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Abstract. Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong
assumptions of independence among features, callednaive Bayes, is competitive with state-of-the-art classifiers
such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform
even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning
Bayesian networks. These networks are factored representations of probability distributions that generalize the
naive Bayesian classifier and explicitly represent statements about independence. Among these approaches we
single out a method we callTree Augmented Naive Bayes(TAN), which outperforms naive Bayes, yet at the same
time maintains the computational simplicity (no search involved) and robustness that characterize naive Bayes.
We experimentally tested these approaches, using problems from the University of California at Irvine repository,
and compared them to C4.5, naive Bayes, and wrapper methods for feature selection.
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1. Introduction

Classification is a basic task in data analysis and pattern recognition that requires the
construction of aclassifier, that is, a function that assigns aclasslabel to instances described
by a set ofattributes. The induction of classifiers from data sets of preclassified instances
is a central problem in machine learning. Numerous approaches to this problem are based
on various functional representations such as decision trees, decision lists, neural networks,
decision graphs, and rules.

One of the most effective classifiers, in the sense that its predictive performance is com-
petitive with state-of-the-art classifiers, is the so-callednaive Bayesianclassifier described,
for example, by Duda and Hart (1973) and by Langley et al. (1992). This classifier learns
from training data the conditional probability of each attributeAi given the class labelC.
Classification is then done by applying Bayes rule to compute the probability ofC given
the particular instance ofA1, . . . , An, and then predicting the class with the highest poste-
rior probability. This computation is rendered feasible by making a strong independence
assumption: all the attributesAi are conditionally independent given the value of the class
C. By independence we mean probabilistic independence, that is,A is independent ofB

* This paper is an extended version of Geiger (1992) and Friedman and Goldszmidt (1996a).
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Figure 1. The structure of the naive Bayes network.

givenC wheneverPr(A|B,C) = Pr(A|C) for all possible values ofA,B andC, whenever
Pr(C) > 0.

The performance of naive Bayes is somewhat surprising, since the above assumption is
clearly unrealistic. Consider, for example, a classifier for assessing the risk in loan appli-
cations: it seems counterintuitive to ignore the correlations between age, education level,
and income. This example raises the following question: can we improve the performance
of naive Bayesian classifiers by avoiding unwarranted (by the data) assumptions about
independence?

In order to tackle this problem effectively, we need an appropriate language and efficient
machinery to represent and manipulate independence assertions. Both are provided by
Bayesian networks(Pearl, 1988). These networks are directed acyclic graphs that allow
efficient and effective representation of the joint probability distribution over a set of random
variables. Each vertex in the graph represents a random variable, and edges represent direct
correlations between the variables. More precisely, the network encodes the following
conditional independence statements: each variable is independent of its nondescendants
in the graph given the state of its parents. These independencies are then exploited to reduce
the number of parameters needed to characterize a probability distribution, and to efficiently
compute posterior probabilities given evidence. Probabilistic parameters are encoded in
a set of tables, one for each variable, in the form of local conditional distributions of a
variable given its parents. Using the independence statements encoded in the network, the
joint distribution is uniquely determined by these local conditional distributions.

When represented as a Bayesian network, a naive Bayesian classifier has the simple
structure depicted in Figure 1. This network captures the main assumption behind the naive
Bayesian classifier, namely, that every attribute (every leaf in the network) is independent
from the rest of the attributes, given the state of the class variable (the root in the network).
Since we have the means to represent and manipulate independence assertions, the obvi-
ous question follows: can we induce better classifiers by learning unrestricted Bayesian
networks?

Learning Bayesian networks from data is a rapidly growing field of research that has seen
a great deal of activity in recent years, including work by Buntine (1991, 1996), Cooper and
Herskovits (1992), Friedman and Goldszmidt (1996c), Lam and Bacchus (1994), Hecker-
man (1995), and Heckerman, Geiger, and Chickering (1995). This is a form ofunsupervised
learning, in the sense that the learner does not distinguish the class variable from the attribute
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variables in the data. The objective is to induce a network (or a set of networks) that “best
describes” the probability distribution over the training data. This optimization process is
implemented in practice by using heuristic search techniques to find the best candidate over
the space of possible networks. The search process relies on a scoring function that assesses
the merits of each candidate network.

We start by examining a straightforward application of current Bayesian networks tech-
niques. We learn networks using the score based on theminimum description length(MDL)
principle (Lam & Bacchus, 1994; Suzuki, 1993), and use them for classification. The re-
sults, which are analyzed in Section 3, are mixed: although the learned networks perform
significantly better than naive Bayes on some data sets, they perform worse on others. We
trace the reasons for these results to the definition of the MDL scoring function. Roughly
speaking, the problem is that the MDL score measures the error of the learned Bayesian
network over all the variables in the domain. Minimizing this error, however, does not
necessarily minimize the local error in predicting the class variable given the attributes. We
argue that similar problems will occur with other scoring functions in the literature.

Accordingly, we limit our attention to a class of network structures that are based on the
structure of naive Bayes, requiring that the class variable be a parent of every attribute.
This ensures that, in the learned network, the probabilityPr(C|A1, . . . , An), the main
term determining the classification, will take every attribute into account. Unlike the naive
Bayesian classifier, however, our classifier allows additional edges between attributes that
capture correlations among them. This extension incurs additional computational costs.
While the induction of the naive Bayesian classifier requires only simple bookkeeping, the
induction of Bayesian networks requires searching the space of all possible networks—
that is, the space of all possible combinations of edges. To address this problem, we
examine a restricted form of correlation edges. The resulting method, which we callTree
Augmented Naive Bayes(TAN), approximates the interactions between attributes by using
a tree structure imposed on the naive Bayesian structure. As we show, this approximation
is optimal, in a precise sense; moreover, we can learn TAN classifiers in polynomial time.
This result extends a well-known result by Chow and Liu (1968) (see also Pearl (1988))
for learning tree-structured Bayesian networks. Finally, we also examine a generalization
of these models based on the idea that correlations among attributes may vary according
to the specific instance of the class variable. Thus, instead of one TAN model we have
a collection of networks as the classifier. Interestingly enough, Chow and Liu already
investigated classifiers of this type for recognition of handwritten characters.

After describing these methods, we report the results of an empirical evaluation comparing
them with state-of-the-art machine learning methods. Our experiments show that TAN
maintains the robustness and computational complexity of naive Bayes, and at the same
time displays better accuracy. We compared TAN with C4.5, naive Bayes, andselective
naive Bayes(a wrapper approach to feature subset selection method combined with naive
Bayes), on a set of problems from the University of California at Irvine (UCI) repository
(see Section 4.1). These experiments show that TAN is a significant improvement over
the other three approaches. We obtained similar results with a modified version of Chow’s
and Liu’s original method, which eliminates errors due to variance in the parameters. It is
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interesting that this method, originally proposed three decades ago, is still competitive with
state-of-the-art methods developed since then by the machine learning community.

This paper is organized as follows. In Section 2 we review Bayesian networks and how
to learn them. In Section 3 we examine a straightforward application of learning Bayesian
networks for classification, and show why this approach might yield classifiers that exhibit
poor performance. In Section 4 we examine how to address this problem using extensions
to the naive Bayesian classifier. In Section 5 we describe in detail the experimental setup
and results. In Section 6 we discuss related work and alternative solutions to the problems
we point out in previous sections. We conclude in Section 7. Finally, Appendix A reviews
several concepts from information theory that are relevant to the contents of this paper.

2. Learning Bayesian networks

Consider a finite setU = {X1, . . . , Xn} of discrete random variables where each variable
Xi may take on values from a finite set, denoted byVal(Xi). We use capital letters such
asX,Y, Z for variable names, and lower-case letters such asx, y, z to denote specific
values taken by those variables. Sets of variables are denoted by boldface capital letters
such asX,Y,Z, and assignments of values to the variables in these sets are denoted by
boldface lowercase lettersx, y, z (we useVal(X) in the obvious way). Finally, letP be a
joint probability distribution over the variables inU, and letX,Y,Z be subsets ofU. We
say thatX andY areconditionally independentgivenZ, if for all x ∈ Val(X), y ∈ Val(Y),
z ∈ Val(Z), P (x | z, y) = P (x | z) wheneverP (y, z) > 0.

A Bayesian networkis an annotated directed acyclic graph that encodes a joint probability
distribution over a set of random variablesU. Formally, a Bayesian network forU is a pair
B = 〈G,Θ〉. The first component,G, is a directed acyclic graph whose vertices corre-
spond to the random variablesX1, . . . , Xn, and whose edges represent direct dependencies
between the variables. The graphG encodes independence assumptions: each variableXi

is independent of its nondescendants given its parents inG. The second component of the
pair, namelyΘ, represents the set of parameters that quantifies the network. It contains a
parameterθxi|Πxi = PB(xi|Πxi) for each possible valuexi of Xi, andΠxi of ΠXi , where
ΠXi denotes the set of parents ofXi in G. A Bayesian networkB defines a unique joint
probability distribution overU given by

PB(X1, . . . , Xn) =
n∏
i=1

PB(Xi|ΠXi) =
n∏
i=1

θXi|ΠXi . (1)

We note that one may associate a notion of minimality with the definition of a Bayesian
network, as done by Pearl (1988), yet this association is irrelevant to the material in this
paper.

As an example, letU∗ = {A1, . . . , An, C}, where the variablesA1, . . . , An are the
attributesandC is theclassvariable. Consider a graph structure where the class variable
is the root, that is,ΠC = ∅, and each attribute has the class variable as its unique parent,
namely,ΠAi = {C} for all 1 ≤ i ≤ n. This is the structure depicted in Figure 1. For this
type of graph structure, Equation 1 yieldsPr(A1, . . . , An, C) = Pr(C) ·

∏n
i=1 Pr(Ai|C).
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From the definition of conditional probability, we getPr(C|A1, . . . , An) = α · Pr(C) ·∏n
i=1 Pr(Ai|C), whereα is a normalization constant. This is in fact the definition ofnaive

Bayescommonly found in the literature (Langley et al., 1992).
The problem of learning a Bayesian network can be informally stated as: Given atraining

setD = {u1, . . . , uN} of instances ofU, find a networkB that best matchesD. The
common approach to this problem is to introduce a scoring function that evaluates each
network with respect to the training data, and then to search for the best network according to
this function. In general, this optimization problem is intractable (Chickering, 1995). Yet,
for certain restricted classes of networks, there are efficient algorithms requiring polynomial
time in the number of variables in the network. We indeed take advantage of these efficient
algorithms in Section 4.1, where we propose a particular extension to naive Bayes.

The two main scoring functions commonly used to learn Bayesian networks are the
Bayesian scoringfunction (Cooper & Herskovits, 1992; Heckerman et al., 1995), and the
function based on the principle ofminimal description length(MDL) (Lam & Bacchus,
1994; Suzuki, 1993); see also Friedman and Goldszmidt (1996c) for a more recent account
of this scoring function. These scoring functions are asymptotically equivalent as the sample
size increases; furthermore, they are both asymptotically correct: with probability equal
to one the learned distribution converges to the underlying distribution as the number of
samples increases (Heckerman, 1995; Bouckaert, 1994; Geiger et al., 1996). An in-depth
discussion of the pros and cons of each scoring function is beyond the scope of this paper.
Henceforth, we concentrate on the MDL scoring function.

The MDL principle (Rissanen, 1978) casts learning in terms of data compression. Roughly
speaking, the goal of the learner is to find amodelthat facilitates the shortest description
of the original data. The length of this description takes into account the description of
the model itself and the description of the data using the model. In the context of learning
Bayesian networks, the model is a network. Such a networkB describes a probability dis-
tributionPB over the instances appearing in the data. Using this distribution, we can build
an encoding scheme that assigns shorter code words to more probable instances. According
to the MDL principle, we should choose a networkB such that the combined length of the
network description and the encoded data (with respect toPB) is minimized.

Let B = 〈G,Θ〉 be a Bayesian network, and letD = {u1, . . . , uN} be a training set,
where eachui assigns a value to all the variables inU. The MDL scoring function of a
networkB given a training data setD, writtenMDL(B|D), is given by

MDL(B|D) =
logN

2
|B| − LL(B|D) , (2)

where|B| is the number of parameters in the network. The first term represents the length
of describing the networkB, in that, it counts the bits needed to encode the specific network
B, where1/2 · logN bits are used for each parameter inΘ. The second term is the negation
of the log likelihoodof B givenD:

LL(B|D) =
N∑
i=1

log(PB(ui)) , (3)
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which measures how many bits are needed to describeD based on the probability distribution
PB (see Appendix A). The log likelihood also has a statistical interpretation: the higher
the log likelihood, the closerB is to modeling the probability distribution in the dataD.
Let P̂D(·) be theempirical distributiondefined by frequencies of events inD, namely,
P̂D(A) = 1

N

∑
j 1A(uj) for each eventA ⊆ Val(U), where1A(u) = 1 if u ∈ A and

1A(u) = 0 if u 6∈ A. Applying Equation 1 to the log likelihood and changing the order
of summation yields the well-known decomposition of the log likelihood according to the
structure ofB:

LL(B|D) = N

N∑
i=1

∑
xi ∈ Val(Xi)

Πxi ∈ Val(ΠXi)

P̂D(xi,Πxi) log(θxi|Πxi ) . (4)

It is easy to show that this expression is maximized when

θxi|Πxi = P̂D(xi|Πxi) . (5)

Consequently, if we have two Bayesian networks,B = 〈G,Θ〉 andB′ = 〈G,Θ′〉, that
share the same structureG, and if Θ satisfies Equation 5, thenLL(B|D) ≥ LL(B′|D).
Thus, given a network structure, there is a closed form solution for the parameters that
maximize the log likelihood score, namely, Equation 5. Moreover, since the first term of
Equation 2 does not depend on the choice of parameters, this solution minimizes the MDL
score. This is a crucial observation since it relieves us of searching in the space of Bayesian
networks, and lets us search only in the smaller space of network structures, and then fill in
the parameters by computing the appropriate frequencies from the data. Henceforth, unless
we state otherwise, we will assume that the choice of parameters satisfies Equation 5.

The log likelihood score by itself is not suitable for learning the structure of the network,
since it tends to favorcompletegraph structures in which every variable is connected to every
other variable. This is highly undesirable, since such networks do not provide any useful
representation of the independence assertions in the learned distributions. Moreover, these
networks require an exponential number of parameters, most of which will have extremely
high variance and will lead to poor predictions. Thus, the learned parameters in a maximal
network will perfectly match the training data, but will have poor performance on test data.
This problem, calledoverfitting, is avoided by the MDL score. The first term of the MDL
score (Equation 2), regulates the complexity of networks by penalizing those that contain
many parameters. Thus, the MDL score of a larger network might be worse (larger) than
that of a smaller network, even though the former might match the data better. In practice,
the MDL score regulates the number of parameters learned and helps avoid overfitting of
the training data.

We stress that the MDL score is asymptotically correct. Given a sufficient number of
independent samples, the best MDL-scoring networks will be arbitrarily close to the sampled
distribution.

Regarding the search process, in this paper we will rely on a greedy strategy for the obvious
computational reasons. This procedure starts with the empty network and successively
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applies local operations that maximally improve the score until a local minima is found.
The operations applied by the search procedure include arc addition, arc deletion, and arc
reversal.

3. Bayesian networks as classifiers

Using the method just described, one can induce a Bayesian networkB, that encodes a
distributionPB(A1, . . . , An, C), from a given training set. We can then use the resulting
model so that given a set of attributesa1, . . . , an, the classifier based onB returns the
labelc that maximizes the posterior probabilityPB(c|a1, . . . , an). Note that, by inducing
classifiers in this manner, we are addressing the main concern expressed in the introduction:
we remove the bias introduced by the independence assumptions embedded in the naive
Bayesian classifier.

This approach is justified by the asymptotic correctness of the Bayesian learning pro-
cedure. Given a large data set, the learned network will be a close approximation for the
probability distribution governing the domain (assuming that instances are sampled inde-
pendently from a fixed distribution). Although this argument provides us with a sound
theoretical basis, in practice we may encounter cases where the learning process returns a
network with a relatively good MDL score that performs poorly as a classifier.

To understand the possible discrepancy between good predictive accuracy and good MDL
score, we must re-examine the MDL score. Recall that the log likelihood term in Equation 2
is the one that measures the quality of the learned model, and thatD = {u1, . . . , uN}denotes
the training set. In a classification task, eachui is a tuple of the form〈ai1, . . . , ain, ci〉 that
assigns values to the attributesA1, . . . , An and to the class variableC. We can rewrite the
log likelihood function (Equation 3) as

LL(B|D) =
N∑
i=1

logPB(ci|ai1, . . . , ain) +
N∑
i=1

logPB(ai1, . . . , a
i
n) . (6)

The first term in this equation measures how wellB estimates the probability of the class
given the attributes. The second term measures how wellB estimates the joint distribution
of the attributes. Since the classification is determined byPB(C|A1, . . . , An), only the
first term is related to the score of the network as a classifier (i.e., its predictive accuracy).
Unfortunately, this term is dominated by the second term when there are many attributes;
asn grows larger, the probability of each particular assignment toA1, . . . , An becomes
smaller, since the number of possible assignments grows exponentially inn. Thus, we ex-
pect the terms of the formPB(A1, . . . , An) to yield values closer to zero, and consequently
− logPB(A1, . . . , An) will grow larger. However, at the same time, the conditional prob-
ability of the class will remain more or less the same. This implies that a relatively large
error in the conditional term in Equation 6 may not be reflected in the MDL score. Thus,
using MDL (or other nonspecialized scoring functions) for learning unrestricted Bayesian
networks may result in a poor classifier in cases where there are many attributes. We use the
phrase “unrestricted networks” in the sense that the structure of the graph is not constrained,
as in the case of a naive Bayesian classifier.
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Figure 2. Error curves (top) and scatter plot (bottom) comparing unsupervised Bayesian networks (solid line,
x axis) to naive Bayes (dashed line,y axis). In the error curves, the horizontal axis lists the data sets, which
are sorted so that the curves cross only once, and the vertical axis measures the percentage of test instances that
were misclassified (i.e., prediction errors). Thus, the smaller the value, the better the accuracy. Each data point
is annotated by a 90% confidence interval. In the scatter plot, each point represents a data set, where thex
coordinate of a point is the percentage of misclassifications according to unsupervised Bayesian networks and the
y coordinate is the percentage of misclassifications according to naive Bayes. Thus, points above the diagonal line
correspond to data sets on which unrestricted Bayesian networks perform better, and points below the diagonal
line correspond to data sets on which naive Bayes performs better.

To confirm this hypothesis, we conducted an experiment comparing the classification
accuracy of Bayesian networks learned using the MDL score (i.e., classifiers based on
unrestricted networks) to that of the naive Bayesian classifier. We ran this experiment on
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25 data sets, 23 of which were from the UCI repository (Murphy & Aha, 1995). Section 5
describes in detail the experimental setup, evaluation methods, and results. As the results in
Figure 2 show, the classifier based on unrestricted networks performed significantly better
than naive Bayes on six data sets, but performed significantly worse on six data sets. A quick
examination of the data sets reveals that all the data sets on which unrestricted networks
performed poorly contain more than 15 attributes.

A closer inspection of the networks induced on the two data sets where the unrestricted net-
works performed substantially worse reveals that in these networks the number ofrelevant
attributes influencing the classification is rather small. While these data sets (“soybean-
large” and “satimage”) contain 35 and 36 attributes, respectively, the classifiers induced
relied only on five attributes for the class prediction. We base our definition of relevant
attributes on the notion of aMarkov blanketof a variableX, which consists ofX ’s parents,
X ’s children, and the parents ofX ’s children in a given network structureG (Pearl, 1988).
This set has the property that, conditioned onX ’s Markov blanket,X is independent of
all other variables in the network. In particular, given an assignment to all the attributes in
the Markov blanket of the class variableC, the class variable is independent of the rest of
the attributes. Hence, prediction using a classifier based on a Bayesian network examines
only the values of attributes in the Markov blanket ofC. (Note that in the naive Bayesian
classifier, the Markov blanket ofC includesall the attributes, since all of the attributes are
children ofC in the graph.) Thus, in learning the structure of the network, the learning
algorithm chooses the attributes that are relevant for predicting the class. In other words,
the learning procedure performs afeature selection. Often, this selection is useful and
discards truly irrelevant attributes. However, as these two examples show, the procedure
might discard attributes that are crucial for classification. The choices made by the learning
procedure reflect the bias of the MDL score, which penalizes the addition of these crucial
attributes to the class variable’s Markov blanket. As our analysis suggests, the root of the
problem is the scoring function—a network with a better score is not necessarily a better
classifier.

A straightforward approach to this problem would be to specialize the scoring function
(MDL in this case) to the classification task. We can do so by restricting the log likelihood
to the first term of Equation 6. Formally, let theconditional log likelihoodof a Bayesian
networkB given data setD beCLL(B|D) =

∑N
i=1 logPB(Ci|Ai1, . . . , Ain). The problem

associated with the application of this conditional scoring function in practice is of a com-
putational nature. The function does not decompose over the structure of the network; that
is, we do not have an analogue of Equation 4. As a consequence, setting the parameters
θxi|Πxi = P̂D(xi|Πxi) no longer maximizes the score for a fixed network structure. Thus,
we would need to implement, in addition, a procedure to maximize this new function over
the space of parameters. We discuss this issue further in Section 6.2. Alternative approaches
are discussed in the next section.

4. Extensions to the naive Bayesian classifier

In this section we examine approaches that maintain the basic structure of a naive Bayes
classifier, and thus ensure that all attributes are part of the class variable Markov blanket.
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Figure 3. A TAN model learned for the data set “pima.” The dashed lines are those edges required by the naive
Bayesian classifier. The solid lines are correlation edges between attributes.

These approaches, however, remove the strong assumptions of independence in naive Bayes
by finding correlations among attributes that are warranted by the training data.

4.1. Augmented naive Bayesian networks as classifiers

We argued above that the performance of a Bayesian network as a classifier may improve
if the learning procedure takes into account the special status of the class variable. An easy
way to ensure this is to bias the structure of the network, as in the naive Bayesian classifier,
such that there is an edge from the class variable to each attribute. This ensures that, in the
learned network, the probabilityP (C|A1, . . . , An) will take all attributes into account. In
order to improve the performance of a classifier based on this bias, we propose to augment
the naive Bayes structure with edges among the attributes, when needed, thus dispensing
with its strong assumptions about independence. We call these structuresaugmented naive
Bayesian networksand these edgesaugmenting edges.

In an augmented structure, an edge fromAi toAj implies that the influence ofAi on the
assessment of the class variable also depends on the value ofAj . For example, in Figure 3,
the influence of the attribute “Glucose” on the classC depends on the value of “Insulin,”
while in the naive Bayesian classifier the influence of each attribute on the class variable
is independent of other attributes. These edges affect the classification process in that a
value of “Glucose” that is typically surprising (i.e.,P (g|c) is low) may be unsurprising if
the value of its correlated attribute, “Insulin,” is also unlikely (i.e.,P (g|c, i) is high). In this
situation, the naive Bayesian classifier will overpenalize the probability of the class variable
by considering two unlikely observations, while the augmented network of Figure 3 will
not.

Adding the best set of augmenting edges is an intractable problem, since it is equivalent
to learning the best Bayesian network among those in whichC is a root. Thus, even if we
could improve the performance of a naive Bayes classifier in this way, the computational
effort required may not be worthwhile. However, by imposing acceptable restrictions on
the form of the allowed interactions, we can actually learn the optimal set of augmenting
edges in polynomial time.
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Our proposal is to learn atree-augmented naive Bayesian(TAN) network in which the
class variable has no parents and each attribute has as parents the class variable and at most
one other attribute.1 Thus, each attribute can have one augmenting edge pointing to it. The
network in Figure 3 is in fact an TAN model. As we now show, we can take advantage of
this restriction to learn a TAN model efficiently. The procedure for learning these edges is
based on a well-known method reported by Chow and Liu (CL from now on) (1968), for
learning tree-like Bayesian networks (see also (Pearl, 1988, pp. 387–390)). We start by
reviewing CL’s result.

A directed acyclic graph on{X1, . . . , Xn} is atreeif ΠXi contains exactly one parent for
all Xi, except for one variable that has no parents (this variable is referred to as theroot).
A tree network can be described by identifying the parent of each variable. A function
π : {1, . . . , n} 7→ {0, . . . , n} is said todefinea tree overX1, . . . , Xn, if there is exactly
onei such thatπ(i) = 0 (namely the root of the tree), and there is no sequencei1, . . . , ik
such thatπ(ij) = ij+1 for i ≤ j < k andπ(ik) = i1 (i.e., no cycles). Such a function
defines a tree network whereΠXi = {Xπ(i)} if π(i) > 0, andΠXi = ∅ if π(i) = 0.

Chow and Liu (1968) describe a procedure for constructing a tree Bayesian network from
data. This procedure reduces the problem of constructing a maximum likelihood tree to
finding amaximal weighted spanning treein a graph. The problem of finding such a tree is
to select a subset of arcs from a graph such that the selected arcs constitute a tree and the sum
of weights attached to the selected arcs is maximized. There are well-known algorithms for
solving this problem of time complexityO(n2 logn), wheren is the number of vertices in
the graph (Cormen et al., 1990).

TheConstruct-Tree procedure of CL consists of four steps:

1. ComputeIP̂D (Xi;Xj) between each pair of variables,i 6= j, where

IP (X; Y) =
∑
x,y

P (x, y) log
P (x, y)
P (x)P (y)

is themutual informationfunction. Roughly speaking, this function measures how
much informationY provides aboutX. See Appendix A for a more detailed description
of this function.

2. Build a complete undirected graph in which the vertices are the variables inX. Annotate
the weight of an edge connectingXi toXj by IP̂D (Xi;Xj).

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable
and setting the direction of all edges to be outward from it.

CL prove that this procedure finds the tree that maximizes the likelihood given the dataD.

Theorem 1 (Chow & Liu, 1968)LetD be a collection ofN instances ofX1, . . . , Xn.
TheConstruct-Tree procedure constructs a treeBT that maximizes LL(BT |D) and has
time complexityO(n2 ·N).
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This result can now be adapted to learn the maximum likelihood TAN structure. Let
A1, . . . , An be a set of attribute variables andC be the class variable. We say thatB is a
TAN model if ΠC = ∅ and there is a functionπ that defines a tree overA1, . . . , An such
thatΠAi = {C,Aπ(i)} if π(i) > 0, andΠAi = {C} if π(i) = 0. The optimization problem
consists on finding a tree defining functionπ overA1, . . . , An such that the log likelihood
is maximized.

As we prove below, the procedure we callConstruct-TAN solves this optimization
problem. This procedure follows the general outline of CL’s procedure, except that instead of
using the mutual information between two attributes, it usesconditional mutual information
between attributes given the class variable. This function is defined as

IP (X; Y|Z) =
∑
x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z)
.

Roughly speaking, this function measures the information thatY provides aboutX when the
value ofZ is known. Again, Appendix A gives a more detailed description of this function.

TheConstruct-TAN procedure consists of five main steps:

1. ComputeIP̂D (Ai;Aj | C) between each pair of attributes,i 6= j.

2. Build a complete undirected graph in which the vertices are the attributesA1, . . . , An.
Annotate the weight of an edge connectingAi toAj by IP̂D (Ai;Aj | C).

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable
and setting the direction of all edges to be outward from it.

5. Construct a TAN model by adding a vertex labeled byC and adding an arc fromC to
eachAi.

Theorem 2 Let D be a collection ofN instances ofC,A1, . . . , An. The procedure
Construct-TAN builds a TANBT that maximizes LL(BT |D) and has time complexity
O(n2 ·N).

Proof: We start with a reformulation of the log likelihood:

LL(BT |D) = N ·
∑
Xi

IP̂D (Xi; ΠXi) + constant term, (7)

which we derive in Appendix A. Thus, maximizing the log likelihood is equivalent to
maximizing the term ∑

Xi

IP̂D (Xi; ΠXi) .

We now specialize this term for TAN models. LetBT be a TAN defined byπ(·). SinceC
has no parents, we haveIP̂D (C; ΠC) = 0. Since the parents ofAi are defined byπ, we
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setIP̂D (Ai; ΠAi) = IP̂D (Ai;Aπ(i), C) if π(i) > 0 andIP̂D (Ai; ΠAi) = IP̂D (Ai;C) if
π(i) = 0. Hence, we need to maximize the term∑

i,π(i)>0

IP̂D (Ai;Aπ(i), C) +
∑

i,π(i)=0

IP̂D (Ai;C) . (8)

We simplify this term by using the identity known as thechain lawfor mutual information
(Cover & Thomas, 1991):IP (X; Y,Z) = IP (X; Z) + IP (X; Y|Z). Hence, we can rewrite
expression (8) as ∑

i

IP̂D (Ai;C) +
∑

i,π(i)>0

IP̂D (Ai;Aπ(i)|C)

Note that the first term is not affected by the choice ofπ(i). Therefore, it suffices to
maximize the second term. Note also that the TAN model found byConstruct-TAN is
guaranteed to maximize this term, and thus maximizes the log likelihood.

The first step ofConstruct-TAN has complexity ofO(n2 · N) and the third step has
complexity ofO(n2 logn). Since usuallyN > logn, we get the stated time complexity.

Our initial experiments showed that the TAN model works well in that it yields good
classifiers compared to naive Bayes, as shown in Tables 2 and 3). Its performance was further
improved by the introduction of an additional smoothing operation. Recall that to learn the
parameters of a network we estimate conditional frequencies of the formP̂D(X|ΠX). We
do this by partitioning the training data according to the possible values ofΠX and then
computing the frequency ofX in each partition. When some of these partitions contain
very few instances, however, the estimate of the conditional probability is unreliable. This
problem is not as acute in the case of a naive Bayesian classifier, since it partitions the data
according to the class variable, and usually all values of the class variables are adequately
represented in the training data. In TAN networks, however, for each attribute we assess
the conditional probability given the class variable and another attribute. This means that
the number of partitions is at least twice as large. Thus, it is not surprising to encounter
unreliable estimates, especially in small data sets.

To deal with this problem, we introduce a smoothing operation on the parameters learned in
TAN models that is motivated by Bayesian considerations. In Bayesian learning of amulti-
nomial distributionP (X = vi) for i = 1, . . . , k, we start with aprior probability measure
over the possible settings of parametersΘ = {θi : i = 1, . . . , k}, whereθi = P (X = vi),
and then compute theposteriorprobabilityPr(Θ | D). The predicted probability for a new
instance ofX is the weighted average of the predictions of all possible setting ofΘ, weighted
by their posterior probability. Thus,Pr(X = vi|D) =

∫
Pr(Xi = vi | Θ)Pr(Θ | D)dΘ.

For a particular family of priors, calledDirichlet priors, there is a known closed-form solu-
tion for this integral. A Dirichlet prior is specified by twohyperparameters: Θ0, an initial
estimate ofΘ, andN0, a number that summarizes our confidence in this initial estimate.
One can think ofN0 as the number of samples we have seen in our lifetime prior to making
the estimateΘ0. Given hyperparametersΘ0 = {θ0

i } andN0, and a data setD of length
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Figure 4. Error curves and scatter plot comparing smoothed TAN (solid,x axis) with naive Bayes (dashed,y axis).
In the error curves, the smaller the value, the better the accuracy. In the scatter plot, points above the diagonal
line correspond to data sets where smoothed TAN performs better, and points below the diagonal line correspond
to data sets where naive Bayes performs better. See the caption of Figure 2 for a more detailed description.

N , the prediction forP (X = vi) has the form

P (X = vi|D) =
N

N +N0
P̂D(X = vi) +

N0

N +N0
θ0
i .

We refer the interested reader to DeGroot (1970). It is easy to see that this prediction biases
the learned parameters in a manner that depends on the confidence in the prior and the
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Figure 5. Error curves and scatter plot comparing smoothed TAN (solid,x axis) with selective naive Bayes
(dashed,y axis). In the error curves, the smaller the value, the better the accuracy. In the scatter plot, points above
the diagonal line correspond to data sets where smoothed TAN performs better, and points below the diagonal
line correspond to data sets where selective naive Bayes performs better. See the caption of Figure 2 for a more
detailed description.

number of new instances in the data: the more instances we have in the training data, the
less bias is applied. If the number of instancesN is large relative toN0, than the bias
essentially disappears. On the other hand, if the number of instances is small, then the prior
dominates.

In the context of learning Bayesian networks, we can use a different Dirichlet prior for
each distribution ofXi given a particular value of its parents (Heckerman, 1995). This
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Figure 6. Error curves and scatter plot comparing smoothed TAN (solid,x axis) with C4.5 (dashed,y axis). In
the error curves, the smaller the value, the better the accuracy. In the scatter plot, points above the diagonal line
correspond to data sets where smoothed TAN performs better, and points below the diagonal line correspond to
data set where C4.5 performs better. See the caption of Figure 2 for a more detailed description.

results in choosing the parameters

θs(x|Πx) =
N · P̂D(Πx)

N · P̂D(Πx) +N0
x|Πx

· P̂D(x|Πx) +
N0
x|Πx

N · P̂D(Πx) +N0
x|Πx

θ0(x|Πx) ,



BAYESIAN NETWORK CLASSIFIERS 147

whereθ0(x|Πx) is the prior estimate ofP (x|Πx) andN0
x|Πx is the confidence associated

with that prior. Note that this application of Dirichlet priors biases the estimation of the
parameters depending on the number of instances in the data with particular values ofX ’s
parents. Thus, it mainly affects the estimation in those parts of the conditional probability
table that are rarely seen in the training data.

To use this method, we must therefore choose the prior parameters. One reasonable
choice of prior is the uniform distribution with some smallN0. Another reasonable choice
uses the marginal probability ofX in the data as the prior probability. This choice is based
on the assumption that most conditional probabilities are close to the observed marginal.
Thus, we setθ0(x | Πx) = P̂D(x). After initial trials we choose the value ofN0 to be 5 in
all of our experiments. (More precisely, we tried the values1, 5, and10 on a few data sets,
andN0 = 5 was slightly better than the others.) We note that this smoothing is performed
after determining the structure of the TAN model. Thus, the smoothed model has the same
qualitative structure as the original model but has different numerical parameters. This
form of smoothing is standard practice in Bayesian statistics.2

In our experiments comparing the prediction error of smoothed TAN to that of unsmoothed
TAN, we observed that smoothed TAN performs at least as well as TAN, and occasionally
outperforms TAN significantly (e.g., see the results for “soybean-large,” “segment,” and
“lymphography” in Table 3). Henceforth, we will assume that the version of TAN uses the
smoothing operator, unless noted otherwise.

Figure 4 compares the prediction error of the TAN classifier to that of naive Bayes. As can
be seen, the the TAN classifier dominates naive Bayes. This result supports our hypothesis
that, by relaxing the strong independence assumptions made by naive Bayes, one can indeed
learn better classifiers. We also tried a smoothed version of naive Bayes. This, however, did
not lead to significant improvement over the unsmoothed naive Bayes. The only data set
where there was a noticeable improvement is “lymphography,” where the smoothed version
had 81.73% accuracy compared to 79.72% without smoothing. Note that for this particular
data set, the smoothed version of TAN has 85.03% accuracy compared to 66.87% without
smoothing. The complete results for the smoothed version of naive Bayes are reported in
Table 3.

Given that TAN performs better than naive Bayes and that naive Bayes is comparable to
C4.5 (Quinlan, 1993), a state-of-the-art decision tree learner, we may infer that TAN should
perform rather well in comparison to C4.5. To confirm this prediction, we performed
experiments comparing TAN to C4.5, and also to theselective naive Bayesianclassifier
(Langley & Sage, 1994; John & Kohavi, 1997). The latter approach searches for the subset
of attributes over which naive Bayes has the best performance. The results, displayed in
Figures 5 and 6 and in Table 2, show that TAN is competitive with both approaches and can
lead to significant improvements in many cases.

4.2. Bayesian multinets as classifiers

The TAN approach forces the relations among attributes to be the same for all the differ-
ent instances of the class variableC. An immediate generalization would have different



148 N. FRIEDMAN, D. GEIGER, AND M. GOLDSZMIDT

augmenting edges (tree structures in the case of TAN) for each class, and a collection of
networks as the classifier.

To implement this idea, we partition the training data set by classes. Then, for each class
ci in Val(C), we construct a Bayesian networkBi for the attribute variables{A1, . . . , An}.
The resulting probability distributionPBi(A1, . . . , An) approximates the joint distribution
of the attributes, given a specific class, that is,P̂D(A1, . . . , An | C = ci). The Bayesian
network forci is called alocal network forci. The set of local networks combined with a
prior onC, P (C), is called aBayesian multinet(Heckerman, 1991; Geiger & Heckerman,
1996). Formally, a multinet is a tupleM = 〈PC , B1, . . . , Bk〉 wherePC is a distribution
onC, andBi is a Bayesian network overA1, . . . , An for 1 ≤ i ≤ k = |Val(C)|. A multinet
M defines a joint distribution:

PM (C,A1, . . . , An) = PC(C) · PBi(A1, . . . , An) whenC = ci.

When learning a multinet, we setPC(C) to be the frequency of the class variable in
the training data, that is,̂PD(C), and learn the networksBi in the manner just described.
Once again, we classify by choosing the class that maximizes the posterior probability
PM (C|A1, . . . , An). By partitioning the data according to the class variable, this method-
ology ensures that the interactions between the class variable and the attributes are taken into
account. The multinet proposal is strictly a generalization of the augmented naive Bayes,
in the sense that that an augmented naive Bayesian network can be easily simulated by a
multinet where all the local networks have the same structure. Note that the computational
complexity of finding unrestricted augmenting edges for the attributes is aggravated by the
need to learn a different network for each value of the class variable. Thus, the search for
learning the Bayesian network structure must be carried out several times, each time on a
different data set.

As in the case of augmented naive Bayes, we can address this problem by constraining
the class of local networks we might learn to be treelike. Indeed, the construction of a set
of trees that minimizes the log likelihood score was the original method used by Chow and
Liu (1968) to build classifiers for recognizing handwritten characters. They reported that,
in their experiments, the error rate of this method was less than half that of naive Bayes.

We can use the algorithm in Theorem 1 separately to the attributes that correspond to
each value of the class variable. This results in a multinet in which each network is a tree.

Corollary 1 (Chow & Liu, 1968)LetD be a collection ofN instances ofC,A1, . . . , An.
There is a procedure of time complexityO(n2 ·N) which constructs a multinet consisting
of trees that maximizes log likelihood.

Proof: The procedure is as follows:

1. SplitD intok = |Val(C)|partitions,D1, . . . , Dk, such thatDi contains all the instances
in D whereC = ci.

2. SetPC(ci) = P̂D(ci).

3. Apply the procedureConstruct-Tree of Theorem 1 onDi to constructBi.
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Steps 1 and 2 take linear time. Theorem 1 states that step 3 has time complexityO(n2|Di|)
for eachi. Since

∑
i |Di| = N , we conclude that the whole procedure has time complexity

O(n2N).

As with TAN models, we apply smoothing to avoid unreliable estimation of parameters.
Note also that we partition the data further, and therefore run a higher risk of missing the
accurate weight of some edge (in contrast to TAN). On the other hand, TAN forces the model
to show the same augmenting edges for all classes. As can be expected, our experiments
(see Figure 7) show that Chow and Liu (CL) multinets perform as well as TAN, and that
neither approach clearly dominates.

4.3. Beyond tree-like networks

In the previous two sections we concentrated our attention on tree-like augmented naive
Bayesian networks and Bayesian multinets, respectively. This restriction was motivated
mainly by computational considerations: these networks can be induced in a provably
effective manner. This raises the question whether we can achieve better performance at
the cost of computational efficiency. One straightforward approach to this question is to
search the space of all augmented naive Bayesian networks (or the larger space of Bayesian
multinets) and select the one that minimizes the MDL score.

This approach presents two problems. First, we cannot examine all possible network
structures; therefore we must resort to heuristic search. In this paper we have examined
a greedy search procedure. Such a procedure usually finds a good approximation to the
minimal MDL scoring network. Occasionally, however, it will stop at a “poor” local
minimum. To illustrate this point, we ran this procedure on a data set generated from a
parity function. This concept can be captured by augmenting the naive Bayes structure with
a complete subgraph. However, the greedy procedure returned the naive Bayes structure,
which resulted in a poor classification rate. The greedy procedure learns this network
because attributes are independent of each other given the class. As a consequence, the
addition of any single edge did not improve the score, and thus, the greedy procedure
terminated without adding any edges.

The second problem involves the MDL score. Recall that the MDL score penalizes larger
networks. The relative size of the penalty grows larger for smaller data sets, so that the
score is heavily biased for simple networks. As a result, the procedure we just described
might learn too few augmenting edges. This problem is especially acute when there are
many classes. In this case, the naive Bayesian structure by itself requires many parameters,
and the addition of an augmenting edge involves adding at least as many parameters as the
number of classes. In contrast, we note that both the TAN and CL multinet classifier learn
a spanning tree over all attributes.

As shown by our experimental results, see Table 4, both unrestricted augmented naive
Bayesian networks and unrestricted multinets lead to improved performance over that of
the unrestricted Bayesian networks of Section 3. Moreover, on some data sets they have
better accuracy than TAN and CL multinets.
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Figure 7. Error curves and scatter plot comparing smoothed TAN (solid line,x axis) with smoothed CL multinet
classifier (dashed line,y axis). In the error curves, the smaller the value, the better the accuracy. In the scatter plot,
points above the diagonal line corresponds to data sets where smoothed TAN performs better and points below the
diagonal line corresponds to data sets where smoothed CL multinets classifier performs better. See the caption of
Figure 2 for a more detailed description.

5. Experimental methodology and results

We ran our experiments on the 25 data sets listed in Table 1. All of the data sets come
from the UCI repository (Murphy & Aha, 1995), with the exception of “mofn-3-7-10” and
“corral”. These two artificial data sets were designed by John and Kohavi (1997) to evaluate
methods for feature subset selection.
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Table 1.Description of data sets used in the experiments.

Dataset # Attributes # Classes # Instances
Train Test

1 australian 14 2 690 CV-5
2 breast 10 2 683 CV-5
3 chess 36 2 2130 1066
4 cleve 13 2 296 CV-5
5 corral 6 2 128 CV-5
6 crx 15 2 653 CV-5
7 diabetes 8 2 768 CV-5
8 flare 10 2 1066 CV-5
9 german 20 2 1000 CV-5

10 glass 9 7 214 CV-5
11 glass2 9 2 163 CV-5
12 heart 13 2 270 CV-5
13 hepatitis 19 2 80 CV-5
14 iris 4 3 150 CV-5
15 letter 16 26 15000 5000
16 lymphography 18 4 148 CV-5
17 mofn-3-7-10 10 2 300 1024
18 pima 8 2 768 CV-5
19 satimage 36 6 4435 2000
20 segment 19 7 1540 770
21 shuttle-small 9 7 3866 1934
22 soybean-large 35 19 562 CV-5
23 vehicle 18 4 846 CV-5
24 vote 16 2 435 CV-5
25 waveform-21 21 3 300 4700

The accuracy of each classifier is based on the percentage of successful predictions on the
test sets of each data set. We used the MLC++ system (Kohavi et al., 1994) to estimate the
prediction accuracy for each classifier, as well as the variance of this accuracy. Accuracy was
measured via the holdout method for the larger data sets (that is, the learning procedures were
given a subset of the instances and were evaluated on the remaining instances), and via five-
fold cross validation, using the methods described by Kohavi (1995), for the smaller ones.3

Since we do not deal, at present, with missing data, we removed instances with missing
values from the data sets. Currently, we also do not handle continuous attributes. Instead,
we applied a pre-discretization step in the manner described by Dougherty et al. (1995).
This pre-discretization is based on a variant of Fayyad and Irani’s (1993) discretization
method. These preprocessing stages were carried out by the MLC++ system. Runs with
the various learning procedures were carried out on the same training sets and evaluated
on the same test sets. In particular, the cross-validation folds were the same for all the
experiments on each data set.

Table 2 displays the accuracies of the main classification approaches we have discussed
throughout the paper using the abbreviations:

NB: the naive Bayesian classifier

BN: unrestricted Bayesian networks learned with the MDL score

TANs: TAN networks learned according to Theorem 2, with smoothed parameters
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CLs: CL multinet classifier—Bayesian multinets learned according to Theorem 1—with
smoothed parameters

C4.5: the decision-tree induction method developed by Quinlan (1993)

SNB: theselective naive Bayesian classifier, a wrapper-based feature selection applied to
naive Bayes, using the implementation of John and Kohavi (1997)

In the previous sections we discussed these results in some detail. We now summarize
the highlights. The results displayed in Table 2 show that although unrestricted Bayesian
networks can often lead to significant improvement over the naive Bayesian classifier, they
can also result in poor classifiers in the presence of multiple attributes. These results also
show that both TAN and the CL multinet classifier are roughly equivalent in terms of
accuracy, dominate the naive Bayesian classifier, and compare favorably with both C4.5
and the selective naive Bayesian classifier.

Table 3 displays the accuracies of the naive Bayesian classifier, the TAN classifier, and
CL multinet classifier with and without smoothing. The columns labeledNB, TAN , andCL
present the accuracies without smoothing, and the columns labeledNBs, TANs, andCLs

describe the accuracies with smoothing. These results show that smoothing can significantly
improve the accuracy both of TAN and of CL multinet classifier and does not significantly
degrade the accuracy of results from other data sets. Improvement is noticed mainly in
small data sets and in data sets with large numbers of classes. On the other hand, smoothing
does not significantly improve the accuracy of the naive Bayesian classifier.

Finally, in Table 4 we summarize the accuracies of learning unrestricted augmented naive
Bayes networks (ANB) and multinets (MN ) using the MDL score. The table also contains
the corresponding tree-like classifiers for comparison. These results show that learning
unrestricted networks can improve the accuracy in data sets that contain strong interactions
between attributes and that are large enough for the MDL score to add edges. On other data
sets, the MDL score is reluctant to add edges giving structures that are similar to the naive
Bayesian classifier. Consequently, in these data sets, the predictive accuracy will be poor
when compared with TAN and CL multinet classifier.

6. Discussion

In this section, we review related work and expand on the issue of a conditional log likelihood
scoring function. Additionally, we discuss how to extend the methods presented here to
deal with complicating factors such as numeric attributes and missing values.

6.1. Related work on naive Bayes

There has been recent interest in explaining the surprisingly good performance of the naive
Bayesian classifier (Domingos & Pazzani, 1996; Friedman, 1997a). The analysis provided
by Friedman (1997a) is particularly illustrative, in that it focuses on characterizing how the
bias and variance components of the estimation error combine to influence classification
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Table 2.Experimental results of the primary approaches discussed in this paper.

performance. For the naive Bayesian classifier, he shows that, under certain conditions, the
low variance associated with this classifier can dramatically mitigate the effect of the high
bias that results from the strong independence assumptions.

One goal of the work described in this paper has been to improve the performance of the
naive Bayesian classifier by relaxing these independence assumptions. Indeed, our empir-
ical results indicate that a more accurate modeling of the dependencies amongst features
leads to improved classification. Previous extensions to the naive Bayesian classifier also
identified the strong independence assumptions as the source of classification errors, but
differ in how they address this problem. These works fall into two categories.

Work in the first category, such as that of Langley and Sage (1994) and of John and
Kohavi (1997), has attempted to improve prediction accuracy by rendering some of the
attributes irrelevant. The rationale is as follows. As we explained in Section 4.1, if two
attributes, sayAi andAj , are correlated, then the naive Bayesian classifier may overamplify
the weight of the evidence of these two attributes on the class. The proposed solution in
this category is simply to ignore one of these two attributes. (Removing attributes is also
useful if some attributes are irrelevant, since they only introduce noise in the classification
problem.) This is a straightforward application offeature subset selection. The usual
approach to this problem is to search for a good subset of the attributes, using an estimation
scheme, such as cross validation, to repeatedly evaluate the predictive accuracy of the naive
Bayesian classifier on various subsets. The resulting classifier is called theselective naive
Bayesian classifier, following Langley and Sage (1994).
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Table 3.Experimental results describing the effect of smoothing parameters.

It is clear that, if two attributes are perfectly correlated, then the removal of one can only
improve the performance of the naive Bayesian classifier. Problems arise, however, if two
attributes are only partially correlated. In these cases the removal of an attribute may lead
to the loss of useful information, and the selective naive Bayesian classifier may still retain
both attributes. In addition, this wrapper-based approach is, in general, computationally
expensive. Our experimental results (see Figure 6) show that the methods we examine here
are usually more accurate than the selective naive Bayesian classifier as used by John and
Kohavi (1997).

Work in the second category (Kononenko, 1991; Pazzani, 1995; Ezawa & Schuermann,
1995) are closer in spirit to our proposal, since they attempt to improve the predictive
accuracy by removing some of the independence assumptions. Thesemi-naive Bayesian
classifier(Kononenko, 1991) is a model of the form

P (C,A1, . . . , An) = P (C) · P (A1|C) · · ·P (Ak|C) (9)

whereA1, . . . ,Ak are pairwise disjoint groups of attributes. Such a model assumes thatAi
is conditionally independent ofAj if, and only if, they are in different groups. Thus, no as-
sumption of independence is made about attributes that are in the same group. Kononenko’s
method uses statistical tests of independence to partition the attributes into groups. This pro-
cedure, however, tends to select large groups, which can lead to overfitting problems. The
number of parameters needed to estimateP (Ai|C) is |Val(C)| · (

∏
Aj∈Ai |Val(Aj)| − 1),

which grows exponentially with the number of attributes in the group. Thus, the parameters
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Table 4. Experimental results of comparing tree-like networks with unrestricted augmented naive Bayes and
multinets.

assessed forP (Ai|C) may quickly become unreliable ifAi contains more than two or three
attributes.

Pazzani suggests that this problem can be solved by using a cross-validation scheme to
evaluate the accuracy of a classifier. His procedure starts with singleton groups (i.e.,A1 =
{A1}, . . . ,An = {An}) and then combines, in a greedy manner, pairs of groups. (He
also examines a procedure that performs feature subset selection after the stage of joining
attributes.) This procedure does not, in general, select large groups, since these lead to poor
prediction accuracy in the cross-validation test. Thus, Pazzani’s procedure learns classifiers
that partition the attributes in to many small groups. Since each group of attributes is
considered independent of the rest given the class, these classifiers can capture only small
number of correlations among the attributes.

Both Kononenko and Pazzani essentially assume that all of the attributes in each group
Ai can be arbitrarily correlated. To understand the implications of this assumption, we use
a Bayesian network representation. If we letAi = {Ai1 , . . . , Ail}, then, using the chain
rule, we get

P (Ai|C) = P (Ai1 |C) · P (Ai2 |Ai,1, C) · · ·P (Ail |Ai,1, . . . , Ail−1 , C).

Applying this decomposition to each of the terms in Equation 9, we get a product form
from which a Bayesian network can be built. Indeed, this is an augmented naive Bayes
network, in which there is a complete subgraph—that is, one to which we cannot add arcs
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without introducing a cycle—on the variables of each groupAi. In contrast, in a TAN
network there is a tree that spans over all attributes; thus, these models retain conditional
independencies among correlated attributes. For example, consider a data set where the two
attributes,A1 andA2, are each correlated with another attribute,A3, but are independent of
each other givenA3. These correlations are captured by the semi-naive Bayesian classifier
only if all three attributes are in the same group. In contrast, a TAN classifier can place
an edge fromA3 to A1 and another toA2. These edges capture the correlations between
the attributes. Moreover, if the attributes and the class variable are boolean, then the TAN
model would require 11 parameters, while the semi-naive Bayesian classifier would require
14 parameters. Thus, the representational tools of Bayesian networks let us relax the
independence assumptions between attributes in a gradual and flexible manner, and study
and characterize these tradeoffs with the possibility of selecting the right compromise for
the application at hand.

Ezawa and Schuermann (1995) describe a method that use correlations between attributes
in a different manner. First, it computes all pairwise mutual information between attributes
and sorts them in descending order. Then, the method adds edges among attributes going in
the computed order until it reaches some predefined thresholdT . This approach presents a
problem. Consider three attributes that are correlated as in the above example:A1 andA3

are correlated,A2 andA3 are correlated, butA1 is probabilistically independent ofA2 given
A3. When this method is used, the pairwise mutual information of all combinations will
appear to be high, and the algorithm will propose an edge between every pair of attributes.
Nonetheless, the edge betweenA1 andA2 is superfluous, since their relation is mediated
throughA3. This problem is aggravated if we consider a fourth attribute,A4, that is strongly
correlated toA2. Then, either more superfluous edges will be added, or, if the thresholdT
is reached, this genuine edge will be ignored in favor of a superfluous one. Even though the
TAN approach also relies on pairwise computation of the mutual information, it avoids this
problem by restricting the types of interactions to the form of a tree. We reiterate, that under
this restriction, the TAN approach finds an optimal tree (see Theorem 2). This example
also shows why learning structures that are not trees—that is, where some attributes have
more than one parent—requires us to examine higher-order interactions such as the mutual
information ofA1 with A2 givenC andA3.

Finally, another related effort that is somewhere between the categories mentioned above
is reported by Singh and Provan (1995, 1996). They combine several feature subset selec-
tion strategies with an unsupervised Bayesian network learning routine. This procedure,
however, can be computationally intensive (e.g., some of their strategies (Singh & Provan,
1995) involve repeated calls to a the Bayesian network learning routine).

6.2. The conditional log likelihood

Even though the use of log likelihood is warranted by an asymptotic argument, as we have
seen, it may not work well when we have a limited number of samples. In Section 3
we suggested an approach based on the decomposition of Equation 6 that evaluates the
predictive error of a model by restricting the log likelihood to the first term of the equation.
This approach is an example of anode monitor, in the terminology of Spiegelhalter, Dawid,
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Lauritzen, and Cowell (1993). Let theconditional log likelihoodof a Bayesian network
B, given data setD, beCLL(B|D) =

∑N
i=1 logPB(Ci|Ai1, . . . , Ain). Maximizing this

term amounts to maximizing the ability to correctly predictC for each assignment to
A1, . . . , An. Using manipulations analogous to the one described in Appendix A, it is
easy to show that maximizing the conditional log likelihood is equivalent to minimizing the
conditional cross-entropy:

D(P̂D(C|A1 . . . , An)||PB(C|A1 . . . , An)) =∑
a1,...,an

P̂D(a1 . . . , an)D(P̂D(C|a1 . . . , an)||PB(C|a1 . . . , an)) (10)

This equation shows that by maximizing the conditional log likelihood we are learning the
model that best approximates the conditional probability ofC given the attribute values.
Consequently, the model that maximizes this scoring function should yield the best classifier.

We can easily derive a conditional MDL score that is based on the conditional log like-
lihood. In this variant, the learning task is stated as an attempt to efficiently describe the
class values for a fixed collection of attribute records. The term describing the length of
the encoding of the Bayesian network model remains as before, while the second term is
equal toN · CLL(B|D). Unfortunately, we do not have an effective way to maximize the
termCLL(B|D), and thus the computation of the network that minimizes the overall score
becomes infeasible.

Recall that, as discussed in Section 3, once the structure of the network is fixed, the MDL
score is minimized by simply substituting the frequencies in the data as the parameters of
the network (see Equation 5). Once we change the score to theCLL(B|D), this is true
only for a very restricted class of structures. IfC is a leaf in the network—that is, ifC
does not have any outgoing arcs—then it is easy to prove that setting parameters according
to Equation 5 maximizesCLL(B|D) for a fixed network structure. However, ifC has
outgoing arcs, we cannot describePB(C|A1, . . . , An) as a product of parameters inΘ,
sincePB(C|A1, . . . , An) also involves a normalization constant that requires us to sum
over all values ofC. As a consequence,CLL(B|D) does not decompose, and we cannot
maximize the choice of each conditional probability table independently of the others.
Hence, we do not have a closed-form equation for choosing the optimal parameters for the
conditional log likelihood score. This implies that, to maximize the choice of parameters
for a fixed network structure, we must resort to search methods such as gradient descent over
the space of parameters (e.g., using the techniques of (Binder et al., 1997)). When learning
the network structure, this search must be repeated for each structure candidate, rendering
the method computationally expensive. Whether we can find heuristic approaches that will
allow effective learning using the conditional log likelihood remains an open question.

The difference between procedures that maximize log likelihood and ones that maximize
conditional log likelihood is similar to a standard distinction made in the statistics literature.
Dawid (1976) describes two paradigms for estimatingP (C,A1, . . . , An). These paradigms
differ in how they decomposeP (C,A1, . . . , An). In thesamplingparadigm, we assume that
P (C,A1, . . . , An) = P (C) · P (A1, . . . , An|C) and assess both terms. In thediagnostic
paradigm, we assume thatP (C,A1, . . . , An) = P (A1, . . . , An) · P (C|A1, . . . , An) and
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assess only the second term, since it is the only one relevant to the classification process.
In general, neither of these approaches dominates the other (Ripley, 1996).

The naive Bayesian classifier and the extensions we have evaluated belong to the sampling
paradigm. Although the unrestricted Bayesian networks (described in Section 3) do not
strictly belong in either paradigm, they are closer in spirit to the sampling paradigm.

6.3. Numerical attributes and missing values

Throughout this paper we have made two assumptions: that all attributes have finite numbers
of values, and that the training data arecomplete, in that each instance assigns values to all
the variables of interest. We now briefly discuss how to move beyond both these restrictions.

One approach to dealing with numerical attributes is todiscretizethem prior to learning
a model. This is done using a discretization procedure such as the one suggested by
Fayyad and Irani (1993), to partition the range of each numerical attribute. Then we can
invoke our learning method treating all variables as having discrete values. As shown
by Dougherty, et al. (1995), this approach is quite effective in practice. An alternative
is to discretize numerical attributes during the learning process, which lets the procedure
adjust the discretization of each variable so that it contains just enough partitions to capture
interactions with adjacent variables in the network. Friedman and Goldszmidt (1996b)
propose a principled method for performing such discretization.

Finally, there is no conceptual difficulty in representinghybrid Bayesian networks that
contain both discrete and continuous variables. This approach involves choosing an appro-
priate representation for theconditional densityof a numerical variable given its parents;
for example, Heckerman and Geiger (1995) examine learning networks with Gaussian dis-
tributions. It is straightforward to combine such representations in the classes of Bayesian
networks described in this paper. For example, a Gaussian variant of the naive Bayesian
classifier appears in Duda and Hart (1973) and a variant based on kernel estimators appears
in John and Langley (1995). We suspect that there exist analogues to Theorem 2 for such
hybrid networks but we leave this issue for future work.

Regarding the problem of missing values, in theory, probabilistic methods provide a
principled solution. If we assume that values aremissing at random(Rubin, 1976), then
we can use themarginal likelihood(the probability assigned to the parts of the instance that
were observed) as the basis for scoring models. If the values are not missing at random, then
more careful modeling must be exercised in order to include the mechanism responsible for
the missing data.

The source of difficulty in learning from incomplete data, however, is that the marginal
likelihood does not decompose. That is, the score cannot be written as the sum of local terms
(as in Equation 4). Moreover, to evaluate the optimal choice of parameters for a candidate
network structure, we must perform nonlinear optimization using either EM (Lauritzen,
1995) or gradient descent (Binder et al., 1997).

The problem of selecting the best structure is usually intractable in the presence of missing
values. Several recent efforts (Geiger et al., 1996; Chickering & Heckerman, 1996) have
examined approximations to the marginal score that can be evaluated efficiently. Addition-
ally, Friedman (1997b) has proposed a variant of EM for selecting the graph structure that
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can efficiently search over many candidates. The computational cost associated with all of
these methods is directly related to the problem ofinferencein the learned networks. For-
tunately, inference inTANmodels can be performed efficiently. For example, Friedman’s
method can be efficiently applied to learningTANmodels in the presence of missing values.
We plan to examine the effectiveness of this and other methods for dealing with missing
values in future work.

7. Conclusions

In this paper, we have analyzed the direct application of the MDL method to learning
unrestricted Bayesian networks for classification tasks. We showed that, although the
MDL method presents strong asymptotic guarantees, it does not necessarily optimize the
classification accuracy of the learned networks. Our analysis suggests a class of scoring
functions that may be better suited to this task. These scoring functions appear to be
computationally intractable, and we therefore plan to explore effective approaches based
on approximations of these scoring functions.

The main contribution of our work is the experimental evaluation of the tree-augmented
naive Bayesian classifiers, TAN, and the Chow and Liu multinet classifier. It is clear that
in some situations, it would be useful to model correlations among attributes that cannot be
captured by a tree structure (or collections of tree structures). Such models will be preferable
when there are enough training instances to robustly estimate higher-order conditional
probabilities. Still, both TAN and CL multinets embody a good tradeoff between the quality
of the approximation of correlations among attributes and the computational complexity in
the learning stage. The learning procedures are guaranteed to find the optimal tree structure,
and, as our experimental results show, they perform well in practice against state-of-the-art
classification methods in machine learning. We therefore propose them as worthwhile tools
for the machine learning community.
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Appendix A

Information-theoretic interpretation of the log likelihood

Here we review several information-theoretic notions and how they let us represent the log
likelihood score. We will concentrate on the essentials and refer the interested reader to
Cover and Thomas (1991) for a comprehensive treatment of these notions.

Let P be a joint probability distribution overU. Theentropyof X (givenP ) is defined
asHP (X) = −

∑
x P (x) logP (x). The functionHP (X) is the optimal number of bits

needed to store the value ofX, which roughly measures the amount of information carried
by X. More precisely, suppose thatx1, . . . , xm is a sequence of independent samples of
X according toP (X), then we cannot representx1, . . . , xm with less thanm ·HP (X) bits
(assuming thatm is known). With this interpretation in mind, it is easy to understand the
properties of the entropy. First, the entropy is always nonnegative, since the encoding length
cannot be negative. Second, the entropy is zero if and only ifX is perfectly predictable,
i.e., if one value ofX has probability1. In this case, we can reconstructx1, . . . , xm without
looking at the encoding. Finally, the entropy is maximal whenP (X) is totally uninformative,
i.e., assigns a uniform probability toX.

Suppose thatB is a Bayesian network overU that was learned fromD, i.e.,Θ satisfies
Equation 5. The entropy associated withB is simplyHPB (U). Applying Equation 1 to
logPB(u), moving the product out of the logarithm, and changing the order of summation,
we derive the equation

HPB (U) = −
∑
i

∑
xi,Πxi

P̂D(xi,Πxi) log(θxi|Πxi ) ,

from which it immediately follows thatHPB (U) = − 1
N LL(B|D), using Equation 4. This

equality has several consequences. First, it implies that−LL(B|D) is the optimal number
of bits needed to describeD, assuming thatPB is the distribution from whichD is sampled.
This observation justifies the use of the term−LL(B|D) for measuring the representation
of D in the MDL encoding scheme. Second, this equality implies that maximizing the log
likelihood is equivalent to searching for a model that minimizes the entropy, as shown by
Lewis (1959).

This reading suggests that by maximizing the log likelihood we are minimizing the
description ofD. Another way of viewing this optimization process is to usecross entropy,
which is also known as the Kullback-Leibler divergence (Kullback & Leibler, 1951). Cross
entropy is a measure of distance between two probability distributions. Formally,

D(P (X)||Q(X)) =
∑

x∈Val(X)

P (x) log
P (x)
Q(x)

. (A.1)

One information-theoretic interpretation of cross entropy is theaverage redundancyin-
curred in encoding when we use a wrong probability measure. Roughly speaking, we will
incur an overhead ofD(P (X)||Q(X)) per instance in the encoding of samples ofP (X) when
we assume thatX is distributed according toQ. That is, an encoding ofx1, . . . , xm will be
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m(HP (x) +D(P (X)||Q(X))) bits long,mD(P (X)||Q(X)) more than the optimal. Given
this interpretation of cross entropy, it is not surprising that minimizingD(P̂D(U)||PB(U))
is equivalent to minimizingHPB (U), and thus is also equivalent to maximizingLL(B|D).

We now turn our attention to the structure of the log likelihood term. A measure related
to entropy is theconditional entropy, which measures the entropy ofX when we know
the value ofY: HP (X|Y) = −

∑
y P (y)

∑
x P (x|y) logP (x|y). In terms of encoding,

HP (X|Y) measures the optimal number of bits needed to encode the valueX when the
value ofY is given. Intuitively, knowing the value ofY can only be useful for encodingX
more compactly. Indeed,HP (X|Y) ≤ HP (X). The difference between these two values,
called themutual informationbetweenX andY, measures how much informationY bears
onX. Formally, the mutual information is defined as

IP (X; Y) = HP (X)−HP (X|Y) =
∑
x,y

P (x, y) log
P (x, y)
P (x)P (y)

.

Applying these definitions to Equation 4 we immediately derive the equation

LL(B|D) = −N
∑
i

HP̂D
(Xi|ΠXi) = N

∑
i

IP̂D (Xi; ΠXi)−N
∑
i

HP̂D
(Xi) .

(A.2)

Several observations are in order. First, notice thatHP̂D
(Xi) is independent of the choice of

B. Thus, to maximizeLL(G|D) we must maximize only the first term. This representation
provides an appealing intuition, since it amounts to maximizing the correlation between each
Xi and its parents. Second, the representation lets us easily prove that complete networks
maximize the log likelihood: ifB′ has a superset of the arcs inB, thenΠXi ⊆ Π′Xi for all
i; sinceI(X; Y) ≤ I(X; Y ∪ Z), we immediately deriveLL(B|D) ≤ LL(B′|D).

Notes

1. TAN structures were called “Bayesian conditional trees” by Geiger (1992).

2. An alternative notion of smoothing was investigated by Cestnik (1990) in the context of learning naive Bayesian
classifiers.

3. The choice ofk = 5 in ourk-fold cross validation is based on the recommendations of Kohavi (1995).
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