
Math. Struct. in Comp. Science (2005), vol. 15, pp. 671–708. c© 2005 Cambridge University Press

doi:10.1017/S0960129505004822 Printed in the United Kingdom

Modelling general recursion in type theory

ANA BOVE† and VENANZIO CAPRETTA‡

†Department of Computing Science, Chalmers University of Technology, 412 96 Göteborg, Sweden

Email: bove@cs.chalmers.se
‡Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave., Ottawa,

ON, K1N 6N5, Canada

Email: venanzio.capretta@mathstat.uottawa.ca

Received 13 February 2003; revised 8 January 2005

Constructive type theory is an expressive programming language in which both algorithms

and proofs can be represented. A limitation of constructive type theory as a programming

language is that only terminating programs can be defined in it. Hence, general recursive

algorithms have no direct formalisation in type theory since they contain recursive calls that

satisfy no syntactic condition guaranteeing termination. In this work, we present a method

to formalise general recursive algorithms in type theory. Given a general recursive algorithm,

our method is to define an inductive special-purpose accessibility predicate that characterises

the inputs on which the algorithm terminates. The type-theoretic version of the algorithm is

then defined by structural recursion on the proof that the input values satisfy this predicate.

The method separates the computational and logical parts of the definitions and thus the

resulting type-theoretic algorithms are clear, compact and easy to understand. They are as

simple as their equivalents in a functional programming language, where there is no

restriction on recursive calls. Here, we give a formal definition of the method and discuss its

power and its limitations.

1. Introduction

Constructive type theory is a very expressive programming language with dependent

types (see, for example, Martin-Löf (1984) and Coquand and Huet (1988)). According

to the Curry–Howard isomorphism (Howard 1980; Sørensen and Urzyczyn 1998), logic

can also be represented in it by identifying propositions with types and proofs with terms

of the corresponding types. Therefore, we can encode in a type a complete specification,

requiring logical properties from an algorithm. As a consequence, algorithms are correct

by construction or can be proved correct by using the expressive power of constructive

type theory. This is clearly an advantage of constructive type theory over standard

programming languages. A computational limitation of type theory is that, to keep the

logic consistent and type-checking decidable, only structural recursive definitions are

allowed, that is, definitions in which the recursive calls must have structurally smaller

arguments.

On the other hand, functional programming languages like Standard ML (Milner

et al. 1997), Haskell (Jones 2003) and Clean (de Mast et al. 2001) are less expressive in the

sense that they do not have dependent types and they cannot represent logic. Moreover,

the existing frameworks for reasoning about the correctness of Haskell-like programs

A. Bove and V. Capretta 672

are weaker than the framework provided by type theory, and it is the responsibility of

the programmer to write correct programs. However, functional programming languages

are computationally stronger because they impose no restriction on recursive programs,

allowing the definition of general recursive algorithms. In addition, functional programs

are usually short and self-explanatory.

General recursive algorithms are defined by equations in which the recursive calls are

not required to have structurally smaller arguments. In other words, the recursive calls

are performed on objects that satisfy no syntactic condition guaranteeing termination.

Hence, there is no direct way of formalising algorithms of this kind in type theory.

The standard way to handle (terminating) general recursion in constructive type theory

is to use a well-founded recursion principle derived from the accessibility predicate

Acc (Aczel 1977; Nordström 1988; Balaa and Bertot 2000). However, the use of this

predicate in the type-theoretic formalisation of general recursive algorithms often results

in unnecessarily long and complicated code. Moreover, its use adds a considerable amount

of code with no computational content, distracting our attention from the computational

part of the algorithm (see, for example, Bove (1999), where we present the formalisation

of a unification algorithm over lists of term pairs using the standard accessibility predicate

Acc). In addition, partial algorithms cannot be represented in this way.

To bridge the gap between programming in type theory and programming in a functional

language, we have developed a method for formalising general recursive algorithms in

type theory that separates the computational and logical parts of the definitions. As

a consequence, the resulting type-theoretic algorithms are clear, compact and easy to

understand. They are as simple as their Haskell-like versions. Given a general recursive

algorithm, our method is to define an inductive special-purpose accessibility predicate

that characterises the inputs on which the algorithm terminates. We can think of this

predicate as the domain of the algorithm. The type-theoretic version of the algorithm is

defined by structural recursion on the proof that the input values satisfy this predicate. If

the algorithm has nested recursive calls, the accessibility predicate and the type-theoretic

algorithm must be defined simultaneously, because they depend on each other. Definitions

of this kind are not allowed in ordinary type theory, but they are provided in type theories

extended with Dybjer’s schema for simultaneous induction-recursion (Dybjer 2000).

The method was introduced in Bove (2001) to formalise simple general recursive

algorithms in constructive type theory (by simple we mean non-nested and non-mutually

recursive). It was extended in Bove and Capretta (2001) to treat nested recursion, and in

Bove (2002b) to treat mutually recursive algorithms, nested or not. All these papers have

been collected in the first author’s Ph.D. thesis (Bove 2002a), which also includes an earlier

version of this paper. A tutorial on the method can also be found in Bove (2003). Since our

method separates the computational part from the logical part of a definition, formalising

partial functions becomes possible (Bove and Capretta 2001; Bove 2003). Proving that

a certain function is total amounts to proving that the corresponding special-purpose

accessibility predicate (or domain predicate) is satisfied by every input.

In previous publications (Bove 2001; Bove and Capretta 2001; Bove 2002b; Bove 2003),

we have presented our method purely by means of examples. The purpose of the current

paper is to give a general presentation of the method. We start by giving a characterisation

Modelling general recursion in type theory 673

of the class of recursive definitions that we consider, which is a subclass of commonly

used functional programming languages like Haskell, ML and Clean. This class consists of

functions defined by equations where the recursive calls are not necessarily well-founded.

Then, we show how we can translate any function in that class into type theory using our

special-purpose accessibility predicates.

When talking about functional programming, we use the terms algorithm, function and

program as synonyms.

The rest of the paper is organised as follows. In Section 2, we present a brief introduction

to constructive type theory. In Section 3, we illustrate our method by formalising a few

general recursive algorithms in type theory. In Section 4, we define the class FP of

recursive definitions that can be translated into type theory by applying our method. In

Section 5, we formally describe our method for translating general recursive functions into

type theory. In Section 6, we discuss the operational semantics of functional programs and

prove that our translation is sound with respect to strict semantics. In addition, we discuss

limitations of our method that make a completeness result more difficult. In Section 7, we

extend the class FP to allow guarded equations and case analysis, and we show how to

modify the translation presented in Section 5 to account for these new features. Finally,

in Section 8, we present some conclusions and related work.

2. Constructive type theory

This paper is mainly intended for readers who already have some knowledge of type

theory. Here we recall the main concepts to fix notation and to highlight some extensions

that we use. Readers familiar with type theory may skip this section.

The components of type theory are terms and types: terms are denotations of

mathematical or computational objects and types are collections of terms. We write

α Type to indicate that α is a type, and t ∈ α to indicate that t is an element of α.

A context Γ is a sequence of assumptions

Γ ≡ x1 ∈ α1; . . . ; xn ∈ αn

where x1, . . . , xn are distinct variables and each αi is a type that can contain occurrences

of the variables that precede it, that is, the variables x1, . . . , xi−1. We use capital Greek

letters to denote contexts.

Type theory also contains rules for making typing judgements of the form

Γ � t ∈ α.

In Table 1 we present a sketch of the basic type formers in constructive type theory. For a

complete description of the formal rules, see Martin-Löf (1984), Nordström et al. (1990),

and Coquand et al. (1994). A general formulation of type systems and their use in formal

verification can be found in Barendregt (1992) and Barendregt and Geuvers (2001).

We will now introduce some additional notation and terminology that we use in the

rest of the paper.

A sequence of variable assumptions ∆ is called a context extension of a context Γ if Γ; ∆

is a context. If there is no danger of confusion, we may refer to context extensions simply

A. Bove and V. Capretta 674

Table 1. Basic type formers

Small types

Formation Set Type Canonical elements (x ∈ α)β,Σx ∈ α.β,

N, α × β, α + β, . . .

Equality

Formation
α Type a, b ∈ α

Id(α, a, b) Type
Notation a = b

Canonical elements refl(a) ∈ a = a

Dependent Products

Formation
α Type x ∈ α � β Type

(x ∈ α)β Type
Canonical elements [x ∈ α]b, [x]b

Application f(a)

Function types

Formation
α Type β Type

(α)β Type
Definition (α)β ≡ (x ∈ α)β

Dependent Sums

Formation
α Type x ∈ α � β Type

Σx ∈ α.β Type
Canonical elements 〈a, b〉

Projections π1, π2

Cartesian products

Formation
α Type β Type

α × β Type
Definition α × β ≡ Σx ∈ α.β

Binary Sums

Formation
α Type β Type

α + β Type
Canonical elements inl(a), inr(b)

Elimination Cases

Finite Sums

Formation
α1 Type . . . αn Type

α1 + · · · + αn Type
Canonical elements ini(a)

Elimination Cases

as contexts or as extensions . In addition, we might simply say that ∆ is an extension

whenever the context Γ of which ∆ is an extension can be easily deduced.

Given a context Γ ≡ x1 ∈ α1, . . . , xn ∈ αn, an instantiation of Γ is a sequence of terms

a1, . . . , an such that a1 ∈ α1, . . . , an ∈ αn[x1 := a1, . . . , xn−1 := an−1]. We write a ∈ Γ for such

an instantiation.

If Γ is a context and β a type whose free variables are among those assumed in Γ, we

write (Γ)β for the sequential product of all the assumptions in Γ over β. Formally, it is

Modelling general recursion in type theory 675

defined by recursion on the length of Γ:

()β ≡ β and (x ∈ α; Γ′)β ≡ (x ∈ α)((Γ′)β).

We usually write sequential dependent products as (x1 ∈ α1; . . . ; xn ∈ αn)β and sequential

λ-abstractions as [x1, . . . , xn]b. In addition, we write (x1, x2, . . . , xn ∈ α) instead of (x1 ∈
α; x2 ∈ α; . . . ; xn ∈ α).

Similarly, Σ(Γ) is the sum of all the types of the assumptions in Γ, for a non-empty

context Γ. Again, it is formally defined by recursion on the length of Γ:

Σ(x ∈ α) ≡ α and Σ(x ∈ α; Γ′) ≡ Σx ∈ α.Σ(Γ′).

If Γ ≡ x1 ∈ α1; . . . ; xn ∈ αn, we use n-tuple notation for the canonical elements of Σ(Γ);

concretely, we write 〈a1, a2, . . . , an−1, an〉 for 〈a1, 〈a2, . . . , 〈an−1, an〉 · · · 〉〉 and the symbols

π1, . . . , πn for the projections.

We allow inductive definitions in type theory. They are type formers defined by a

sequence of constructors:

α ∈ (Γ)Set

c1 ∈ (Θ1)α(t1)
...

cn ∈ (Θn)α(tn)

with a positivity condition on the types of the constructors to guarantee that terms

are well-founded. For a complete formal description of inductive definitions, see, for

example, Hagino (1987), Coquand and Paulin (1990), Pfenning and Paulin-Mohring (1990),

Werner (1994), or Chapter 2 of Capretta (2002).

We need to extend inductive definitions to allow simultaneous induction-recursion as

introduced in Dybjer (2000), that is, to allow the simultaneous definition of an inductive

type and a recursive function that depends on the type. Their general forms are

α ∈ (Γ)Set f ∈ (∆; α(d))β

c1 ∈ (Θ1)α(t1) f(x1, c1(z1)) = e1

...
...

cn ∈ (Θn)α(tn) f(xn, cn(zn)) = en

where the function f may occur in the type of some constructors ci’s, with certain

restrictions guaranteeing that terms of type α are well-founded and that f is total.

Finally, theorems are considered as dependent types, thus they have the general form

(x1 ∈ α1; . . . ; xn ∈ αn)β.

3. Some examples

We illustrate our method for formalising general recursive algorithms in type theory with a

few easy examples. Detailed descriptions and more examples can be found in our previous

work (see: Bove (2001), for simple recursive algorithms; Bove and Capretta (2001), for

nested algorithms and partial functions; Bove (2002b), for mutually recursive algorithms;

and Bove (2003)).

A. Bove and V. Capretta 676

All the auxiliary functions that we use in the examples below are well-known structurally

recursive functions. We call a function structurally recursive if the arguments of the

recursive calls in its definition are structurally smaller than the input and the function

contains no calls to general recursive functions. Therefore, these functions can be translated

straightforwardly into type theory, and we can use their translation in the formalisation of

the corresponding example. Unless we state otherwise, we assume that the type-theoretic

translation of an auxiliary function has the same name as in the functional program.

The first example is a simple general recursive algorithm: the quicksort algorithm

over lists of natural numbers. We start by introducing its Haskell definition. Here, we

use the set N of natural numbers, the inequalities < and >= over N defined in Haskell

in a structurally recursive way, and the functions filter and ++ defined in the Haskell

prelude.

quicksort :: [N] -> [N]

quicksort [] = []

quicksort (x:xs) = quicksort (filter (< x) xs) ++

x : quicksort (filter (>= x) xs).

The first step in the definition of the type-theoretic version of quicksort is the

construction of the special-purpose accessibility predicate or domain predicate associated

with the algorithm. To construct this predicate, we analyse the Haskell code and

characterise the inputs on which the algorithm terminates. Thus, we distinguish the

following two cases:

— The algorithm quicksort terminates on the input [].

— Given a natural number x and a list xs of natural numbers, the algorithm quicksort

terminates on the input (x:xs) if it terminates on the inputs (filter (< x) xs)

and (filter (>= x) xs).

From this description, we define the inductive predicate qsAcc over lists of natural

numbers by the introduction rules we give below. To avoid confusion in what follows,

the type-theoretic translation of the boolean functions < and >= are called ≺ and �,

respectively. We do not use the symbols < and � for the formalisation of those functions

because, later on, we use the symbols > and � to denote relations in type theory, that

is, terms of type (N; N)Set, while in this example we need terms of type (N; N)Bool. The

definition of qsAcc is then

qsAcc(nil)

qsAcc(filter((≺ x), xs)) qsAcc(filter((� x), xs))

qsAcc(cons(x, xs))

where (≺ x) denotes the function [y](y ≺ x) as in functional programming, and similarly

for �. We formalise this predicate in type theory as follows:

qsAcc ∈ (zs ∈ List(N))Set

qs accnil ∈ qsAcc(nil)

qs acccons ∈ (x ∈ N; xs ∈ List(N); h1 ∈ qsAcc(filter((≺ x), xs));

h2 ∈ qsAcc(filter((� x), xs)))qsAcc(cons(x, xs)).

Modelling general recursion in type theory 677

We now define the quicksort algorithm by structural recursion on the proof that the

input list satisfies the predicate qsAcc.

quicksort ∈ (zs ∈ List(N); qsAcc(zs))List(N)

quicksort(nil, qs accnil) = nil

quicksort(cons(x, xs), qs acccons(x, xs, h1, h2)) =

quicksort(filter((≺ x), xs), h1) ++ cons(x, quicksort(filter((� x), xs), h2)) .

Finally, as the algorithm quicksort is total, we can prove

allQsAcc ∈ (zs ∈ List(N))qsAcc(zs)

and use that proof to define the type-theoretic function QuickSort:

QuickSort ∈ (zs ∈ List(N))List(N)

QuickSort(zs) = quicksort(zs, allQsAcc(zs)).

Note that the proof of termination is given after the definition of quicksort. Hence, the

formalisation of the function does not depend on its totality, as is the case when we use

the general accessibility method, where the proof of termination of an algorithm is mixed

with the definition of the algorithm. Therefore, it is possible to define, with our method,

non-total functions. The only difference is that when formalising non-total functions, we

cannot construct a proof that the accessibility predicate is always satisfied. See Bove and

Capretta (2001) and Bove (2003) for examples showing how to use our method to define

partial recursive functions in type theory.

Our method applies also to the formalisation of nested recursive algorithms. Here

is the Haskell code of Paulson’s normalisation function for conditional expressions

(Paulson 1986). Its Haskell definition is

data CExp = At | If CExp CExp CExp

nm :: CExp -> CExp

nm At = At

nm (If At y z) = If At (nm y) (nm z)

nm (If (If u v w) y z) = nm (If u (nm (If v y z)) (nm (If w y z))).

Using our method, we would obtain the following introduction rules for the inductive

predicate nmAcc (for y, z, u, v and w conditional expressions):

nmAcc(at)

nmAcc(y) nmAcc(z)

nmAcc(if(at, y, z))

nmAcc(if(v, y, z))

nmAcc(if(w, y, z))

nmAcc(if(u, nm(if(v, y, z)), nm(if(w, y, z))))

nmAcc(if(if(u, v, w), y, z))
.

Unfortunately, this definition is not correct in ordinary type theory since the algorithm

nm is not defined yet and, therefore, cannot be used in the definition of the predicate.

Moreover, the purpose of defining the predicate nmAcc is to be able to define the

algorithm nm by structural recursion on the proof that its input value satisfies nmAcc,

so we need nmAcc to define nm. However, there is an extension of type theory that gives

us the means to define the predicate nmAcc and the function nm at the same time. This

A. Bove and V. Capretta 678

extension was introduced in Dybjer (2000) and allows the simultaneous definition of a

predicate P and a function f, where f has P as part of its domain and is defined by

recursion on P . Using Dybjer’s schema, we can define nmAcc and nm simultaneously as

follows:

nmAcc ∈ (e ∈ CExp)Set

nmaccat ∈ nmAcc(at)

nmaccif/at ∈ (y, z ∈ CExp; nmAcc(y); nmAcc(z))nmAcc(if(at, y, z))

nmaccif/if ∈ (u, v, w, y, z ∈ CExp;

h1 ∈ nmAcc(if(v, y, z)); h2 ∈ nmAcc(if(w, y, z));

h3 ∈ nmAcc(if(u, nm(if(v, y, z), h1), nm(if(w, y, z), h2)))

)nmAcc(if(if(u, v, w), y, z))

nm ∈ (e ∈ CExp; nmAcc(e))CExp

nm(at, nmaccat) = at

nm(if(at, y, z), nmaccif/at(y, z, h1, h2)) = if(at, nm(y, h1), nm(z, h2))

nm(if(if(u, v, w), y, z), nmaccif/if(u, v, w, y, z, h1, h2, h3)) =

nm(if(u, nm(if(v, y, z), h1), nm(if(w, y, z), h2)), h3).

Mutually recursive algorithms, with or without nested recursive calls, can also be

formalised with our method. If the mutually recursive algorithms are not nested, their

formalisation is similar to the formalisation of the quicksort algorithm in the sense

that we first define the accessibility predicate for each function, and then we formalise

the algorithms by structural recursion on the proofs that the input values satisfy the

corresponding predicate. When we have mutually recursive algorithms, the termination of

one function depends on the termination of the others, so the domain predicates are also

mutually recursive. If, in addition to mutual recursion, we have nested calls, we again need

to define the predicates simultaneously with the algorithms. In order to do so, we need

to extend Dybjer’s schema for cases where we have several mutually recursive predicates

defined simultaneously with several functions. The soundness of the extension follows

from the known fact that mutual recursion can be implemented by simple recursion using

some indexing. See Bove (2002b; 2003) for a description and examples of our method in

the formalisation of mutual recursive functions.

Partial functions may also be defined by occurrences of nested and/or mutually recursive

calls. This fact is irrelevant to our method, so their formalisations present no problem.

As a final remark, we should draw attention to the simplicity of the translations. The

accessibility predicates can be automatically generated from the recursive equations and

the type-theoretic versions of the algorithms look very similar to the original programs

except for the extra proof argument. If we suppress the proofs of the accessibility predicate,

we get almost exactly the original algorithms.

Necessary restrictions

In the following sections we show that our method is of general applicability. Specifically,

we define a large class of functional programs to which it can be applied. However, we

Modelling general recursion in type theory 679

need to impose some restrictions on that class. Here we illustrate the need for those

restrictions by showing a few functional programs that cannot be translated using our

method.

The first restriction is that, in the definition of a function f, any occurrence of f should

always be fully applied. Let us consider the following definition:

f :: N -> N

f O = O

f (S n) = (iter f n n) + 1

where iter is an iteration function that, when applied to a function f and a number n,

gives fn as a result. Here, the defined function f appears in the right-hand side of the

second equation without being applied to any argument. Although it is easy to see that f

computes the identity, we do not know, at the moment, how to translate this definition in

type theory using our special-purpose accessibility predicates. Hence, in what follows, we

do not allow definitions of this kind.

The reason for imposing this restriction becomes clear when we try to apply our method

to the function above. For the formalisation of this function, we have to define a predicate

fAcc and a function f with types:

fAcc ∈ (m ∈ N)Set

f ∈ (m ∈ N; fAcc(m))N.

What should the constructors of fAcc look like? Our method requires that every argument

to which the function f is applied satisfies the predicate fAcc. But the occurrence of f in

the right-hand side of the second equation in the definition of f is not directly applied

to an argument, so we do not know how to formulate the type of the corresponding

constructor of fAcc. For this reason, we require every occurrence of f in the right-hand

side of a recursive equation to be fully applied. If the function f is one of the functions

being defined in a mutual recursive definition, then f should always occur fully applied

within the mutual recursive definition.

A functional programmer might consider replacing the occurrence of f with its η-

expansion:

f (S n) = (iter (\x -> (f x)) n n) + 1.

In this way the occurrence of f is applied to the variable x, thus satisfying the restriction.

However, since the variable is bound inside the right-hand side of the equation, the

constructor of fAcc would have to require that every possible value of the variable x

satisfy fAcc:

f accs ∈ (n ∈ N;H ∈ (x ∈ N)fAcc(x))fAcc(s(n)).

This clearly makes it impossible to prove fAcc(s(n)), since we would first need to prove

the totality of fAcc to deduce it. In Section 6, we will say more about the treatment of

λ-abstractions in the right-hand side of recursive equations.

Another restriction is that each function definition should be self-standing, by which we

mean that it should not call other previously defined functions unless they are structurally

A. Bove and V. Capretta 680

recursive. Recall that structurally recursive functions are guaranteed to be total and can

be defined directly in type theory.

If f is a general recursive function, it should be translated in type theory as a pair

consisting of a predicate fAcc and a function f . Thus, we cannot call it inside the definition

of another function g. This restriction is imposed by type-checking requirements and will

become clearer below. If, instead, f is structurally recursive, it can be directly translated

into type theory as a structurally recursive function f , without the need for our auxiliary

predicate fAcc. In this case, the use of f inside the definition of another function g is

allowed, as it has been seen throughout this section.

We illustrate the reason for this restriction with the following example:

nub_map :: (N -> N) -> [N] -> [N]

nub_map f [] = []

nub_map f (x:xs) = f x : nub_map f (filter (/= x) xs)

f :: N -> N

f O = O

f (S n) = f (S (S n))

g :: [N] -> [N]

g xs = nub_map f xs

where /= is the inequality operator in Haskell.

When we apply our method to each of the functions in this program, we first get the

translation of nub_map:

nub mapAcc ∈ (f ∈ (N)N; l ∈ List(N))Set

nub map ∈ (f ∈ (N)N; l ∈ List(N); nub mapAcc(f, l))List(N).

Similarly, the partial function f is translated as:

fAcc ∈ (m ∈ N)Set

f ∈ (m ∈ N; fAcc(m))N.

The problem arises when we try to translate g. The translation should be given by a

predicate and a function with the following types:

gAcc ∈ (l ∈ List(N))Set

g ∈ (l ∈ List(N); gAcc(l))List(N).

Even though g is not recursive (it does not call itself), it inherits a termination condition

from nub_map. Thus, we have to translate g using a predicate gAcc and a function g.

The difficulty now is how to formulate the constructors of gAcc and the equations that

define g. The problem here is that the translation of the term (nub_map f xs) would not

type-check because f no longer has the type (N)N.

For this reason, we require that the only previously defined functions allowed in a new

function definition are the structurally recursive ones. In reality, this condition could be

relaxed by allowing any function that can be proved total in type theory. As we have

seen in the formalisation of the quicksort algorithm, we can sometimes define a total

Modelling general recursion in type theory 681

function that no longer depends on the special accessibility predicate, even when the

algorithm is a general recursive one. QuickSort is an example of such a function. It would

also be safe to allow these functions inside the definition of other functions. Then, the

class of functions to which our method applies would depend on what we can prove in

type theory. To keep the definition of this class of functions simple, we choose not to

follow this path. Although this is a severe restriction, it is an easy exercise to show that

the class of functions that we consider still allows us to define all recursive functions. See

Section 4.4 for a more detailed discussion on this matter.

One might think that a possible way around this problem could be to define nub_map,

f and g as mutually dependent functions. However, this does not work for this particular

example because we would fall foul of the first restriction: the function f is one of

the functions being defined and the occurrence of f inside g is not fully applied, thus

disallowed.

In a forthcoming article (Bove and Capretta 2004), we show that all these restrictions

can be lifted if we use an impredicative type theory.

4. General recursive definitions

In this section, we specify the class FP of functional programs that we consider. It is

a subclass of the class of programs that can be defined in any functional programming

language like Haskell, ML or Clean.

In the previous section we explained that we must impose some restrictions on this

subclass. Here we formalise these restrictions, namely, we require that all recursive calls

in a recursive definition are fully applied and that only structurally recursive functions

can be used inside the definition of a function.

4.1. The class of types

First let us characterise the class of types that can appear in the specification of a program.

These may be basic types, which are either variables or inductive data types, or function

types.

Definition 1. Let TV be an infinite set of type variables. The class of types that are

allowed in our programs are inductively defined by:

— All elements of TV are types.

— Inductive data types are types. An inductive data type is introduced by a definition of

the form

Inductive T γ1 · · · γw ::= c1 τ11 · · · τ1k1
|

... |
co τo1 · · · τoko

where o � 0, ki � 0 for 0 � i � o, and γ1, . . . , γw are type variables, for w � 0. Every τij
is a type where T may occur only strictly positive and fully applied to its arguments,

that is, only in the form (T γ1 · · · γw) and on the right of the arrows.

A. Bove and V. Capretta 682

— If σ and τ are types, then σ → τ is a type.

As examples of inductive data types, we show how to define the types of boolean values,

the type of natural numbers and the parametric type of lists:

Inductive Bool ::= true | false
Inductive Nat ::= 0 | s Nat

Inductive List γ ::= nil | cons γ (List γ).

To instantiate a parametric data type, we simply write (T σ1 · · · σw) for specific types

σ1, . . . , σw . This expression denotes the type obtained by substituting each γh by σh in the

definition of T, for 1 � h � w.

With each type σ, we associate an infinite set of variables. For simplicity, we assume

that the sets of variables associated with two different types are disjoint.

Besides types, we also use specifications of the form

σ1, . . . , σm ⇒ τ.

If e has the above specification, it must be interpreted as follows: e is an expression

that, when applied to arguments a1, . . . , am of type σ1, . . . , σm, respectively, produces a term

e(a1, . . . , am) of type τ. The expression e itself is not a term of any type; in particular, it is

not an element of the functional type σ1 → · · · → σm → τ. We introduce specifications so

that we can formalise the requirement, explained in the previous section, that a function

must be fully applied to be allowed to appear in the right-hand side of any of the

equations within the block that defines the function.

In what follows, we write a : A to express the fact that a is an expression of type A or

that a has the specification A.

We also use specifications to force constructors to be fully applied. The definition of an

inductive data type introduces not only a new type but also its constructors:

ci : τi1, . . . , τiki ⇒ τ.

When instantiating a parametric data type, we should, of course, also instantiate its

constructors. For example, the constructors of the instantiated data type (List Nat) are

nil : ⇒ List Nat and cons : Nat, (List Nat) ⇒ List Nat.

Given a : σ, the reader should bear in mind the difference between f(a), which denotes

the application of a function f with specification σ ⇒ τ to a, and (f a), which denotes the

application of a function f of type σ → τ to a. If there is no risk of confusion, we may

simply write f a for the latter.

Note that we can directly translate every type occurring in a functional program into

type theory. The equivalent type-theoretic definitions are almost the same, except for a

change in notation.

4.2. Terms and patterns

Functional programs are defined by pattern matching. Each function is defined by a

sequence of recursive equations. We now formally define patterns and the terms that are

allowed in the equations.

Modelling general recursion in type theory 683

Definition 2. Let τ be a type. A pattern of type τ is an expression built up according to

the following two rules:

— A variable of type τ is a pattern of type τ.

— If τ is an inductive type, c : τ1, . . . , τk ⇒ τ is one of its constructors and p1, . . . , pk are

patterns of type τ1, . . . , τk , respectively, then c(p1, . . . , pk) is a pattern of type τ.

Variables occurring in a pattern are called pattern variables . A pattern is linear if every

pattern variable occurs only once in the pattern.

We only allow linear patterns. Usually, when we want to refer to a linear pattern, we

will just say pattern. .

Definition 3. A sequence of patterns p1, . . . , pm of type τ is said to be exclusive if it is

impossible to obtain the same term by instantiating two different patterns, that is, by

substituting the pattern variables in those patterns by other terms.

The sequence is called exhaustive if every value of type τ is an instance of at least one

of the patterns. By value, we mean a closed normal form.

The terms that we allow in the definition of recursive functions depend on an

environment comprising three components:

(a) the set X of variables that can occur free in the terms;

(b) the set SF of functions that are being defined, which can be used in the recursive

calls; and

(c) a set F of total functions that we already know how to translate in type theory with

the same functional type.

In what follows, we assume that F consists of all structurally recursive functions together

with their types (the notion of structurally recursive function was described at the

beginning of Section 3). As we have already explained, we could extend F to a larger

class of functions by adding all the functions that can be proved total in type theory. The

class F being fixed, the allowed terms depend only on the set X and on the set SF.

Formally, we define terms as follows.

Definition 4. Let X be a set of variables together with their types. Let SF be a set of

function names together with their specifications. Let the set of names of the variables in

X, the set of names of the functions in SF, and the set of names of the functions in F
be disjoint. We say that t is a valid term of type τ or that t : τ is a valid term with respect

to X and SF, if the judgement X; SF � t : τ can be derived from the rules in Table 2,

where (X\x) stands for the set X without any association for the variable x.

Normally, a functional programming language also allows terms obtained by case

analysis on arguments of inductive types. Case analysis does not add any conceptual

difficulty to our method but some notational overhead. Therefore, for the moment we

will not allow it. We will explain how to translate programs containing case analysis in

Section 7.

As we explain in Section 6, we need a strict semantics to compute the programs in

FP. This said, the computation (reduction) rules for terms are the usual ones. We use

A. Bove and V. Capretta 684

Table 2. Rules for deriving valid term judgements

x : σ ∈ X
X; SF � x : σ

f : σ → τ ∈ F
X; SF � f : σ → τ

f : σ1, . . . , σm ⇒ τ ∈ SF X; SF � ai : σi for 1 � i � m

X; SF � f(a1, . . . , am) : τ

c : τ1, . . . , τk ⇒ τ c constructor of τ

X; SF � ai : τi for 1 � i � k

X; SF � c(a1, . . . , ak) : τ

(X\x) ∪ {x : σ}; SF � b : τ

X; SF � [x]b : σ → τ

X; SF � f : σ → τ X; SF � a : σ

X; SF � (f a) : τ

the symbol � to denote one step reduction over terms and the symbol �∗ to denote the

reflexive and transitive closure of �.

4.3. Fixed-point function definition

We define the recursive functions that we want to translate into type theory. These

functions are given by single or mutual fixed-point equations satisfying some conditions.

The general form of a single recursive definition is

fix f : σ1, . . . , σm ⇒ τ

f(p11, . . . , p1m) = e1

...

f(pl1, . . . , plm) = el

where p1u, . . . , plu are patterns of type σu, for 0 � u � m. We call a tuple of patterns

(p1, . . . , pm) of types σ1, . . . , σm, a multipattern for f. When there is no confusion, we

simply say pattern when referring to multipattern . We extend the notions of linearity,

exclusivity and exhaustivity from patterns to multipatterns in the straightforward way.

The multipatterns that appear in the left-hand side of the definition of a function f must

be linear and mutually exclusive. In this way, at most one equation in the definition of f

can be applied to compute f on a given sequence of input arguments.

Let 1 � i � l, and let Yi be the set of pattern variables that occur in the ith equation

together with their types. The right-hand side of the ith equation in the definition of f,

that is ei, is a valid term of type τ with respect to Yi and {f : σ1, . . . , σm ⇒ τ}. Hence,

ei can contain subterms of the form f(a1, . . . , am), where a1, . . . , am are valid terms of

type σ1, . . . , σm, respectively. Each au can, in turn, contain calls to f, giving rise to nested

recursive definitions.

The computation rules for f are given by the different equations in its definition.

Recall that we need to compute our programs in a strict semantics. Hence, if we want

to compute the expression f(a1, . . . , am), we first have to reduce the terms a1, . . . , am.

Modelling general recursion in type theory 685

Assume that a �∗ p[y := b], that is, a1 �∗ p1[y := b], . . . , am �∗ pm[y := b] where y

are the pattern variables of a multipattern (p1, . . . , pm) in the left-hand side of one of the

equations defining f. Let f(p1, . . . , pm) = e be the corresponding equation. Then, we have

the following computation rule:

f(a1, . . . , am) � e[y := b].

Otherwise, the function f is undefined on the input (a1, . . . , am).

The class of functions FP also contains mutually recursive definitions. The general

form for defining n mutually recursive functions is

mutual fix f1 : σ11, . . . , σ1m1
⇒ τ1

f1(p111, . . . , p11m1
) = e11

...

f1(p1l11, . . . , p1l1m1
) = e1l1

...

fn : σn1, . . . , σnmn
⇒ τn

fn(pn11, . . . , pn1mn
) = en1

...

fn(pnln1, . . . , pnlnmn
) = enln ,

which defines n functions f1, . . . , fn at the same time. Let Yji be the set of pattern

variables that occur in the ith equation of the jth function, for 1 � j � n and 1 � i � lj ,

together with their types, and let SF be the set that contains the specifications of the

functions f1, . . . , fn. Then, each right-hand side eji must be a valid term of type τj with

respect to Yji and SF. Thus, each function fj can only occur fully applied on the

right-hand side of any of the equations.

4.4. Turing completeness

Because of the restrictions we have imposed on the recursive definitions, it may not be

obvious that the class FP of functional programs allows the definition of all partial

recursive functions. To see that this is actually the case, we can use the Kleene normal

form theorem (see, for example, Bell and Machover (1977, Theorem 10.1) or Phillips (1992,

Theorem 1.5.6)). It states that each general recursive function can be defined from primitive

recursive operations by using minimisation once only.

The only problematic part when applying Kleene’s theorem to define a concrete function

f is the use of the minimisation function inside the definition of f. Recall that we do

not allow previously defined functions inside the definition of a new function unless they

are structurally recursive. Thus, although it is easy to translate the minimisation function

with our method, we cannot use the general form of the minimisation operator inside the

definition of f. Instead, we can define a specific minimisation function for f by mutual

recursion with f. This minimisation function does not really depend on f, but the use

A. Bove and V. Capretta 686

of a mutual recursive definition is a trick that allows us to use minimisation inside the

definition of f.

5. Translation into type theory

In this section we give a formal presentation of the translation of the programs in FP
into type theory.

We assume that the reader is familiar with constructive type theory and knows how

to translate types and expressions from functional programming into their type-theoretic

equivalents. All types in functional programming have a corresponding type defined in

type theory in the same way, except for the difference in notation. Hence, the elements

in those types have a type-theoretic equivalent. Structurally recursive functions, that is,

the elements of the class F, can also be translated directly into type theory with the

corresponding types. If A is a type or an expression in functional programming, we

denote its corresponding translation into type theory by Â.

Let f be a general recursive function in FP. Thus,

f : σ1, . . . , σm ⇒ τ

where f is defined by a sequence of recursive equations of the form

f(p1, . . . , pm) = e. (1)

To translate f into type theory, we define a special-purpose accessibility predicate fAcc

and a type-theoretic version of f, called f , which has the predicate fAcc as part of its

domain. These two components have the following types:

fAcc ∈ (x1 ∈ σ̂1; . . . ; xm ∈ σ̂m)Set

f ∈ (x1 ∈ σ̂1; . . . ; xm ∈ σ̂m; h ∈ fAcc(x1, . . . , xm))̂τ.
(2)

The function f is defined by structural recursion on the argument h. Hence, we have one

equation in f for each constructor of fAcc. If the function f is defined by nested recursion,

we should define fAcc and f simultaneously using Dybjer’s schema for simultaneous

inductive-recursive definitions (Dybjer 2000). Otherwise, we first define fAcc and then use

that predicate to define f .

We begin by discussing how to define the predicate fAcc. This predicate has one

constructor for each equation in the definition of f. The constructor associated with

Equation (1) produces a proof of fAcc(p̂1, . . . , p̂m), where p̂u is the straightforward

translation of pu, for 1 � u � m. The fact that at most one equation can be used

for the computation of f(a1, . . . , am), with au : σu, and the way we break down the

structure of e to establish the type of each constructor, guarantees that at most one

constructor can be used to build a proof of fAcc(â1, . . . , âm).

Let us explain the general idea of the translation. We associate with each equation of

form (1) in the definition of f, a constructor for fAcc and an equation for f . To this end,

we analyse the structure of the right-hand side e of Equation (1).

Let Γ be the type-theoretic context containing type assumptions for the variables

introduced in the pattern (p1, . . . , pm) of the equation. Each variable is assumed with type

Modelling general recursion in type theory 687

σ̂ if σ is its type in functional programming. From the analysis of e, we construct a context

extension Φe containing assumptions that provide for the type-theoretic translation of e.

Let Equation (1) be the ith equation in the definition of f. The type for the constructor

of fAcc associated with this equation can now be defined as

f acci ∈ (Γ; Φe)fAcc(p̂1, . . . , p̂m) .

Concurrently with the definition of the context extension Φe, we also get a translation

ê of the term e itself. Then, the equation of f associated with the constructor f acci is

f(p̂1, . . . , p̂m, f acci(y, z)) = ê

where y and z are the sequences of variables assumed in Γ and in Φe, respectively.

To complete the formal translation, we need to define precisely the context extension

Φe and the translation ê associated with Equation (1). The reader can verify that ê has

type τ̂ in context Γ; Φe.

Definition 5. Given an equation of f in the form (1) and a type-theoretic context Γ

containing type assumptions for the variables introduced in the pattern of the equation,

we define the context extension Φe and the type-theoretic term ê by recursion on the

structure of the expression e. Note that, since Φe extends Γ, we should only introduce

fresh variables in Φe.

e ≡ z: If the expression e is a variable z, then Φe ≡ () and ê ≡ z.

e ≡ g: If e is one of the functions g in F, then Φe ≡ () and ê ≡ ĝ.

e ≡ c(a1, . . . , ao): First we determine Φa1
, . . . ,Φao and â1, . . . , âo by structural recursion,

and then we combine these translations into the definition of Φe and ê. Formally, we

define

Φe ≡ Φa1
; . . . ; Φao and ê ≡ ĉ(â1, . . . , âo) .

e ≡ f(a1, . . . , am): Again we first determine Φa1
, . . . ,Φam and â1, . . . , âm by structural

recursion. As before, we combine these translations into the definition of Φe and

ê. Recall that we have to add the assumption corresponding to the recursive call

f(a1, . . . , am) stating that the tuple (â1, . . . , âm) satisfies the predicate fAcc. Remember

that f ≡ f̂ and that f takes an extra parameter, which is a proof that the input values

satisfy the predicate fAcc. Hence, we have

Φe ≡ Φa1
; . . . ; Φam ; h ∈ fAcc(â1, . . . , âm) and ê ≡ f(â1, . . . , âm, h) .

e ≡ (a1 a2): This case is treated similarly to the previous two cases, giving

Φe ≡ Φa1
; Φa2

and ê ≡ â1(â2) .

e ≡ [z]b: Let σ be the type of z. We start by calculating Φb and b̂ recursively. Now,

the context with the assumptions for the free variables in b is (Γ; z ∈ σ̂). Recall that

variables are directly translated as variables in type theory.

A. Bove and V. Capretta 688

If Φb = (), that is, if the context of translation for b is empty, then

Φe ≡ () and ê ≡ [z]b̂ .

In other words, in this case the method does not produce any assumption and the

λ-abstraction can be translated straightforwardly into type theory.

Otherwise, to translate this term as a λ-abstraction in type theory, we must impose the

condition that the term b̂ is well-defined for every value of the variable z. Therefore,

the assumption generated by e must be the universal quantification over z of all the

assumptions for b̂. Let ΣΦb be the conjunction of all the assumptions in the non-empty

context Φb and let y1 · · · yo be the sequence of variables assumed in Φb. We define

Φe ≡ H ∈ (z ∈ σ̂)ΣΦb and ê ≡ [z]b̂[y1 := (π1 H(z)); . . . ; yo := (πo H(z))] .

To simplify the notation, in the following we write [y := (π H(z))] to denote the above

substitution.

If Φb contains only one assumption, we do not need to construct a Σ-type. If we let

Φb ≡ y ∈ α, then we simply have

Φe ≡ H ∈ (z ∈ σ̂)α and ê ≡ [z]b̂[y := H(z)] .

In the examples, we always use the simplest possible option.

If, instead of a single function, we face the mutual definition of n functions

mutual fix f1 : σ11, . . . , σ1m1
⇒ τ1

...

fn : σn1, . . . , σnmn
⇒ τn

...

we need to define n special-purpose accessibility predicates and n type-theoretic functions

with the following types:

fAcc1 ∈ (x11 ∈ σ̂11; . . . ; x1m1
∈ σ̂1m1

)Set
...

fAccn ∈ (xn1 ∈ σ̂n1; . . . ; xnmn
∈ σ̂nmn

)Set

f1 ∈ (x11 ∈ σ̂11; . . . ; x1m1
∈ σ̂1m1

; h1 ∈ fAcc(x11, . . . , x1m1
))τ̂1

...

fn ∈ (xn1 ∈ σ̂n1; . . . ; xnmn
∈ σ̂nmn

; hn ∈ fAcc(xn1, . . . , xnmn
))τ̂n.

In a similar way to what happens in the translation of a single function definition, if

a function fj is defined by nested recursion, for 1 � j � n, we should define the fAcc’s

and the f ’s simultaneously. In order to do so, we need the generalisation of Dybjer’s

schema presented in Bove (2002b). Otherwise, we first define the fAcc’s and then use those

predicates to define the f ’s.

Each predicate fAccj and each function fj is defined as in the case of a single function,

with the only difference being that now the case in the definition of Φe and ê that deals

Modelling general recursion in type theory 689

with recursive calls should consider the recursive calls to any of the n functions. Each

recursive call is translated as in the definition for the non-mutually recursive case.

We conclude this section with a couple of observations. First, notice that if we have

two or more syntactically equal recursive calls in an equation, our method will duplicate

the assumptions corresponding to that call. This problem can easily be eliminated if we

add an assumption corresponding to a recursive call into a sequence of assumptions only

when that assumption has not yet been added to the sequence. This is what we have done

in the examples in Section 3.

Second, observe that the choice of where to put the symbol ⇒ within the specification

of the type of a function f makes a difference in its translation, since it determines the

type of the corresponding fAcc.

6. Lazy and strict semantics

We must be careful to state in what sense our type-theoretic translation of a functional

program is equivalent to the original one. Given a program f in FP, our general method

produces a pair consisting of a predicate fAcc and a function f that depends on the

predicate. For example, if f has the specification σ ⇒ τ, we obtain fAcc ∈ (σ̂)Set and

f ∈ (x ∈ σ̂; h ∈ fAcc(x))̂τ in the translation into type theory, where σ̂ and τ̂ are the

type-theoretic translation of σ and τ, respectively. Then, we would like to state:

The program f terminates on the input a if and only if fAcc(a) is provable. Moreover, if

h ∈ fAcc(a), the type-theoretic equivalent to the output produced by the computation of f(a)

is f(a, h).

Unfortunately, this conjecture is not always true for lazy computational models. When

evaluating an expression in a lazy computational model, only the parts of the expression

that are necessary for the computation to continue are evaluated. For example, in the

expression f(n) � 0, we might not need to fully evaluate f(n). If, at a certain stage, the

computation produces the value s(e), where e is still an unevaluated expression, there is

no need to further evaluate e to produce a result for f(n) � 0, since we already know that

the value of this expression must be false.

Similarly, in the definition of a recursive function, when we have a recursive equation

of the form

f(p) = · · · f(a) · · ·
the lazy evaluation strategy requires that f(a) is computed only if and when it is needed.

On the other hand, a strict evaluation strategy requires that the arguments of a function

are reduced to a value before the function is computed. In the example above, this implies

that f(a) must be computed before the computation of f(p) begins, even if the value of

f(a) may not actually be needed for the final result.

Our method corresponds to a strict semantics for functional programs: the accessibility

predicate fAcc characterises the arguments on which the function f is defined, and its

constructors are such that, to prove fAcc(p) in the example above, we first need to prove

fAcc(a), that is, f must be defined on a in order to be defined on p.

A. Bove and V. Capretta 690

An additional problem arises if a λ-abstraction occurs in the right-hand side of one of

the equations in the definition of a recursive function. Let us consider an equation of the

form

f(p1, . . . , pm) = · · · [x]e′ · · · .

According to our interpretation, the subexpression [x]e′ must be defined for the right-

hand side to be defined. Notice, however, that [x]e′ denotes a function, and that functions

are defined if their values are defined on every input, that is, if they are total. Since

the totality of recursive functions it is, in general, undecidable, this interpretation is not

a computational model of functional programming. Even in functional programming

languages with strict semantics, a term of higher type is considered computed whenever

it has been reduced to a λ-abstraction form, and not when the corresponding function is

total.

In our method, we need to translate e into type theory to be able to translate the above

equation. Since there are no partially defined terms in type theory, all subexpressions of

e must be translated into totally defined terms.

We can illustrate this point with an example. Let us assume that we have a function

fix factors : Nat ⇒ List Nat

that gives the list of prime factors of a number, repeated as many times as their multiplicity.

For example, factors(6) = [2, 3] and factors(300) = [2, 2, 3, 5, 5]. Let us assume that

factors(0) = []. Obviously, this is a total function, although not a structurally recursive

one.

We now define the function

fix facrec : Nat ⇒ Nat

facrec(0) = 0

facrec(s(n)) = sum (map ([x]x ∗ facrec(x)) factors(n)) + n.

Both the function sum and the function map are structurally recursive functions. The

former returns the addition of all the numbers in a list and the latter maps a function

over all the elements in a list and returns a list with the results of the applications. Observe

that, formally, both factors and facrec should be defined in a mutually recursive way

in FP.

In the second equation of facrec, we have a λ-abstraction as the functional argument

of the function map. A recursive call to the function facrec occurs in the scope of this

abstraction. Given the argument s(n), the recursive calls are performed on the elements of

the list that results from factors(n). Hence, the recursive calls are performed on elements

that are smaller than s(n), so facrec is a terminating function.

Modelling general recursion in type theory 691

When we apply our method to this example, the part of the translation corresponding

to facrec is

facrecAcc ∈ (N)Set

facrec acc0 ∈ facrecAcc(0)

facrec accs ∈ (n ∈ N;H ∈ (x ∈ N)facrecAcc(x); h ∈ factorsAcc(n))facrecAcc(s(n))

facrec ∈ (m ∈ N; facrecAcc(m))N

facrec(0, facrec acc0) = 0

facrec(s(n), facrec accs(n,H, h)) = sum(map([x]x ∗ facrec(x,H(x)), factors(n, h))) + n.

To compute facrec on the number s(n), we have to prove facrecAcc(s(n)). For this, we

need to give a proof H ∈ (x ∈ N)facrecAcc(x), that is, we must prove facrecAcc(x) for

every x.

An analysis of the algorithm shows that the assumption H is unnecessarily strong. It

requires the function [x]x ∗ facrec(x) to be defined everywhere. However, in practise,

since the function above is given as the functional argument of map, we just need the

function to be defined on the elements of the list factors(n).

Our method does not analyse the behaviour of the occurrences of other functions in

the functional program we are translating. Thus, it does not try to determine what map

does with its arguments. Instead, it considers the worst case scenario, that is, map could

use its arguments in any possible way. Therefore, the translation requires that the function

argument is defined for every value. It is possible to modify the definition of the function

facrec to force the interpretation to look into the definition of map by defining facrec

(and factors) by mutual recursion with a specialised version of map.

mutual fix factors : Nat ⇒ List Nat
...

map facrec : List Nat ⇒ List Nat

map facrec(nil) = nil

map facrec(cons(m, l)) = cons(m ∗ facrec(m), map facrec(l))

facrec : Nat ⇒ Nat

facrec(0) = 0

facrec(s(n)) = sum(map facrec(factors(n))) + n .

The reader can verify that when we apply the translation for mutually recursive functions

to this example, we get a much better condition for the termination of facrec. In the

second equation of the function facrec, we require a proof of map facrecAcc(factors(n, h)),

which is equivalent to facrecAcc(x) for all elements x in factors(n, h), but not for every

natural number x.

From this example, it is clear that our type-theoretic translation does not give the

expected result when applied to recursive functions containing λ-abstractions in the right-

hand side of their equations. The user should instead try to replace every λ-abstraction

with a new function mutually defined with the original one. If the function we want to

A. Bove and V. Capretta 692

formalise has the specification

fix f : σ ⇒ τ1 → τ2,

an alternative, and possibly easier solution, might be to define it as

fix f : σ, τ1 ⇒ τ2.

In this way, the predicate fAcc contains an unnecessary argument, but we avoid the need

for a λ-abstraction in the right-hand side of the equations.

This said, we now investigate the relation between computations in functional pro-

gramming and reductions in type theory. Let e : τ be a valid term in FP with respect

to Γ and SF. In general, there is no correspondence between steps of computation

of e in FP and steps of reduction in the type-theoretic translation ê obtained by our

method. The reason is that ê depends on extra parameters Φe (the context of termination

conditions constructed by the translation algorithm), and it can only be reduced if those

extra parameters are instantiated with actual terms. However, we have a weaker result: if

all the extra parameters can be instantiated with terms whose variables are among those

in Γ̂, then the result of the computation of e in FP corresponds to the normal form of

ê in type theory. Moreover, the existence of such instantiations for the extra parameters

guarantees the termination of e.

Below, when referring to instantiations of Φe, we will always mean instantiations whose

variables are among those in Γ̂. We write de ∈ Φe for such an instantiation. Observe

that de cannot contain variables that stand for proofs of domain predicates, since Γ is

a context in FP and there are no such objects in functional programming. That is, de

cannot depend on a variable of type gAcc(b̂) for any function g and arguments b. This

means that given a constraint h ∈ fAcc(â) in Φe, it can only be instantiated with a term

that reduces (in zero or more steps) to a canonical proof of fAcc.

This, in turn, implies that a result cannot contain a subterm of the form f(a) where f is

a general recursive function. When translating this subterm, our translation method adds

a constraint h ∈ fAcc(â) to Φe. According to the above observation, any instantiation of h

should reduce to a term the form faccj(. . .), where faccj is the jth constructor of fAcc. This

means that we are able to further reduce the application f(â, faccj(. . .)) to êj[. . .] in type

theory, where êj is the right-hand side of the equation in f that corresponds to the jth

constructor. Then, a result cannot contain applications of general recursive functions and

thus, it is either a variable, or a constructor or a structurally recursive function (partially)

applied to results.

In what follows, the equality symbol = denotes convertibility in type theory and the

symbol ≡ denotes syntactic identity.

Lemma 1. Let e : τ be a valid term in FP with respect to Γ and SF. Let Φe be the

context of premises generated by the translation method, z the sequence of variables in

Φe and de ∈ Φe. Then, the evaluation of e in FP terminates and gives a result re such

that

r̂e = ê[z := de] .

Modelling general recursion in type theory 693

Proof. We use induction on the pair (l, e) where l is the maximum length of a

normalisation path of ê[z := de]. Hence, our inductive hypothesis states that the lemma

is true for all pairs (l′, e′) < (l, e) where < is the lexicographic order on pairs, that is

(l′, e′) < (l, e) iff either l′ < l or l′ � l and e′ is structurally smaller than e.

We proceed by cases on the structure of e:

— If e ≡ x is a variable, then Φe ≡ () and the statement is trivially true:

re ≡ x r̂e ≡ x ≡ ê.

— If e ≡ g ∈ F is a structurally recursive function, then again Φe ≡ () and the statement

is trivially true:

re ≡ g r̂e ≡ ĝ ≡ ê.

— If e ≡ c(a1, . . . , ao) where c is a constructor, then

Φe ≡ Φa1
; . . . ; Φao de ≡ da1

, . . . , dao

where dai ∈ Φai for 1 � i � o. The computation of e is just the computation of the

arguments a1, . . . , ao of the constructor. The inductive hypothesis can be applied to

each of the ai’s, since a reduction path for âi[zi := dai] extends to a reduction path for

ê[z := de] (first element of the inductive argument) and ai is a proper subterm of e

(second element of the inductive argument). Thus, each ai terminates with the result

rai such that

r̂ai = âi[zi := dai] ≡ âi[z := de]

where the syntactic identity is justified by the fact that the variables zj do not occur

free in ai if j
= i. Therefore the computation of e terminates with the result

r̂e ≡ ̂c(ra1
, . . . , rao) = c(â1[z := de], . . . , âo[z := de]) ≡ ê[z := de] .

— If e ≡ f(a1, . . . , am) is an application of a function in SF, then

Φe ≡ Φa1
; . . . ; Φam ; h ∈ fAcc(â1, . . . , âm) de ≡ da1

, . . . , dam , dh .

As in the previous case, our induction hypothesis states that the computation of each

ai terminates with result rai such that

r̂ai = âi[zi := dai] .

Notice that we need to use these hypotheses to prove that the computation of

e terminates since we are assuming a strict evaluation strategy for FP, hence e

normalises only if every ai normalises.

As we pointed out earlier, the proof dh reduces to a canonical proof of fAcc, let us say

f accj applied to some arguments. Because of the way we defined the constructor of our

domain predicate, this means that the sequence (ra1
, . . . , ram) matches the multipattern

(pj1, . . . , pjm) in the jth equation in the definition of f. Let ∆ be the context of variables

occurring free in pj and y be the sequence of variables in ∆. Since ra matches pj , we

know that there is an instantiation c ∈ ∆ such that

rai ≡ pji[y := c] for 1 � i � m ,

A. Bove and V. Capretta 694

and then dh reduces to f accj (̂c, u) for some instantiation u ∈ Φej [y := ĉ], where ej is

the right-hand side of the jth equation in the definition of f.

Observe that, since rai does not contain calls to the functions in SF, its translation is

straightforward, so we have

r̂ai ≡ p̂ji[y := ĉ] for 1 � i � m .

If we use w to denote the variables in Φej , in type theory we have

ê[z := de] ≡ f(â1[z1 := da1
], . . . , âm[zm := dam], dh)

�∗ f(r̂a1
, . . . , r̂am , dh)

�∗ f(r̂a1
, . . . , r̂am , f accj (̂c, u))

≡ f(p̂j1[y := ĉ], . . . , p̂jm[y := ĉ], f accj(y, w)[y := ĉ, w := u])

≡ f(p̂j1, . . . , p̂jm, f accj(y, w))[y := ĉ, w := u]

� êj[y := ĉ, w := u]

≡ ̂ej[y := c][w := u] ,

where the last reduction step is obtained by the definition of f in type theory.

The last term is one step closer to its normal form than the original one. So, by the

induction hypothesis, we have that the computation of ej[y := c] terminates and gives,

as a result, the term rej [y:=c] such that

̂rej [y:=c] = ̂ej[y := c][w := u] .

Due to the exclusivity of the patterns defining f, we know that e reduces to ej[y := c]

in FP. Concretely, we have

e ≡ f(a1, . . . , am) �∗ f(pj1, . . . , pjm)[y := c] � ej[y := c] .

If we put both results together, we know that the computation of e terminates with

result re ≡ rej [y:=c] such that

r̂e ≡ ̂rej [y:=c] = ̂ej[y := c][w := u] = ê[z := de] ,

as required by the statement.

— If e ≡ (a1 a2), we proceed as in the third case. Hence, we have

Φe ≡ Φa1
; Φa2

d ≡ da1
, da2

with da1
∈ Φa1

and da2
∈ Φa2

. By the induction hypothesis (second condition in the

lexicographic order), the computation of a1 and a2 terminates with results ra1
and ra2

such that

r̂a1
= â1[z1 := da1

] r̂a2
= â2[z2 := da2

] .

Therefore, the evaluation of (a1 a2) also terminates (remember that the notation (f a)

is used only if f is a total function, hence it is guaranteed to terminate for every

input and can be translated in a straightforward way into type theory) with result

re ≡ (ra1
ra2

), so

r̂e ≡ ̂(ra1
ra2

) = (â1[z1 := da1
] â2[z2 := da2

]) ≡ ê[z := d] .

Modelling general recursion in type theory 695

— If e ≡ [x]b, we have two cases, according to whether Φb is empty or not.

If Φb ≡ (), we also have Φe ≡ (), and the statement is trivially true (the λ-abstraction

is directly translated into type theory):

ê ≡ [x]b̂ ≡ [̂x]b .

If Φb is non-empty, the sequence of variables z in Φe contains only one element.

Concretely,

Φe ≡ H ∈ (x ∈ σ̂)ΣΦb z ≡ H de ≡ D ∈ (x ∈ σ̂)ΣΦb .

Recall that here ê ≡ [x]b̂[y := (π H(x))], where y are the variables in Φb.

The computation of e terminates if and only if the computation of b terminates. By

the induction hypothesis (second condition in the lexicographic order), we have that,

if there is an instantiation db ∈ Φb, the computation of b terminates with a result rb
such that

r̂b = b̂[y := db] .

Observe that (π D(x)), that is, the tuple of projections of D(x), is an instantiation of

Φb, so we can use (π D(x)) as our db. Then, the computation of b terminates and

r̂b = b̂[y := (π D(x))].

Therefore, the computation of e terminates with result re ≡ [x]rb, so

r̂e ≡ ̂[x]rb

≡ [x]r̂b

= [x]b̂[y := (π D(x))]

≡ ([x]b̂[y := (π H(x))])[H := D]

≡ ê[H := D] .

In particular, if we apply the lemma to a term obtained by the application of a general

recursive function to some values, we obtain a result stating that our translation of a

general recursive function computes the same function as the original one.

In the rest of this paper, when we say that an expression is defined, we will mean that

its computation terminates with a result (as described above).

Theorem 1. Let f : σ1, . . . , σm ⇒ τ be a general recursive function in FP. Let 〈fAcc, f〉 be

its translation into type theory. Then, for every sequence of values v1 : σ1, . . . , vm : σm in

FP, we have

if fAcc(v̂1, . . . , v̂m) is provable then f is defined on the inputs v1, . . . , vm

and, if dh ∈ fAcc(v̂1, . . . , v̂m) is a closed proof, then

f(v̂1, . . . , v̂m, dh) = ̂f(v1, . . . , vm) .

Proof. The proof is immediate by applying the previous lemma to e ≡ f(v1, . . . , vm).

Observe that since v1, . . . , vm are values, that is, closed normal forms, they do not generate

A. Bove and V. Capretta 696

any termination condition in the translation, and hence the instantiation d ∈ Φe of the

lemma is simply the proof dh.

The only unsatisfactory restriction to the power of Theorem 1 is that the inverse of the

first part is not always true. It may happen that the computation of f(v1, . . . , vm) terminates

without fAcc(v̂1, . . . , v̂m) being provable. This bars us from stating that the translation of

a functional program defines exactly the same function as the original one. We know

that this unfortunate state of affairs is caused by the overly restrictive translation of

λ-abstractions, thus we can obtain the full result if we restrict recursive definitions so that

λ-abstractions are not used.

Lemma 2. Let e : τ be a valid term in FP with respect to Γ and SF. If e does not

contain any λ-abstraction and e is defined (that is, its computation terminates with a

result), then there is a sequence of instantiations de ∈ Φe.

Proof. We use induction on the pair (l, e) where l is the length of the trace of the

computation of e. Again, the inductive hypothesis is that the lemma is true for all pairs

(l′, e′) < (l, e), where < is the lexicographic order on pairs.

We proceed by cases on the structure of e:

— If e = x is a variable or e ≡ g ∈ F is a structurally recursive function, then Φe ≡ ()

and there is nothing to prove.

— If e ≡ c(a1, . . . , ao), then Φe ≡ Φa1
; . . . ; Φao . The induction hypothesis (second condition

in the lexicographic order) states that there is an instantiation dai of Φai , for 1 � i � o.

By putting these instantiations together, we obtain an instantiation de ≡ da1
, . . . , dao of

Φe.

— If e ≡ f(a1, . . . , am), then Φe ≡ Φa1
; . . . ; Φam ; h ∈ fAcc(â1, . . . , âm). By the induction

hypothesis (second condition in the lexicographic order), there are instantiations

of all the translation contexts Φa1
, . . . ,Φam . Thus, we just need to find a proof of

fAcc(â1, . . . , âm). By hypothesis, e is defined, so the sequence (a1, . . . , am) must match

one (and only one, by the exclusivity of the patterns) of the multipatterns in the

recursive equations that define f. Let us say that the input matches the multipattern

(pj1, . . . , pjm) in the jth equation of f. This means that if y are the free variables

occurring in the multipattern pj , there exists an instantiation [y := c] of those variables

such that ai �∗ pji[y := c], for 1 � i � m. So the first few steps in the computation of

e are

e ≡ f(a1, . . . , am) �∗ f(pj1, . . . , pjm)[y := c] � ej[y := c]

where ej is the right-hand side of the jth equation in the definition of f.

By the induction hypothesis (first condition in the lexicographic order), there are

instantiations u ∈ Φej [y:=c], and, therefore, we obtain the desired proof by

dh = f accj (̂c, u) .

— If e ≡ (a1 a2), then Φe ≡ Φa1
; Φa2

. This case is similar to the second case.

Since there are no λ-abstractions in e, we have completed all the possible cases and the

statement is proved.

Modelling general recursion in type theory 697

Theorem 2. Let f : σ1, . . . , σm ⇒ τ be a general recursive function in FP such that no

λ-abstraction occurs in the right-hand sides of the equations defining f. Let 〈fAcc, f〉 be

its translation into type theory. Then, for any values v1 : σ1, . . . , vm : σm in FP, we have

fAcc(v̂1, . . . , v̂m) is provable ⇐⇒ f is defined on the inputs v1, . . . , vm .

Proof. One direction has already been proved in Theorem 1. The other direction follows

from Lemma 2 by noticing that no λ-abstraction can be introduced by the computation

rules of FP.

Theorems 1 and 2 extend in the natural way to mutually recursive functions.

7. Guarded equations and case expressions

We have so far examined a very simple functional language FP. In this section, we

consider two possible extensions that make the language more expressive, but for which

our translation method still works, albeit with some modifications. First, we consider

guarded expressions in the equations that define a recursive function. Second, we extend

the definition of valid terms to consider also case analysis on a term of an inductive data

type.

The most dramatic change in the translation into type theory brought about by these

extensions is that a single recursive equation in the definition of a function f may no longer

translate to a single constructor for fAcc. A guarded equation generates one constructor

for each guard. A case expression may also generate several constructors, one for each

of its cases. Therefore, when we translate a term e in the right-hand side of an equation

in the definition of f, we no longer obtain a single context extension Φe and a single

translated expression ê, but a finite set of pairs 〈Φe, ê〉.
The proofs of Theorems 1 and 2 are still valid with slight changes to account for the

translation of guarded equations and multiple translations of equations, and with extra

cases in the secondary inductions because of the addition of case expressions as valid

terms.

7.1. Guarded equations

In functional programming, guarded equations are often allowed in recursive definitions.

That is, equations of the following form are quite common when defining a function:

f(p1, . . . , pm) =




e1 if c1

...

er if cr .

To support guarded equations, we should extend the set of types of FP with a

built-in boolean type. Then, if Y is the set of pattern variables of the equation together

with their types, the conditions c1, . . . , cr should be valid terms of boolean type with

respect to Y and {f : σ1, . . . , σm ⇒ τ}. Hence, they can contain recursive calls to f. To

simplify the translation, we require that the boolean expressions are exclusive. This is

A. Bove and V. Capretta 698

not really a very strong restriction since we could define c′
1 ≡ c1 and, for 2 � s � r,

c′
s ≡ cs ∧ ¬cs−1 ∧ · · · ∧ ¬c1, and then replace the above equation with a similar one that

uses the conditional expressions c′ instead, where ∧ and ¬ are the boolean operators for

conjunction and negation, respectively.

Observe that a guarded equation can be seen as r equations of the form

f(p1, . . . , pm) = e1 if c1

...

f(p1, . . . , pm) = er if cr .

Given a tuple of arguments (a1, . . . , am) matching the pattern (p1, . . . , pm), only the

equation (if any) whose guard is satisfied can be used to compute f(a1, . . . , am). Remember

that because of the exclusivity of the guards, at most one of the conditions c1, . . . , cr
evaluates to true and hence, it is still the case that at most one equation can be applied

to compute f(a1, . . . , am).

In the following we assume that all guarded equations have only one case determined

by one condition. Then the general form of a guarded equation is

f(p1, . . . , pm) = e if c .

Let this equation be the ith equation in the definition of f and let Γ be the type-theoretic

context of the pattern variables in the equation.

Since c is a valid term of boolean type, we use Definition 5 for the translation of c into

type theory. Notice that c might contain calls to the function f, and hence we also need to

associate a context of assumptions to the translation of c. By means of Definition 5, we

associate a context extension Φc and a type-theoretic term ĉ with the boolean expression

c. Recall that the extension Φc is such that the context Γ; Φc contains the necessary

assumptions to make ĉ a valid type-theoretic expression.

Similarly, we obtain the context extension Φe and the translation ê of e.

We change the definition of the constructor of fAcc associated with this equation by

including the translation of c:

f acci ∈ (Γ; Φc; q ∈ ĉ = true; Φe)fAcc(p̂1, . . . , p̂m)

where = is the propositional identity in type theory and true is the type-theoretic version

of the boolean value true. Observe that this constructor can only be used to construct a

proof of fAcc(a), for an input a, when the term ĉ is true for a.

The equation of f associated with the constructor f acci is

f(p̂1, . . . , p̂m, f acci(y, x, q, z)) = ê

where y, x and z are the sequences of variables assumed in Γ, Φc and Φe, respectively,

and q is a fresh variable of type (̂c = true).

Modelling general recursion in type theory 699

We conclude this subsection with an example that uses guarded equations: McCarthy’s

f91 function (Manna and McCarthy 1970). Here is its definition:

fix f 91 : Nat ⇒ Nat

f 91(n) = n − 10 if n > 100

f 91(n) = f 91(f 91(n + 11)) if n � 100

where – is the subtraction operation over natural numbers, and <= and > are inequalities

over N defined in the usual way. The function f_91 computes the number 91 for inputs

that are less than or equal to 101 and for other inputs n, it computes the value n − 10.

Following our method for guarded equations, we define f91Acc and f91 simultaneously

as follows:

f91Acc ∈ (n ∈ N)Set

f91acc>100 ∈ (n ∈ N; q ∈ (n > 100 = true))f91Acc(n)

f91acc�100 ∈ (n ∈ N; q ∈ (n � 100 = true); h1 ∈ f91Acc(n + 11);

h2 ∈ f91Acc(f91(n + 11, h1)))f91Acc(n)

f91 ∈ (n ∈ N; f91Acc(n))N

f91(n, f91acc>100(n, q)) = n − 10

f91(n, f91acc�100(n, q, h1, h2)) = f91(f91(n + 11, h1), h2) .

7.2. Case expressions

To allow case analysis on a term of an inductive data type, we extend the definition

of valid terms with respect to the set of free variables X and the set of functions SF
(Definition 4) and add the following item:

— Let t be a valid term of an inductive data type τ′. Let p1, . . . , pv be exclusive patterns

of type τ′ and let Ys be the set of pattern variables in ps together with their types, for

0 � v and 0 � s � v. Finally, let e1, . . . , ev be valid terms of type τ with respect to

(X ∪ Y1), . . . , (X ∪ Yv), respectively, and SF. Then, the case expression

Cases t of




p1 �→ e1

...

pv �→ ev

is a valid term of type τ.

Notice that we do not require the patterns in a case expression to be exhaustive. This is

consistent with the fact that we allow partiality in the definitions. We could also drop the

requirement that the patterns should be exclusive and just say that, in a case expression, the

first matching pattern is used, which is usually done in functional programming. However,

this makes the semantics of case expressions depend on the order of the patterns and it

complicates their interpretation in type theory. Requiring that the patterns are mutually

exclusive does not seriously limit the expressiveness of the definitions.

Case expressions are computed by pattern matching. If t : τ′ matches the case pattern

ps, that is, t �∗ ps[y := a] where y are the pattern variables in ps, for some s, then the

A. Bove and V. Capretta 700

computation rule is

Cases t of




p1 �→ e1

...

pv �→ ev

� es[y := a].

If t does not reduce to an instance of any of the patterns, it is not possible to reduce the

case expression any further.

Case expressions might impose a need for several constructors associated with an

equation. The reason is that each branch of a case expression must be treated separately

since it contributes to the type of the corresponding constructor in a different way.

We illustrate this point with the quicksort algorithm, which we will now present in a

slightly different way:

fix quicksort : List Nat ⇒ List Nat

quicksort(xs) =

Cases xs of




nil �→ nil

cons(x, xs′) �→ quicksort(filter (< x) xs′) ++

cons(x, quicksort(filter (>= x) xs′)) .

It is easy to see that, from the computational point of view, this version of quicksort

is equivalent to the Haskell version that we presented in Section 3. It is logical to expect

a similar domain predicate for both versions of the algorithm. We hope that by now it is

clear that the two branches in the case analysis should impose different constraints to the

domain predicate, despite both branches belonging to the same equation in the definition

of quicksort. Concretely, the first branch indicates that quicksort terminates on the

empty list, while the second branch tells us that we can only establish the termination of

quicksort on a non-empty list if we have proofs that quicksort terminates on the lists

on which we perform the recursive calls.

However, not all case expressions introduce multiple constructors. Some case expres-

sions, which we call safe, can be directly translated into type theory as case expressions.

Safe case expressions are such that none of their branches introduce partiality, hence they

can be translated straightforwardly into type theory without further analysis. Note that

the expression on which we perform case analysis might still introduce partiality.

Since a single equation in f may now be associated with several constructors of fAcc

and, consequently, with several equations of f , we need to associate a sequence Pe(Γ) of

pairs 〈Φe, ê〉 of context extensions Φe and type-theoretic terms ê with the right-hand side

e of the equation, where Γ is the usual type-theoretic context for the pattern variables of

the equation.

The translation strictly follows the one given in Section 5 except that it has an extra

case for case expressions, and it deals with a list of pairs 〈context extension, term〉 instead

of a single one. Hence, when using the recursive translations of the subterms, we need to

combine every element of every recursive call in all possible ways. Recall that since each

context extension extends Γ, we should only introduce fresh variables in them.

Modelling general recursion in type theory 701

Definition 6. Given a valid term e, we define Pe(Γ) by recursion on the structure of e.

We use 〈Φe, ê〉 to denote a generic element of Pe(Γ), and #Pe to denote the number of

elements in Pe(Γ).

e ≡ z: If the expression e is a variable, then Pe(Γ) ≡ {〈(), z〉}.

e ≡ g: If e is one of the functions g in F, then Pe(Γ) ≡ {〈(), ĝ〉}.

e ≡ c(a1, . . . , ao): First we determine Pa1
(Γ), . . . ,Pao (Γ) by structural recursion, and then

combine these sequences into the definition of Pe(Γ). Formally, we have

Pe(Γ) ≡ {〈Φa1
; . . . ; Φao , ĉ(â1, . . . , âo)〉 | 〈Φai , âi〉 ∈ Pai (Γ), 1 � i � o} .

e ≡ f(a1, . . . , am): Again we first determine Pa1
(Γ), . . . , Pam (Γ) by structural recursion,

and then combine these sequences into the definition of Pe(Γ). Recall that we have to

add the assumption corresponding to the recursive call f(a1, . . . , am). Hence, we have

Pe(Γ) ≡ {〈Φa1
; . . . ; Φam ; h ∈ fAcc(â1, . . . , âm), f(â1, . . . , âm, h)〉 |
〈Φai , âi〉 ∈ Pai (Γ), 1 � i � m}.

e ≡ (a1 a2): This case is treated similarly to the previous two cases:

Pe(Γ) ≡ {〈Φa1
; Φa2

, â1(â2)〉 | 〈Φa1
, â1〉 ∈ Pa1

(Γ), 〈Φa2
, â2〉 ∈ Pa2

(Γ)} .

e ≡ [z]b: Let σ be the type of z. We first calculate Pb(Γ; z ∈ σ̂) recursively.

If Pb(Γ; z ∈ σ̂) = {〈(), b̂〉}, that is, if Pb(Γ; z ∈ σ̂) contains only one pair and the

context extension in that pair is empty, then

Pb(Γ) ≡ {〈(), [z] b̂〉} .

Otherwise, let Pb(Γ; z ∈ σ̂) = {〈Φb1, b̂1〉, . . . , 〈Φb#Pb
, b̂#Pb

〉}. The assumption generated

by e must be the universal quantification over z of all the assumptions for b̂. Let yΦbi

be the variables in Φbi, for 1 � i � #Pb. We define

Pe(Γ) ≡ {〈H ∈ (z ∈ σ̂) ΣΦb1 + . . . + ΣΦb#Pb
, ê〉}

with

ê ≡ [z]Cases H(z) of




in1(〈yΦb1
〉) �→ b̂1

...

in#Pb
(〈yΦb#Pb

〉) �→ b̂#Pb
.

If #Pb = 1, we do not need to construct a disjoint union type. Hence,

Pe(Γ) ≡ {〈H ∈ (z ∈ σ̂) ΣΦb, ê〉} with ê ≡ [z]b̂[yΦb
:= (π H(z))] .

If Φb contains only one assumption, we do not need to construct a Σ-type. Let

Φb ≡ yΦb
∈ α, and we simply have

Pe(Γ) ≡ {〈H ∈ (z ∈ σ̂)α, [z]b̂[yΦb
:= H(z)]〉} .

In the examples, we always use the simplest possible option.

A. Bove and V. Capretta 702

a ≡ Cases b of




p1 �→ a1

...

pv �→ av

: First let us consider the translation of patterns. Variables,

constructors and constructor applications are translated into type theory in a straight-

forward way, without generating new termination conditions. Hence, the translation

of a pattern p is direct and Φp(Γ) is just {〈(), p̂〉}.
If none of the different branches of the case expression contain recursive calls or

introduce partiality, we can give a straightforward translation. We call such case

expressions safe, and translate them directly as case expressions in type theory.

Formally, a case expression

Cases b of




p1 �→ a1

...

pv �→ av

is safe if the patterns p1, . . . , pv are exclusive and exhaustive and Pas (Γ) = {〈(), âs〉},
for 0 � s � v.

For a safe case expression we define

Pe(Γ) = {〈Φ, ê〉 | 〈Φ, b̂〉 ∈ Pb(Γ)} with ê = Cases b̂ of




p̂1 �→ â1

...

p̂v �→ âv .

If the case expression is not safe, each of the different branches imposes the need for

a different constructor. Let ys be the variables introduced by the pattern ps and let σs
be the types of those variables. We assume that the variables ys are fresh with respect

to Γ.

Let us use Γs to denote (ys ∈ σ̂s). As we said earlier, each branch in the case expression

imposes the need for at least one different constructor. Notice that each as may

impose a need for several constructors, namely #Pas . Then, the number of constructors

corresponding to the sth branch is also #Pas . The constructors associated with the sth

branch should assume the variables introduced in the branch, that is, Γs. In addition,

to ensure that these constructors are used only when we are inside the branch s,

they should also assume qs ∈ b̂ = p̂s, where qs is a fresh variable name for each

s. The expression b might also impose a need for several constructors, and thus it

might contribute to the type of the different constructors. Hence, we should combine

the elements in Pb(Γ) and in Pas (Γ; Γs) in all possible ways. Formally, we determine

Pb(Γ),Pa1
(Γ; Γ1), . . . , Pav (Γ; Γv) by structural recursion, and then we define

Pe(Γ) ≡ {〈Φb; Γs; qs ∈ (b̂ = p̂s); Φas , âs〉 |
〈Φb, b̂〉 ∈ Pb(Γ), 〈Φas , âs〉 ∈ Pas (Γ; Γs), 1 � s � v} .

This completes the definition of Pe(Γ).

It remains to explain how these changes modify the definition of the constructors of

fAcc and of the equations of f . For the sake of generality, we consider a guarded equation

Modelling general recursion in type theory 703

here. So, let us assume that the ith equation in the definition of f is

f(p1, . . . , pm) = e if c .

Using the definition presented above, we determine Pc(Γ) and Pe(Γ) for Γ the usual

type-theoretic context of pattern variables. To define the constructors of fAcc and the

equations of f , we should combine the elements in Pc(Γ) and Pe(Γ) in all possible ways.

Let 〈Φcr, ĉr〉 be the rth element of Pc(Γ) and 〈Φel , êl〉 be the lth element of Pe(Γ). Then,

the rlth constructor of fAcc corresponding to the ith equation is

faccirl ∈ (Γ; Φcr; qr ∈ (̂cr = true); Φel)fAcc(p̂1, . . . , p̂m) .

If the corresponding equation is a non-conditional equation, then Pc(Γ) is empty and

the assumptions Φcr ; qr ∈ (tcr = true) are absent from the constructor. The presence or

not of these premises is the only difference between the constructors associated with a

conditional equation and the constructors associated with a non-conditional equation.

The equation of f corresponding to the above constructor is

f(p̂1, . . . , p̂m, faccirl(y, xΦcr
, qr, zΦel

)) = êl

where y, xΦcr
and zΦel

are the sequences of variables assumed in Γ,Φcr and Φel , respectively,

and qr is a variable of type (̂cr = true).

This completes the type-theoretic definition of fAcc and f for the extension of our

method with guarded equations and case expressions.

Following this description, the translation of the quicksort algorithm presented with

a case expression is as follows:

qsAcc ∈ (xs ∈ List(N))Set

qs accnil ∈ (xs ∈ List(N); q ∈ (xs = nil))qsAcc(xs)

qs acccons ∈ (xs ∈ List(N); x ∈ N; xs′ ∈ List(N); q ∈ (xs = cons(x, xs′));

h1 ∈ qsAcc(filter((≺ x), xs′)); h2 ∈ qsAcc(filter((� x), xs′))

)qsAcc(xs)

quicksort ∈ (xs ∈ List(N); qsAcc(xs))List(N)

quicksort(xs, qs accnil(xs, q)) = nil

quicksort(xs, qs acccons(xs, x, xs
′, q, h1, h2)) =

quicksort(filter((≺ x), xs′), h1) ++ cons(x, quicksort(filter((� x), xs′), h2)) .

8. Conclusions

We have described a method for translating a vast class of algorithms from functional

programming into type theory. We have defined the class FP of algorithms to which

the method applies. This class is large enough to allow the implementation of all partial

recursive functions. We have given a formal definition of the translation of the programs

in FP into type theory. In addition, we have proved that the translation is sound with

respect to strict semantics.

Although we do not focus on formal verification in this paper, we should mention that

our method also simplifies the task of proving properties about the defined algorithms.

A. Bove and V. Capretta 704

Since our method succeeds in separating the logical part from the computational part,

the resulting definitions are simple and the formal verification of their properties becomes

dramatically easier. Readers interested in this aspect should refer to Bove (1999; 2003).

As a final remark, we would like to point out that given a function f in FP and a

particular input a for the function, the canonical form of the proof of fAcc(â) is a trace

of the computation of f(a). Therefore, the structural complexity of the proofs in fAcc are

proportional to the number of steps in the algorithm.

In a recent work (Bove and Capretta 2004), we explored the formalisation of our

method in an impredicative type theory. To do this, we define a new type of partial

function containing the domain predicate as part of the information in the type. Then,

we translate a function in the functional program as a member of the type of partial

functions, rather than as an instance of the type of total functions as we do in the current

paper. This allows us to lift all the restrictions we imposed on our programs in this paper.

Related work

In recent years, there has been increasing interest in the formalisation of general recursion.

There are a few different approaches to the matter.

Nordström (1988) uses the predicate Acc for that purpose.

One can adopt a set-theoretic approach and view functions as relations. Specifically,

the behaviour of a recursive function can be described by an inductive relation giving

its operational semantics (see, for example, Winskel (1993)). Operational semantics has

been developed in type theory in Bertot et al. (2002) and Zhang et al. (2002). However,

relations do not have any computational content in type theory. The real challenge

consists in representing general recursive programs as elements of some functional type.

Using classical logic, it is possible to extend every partial function to a total one. This

fact is used in Finn et al. (1997) to give a formalisation of partial recursive functions inside

a classical axiomatic logic system. Their implementation associates a domain predicate to

each function, in a way similar to our approach. However, the predicate is not used to

define the function, but just to restrict the scope of the recursive equations. Except for the

translation of case expressions (for which they take the conjunction of all the assumptions

that arise in the different branches of the case expression, instead of considering each

branch in a separate way, as we do), an algorithm is analysed as in our method. Moreover,

they give a similar interpretation when bound variables are present in the right-hand side

of the equations, and they arrive at similar conclusions about the semantics associated

to the formalisation of their programs. In addition, they encounter analogous problems

when using higher order functions in recursive definitions. However, the different settings

in which the two works are formulated give rise to some differences. A function f is

formalised in Finn et al. (1997) with the type that it has in a functional programming

language, without the need for our extra parameter fAcc as part of the type of f . However,

a function f obeys its definition in Finn et al. (1997) provided its arguments can be proved

to be in the domain of the function, which is called DOM′f . Once (and if) the function

has been proved total, one can forget about DOM′f , which is not possible in type theory.

Another important difference is that in Finn et al. (1997), an application (f e) is always

Modelling general recursion in type theory 705

defined since the cases in which (f e) is not defined are considered to return an unspecified

value of the corresponding type. However, this causes some problems since the semantics

they use is not capable of reflecting this distinction, and sometimes one can prove things

like f 0 = 0 when f 0 diverges.

Another similar technique is the extraction of special induction schemes from re-

cursive function definitions (see Walther (1992) and the Recursion analysis section of

Bundy (2001)), which is specified in Hutter (1992) and fully automated in the INKA

theorem prover.

Wiedijk and Zwanenburg (2003) shows how standard classical first-order logic can be

used to reason about partial functions in type theory. The authors prove an equivalence

between a system in which function application requires a proof term certifying that the

argument is in the domain, as in our case, and a simple first-order language without proof

terms in which every function is total.

Dubois and Donzeau-Gouge (1998) takes an approach to the problem similar to ours.

They also formalise an algorithm with a predicate that characterises the domain of the

algorithm and the formalisation of the algorithm itself. However, they consider neither

case expressions nor λ-abstractions as possible expressions, which greatly simplifies the

translation. In addition, they only present the translation for expressions in canonical

form, which also helps in the simplification. The most important difference is their use of

post-conditions. In order to be able to deal with nested recursion without the need for

simultaneous inductive-recursive definitions, they require that, together with the algorithm,

the user provides a post-condition that characterises the results of the algorithm.

Balaa and Bertot (2000) uses fix-point equations to obtain the desired equalities for

the recursive definitions. However, the solution presented is rather complex and does not

really succeed in separating the actual algorithms and their termination proofs. Balaa

and Bertot (2002) again uses fix-points to approach the problem, but this new solution

produces nicer formalisations, and, although one has to provide proofs concerning the

well-foundedness of the recursive calls when one defines the algorithms, there is a clear

separation between the algorithms and these proofs. On the other hand, it is not very

clear how their methods can be used to formalise partial or nested recursive algorithms.

Bertot et al. (2002) presents a technique to encode the method we describe in Bove and

Capretta (2001) for partial and nested algorithms in type theories that do not support

Dybjer’s schema for simultaneous inductive-recursive definitions. They do so by combining

the way we define our special-accessibility predicate with the functionals in Balaa and

Bertot (2002).

Some work has been done for simply typed λ-calculus with inductive types where the

termination of recursive functions is ensured by types. Barthe et al. (2004) presents a type-

based system λ̂ that ensures the termination of recursive functions through the notion

of stage, which is used to restrict the arguments of recursive calls. In Barthe et al. (2004),

the system λ̂ is proved to be strongly normalising and to satisfy the property of subject

reduction. Although this system seems a good candidate for use in proof-assistants based

on type theory, some work still needs to be done before this can be actually carried out

in practise, namely, the scaling of λ̂ up to dependent types and the development of type

checking and type inference algorithms for the system.

A. Bove and V. Capretta 706

Abel (2004) proceeds along the same lines, but with some differences in the type system.

The core language in Abel (2004), and the properties of the system presented there, are

basically the same as in Barthe et al. (2004). In addition, in Abel (2004), a type checking

algorithm is given for the system. The key concept in this work is the use of decorated type

variables, which play a similar role to stages in Barthe et al. (2004). In this case also, the

system needs to be scaled up to dependent types before it can be used in proof-assistants

for type theory.

Another relevant publication that treats the problem of formalising partial functions

and proving termination is McBride and McKinna (2004).

Acknowledgements

We want to thank Yves Bertot and Björn von Sydow for carefully reading and commenting

on previous versions of this paper. We are grateful to Jörgen Gustavsson for fruitful

discussions on the semantics of FP. Finally, we thank an anonymous referee for his/her

valuable comments.

References

Abel, A. (2004) Termination checking with types. In: Fix Points in Computer Science 2003 (FICS03).

Special issue of Theoretical Informatics and Applications (RAIRO).

Aczel, P. (1977) An Introduction to Inductive Definitions. In: Barwise, J. (ed.) Handbook of

Mathematical Logic, North-Holland Publishing Company 739–782.

Balaa, A. and Bertot, Y. (2000) Fix-point equations for well-founded recursion in type theory. In:

Harrison, J. and Aagaard, M. (eds.) Theorem Proving in Higher Order Logics: 13th International

Conference, TPHOLs 2000. Springer-Verlag Lecture Notes in Computer Science 1869 1–16.

Balaa, A. and Bertot, Y. (2002) Fonctions récursives générales par itération en théorie des types.

Journées Francophones des Langages Applicatifs JFLA02, INRIA.

Barendregt, H. and Geuvers, H. (2001) Proof-assistants using dependent type systems. In: Robinson,

A. and Voronkov, A. (eds.) Handbook of Automated Reasoning, Chapter 18, Elsevier 1149–1238.

Barendregt, H. P. (1992) Lambda calculi with types. In: Abramsky, S., Gabbay, D.M. and Maibaum,

T. S. E. (eds.) Handbook of Logic in Computer Science 2, Oxford University Press, 117–309.

Barthe, G., Frade, M., Giménez, E., Pinto, L. and Uustalu, T. (2004) Type-based termination of

recursive definitions. Mathematical Structures in Computer Science 14 (1) 97–141.

Bell, J. L. and Machover, M. (1977) A course in mathematical logic, North-Holland.

Bertot, Y., Capretta, V. and Barman, K.D. (2002) Type-theoretic functional semantics. In: Carreno,

V.A., Munoz, C.A. and Tahar, S. (eds.) Theorem Proving in Higher Order Logics: 15th

International Conference, TPHOLs 2002. Springer-Verlag Lecture Notes in Computer Science

2410 83–97.

Bove, A. (1999) Programming in Martin-Löf type theory: Unification – A non-trivial example,

Licentiate Thesis of the Department of Computer Science, Chalmers University of Technology.

(Available at http://www.cs.chalmers.se/∼bove/Papers/lic thesis.ps.gz.)

Bove, A. (2001) Simple general recursion in type theory. Nordic Journal of Computing 8 (1) 22–42.

Bove, A. (2002a) General Recursion in Type Theory, Ph.D. thesis, Chalmers University of

Technology, Department of Computing Science. (Available at http://www.cs.chalmers.se/

∼bove/Papers/phd thesis.ps.gz.)

Modelling general recursion in type theory 707

Bove, A. (2002b) Mutual general recursion in type theory. Technical Report, Chalmers University of

Technology. (Available at http://www.cs.chalmers.se/∼bove/Papers/mutual rec.ps.gz.)

Bove, A. (2003) General recursion in type theory. In: Geuvers, H. and Wiedijk, F. (eds.) Types for

Proofs and Programs, International Workshop TYPES 2002, The Netherlands. Springer-Verlag

Lecture Notes in Computer Science 2646 39–58.

Bove, A. and Capretta, V. (2001) Nested general recursion and partiality in type theory. In: Boulton,

R. J. and Jackson, P. B. (eds.) Theorem Proving in Higher Order Logics: 14th International

Conference, TPHOLs 2001. Springer-Verlag Lecture Notes in Computer Science 2152 121–135.

Bove, A. and Capretta, V. (2005) Recursive functions with higher order domains. In: Urzyczyn, P.

(ed.) Typed Lambda Calculi and Applications. 7th International Conference, TLCA 2005, Nara,

Japan. Springer-Verlag Lecture Notes in Computer Science 3461 116–130.

Bundy, A. (2001) The automation of proof by mathematical induction. In: Robinson, A. and

Voronkov, A. (eds.) Handbook of Automated Reasoning 1, Elsevier Science and MIT Press 845–

912.

Capretta, V. (2002) Abstraction and Computation, Ph.D thesis, Computing Science Institute,

University of Nijmegen.

Carreno, V.A., Munoz, C.A. and Tahar, S. (eds.) (2002) Theorem Proving in Higher Order Logics:

15th International Conference, TPHOLs 2002. Springer-Verlag Lecture Notes in Computer Science

2410.

Coquand, T. and Huet, G. (1988) The Calculus of Constructions. Information and Computation 76

95–120.

Coquand, T., Nordström, B., Smith, J.M. and von Sydow, B. (1994) Type theory and programming.

EATCS 52.

Coquand, T. and Paulin, C. (1990) Inductively defined types. In: Martin-Löf, P. (ed.) Proceedings of

Colog ’88. Springer-Verlag Lecture Notes in Computer Science 417.

de Mast, P., Jansen, J.-M., Bruin, D., Fokker, J., Koopman, P., Smetsers, S., van Eekelen, M. and

Plasmeijer, R. (2001) Functional Programming in Clean, Computing Science Institute, University

of Nijmegen.

Dubois, C. and Donzeau-Gouge, V. V. (1998) A step towards the mechanization of partial functions:

Domains as inductive predicates. In: Kerber, M. (ed.) CADE-15, The 15th International Conference

on Automated Deduction. WORKSHOP Mechanization of Partial Functions 53–62.

Dybjer, P. (2000) A general formulation of simultaneous inductive-recursive definitions in type

theory. Journal of Symbolic Logic 65 (2).

Finn, S., Fourman, M. and Longley, J. (1997) Partial functions in a total setting. Journal of Automated

Reasoning 18 (1) 85–104.

Hagino, T. (1987) A Categorical Programming Language, Ph.D. thesis, University of Edinburgh.

Howard, W.A. (1980) The formulae-as-types notion of construction. In: Seldin, J. P. and

Hindley, J. R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,

Academic Press 479–490.

Hutter, D. (1992) Automatisierung der vollständigen Induktion, Oldenbourg Verlag.

Jones, S. P., (ed.) (2003) Haskell 98 Language and Libraries. The Revised Report, Cambridge

University Press.

Manna, Z. and McCarthy, J. (1970) Properties of programs and partial function logic. Machine

Intelligence 5 27–37.

Martin-Löf, P. (1984) Intuitionistic Type Theory, Bibliopolis, Napoli.

McBride, C. and McKinna, J. (2004) The view from the left. Journal of Functional Programming 14

(1) 69–111.

A. Bove and V. Capretta 708

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1997) The Definition of Standard ML, MIT

Press.

Nordström, B. (1988) Terminating General Recursion. BIT 28 (3) 605–619.

Nordström, B., Petersson, K. and Smith, J.M. (1990) Programming in Martin-Löf ’s Type Theory. An

Introduction, Oxford University Press.

Paulson, L. C. (1986) Proving Termination of Normalization Functions for Conditional Expressions.

Journal of Automated Reasoning 2 63–74.

Pfenning, F. and Paulin-Mohring, C. (1990) Inductively defined types in the Calculus of

Constructions. In: Proceedings of Mathematical Foundations of Programming Semantics.

Springer-Verlag Lecture Notes in Computer Science 442. (Also, Technical report CMU-CS-89-

209.)

Phillips, J. C. C. (1992) Recursion theory. Handbook of Logic in Computer Science 1 (Background:

Mathematical Structures), Oxford University Press 79–187.

Sørensen, M.H. B. and Urzyczyn, P. (1998) Lectures on the Curry–Howard isomorphism. Available

as DIKU Rapport 98/14.

Walther, C. (1992) Computing induction axioms. In: International Conference on Logic

Programming and Automated Reasoning, LPAR 92. Springer-Verlag Lecture Notes in Artificial

Intelligence 624.

Werner, B. (1994) Méta-théorie du Calcul des Constructions Inductives, Ph.D. thesis, Université Paris

7.

Wiedijk, F. and Zwanenburg, J. (2003) First order logic with domain conditions. In: Theorem Proving

in Higher Order Logics, TPHOLs 2003. Springer-Verlag Lecture Notes in Computer Science 2758

221–237.

Winskel, G. (1993) The formal semantics of programming languages: An introduction, The MIT Press.

Zhang, X., Munro, M., Harman, M. and Hu, L. (2002) Weakest precondition for general recursive

programs formalized in Coq. In: Carreno, V.A., Munoz, C.A. and Tahar, S. (eds.) Theorem

Proving in Higher Order Logics: 15th International Conference, TPHOLs 2002. Springer-Verlag

Lecture Notes in Computer Science 2410 332–347.

