulrureeno tlfyt whisrita er oguutm heonwt tchaen d oinffleyreb net
patterns relate b y h and; Epigram (McBride and McKinna 2004),
on the other hand, demonstrated t hat t his process can be automated.
Occasionally, we may not be interested in the information we learn,
in which case we will use the underscore as a wildcard pattern:

f x Refl = ...

While not strictly necessary, we believe that writing out patterns
such as %x& explicitly serves as important, machine-checked docu-
msuecnhtaa stio% nx o&fe xwphlaict iwtley lseearrvne sfr aosmi m mppaottertrann tm ,am tcachhinign.e

2.4 Views

As the last section shows, dependent types change the way we must
think about pattern matching. Unfortunately, we are still no c loser
to defining Cryptol’s special pattern matching p rinciple on vectors.
Before we do so, we will cover a simpler example. The techniques
we present are not new (McBride and McKinna 2004), although
their application is.

The traditional definition of lists that we gave in Section 2.1
is biased: it’s easy to recurse over the list starting from the front.
Recursing in the other direction, back to front, is a bit awkward.
Let us address this imbalance by defining a ‘snoc-view’ t hat allows
programmers to recurse over a list, starting with the last element.

We begin b y defining the SnocV View data t ype:

data SnocV View {A : Set } : List A → Set where
Ntial n: oScnVocieV Vwie{ wA N: Sile
Snoc : (xs :List A) → (x : A) →

Sonco :c(V Vxise :wL (isatppA e)n →d x (sx x(: :CA o)n→s x Nil))

This SnocV View type is indexed b y a list. The constructors corre-
spond to the patterns, Snoc and Nil, that we want to pattern match.
The index itself relates these patterns to a ‘regular list.’ The pattern
Nil corresponds to the empty list; the pattern Snoc xs x corre-
sponds to the list append xs (Cons x Nil) .

Next, we need to define a function view that takes any list xs
and produces a value of type SnocV View xs.

view : {A : Set } → (xs :List A) → SnocV View xs

vviieeww N:{ ilA =: SNetil}
view (Cons x xs) with view xs
view (Cons x %Nil&) | Nil

=w (SCnoocn sNx il xN

view (Cons x %append ys (Cons y Nil)&) | Snoc ys y
=w (SCnoocn s(C xo %nasp pxe nysd) y

The case for the e mpty list is easy. If the list is non-empty, we need
to pattern match on a r ecursive call to view xs . Agda’s notation for
case-expressions will probably look a bit unfamiliar.

In the previous section, we saw how pattern matching can intro-
duce equalities between a function’s arguments. Suppose we were
to write case-expressions using the syntax of Haskell or ML:

view (Cons x xs) =
case (view xs) of

(Nil) → ...
(Snoc ys y) →→ ...

When we pattern match on the call to view xs, however, we learn
something about xs: in the first b ranch we k now that xs is empty;
in the second branch, xs is constructed by adding an element y to
the end of a list ys . I n the case expression above, however, this
new information is not made apparent in the pattern Cons x xs .
Therefore, it makes sense to r epeat all a function’s arguments for
every branch of a case-expression. Agda’s with-rule (McBride and
McKinna 2004; N orell 2007) does precisely t his.

After the left-hand side of a function definition, the keyword
with marks the b eginning of another expression on which you
want t o pattern match. The subsequent clauses defining the func-
tion repeat the entire left-hand side of the function, followed by
a vertical bar that marks the beginning of the new pattern. In
the view function, for example, we pattern match on the r ecur-

sive call view xs with the patterns Nil and Snoc ys y. In
both cases, we learn what xs must be: if view xs is Nil, t hen
xs is empty; if view xs is Snoc ys y, then xs is equal to
append ys (Cons y Nil) .

Once you u nderstand the syntax of the with-rule, the definition
of the view function should be straightforward. In the n on-empty
case, Cons x xs ,we check whether or not x is the last element. If
x is the last element, we return Snoc Nil x; if the rest of the list xs
is not empty, we k now it is built by adding an element y to the end
of the p refix ys ,and return Snoc (Cons x ys) y accordingly.

To view a list backwards, we simply call the view function and
pattern match on the result. For example, we may want to rotate a
list one step to the right, removing the last element and adding it to
the front:

rotateRight : {A : Set } → List A → List A
rroottaatteeRRiigghhtt :x{s Aw:i St he tv}ie →w L xsi

rotateRight %Nil& | Nil
a=t NRiilg

rotateRight %append ys (Cons y Nil)& | Snoc ys y
a=t CRoignhst y ys

It is important to emphasise that the patterns %Nil& and %append
ys (s C imonpos y nNti tlo)&e cmapnh abes isnefe thrraetdt haeut poamttaetricnasll %yN. Ail<ea rnndati% vaeplyp,e nwde

cyosu (ldC oh nasvey yr eN plial)c&edc athne bme bi nyf eurrneddera sucotormesa; tihcael oly.nA ly tpearrnt athtiev ulsy,ewr ies
responsible for writing is view xs and the r ight-hand sides of the
equations. Using the Agda interpreter, we can now check that our
function behaves as we would expect:

Main> rotateRight (Cons 1 (Cons 2 (Cons 3 Nil)))
Cons 3 (Cons 1 (Cons 2 Nil))

This example shows how to write a custom pattern matching

principle, or view, in a dependently-typed language. Wadler (1987)
has presented numerous examples of views that can all b e imple-
mented in t his fashion.

2.5 Cryptol’s view

The code in Figure 1implements Cryptol’s special view on bitvec-
tors. Before we define the view itself, we need a few simple auxil-
iary functions: take , drop, split, and concat. A s before, defining
the view entails two steps: defining a data type SplitView indexed
by a vector; and defining a function view that takes any vector xs
to a value of type SplitV View xs .

The SplitV View data type is indexed b y a vector of length n×m.
It hTash ae SsipnlgitleV iceowns tdrautcatot yrp ceo irsri enspdoenxdedinb gy tao vthecet poart otfel rnen wgteh wn i×shm mto.
match, i.e., a vector of vectors. We try to mimic Cryptol’s syntax
by defining this c onstructor as a pair of square brackets surrounding
the pattern.

Defining the view function is a bit tricky. We would like to split
the argument vector into m pieces of size n, and p ass these pieces
to the [] constructor:

view n m xs = [split n m xs]

There is a problem with this simple definition. It will return a value
of type SplitView m (concat (split n m xs)) and not one of type
SplitView m xs. How can we be so sure that concat (split xs)
is the same as the original vector xs? How can we convince the
type-checker of this fact?

The solution is simple. We need to prove a lemma:

splitConcatLemma : forall {A n m} →

l(ixtsC :o Vnecact LAe m(mm ×a :nf)o)r a→l co {Anca nt m(sp}l i→t n m xs) ≡ xs
As we showed inSection 2.3, when we pattern match on a proof,

we introduce equations between values. In the same way that a

Haskell type checker uses equations between types t o check the
branches of the eval function in Section 2.3, Agda’s type checker
uses the equations between two values during type checking. The
code in Figure 1therefore matches on concat (split n m xs) ,the
proof that t his is equal to xs, and the r ight-hand side we would like
to write, [split n m xs] .When we then r eturn [split n m xs] ,
we can be sure t hat it has the right t ype. The syntax for pattern
matching on more than one intermediate value separates the values
and patterns that you wish to match on by vertical bars, both after
the with and on the left-hand side of the function definition.

The proof of splitConcatLemma is not terribly interesting. We
perform induction on m and require a lemma about take and drop .
The entire p roof is about ten lines long, but may be quite hard
to understand for readers unfamiliar with type theory. We refer to
existing literature for a more thorough treatment of how to write
such proofs (Nordstro ¨m et al. 1990).

It is quite important to emphasise t hat such proofs are only ever
visible t o the view’s implementor. Any user who wants t o call the
view function never, ever writes a proof. W e have j ust done all the
hard work for them. In fact, we can even avoid proving this lemma
altogether b y defining an intermediate view:

data TakeV View (A : Set) (m : Nat) (n : Nat)
: Vec A (m + n) → Set where

Teack eA A: (mxs +: V ne)c→ →A mSet) w →h (eysre e: Vec A n)
→:(x sT:a Vk ee VciA ewm mA) m→ n (y (sx:s V++ ec yA s)

We can iteratively apply this view to split a vector into its con-
stituent parts.

Finally, we can use the view function to write Cryptol’s swab
function in Agda:

swab : Word 32 → Word 32

sswwaabb :xWs woridth3 v2ie →w W8 4o xds

swab %& | [a :: b :: c :: d :: Nil]
a=b %con& ca| [ta a(: b: :b: :a: :c: :c: :d: :d: :N: Nil]il)

2.6 Discussion

There are many other features of the Cryptol toolkit, such as compi-
lation to C or FPGAs, that we have not discussed. Providing a full
implementation of all the technical features that Galois’s Cryptol
compiler supports will still require a lot of work. We feel, however,
that we have managed to capture the essence of the Cryptol lan-
guage. The embedding we have presented here opens the door for
several new exciting directions for further r esearch, in particular,
the formal verification of Cryptol algorithms u sing Agda.

One difference between our view and Cryptol’s pattern match-
ing principle is that we must explicitly pass natural numbers to our
view function. Although we h ave managed to reduce this overhead
slightly and have a single number suffice, this significantly com-
plicates the code. The underlying problem is t hat Agda does not
use information about the patterns we write to instantiate implicit
arguments.

Could we have written this in Haskell? One might be tempted
to write the snoc-view as follows:

data SnocV View a = Nil | Snoc (SnocV View a) a

view :: [a] → SnocV View a

Yet there are two important limitations of this version. First of
all, when we view a list xs b ackwards, the connection between
view xs and the original list is lost. In the dependently-typed view
we presented previously, we are explicit about what we learn about
the original list when pattern matching on the view.

take : forall {A m} → (n : Nat) → Vec A (n + m) → Vec A n
ttaakkee :Zf eorora Al = nN :iNl
take (Succ k) (x :: xs) = x :: take k xs

drop : forall {A m} → (n : Nat) → Vec A (n + m) → Vec A m
drop :Zf eorora xs = xs
drop (Succ k) (x :: xs) = drop k xs

split : forall{ A } → (n : Nat) → (m : Nat) → Vec A (m ×n) → Vec (Vec A n) m
split n Zoerraol }N→i l = NNailt
split n (Succ k) xs = (take n xs) :: (split n k (drop n xs))

concat : forall { A n m} → Vec (Vec A n) m → Vec A (m ×n)
ccoonnccaatt N: fiol = Nm il
concat (xs :: xss) = xs ++ concat xss

data SplitView {A : Set } : {n : Nat } → (m : Nat) → Vec A (m ×n) → Set where
[] : fpolirtaVllie {m n} → (xss : V :e Nc (tV}ec → →A(n) m) → →SpV liteVciA ew(m (concat xss)

view : {A : Set } → (n : Nat) → (m : Nat) → (xs : Vec A (m ×n)) → SplitView m xs
vviieeww n m xs ewti}th→ co (nnca: N t (split n m xs) | [split n m xs] | splitConcatLemma m xs
vviieeww n m xs | %ixtsh& | v | aRte (fsl = v

Figure 1. Cryptol’s view

The second problem is that the type of the view function in
Haskell is too general. For example, the view function could b e
the constant function t hat always returns Nil. Originally, W adler
suggested that such view functions should always form one p art
of an isomorphism. Clearly the type of the Haskell view function
provides no such guarantee.

The type of the view function we defined on A gda, on the other
hand gives us much more information:

view : {A : Set } → (xs : List A) → SnocV View xs

In general, we can always define a left-inverse for any view defined
in this style b y induction over the data type that the view returns.
This is a more liberal condition on views than the isomorphism
proposed by W adler that more accurately reflects what views are
about: you can view data any way you want, provided you never
throw information away.

Epigram takes t hese ideas one step further and implements a
clever elaboration mechanism that provides special programming
support for using complex views.

3. Embedded data description languages

Programs manipulate data. Unfortunately, not all data conforms to a
standard format. Crash reports, webserver logs, financial statistics,
student marksheets, or billing information are all examples of the
kind o f data t hat may b e represented b y non-standard in-house
formats. As a result, there are not always off-the-shelf libraries
available to manipulate such data. D evelopers must waste time
writing parsers or data conversion scripts.

To combat this problem, there is ongoing research into d ata
description languages such as PADS (Fisher and Gruber 2005;
Fisher et al. 2006), Packet Types (McCann and Chandra 2000),
and Data Script (Back 2002). Essentially, such systems provide
a domain-specific language that can be used to give a precise
description of a data format. A separate t ool then takes a data
description file and produces a parser for that data format, together
with a data type that represents the values inhabiting the data
format.

Yet t hese are external tools that generate certain p arts of your
program f rom your data description file. Before programmers can
use such tools, however, they must learn a separate language. F ur-
thermore, the domain-specific data description language may not
support all the abstractions of a general purpose programming lan-
guage.

In this section we will implement a tiny data description com-
binator library in Agda, inspired by the Data Description Calcu-
lus (Fisher et al. 2006). T here is no preprocessor or external t ool
involved: p rogrammers may specify a file format using all the ab-
stractions A gda has to offer.

3.1 Universes

Before we develop our combinator library, however, we need an-
other type theoretic intermezzo. Universes are a fundamental con-
cept in type theory. We explain what a universe is using a concrete
example that should be familiar to Haskell p rogrammers.

Agda does not h ave type classes. Yet our years of experience
with Haskell has underlined the importance of ad hoc polymor-
phism. How might we achieve the same in a dependently-typed
programming language?

Type classes are used to describe the collection of types that
support certain operations, such as a decidable equality. The same
issue also arises in type theory, where you may be interested in a
certain collection of types that share some p roperty, such as having
a finite number of inhabitants. It is unsurprising that the t echniques
from type theory for describing such collections of types can be
used to implement type classes.

Consider the f ollowing type U:

data U : Set where
BIT : U
CHAR : U
NAT : U
VEC : U → Nat → U

The data type U contains ‘codes’ for types: e very data constructor
of U corresponds to a type. In a dependently-typed language, we
can define the decoding function el as follows:

el : U → Set
eell :B UIT→ = Bit
el CHAR = Char
el NAT = Nat
el (VEC u n) = Vec (el u) n

The pair of a type U and a function el : U → Set is called a

Tuhneivep rsaier. Wofea acat ny pneow U dae nfindea aof peurnacttiioonns eoln :thU e ty →pes Sine tthi iss cunailvleedrsae
by induction on U. For example, every type represented b y U can
be rendered as a String:

show : {u : U} → el u → String
sshhooww {: {BuIT :U U} }O→ =S "riO"n
sshhooww {{ BBIITT }} IO = "I"
sshhooww {{ BCIHTA} RI } c = charToString c
sshhooww {{ NCAHATR R} }Zce ro = "Zero "
sshhooww {{ NNAATT }} (ZSeurocc k) = "Succ " ++ parens (show k)
sshhooww {{ VNAECT }u(ZSeucroc } kN)il = "Nil"
sshhooww {{ VVEECC uu (ZSeurcoc} Nk)i }l =(x" :N: ixls)"

=w parens (ush (oSwu xc) k++)} "(x: :: "s)+ + parens (show xs)

parens : String → String
parens s:S trt =in "g g(→ →" + S +t sritrn g+ + ") "

Note that we can pattern match on an implicit argument by enclos-
ing a pattern in curly brackets. For any pattern p that matches an
explicit argument, the corresponding pattern {p } will match on its
iemxpplliicciitt acroguunmteernpta,rt th.

This definition overloads the show function. W hen we call
show , A gda will fill in the implicit argument of type U for us,
allowing us to call show on arguments with different types:

Main> show I++ " is binary for " ++ show 1
"Iis binary for Succ (Zero) "

Note t hat, in contrast to Haskell’s t ype classes, the data type U is
closed. We cannot add new types to the universe without extending
the data t ype U and the function el.

Clearly, show is not the only operation that the types repre-
sented b y U have in common. In p articular, we will later need a

function that tries to parse a value of type U given a list of bits:

read : (u : U) → List Bit → Maybe (el u, List Bit)

We h ave omitted the definition of read as it is unremarkable.

3.2 The f ile format universe

The heart of our combinator library is formed by the Format data
type below. Every value of type Format specifies a data file format.
The Bad and End constructors correspond to failure and success
respectively. The format Base u describes a data file consisting
exclusively of a single value of type el u. The Plus constructor
introduces left-biased choice. A parser for Plus f 1 f2 will try to
parse the format determined by f 1 . Only when that fails, will it try
to p arse f 2 .

Finally, there are two ways to sequence formats: Skip and
Read. The Skip constructor sequences two formats, discarding any
information stored in the first format. The Read constructor, on
the other hand, sequences two formats, recording the information
stored in both its arguments.

Many data file formats consist of a header, describing the con-
tents of the file, followed by the actual data. The h eader often con-
tains information about the type of the rest of the data stored in
the file. Therefore, it is not e nough for the Read constructor to
construct a new Format from two arguments of type Format: the
type of the second format may depend on the result of reading in
the header. T o capture this dependency, we need to parameterise
the second argument of the Read constructor b y the data type cor-
responding to the first argument.

This motivates the following mutually r ecursive definition of the
Format data type together with the function !" :Format → Set,
tFhoatr mcaatlc udalattaest y tphee t odgaetath etyrp wei r hets hueltf inugn tfiroomn! !p a"r:sFinogr ma gti→ venS feilte,

Ffoorrmmata.
data Format : Set where

Bad : Format
End : Format
Base : U → Format
PBlausse :: UFo→r maF to r→m aFotrmat → Format
SPkluips :: FFoorrmmaatt →→ FFoorrmmaatt →→ FFoorrmmaatt
SRkeiapd :: F(fo :r mFoartm→ at)F o→rm m(a !aft " → →→F Foormrmatat) → Format

! "R :e aFdor :m(aft: F→o Smeta
!!B" Rad :eaF " = →F ErS mmeapttty)
!!!EB" nad:d F "" =→ US neitt
!!!BEBaansdde"" u" = el u
!!!EBPnlausdse" f u1 "f2" = Either!f1" !f2"
!!!RBPaeluassde fu f1" f2"" == ESiigtmhear !!ff1"" !(fλx" → !f2 x")
!!!PRSkleiuapsd f ff" === !ESfiigt"

d!!RSaketiaapd Sf ifg" m"a ==(A!S f:i S"gmeta) !(Bf ": (Aλ x→→ →Se! tf) :x S"e)t where
PktipaaiS ri g:f m"(xa a: =A(A)! →f:"S Bt) x(B→: SAi→ gmaS eAt B:

data Either (A : Set) (B : Set) : Set where
Inl :A → Either A B
IInnrl :: AB →→ EEitihtheerr AA BB

The Empty and Unit types in the definition above correspond to
data types with zero and one inhabitant r espectively. The result of
Read f 1 f2 is not simply a p air of !f1" and !f2" . T o reflect the
potential depeisnd neontc ysi mbeptwlyeea n p a f1i rao ndf ! f2f w"ea nnede d!f a" d.e Tpoenr edeflnect t pat ihre,
or Σ-type, whiesr en othte s tiymppel yofa athp ea sire coofn! df c"oma npdon! efnt" .m Taoy dreefpleecntdt hone

the value of the first.
The Format data type and !" function form another universe:

the TuhneiveF rosrem mofa tfid lea ftaor tmypaetsa.

3.3 hFeo Frmormat acto mdabtaint ayptoera s

We can now define several file format combinators, much in the
style of the monadic p arser combinators (Hutton and M eijer 1998).
The simplest combinator consists of a file containing a single char-
acter:

char : Char → Format
cchhaarr c =h aRre a→d F(Boramsea CtHAR)

(λc! → if c ≡ c! then End else Bad)

Of course, we can be a bit more general and introduce a combinator
that abstracts over which predicate must be satisfied:

satisfy : (f : Format) → (!f" → Bool) → Format
ssaattiissffyy :f (fpr: eFd =rm

tRiseafyd: f (f(: λFx →rm iaft ()p→ red(!xf) " t→ he Bno oEln)d→ →elF seo Bmaadt)

There are two combinators to sequence formats, corresponding
directly to Skip and Read . We have chosen to give them suggestive
names:

>> : Format → Format → Format
f1 >> f2: F=o Srkmiapt tf →1 →f2F

>> = : (f : Format) → (!f " → Format) → Format
x >> = f :=(fR :ea Fodr xm fa

Using th:e(s ef :c oFmorbminaatto)r→ s, w (!ef c"a→ n a Floreramdya td)e →fineF ao smimaptle file
format. NETPBM is a collection of graphics programs and b itmap
file formats. The simplest file format in the NETPBM family is the
portable bitmap format, or P BM. For example, the following string
is a p refix of a PBM file that represents an image t hat is 100 pixels
wide and 60 p ixels h igh:

P4 100 60
OIOOOOOOOOOIIIOIIIIOOIIIIIIIIOOO . . .

A valid PBM file starts with the magic number “P4”, followed
by two integers n and m that specify the width and height of the
bitmap. The magic number and digits are separated by whitespace.
Finally, a single newline marks the b eginning of the n ×m b its
tFhinata lcloyn,sa ti tsuinteg tlhee n ebwlaclikn-ean md-awrkhsitt eh ebib tmegaipn niminaggeo .f fAt h zeenr o-× bitm mcobr riet-s

sponds to a white p ixel; a one-bit corresponds to a black p ixel.
Using our combinators, it is straightforward t o define the PBM

file format:

pbm :Format
pbm = char ’ P ’ >>

char ’ 4 ’ >>
char ’ ’ >>
Base NAT >> = λn →
cBhaasre ’N A’ T>> >
Base NAT >> = λm →
cBhaasre ’N N\An ’T >>> >
Base (VEC (VEC BIT m) n) >> = λbs →
EBnasde

Note the dependency between the header d ata and the b ody of the
bitmap: we only k now how many b its to expect after h aving parsed
the header.

This description of the PBM file format is not quite complete.
We have assumed that a single space separates the magic number,
width, and height. We will come b ack t o t his point, but defer any
discussion for the moment.

3.4 Generic parsers

A file format is not of much use b y itself. W e can define a p arser
for any file format b y induction on the Format data type.

parse : (f : Format) → List Bit → Maybe (!f" ,List Bit)
ppaarrssee :B(afd: Fbso)=→ →NoL thisitng B
ppaarrssee :E(nfd: Fbso)=→ →JuL sti t(uB niitt, →bs)M
parse (Base u) bs = read u bs
parse (Plus f 1 f2) bs with parse f 1 bs
... | Just (x, cs) = Just (Inl x, cs)
... || NJuostth(i nxg, cws)ith parse f 2 bs
... || JNuostth (inyg, d ws)i p=a rJsuestf (Inr y, ds)
... || NJuostth(i nyg, = Nothing
parse o(Sthkiinpg f 1 f2) bs with parse f 1 bs
... | Nothing = Nothing
... || JNuostth (ing, cs) = parse f 2 cs
parse (sRte (ad, c fs1 f2) bs with parse f 1 bs
... | Nothing = Nothing
... || JNuostth (inxg, cs) with parse (f2 x) cs
... || NJuostth(i nxg, t=h Np oatrhsien g(f
... || JNuostth (inyg, ds) = Just (Pair x y, ds)

Most of the code should not require explanation. The unit con-
structor is the sole inhabitant of the Unit type. The b ase cases are
trivial.

Agda has some syntactic sugar to avoid too much r epetition
when using the with-rule. If we do not want to repeat the entire
left-hand side of a function definition, we can replace it with an
ellipsis. This is particularly useful when we use non-dependent
pattern matching, i.e., when we do not introduce any e qualities
between values.

The case for the Plus constructor attempts to p arse the format
f1; it will only try to p arse f 2 if this f ails. The case for the Skip
and Read c onstructors resemble one another: b oth start b y parsing
their first argument, but treat the r esult differently. W here the Skip

constructor discards the r esult of parsing f 1, the Read passes it on
to the second parser. In b oth cases, we continue parsing with any
remaining bits. If the first parser f ails, even in the Skip case, the
input does not adhere t o the specified format.

Clearly this code could profit tremendously from simple ab-
stractions, such as the Maybe monad. For the sake of p resentation,
however, we felt that we would rather suffer this obvious r epetition
than introduce too many abstractions.

3.5 Generic printers

Using the same file format u niverse, we can also define a generic
print function:

print : (f : Format) → !f " → List Bit
pprriinntt :B(afd: F()o
pprriinntt :E(nfd: Fo L=i sNti Bl
print (Base u) x = toBits (show x)
print (Plus f 1 f2) (Inl x) = print f 1 x
print (Plus f 1 f2) (Inr x) = print f 2 x
print (Read f 1 f2) (Pair x y) =

append (print f 1 x) (print (f2 x) y)

The pattern () in the first line expresses that !Bad" is not inhabited:
Tcohrerep saptotenrdnin(g)l iny wthee fdiros tnl oint nee eexdp rteos wsesritt he atht e! Br iagdht"-i hsann dot si nidhea obift tedhe:
fTuhnecp tiaotnt.e Inn()thi en t chaesef rfsotrl tinhee Bxaprsees sceosn thstartu!c Btoar,d w"i es hn aovtei ahsasbumiteedd:
there is a function, toBits, to convert a string to a list of b its.
The cases for the Plus and Read constructors should be fairly
unremarkable.

The case for the Skip constructor, however, is problematic.

Ptwyriiptnehtia !nfg v2a"S ;luk uiepno fof fr1tt uypnf2aet!es hflyo2,"u.lt Thd eop sr tiyunpctec ea! sSsv kfauiluplleyf o 1p frift 1n2yt"peb o on! tlfhy1t" hp a ernosdevido v aenlseueu o ssf,

h nTeha eed sa toolluug eteio otfno t uiysrp hetaon! fcdh"sa. onnT goea svtuhaceluc eetys sopeffu loylyfp ep th! refi "tS.kb iopt hct ohnessterucv taolur ass,
fwoell onweesd:

Skip : (f : Format) → !f " → Format → Format

TShkiep S: k (fip: cFoonrsmtrautc)to→ r i!s "t yp→ icaF lolyr muasted→ →toF aovrmoida separators,
magSick pnu :m(bfe :rF s,o crmheackts)u→ ms! fa" nd→ →soF of ormrtha. tS→ omF ehoormw,a tthe p arts of
a file format that we skip should contain no new information. T his
version of the Skip c onstructor reflects this: the value of type !f "
ivnecrlsuidonedo ifnt hthee S fkiilpe cfoonrmstarut ictso rthr ee vfleaclutse th toi o:u tthpeuvt awluheeon fyt oyup e p !rifn" t
tvheer dioatna sftrt uhcetuS rkei.p pItc odonsestr uncotto rnr eeedfl c tot sbt eh ias :c t ohnesv taanlut,e ebo utf tmypaye !dfe "-
pend from the data that has b een parsed so far, as is the case for a
checksum.

The corresponding case for the print function now becomes
straightforward to define:

print (Skip f 1 v f2) x =
append (print f 1 v) (print f 2 x)

To p rint a value x in the interpretation of a file f ormat Skip f 1 v f 2 ,
you print the default value v of type !f1" , followed by the r esult of
pyoriuntp inrign xt hofe ty depfea u!flt2v" .a Olufe eco vuo rsfe ty, pwee !afls"o, f noelelod wtoe dupb dyatt he oer ure spualrtso ef

yfpuroinnuctpt iinroignn txtto o h edfet d aylpe fweau i!tflht "vth.a Olisuf en cve owuo fsd eet,fyi pnweiet i!oa flns" oo,fn f oeSlekldoiwpt oe.

3p.ri6n nDgis xco ufsst iyopne

We have deliberately chosen a fairly minimal set of c onstructors
that illustrate the viability of our approach. Although we have not
modelled all the constructs of the data description calculus (Fisher
et al. 2006), it should be clear how to extend the code we h ave pre-
sented here to deal with most of the constructors we have omitted.

Most notably, our Format data type does not have any form of
recursion. W e could define a many combinator as follows:

many : Format → Format
many :f F =o Pmluast →(ReF aodr mf a(λt → many f)) End

This definition, however, uses general recursion. The Agda com-
piler warns us that it may fail to terminate; the Agda type checker
may diverge when trying to type check file formats that use many.
For example, evaluating !many (Base CHAR)" corresponds to
cFoorns etxruacmtinpgle ,the ev afloullaotiwnign!g minafninyite(Btypase:e

Ee xitahmerp
(Sigma Char (λx →

i(gEmitaheC rh (aSrig (mλax C→har (λy → ...)))
iUthniert)

Unit

As we saw inour specification of the PBM file format, however, we
really want to parse a sequence of whitespace characters.

The simplest solution is to e xtend the Format data type with a
new constructor Many : Format → Format that greedily parses
nase many ssturubscteoqruMe nat noyccu: rF roenrcmeas to→f →itsF aorgrmumaetnt th aast gp oresesdiibllye.p

The more general solution, however, would b e to extend our uni-
verse with variables and a least-fixed p oint operation. This would
enable us to describe not only lists, but a much wider class of data
types. We have r efrained from doing so as the r esulting universe
must deal with variable binding. Although the solution is not ter-
ribly complex (Morris et al. 2004), we felt the technical overhead
would distract from the b igger picture.

Readers familiar with generic p rogramming may not b e sur-
prised b y our results. Systems such as Generic Haskell (Hinze and
Jeuring 2003) have already shown how to write generic r ead and
show functions for a universe closed under sums and products. In
contrast to Generic Haskell, however, our universe is closed under

dependent p airs, not simple products. This dependency is very im-
portant when parsing b inary data, as our pbm example illustrates.
Furthermore, we show how dependently-typed programming lan-
guages support generic programming without r esorting to prepro-
cessors, in contrast t o Generic Haskell.

These parsers are, of course, closely related to monadic p arser
combinator libraries such as Parsec (Leijen and Meijer 2001). In
Parsec, for example, you can also parse a number n, followed by n
bits:

parseV Vec = do n ← parseInt
xns ←← caorusnetIn nt parseBit
xrset u←rnc o(un,n xtsn)

This parser will return a value of type (Int, [Bit]) ;the relationship
between the second and first element of the pair is irretrievably
lost. Our parsers, on the other hand, r eturn a dependent pair that
preserves this information.

The data type !f " associated with a format f will always be a
nesTtedhe etd uaptlae otyfp vea!l ufe" s. a sMsoanciiaptueldatw inigth su ac fho rdmaatat ftyw peisl lm aalwy b yesc bomeea
rathTerh etid reastoam tyep. eFo! frt "un aastseolcyi, aates tdhwe ipthrea vif ouosrm msaetctf ionw iillllua slwtraatyess,b bite ias
straightforward to define a view on the generated data. For example,
we may want to view !pbm" as a r ecord with meaningful labels,
wwied tmha, yhe wigahntt, t oanv di ebwitm !pabpm, "ana ds a assr oeccoiarteddw w pitrhojm ecetiaonni nfugfnucltil oanbse.l

M maaynyw daantat tdoev scierwipti! opnb mlan"g ausaa ger se csourpdpwo rtit hva mrioeuansi enrgrfourl lraepboelrts-,
ing and error recovery features. PADS (Fisher and Gruber 2005),
for example, has two different functions of type Format → Set:
ofonre cxoamrrepslpe,onh dass t tow ood uri f!er "e nfutn fucntciotino; tshoe fot tyhpeer dFeocrmoraattes → →theS erte-:
souneltinc go rdreatspa o tyndpes wt oitoh udria! gn" o sfuticn itniofno;rmt ahteioo nt haebrodu et ceorrroartse sent hcoeur ne--

otenreedc dourrreinsgpo opnadrssint og.o oDuerfi! ni" ngf u thncist isoenc;otn hde eio ntthereprred taetcioorna toesf fi thlee efr ore--
mats, and updating our parsers accordingly would improve the error
messages significantly. We can, of course, also use existing tech-

niques to improve our parse function’s e rror messages (Swierstra
and Duponcheel 1996).

We would like to emphasise that this domain-specific language
enforces several important p roperties. The type of the parse func-
tion, for example, ensures that the parser for a file format f will
return a value of type !f " upon success. In the existing work on
trheteu rdnat aa v deaslucerip otifot yn pc ealc !fu" lusu p(oFnishs eurc ceet asl.. I2n0 t0h6e), ethxiisst iins ganw iomrkpoo rn-
traetnut nmea tav -atlhueoereo tfict aylp e re! suf"l t uthpoatn nres quucicreesss .soI mnte h eefef oxrits ttion g prw ovoer.k Wo ne
know this important property h olds b y construction: our types g ive
us meta-theoryf orf ree!

This section shows how important it is to compute types from
data when writing generic p rograms. As we shall see, however, the
same problem also appears in a much more mundane setting.

4. Relational algebra

Databases are e verywhere. W hen you book a flight, order a book,
or rent a movie online, all you are really doing under the hood is
querying and updating a database.

For this reason, a programming language must b e able to inter-
face with a database. Most of the time such an interface consists of
a pair of functions to send a request—as a simple string containing
an SQL query—and to receive a response—usually in the form of
a string or some dynamic type. W hile this approach is simple to
implement, it has numerous drawbacks:

• This interface is unsafe: there are no static checks on the
queries. It is all too easy to formulate a syntactically incor-
rect or semantically incoherent query; an unexpected response
from the database server results in a runtime error.

• Programmers need to learn another language. Moreover, they

need to switch from one language t o another in the body of a
same function.

To address these issues, there have been several proposals
to embed a domain-specific language for database queries in
Haskell (Leijen and Meijer 1999; Bringert et al. 2004). Each of
these proposals provides a set of combinators to construct queries.
These queries in Haskell can b e ‘compiled’ to a string, correspond-
ing to an SQL query that can b e sent to a database server.

Unfortunately, all the typed database bindings to Haskell have
one or more of the following drawbacks:

• They struggle to express all the concepts of relational algebra.
For example, the j oin and cartesian product of two tables is
notoriously hard t o type.

• Embedding the type system of the query language in Haskell is
not e asy. Existing bindings must either r ely on unsupported fea-
tures, such as extensible records, or type-level programs written
using multi-parameter type classes with functional dependen-
cies.

• Safe bindings rely on static knowledge of the database a pro-
gram will query. This usually manifests itself in form of a
preprocessor t hat connects to the database and generates the
Haskell type declarations that represent the values stored in the
database.

As a result, there is no widely adopted set of typed database bind-
ings for Haskell. Many popular bindings, such as HDBC and
Takusen, r esort to some form of dynamic typing b y using a sin-
gle Haskell data type to represent all SQL’s types. Any type errors
a programmer makes, will only be detected dynamically.

All these limitations share the same origin: to embed a domain-

specific language, you need to embed a domain-specific type sys-
tem in the type system of your host language. Haskell’s type sys-
tem, however, is fundamentally different from that of a database
query language. Shoehorning a query language’s type system into
Haskell requires significant amounts of type hackery.

In this section, we sketch how to write a domain-specific e mbed-
ded language for r elational algebra in Agda. In contrast to all the
existing Haskell implementations, our combinator library is b oth
safe and totally embedded, that is, it does not rely on any form of
preprocessor. The resulting code provides similar guarantees to the
type-safe Haskell b indings, yet the code significantly shorter and
easier to understand.

4.1 Schemas, Tables, and Rows

A r elational database consists of a collection of tables. For exam-
ple, the makers of the British television program TopGear time how
long it takes them t o drive various cars around their t est track. A
database storing their results could contain the following table:

Model Time Wet
Ascari A101:17.3False

Koenigsegg CCX 1:17.6 True
Pagani Zonda C12 F 1:18.4 False
Maserati MC12 1:18.9 False

This table stores the best lap time of several different kinds of
car. Besides storing the lap t ime itself, it also records if the track
was wet when the time was recorded, as this may influence the
lap time. As this example illustrates, a table may contain different
types of information: a string corresponding to the car’s make and
model; a time written in minutes, seconds, and deciseconds; the
track conditions is represented by a boolean.

A schema describes the type of a table. It consists of a set of

pairs of column names and types:

Attribute : Set
Attribute = (String, U)

Schema : Set
Schema = List Attribute

We do not allow any type to occur in a Schema, but restrict ourself
to the universe (U, el) from the previous section. M ost database
servers only support a small number of types, such as b ooleans,
integers, times, dates, and (fixed-width) strings. It should b e clear
how t o define a universe to capture the types supported by any
particular database server.

One choice of schema for our example table would be:

Cars : Schema
Cars = Cons ("Model" , VEC CHAR 20)

(Cons ("Time" , VEC CHAR 6)
(Cons ("Wet" ,BOOL) Nil))

Here we have chosen the car’s make and time as fixed-width strings
of a certain length. This is, of course, a rather questionable choice
of schema: would it not be better to use a triple of integers, for
example, to represent the time? W e will come b ack to this p oint at
the end of this section.

We can now define a table to consist of a list of rows. A row
is a sequence of values, in accordance with the types dictated b y
the table’s schema. The EmptyRow constructor is corresponds to
a row with an empty schema; to create a row in a schema of the
form Cons (name, u) s) ,you need to provide an element of type
el u, together with a row adhering to the schema s.

data Row : Schema → Set where

Etam pRtoywRo :wS : Remowa N→ il
ConsRow : forall {name u s } →

enl uR o→w R : foowr asl l→{ nRaomwe e(u uCs on}s→ →(name, u) s)

Table : Schema → Set
TTaabbllee s: =ch Lemista (→ Ro wSe st)

For example, the third row in the table above could be written:

zonda : Row Cars
zonda = ConsRow "Pagani Zonda C12 F "

(ConsRow "1: 18 .4"
(ConsRow False EmptyRow))

Here we have taken the syntactic liberty of writing string literals
instead of vectors containing characters—this is not valid Agda as
it stands.

Dealing with such heterogeneous lists is the first stumbling
block for many Haskell database bindings. The corresponding
Haskell code is much more difficult to comprehend than this simple
definition (Kiselyov et al. 2004).

4.2 Setting u p a database connection

Before you can actually query the database, you will need t o set up
a connection with a database server. M any database interfaces for
Haskell provide a function of the following type:

connect : ServerName → IO Connection

Here ServerName is simply a type alias for String . The c onstruc-
tors of the Connection type are not visible to the library’s users.
Instead, it can be used to send a string corresponding to some SQL
query to a particular database:

query : String → Connection → IO String

Once you h ave set u p a connection, however, y our types carry
no information whatsoever about the database to which you are
connected. As a result, you h ave no static checks on how you
choose t o interpret a database’s response to your query.

Using dependent types, we can be much more precise about the
data stored in a t able. A much b etter choice for the connect function
that is exposed to the library’s users is:

Handle : Schema → Set
cHoannndeclet :: SScerhevemraNa →meS e→t TableName →

S(esr :v SecrNheammae) →→ TIaOb (eHNaanmdele→ →s)

Instead of r eturning a connection t o some unknown database, the
user sets up a connection to a p articular table of the database.
He also states the expected Schema of this particular table. The
connect function then returns a Handle to that particular t able,
with a type ensuring that this table respects the schema s. In
practice, a user will always want to set up a connection to several
tables in one step. We have chosen t his simplification for the sake
of presentation: it is by no means a limitation of our approach.

This connect function does more work t han its simply-typed
counterpart we mentioned previously. In addition t o setting up the
connection with the database server, it asks for a description of
its table argument. Database servers, when prompted to describe
a table, respond with a string such as:

Name Type
------------ ----------

MODEL CHAR(20)
TIME CHAR(6)
WET BOOL

It should be clear how to p arse this response and b uild a value of
type Schema. This value is then compared to the Schema provided

by the user. If the two schemas are the same, a Handle t o the t able
is returned. If the two schemas are different, connect will r esult
in a runtime exception in the IO monad. This e xception occurs
when the database the programmer attempted t o connect to does not
have the schema he expected. This k ind of exception is inherent to
working with IO: the r eal world can always b ehave unexpectedly.

However, there are two key guarantees that the type system
provides:

• The only point where this Schema mismatch can occur is
during a call to connect . Any subsequent queries using the
Handle are safe.

• In particular, if the Schema p assed t o the connect function
is the same as the Schema of the table we connect to, the
program cannot go wrong, provided the data b ase schema does
not change in the meantime, the connection is not lost, etc.

4.3 Constructing queries

Once we have set up a connection, we want to query the database.
Rather than model any particular flavour of SQL, we will show
how to embed relational algebra operators inA gda. For the sake of
simplicity, we h ave chosen only to model five operations: selection,
projection, cartesian product, set union, and set difference.

To introduce t hese operations, we define the f ollowing type RA.
An expression of type RA s corresponds to a query that will r eturn
a table with schema s—that is, we know statically exactly what
kind of table to expect when we execute any given query.

data RA : Schema → Set where
Rteaa dR :S fcohreamlla a{→ →s →} →et H wahnedrlee s → RA s
Union : ffoorraallll {{ s }} →→ RHaAn s →es sR→ A s A→s RA s
Diff :: ffoorraallll {{ ss }} →→ RRAA ss →→ RRAA ss →→ RRAA ss

Product : ffoorraallll {{ s }s→! →} →R A{ S so → →(dR isAjois nt→ s Rs!A) A}s
o→du cRtA : s r→a Rl{ As s s! →}→ →RA{ S(aop (pdeinsjdo s st!s)

Pro→jecR t : fs o →ralR l {A s s} →→ (Rs!A : S(achpepmenda)
o→je {t tS: of (osruabl ls{! ss)} }}→ →→(RsA s → RA s!

Sel→ect :o f(o sruablls { ss }) }→→ E RxpAr ss →BOR OALs
→ RA: fso r→a Rl{ As s}

Besides the five p rimitive operations we mentioned above, we have
one constructor, Read, that simply reads the table associated with
a Handle. The Union and Diff constructors correspond to the set
union and set difference of two tables. The Product, Project, and
Select constructors are more interesting.

The Product constructor takes the cartesian product of two
tables. For any two tables t1 and t2 , the cartesian product of t1
and t2 can b e specified as follows in Haskell:

do r1← t1
rr21 ←← tt21
rre2tu ←rnt (2appendRow r1 r2)

Here we use the list monad to select any pair of r ows from t1
and t2 ; the appendRow function appends two rows in the obvious
manner. In order to take the cartesian product of two tables, h ow-
ever, t heir schemas must be disjoint. It is easy to write a function
that checks if two schemas are disjoint:

disjoint : Schema → Schema → Bool

But how should we enforce that disjoint s s! must b e True? The
solution is to require a proof of So (disjoint s s!) , where So is
defined as follows:

So : Bool → Set
SSoo :T Bruooe =→ US neitt

So False = Empty

If p is t rue, the p roof So p is trivial; if not, there is no way to p ass
an argument of the right type.

Note that the p roof argument of type So (disjoint s s!)
to the Product constructor is implicit. Agda is clever enough to
automatically fill in implicit arguments of type Unit. Ifthe schemas
are known at compile time, disjoint s s! will compute to either
True or False . Consequently, So (disjoint s s!) will evaluate to
Unit or Empty. As a result, a p rogrammer will never have to worry
about such p roofs for closed schemas. When no such proof exists,
Agda will complain that it cannot fill in implicit arguments—the
programmer is then responsible for fixing this.

The Project constructor projects out some sub-schema of a
given table. For example, if we want t o k now the model of all the
cars TopGear has tested, we can formulate this query as follows:

Models : Schema
Models = Cons ("Model" , VEC CHAR 20) Nil

models : Handle Cars → RA Models
mmooddeellss :hH =a nPdrloejeC cta Ms→ odeR lsA A(RM eaodde lhs)

Just as the Product constructor required its two schema arguments
to be disjoint, the Project constructor requires its second schema
argument to be a subset of its first schema argument. For the sake
of simplicity, we use a value s! of type Schema to describe the
projected fields, but we could replace it by a list of the names of
the fields. The type of these field could then be r ecovered from the
schema from which we project.

Finally, the Select constructor filters the result ofa query. Leijen
and Meijer (1999) h ave already shown how t o use phantom types
to safely embed the operators of SQL in Haskell:

data Expr : Schema → U → Set where

etqaua Elx x:p fro:r aS lclh {e um as }→ →→U UE →xprS est tuw →h Erxepr s u
→al :Ef xoprra lsl B {uOOs }L

less→ThE anxp :r fos r BaOll O{ uL s } → Expr s u → Expr s u
s→T Eanxp r:f so rBaOllO{ uL

! : E(sx : Srcs heB mOaO) L→ (nm :String)
→: ({s sS: oS (cohcecmuras) n →m (sn)m m}
→→ {ESxopr(osc c(uloroskun pm n sm) s p)

. . .

We follow their lead and index the data type for SQL expressions,
Expr, by their r eturn type, represented b y a value of type U. We
also index t hese expressions by a Schema describing the attributes
to which the expression may refer. SQL supports a small number
of p rimitive operations for comparing values for equality, boolean
conjunction, and so forth.

The only p articularly interesting operation, !,looks up an
attribute in the schema. Once again, we require an implicit proof
that the name of the attribute does indeed occur in the schema.
As we saw p reviously, this proof is automatically discharged by
Agda if the s and nm are known at compile time. Using the !
constructor returns a value of type Expr s (lookup nm s p) ,
where the lookup function finds the U associated with the name
nm. In order for this function to be t otal we need the implicit proof
p. Without p, we do not k now whether or not the name occurs in
the schema.

For instance, we may want to query the database for all the
models of cars that have been tested under wet conditions:

wet : Handle Cars → RA Models
wweett :hH =a nPdrloejeC cta Ms→ odeR lsA A(S Meloecdte (s Cars ! "Wet ") (Read h))

This expression does not require any proofs. E ven though the con-
structors Project and Select h ave implicit proof arguments, we

compute the proof u sing the sub and occurs functions; the proof
itself turns out t o be so trivial that Agda can be fill it in automati-
cally. T his automation of trivial p roofs is a key point in the design
of user-friendly embedded type systems.

As we mentioned p reviously, we have taken a very minimal set
of relational algebra operators. It should be fairly straightforward
to add operators for the many other operators in r elational algebra,
such as the natural j oin, θ-join, e quijoin, renaming, or division,
using the same techniques. Alternatively, you can define many of
these operations in terms of the operations we have implemented in
the RA data type.

4.4 Executing queries

Once we have formulated a query, we would like t o pass it t o the
database server. W e could define a function that generates the SQL
query associated with every relational algebra expression:

toSQL : forall { s } → RA s → String
We can pass this String to the database server and wait for the
result. However, this function throws away precious type informa-
tion! W e can do much better. The function our library should export
to execute a query should r eally have the following type:

query : {s :Schema } → RA s → IO (List (Row s))

The query function uses toSQL to produce a query, and p asses
this to the database server. When the server replies, however, we
know exactly how to p arse the response: we k now the schema of
the table resulting from our query, and can use this to parse the
database server’s response in a type-safe manner. The type checker
can then statically check that the program uses the returned list in
a way consistent with its type.

4.5 Discussion

There are many, many aspects of this proposal that can be im-
proved. Some attributes of a schema contain NULL-values; we
should close our universe under Maybe accordingly. Some data-
base servers silently truncate strings longer than 255 characters.
We would do well to ensure statically that this never happens. Our
goal, however, was not to provide a complete model of all of SQL’s
quirks and idiosyncrasies: we want to show how a language with
dependent types can shine where Haskell struggles.

Our choice of Schema data type suffers from the usual disad-
vantages of u sing a list to r epresent a set: our Schema data type
may contain duplicates and the order of the elements matters. The
first problem is easy to solve. Using an implicit proof argument in
the Cons case, we can define a data type for lists that do not contain
duplicates. The type of Cons then becomes:

Cons : (nm : String) → (u : U) → (s : Schema)
n→s {: S(nom (¬: (terlienmg)n→ m (su)) : :}U
→→ S{Schoem(¬a (

The second point is a bit trickier. The r eal solution would involve
quotient types to make the order of the elements unobservable. As
Agda does not support quotient types, however, the best we can do
is p arameterise our constructors b y an additional proof argument,
when necessary. For example, the Union constructor could be
defined as follows:

Union : forall {s s!} → {So (permute s s!) }
→ion nR: Af o sr a→ll {RsA s s!} →→ R {SAo os

Instead of requiring that both arguments of Union are indexed by
the same schema, we should only require that the two schemas are
equal up to a p ermutation of the elements. Alternatively, we could
represent the Schema using a data structure that fixes the order in

which its constituent elements occur, such as a trie or sorted list.
Finally, we would like to r eturn to our example table. We chose

to model the lap time as a fixed-length string—clearly, a triple
of integers would b e a b etter representation. U nfortunately, most
database servers only support a handful of built-in types, such
as strings, numbers, bits. There is no way to extend these p rim-
itive types. This problem is sometimes referred to as the object-
relational impedance mismatch. We believe the generic program-
ming techniques and views from the previous sections can be used
to marshall data between a low-level representation in the database
and the h igh-level representation in our programming language.

5. Conclusions and Related work

Related work There are several other type systems that enrich
simply typed languages with more indexing information (Freeman
and Pfenning 1991; Sheard 2005; Peyton J ones et al. 2006). Using
GADTs in Haskell, for example, p rogrammers can write a data type
of vectors. However, many of the examples from this p aper revolve
around computing new types from data. In a dependently-typed
language we c an, for example, download a file format description
from the web and compute the type of its associated parser; or we
can connect to a data base and compute the type of its tables. The
static index information other systems provide cannot e asily cope
such examples that freely mix types, values, and computation.

Programming with d ependent types is subject to active research.
Although we have chosen to use A gda throughout this p aper, there
are many alternatives, such as Epigram or Coq, e specially aug-
mented with the Program tactic (Sozeau 2007). The programs in
this paper could have b een written in any of these systems; e ach
system has its own p articular strengths and weaknesses.

There are several other papers about p rogramming with de-

pendent types. The Epigram lecture notes by McBride (2004)
are essential reading. There are a few other studies of domain-
specific languages in the context of dependent types, including
stack machines (McKinna and Wright), locality-aware m ulti-core
programs (Swierstra and Altenkirch 2008), and interpreters (Au-
gustsson and Carlsson).

Conclusions What is the Power of Pi? We believe t hat many of
the advantages of programming with dependent types are covered
by the following three points:

Precise data types A good program never crashes. Programmers
should b e as accurate as possible when defining d ata types and
avoid writing partial functions. Haskell data types can contain
junk values: what is the h ead of an e mpty list? Precise depen-
dent d ata types liberate programmers from worrying what to do
when ‘the impossible occurs.’

Views Such precise data t ypes are of little value if working with
them becomes tedious. Most functional languages allow the
designers of domain-specific embedded languages t o carefully
engineer the constructors of their domain. Various combina-
tors and functions can then h elp build larger p rograms. There
is, however, no uniform way to abstract over patterns that de-
struct domain-specific data. As Epigram demonstrates, lan-
guages with dependent types can b e used t o d efine composi-
tional domain-specific views.

Universes Statically typed functional languages have started to
exploit types when writing p rograms. This is illustrated b y
advances in generic programming or the many applications of
Haskell’s type classes. Many of the examples in t his p aper
revolve around universe constructions that enable us toprogram

with types.

It has been more than ten years since the first work about
domain-specific embedded languages (Elliott and Hudak 1997)
sparked off a new field of research. F unctional programming found
new applications in r andomised testing (Claessen and Hughes
2000), financial markets (Peyton Jones et al. 2000), server side
webscripting (Thiemann 2004), hardware design (Bjesse et al.
1998), and reactive p rogramming (Nilsson et al. 2002). M ore re-
cently, this avenue of research seems to have dried up. In its p lace,
there are more and more papers about type systems designed to
solve a very specific problem.

This p aper proposes to drastically break with this trend. The
techniques we have p resented enable us t o embed such domain-
specific type systems in a dependently-typed host language. This
does not require writing a new compiler and we inherit the meta-
theory of our host language for free. Furthermore, this provides us
with a single semantic framework for exploring the design space.
Most importantly, however, it revives what functional p rogramming
is really about: writing programs, not designing typing r ules. For
that reason, if nothing else, dependent types matter.

Acknowledgments

We would like to express our sincerest gratitude to Thorsten Al-
tenkirch for his encouragement; Lennart Augustsson for his com-
ments about relational algebra; James Chapman for our discussions
about file formats and Erlang; P eter Hancock for teaching us ev-
erything we k now about universes; Ulf Norell for his fantastic new
incarnation of A gda and his tireless tech-support; Conor McBride
for his inspirational tutelage; and last but not least, we would like to
thank Bj¨o rn Bringert, Nils Anders Danielsson, Isaac Dupree, Chris

Eidhof, Andy Gill, Michael Greenberg, Eelco Lempsink, Mads
Lindstrøm, Andres L o¨h, Matthew Naylor, Henrik Nilsson, Bernie
Pope, Matthieu Sozeau, Stephanie Weirich, Brent Yorgey, and our
anonymous reviewers for their invaluable feedback.

References

Lennart Augustsson and Magnus Carlsson. An exercise in depen-
dent types: a well-typed interpreter. Unpublished manuscript.

Godmar Back. D atascript - a specification and scripting language
for binary data. In GPCE ’02: P roceedings of the 1st ACM
SIGPLAN/SIGSOFT Conference on Generative Programming
and Component E ngineering, 2002.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh.
Lava: Hardware design in Haskell. In I CFP ’98: P roceedings
of the Third ACM SIGPLAN I nternational Conference on F unc-
tional P rogramming, 1998.

Bj¨o rn Bringert, Anders H ¨ockersten, Conny Andersson, Martin An-
dersson, Mary Bergman, Victor Blomqvist, and Torbj ¨orn Martin.
Student paper: HaskellDB improved. In Haskell ’04: Proceed-
ings of the 2004 ACM SIGPLAN Workshop on Haskell, 2004.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool
for random testing of Haskell programs. In I CFP ’00: Proceed-
ings of the Fifth ACM SIGPLAN I nternational Conference on
Functional P rogramming, 2000.

Conal Elliott and Paul Hudak. Functional reactive animation. In
ICFP ’97: P roceedings of the Second ACM SIGPLAN Interna-
tional Conference on F unctional Programming, 1997.

Kathleen F isher and Robert Gruber. PADS: a domain-specific
language for processing ad hoc data. SIGPLAN Conference on
Programming Language D esign and I mplementation, 2005.

Kathleen Fisher, Yitzhak Mandelbaum, and D avid Walker. The
next 700 data description languages. In P OPL ’06: Conference
record of the 33rdA CMS IGPLAN-SIGACTSymposium on Prin-
ciples of Programming Languages, 2006.

Tim Freeman and Frank Pfenning. Refinement types for ML.
In P roceedings of the SIGPLAN ’91 Symposium on Language
Design and Implementation, 1991.

Galois, Inc. Cryptol R eference Manual, 2002.

Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and
theory. In Generic Programming, volume 2793 of Lecture N otes
in Computer Science. Springer-Verlag, 2003.

Graham Hutton and Erik Meijer. Monadic parsing in Haskell.
Journal of Functional Programming, 8(4), 1998.

Oleg Kiselyov, R alf L¨a mmel, and Keean Schupke. Strongly t yped
heterogeneous collections. In Haskell ’04: P roceedings of the
2004 A CMS IGPLAN Workshop on Haskell, 2004.

Daan L eijen and Erik Meijer. Domain specific embedded compil-
ers. In 2nd USENIX Conference on D omain Specific L anguages
(DSL’99), October 1999.

Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser
combinators for the r eal world. Technical Report UU-CS-2001-
27, Universiteit Utrecht, 2001 .

Conor McBride. Epigram: Practical p rogramming with dependent
types. In Advanced F unctional P rogramming, volume 3622 of
LNCS-Tutorial, pages 130–170. Springer-Verlag, 2004.

Conor McBride and J ames McKinna. The view from the left.
Journal of Functional Programming, 14(1), 2004.

Peter J. McCann and Satish Chandra. Packet types: abstract speci-
fication of network protocol messages. In SIGCOMM ’00: P ro-
ceedings of the Conference on A pplications, Technologies, Ar-
chitectures, and P rotocolsf or Computer Communication, 2000.

James McKinna and Joel Wright. A type-correct, stack-safe, prov-
ably correct expression compiler in Epigram. Accepted for p ub-
lication in the Journal of Functional Programming.

Peter Morris, Thorsten Altenkirch, and Conor McBride. E xploring
the regular tree types. In Typesf or Proofs and Programs, volume
3839 of LNCS. Springer-Verlag, 2004.

Henrik Nilsson, A ntony Courtney, and John Peterson. Functional
reactive p rogramming, continued. In Haskell ’02: P roceedings
of the 2002 ACM SIGPLANH askell Workshop, 2002.

Bengt Nordstro ¨m, Kent Petersson, and Jan M . Smith. Programming
in Martin-Lo ¨f’s Type Theory. Oxford University Press, 1990.

Ulf Norell. Towards a p ractical p rogramming language based
on dependent type theory. PhD thesis, Chalmers University of
Technology, 2007.

Simon Peyton Jones, editor. Haskell 98 Language and L ibraries:
The Revised Report. Cambridge University Press, 2003.

Simon P eyton J ones, J ean-Marc Eber, and Julian Seward. Com-
posing contracts: an adventure in financial engineering. In I CFP
’00: Proceedings of the FifthACMS IGPLANI nternational Con-

ference on Functional P rogramming, 2000.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey W ashburn. Simple unification-based type inference for

GADTs. In I CFP ’06: Proceedings of the eleventh ACM SIG-
PLAN I nternational Conference on Functional P rogramming,
2006.

Tim Sheard. Putting Curry-Howard to work. In Haskell ’05:
Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell,
2005.

Matthieu Sozeau. Subset coercions in Coq. In Typesf or P roofs and
Programs, volume 4 502 of L NCS. Springer-Verlag, 2007.

S . Doaitse Swierstra and Luc Duponcheel. Deterministic, error-
correcting combinator parsers. In Advanced F unctional P ro-
gramming, volume 1129 of LNCS-Tutorial, 1996.

Wouter Swierstra and Thorsten Altenkirch. Dependent types for
distributed arrays. In P roceedings of the N inth Symposium on
Trends in Functional P rogramming, 2008.

The Agda Team. Agda homepage. http ://www . cs .chalmers .
se/∼ulfn/Agda, 2008.

Peter Thiemann. Server-side web programming in WASH. In
Advanced F unctional P rogramming, volume 3622 of LNCS-
Tutorial. Springer-Verlag, 2004.

Philip Wadler. Views: A way for pattern matching to cohabit
with data abstraction. In 14th Symposium on Principles of
Programming L anguages, 1987.

