
Implementation of a classification tree-growing
algorithm in R

João Paulo Pizani Flor, Tomaš Kadlec
Department of Information and Computing Sciences,

Utrecht University - The Netherlands
e-mail: j.p.pizaniflor@students.uu.nl

Friday 11th October, 2013

1 Introduction
This report describes the solution to the first practical assignment of the master course "Data
Mining" at Utrecht University, taught in the 1st period of the academic year 2013/2014.

2 Organization of the distributed package
The handed-in solution is organized as follows:

R workspace The R workspace image containing both the code and the datasets used for
analysis is under the package root with name “RData”

R Source The source code of the functions implemented is located in the package root
with the name “classificationTree.R”. This file is just a concatenation of the
files “treeBuild.R” and “treeClassify.R”. In a running R session, the code can
be loaded by issuing the command source(“classificationTree.R”).

Datasets The datasets available for usage are available under the “datasets” subdirec-
tory, in CSV format.

3 Requirements on the data to be analyzed
According to what was described in the assignment specification, some assumptions are
made on the inputs to the algorithm. If some of the following requirements is NOT met,
then the program will display undefined behaviour. On the other hand, if the input data
meets the following requirements, then the algorithm complies with the specification (to
the extent of our knowledge)

• The dataset to be analyzed (excluding the classes) should be stored in R as a dataframe,
i.e, not as a matrix or vector.

• The class parameter is a vector of integer values, in which each element corresponds
to the class of an observation in the dataset.

• Both parameters nmin and minleaf to the tree.grow function should be lesser than
or equal to the number of observations, i.e.

(Nmin ≤ Ob) ∧ (MINLeaf ≤ Ob)

1



It’s important to notice that in our implementation, the class attribute does not need to
be binary. The calculation of impurity using the gini index is working in the general case
of (integer) categorical values.

4 Training and classification process
We tested our algorithms using two datasets: the “Pima Indians Diabetes Database”, pro-
vided in the Data Mining course webpage, and the “Adult Breast Cancer Database”, ob-
tained from the online UCI Machine Learning repository[1].

The “Pima Indians Diabetes” dataset complied with the requirements of our algorithm,
as exposed in section 3. The “Adult Breast Cancer Database” has 16 incompletely recorded
cases, i.e. some of the attributes are undefined. We have therefore removed these records
to meet the input requirements. Additionaly, the Breast Cancer dataset has a class attribute
with a non-standard encoding: instead of using the values 0 and 1, they use 2 and 4. This
was not a problem, though, because our impurity calculation uses the general case of the
gini index.

It should be noted that the impurity function to be used can be passed as a parameter to
the tree.grow function. We have implemented the generalized gini index (impurity.gini
which is used by default. However, as of R 3.0 the built-in table function is notably slow
and can use as much as 95% of cpu time when the tree is being constructed. For binary clas
attributes the considerably faster version impurity.gini.bin can be used.

4.1 Testing the accuracy of the built classification trees
Having chosen the datasets on which to work, we proceeded to growing classification trees
with a subset of each dataset, and then using the built tree to classify the remaining data
points. Our experimental setting was as follows:

Performance measure We use the proportion of correct guesses of a class value (prob-
ability of a correct guess) as measure of the performance of the classification tree.
This value, of course, is expressed as a function of the arguments nmin and minleaf

Size of training set For each of the two datasets used, we established a partition of 70%
of the data points used for training and 30% for classification.

Choice of the training set The number of data points to be used for training is sampled
randomly from the dataset.

Number of tests performed As a random choice is being performed, we chose to run 10
rounds of this “performance test” over each dataset, giving more confidence in the
results obtained.

As the performance of the classification is a function of two arguments (nmin and
minleaf), the plot for this function is 3-dimensional. One example of performance plot
(the one for the “PIMA” dataset) can be seen in Figure 4.1. The performance for the other
dataset (the “Adult Breast Cancer” dataset), can be visualized in Figure 4.1.

References
[1] K. Bache and M. Lichman. UCI machine learning repository, 2013.

2



Success rate with Pima indians data set [%]

nmin

m
in

le
af

5

10

15

20

25

10 20 30 40 50

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

Figure 1: Performance plot for the PIMA dataset

3



Success rate with Breast cancer data set [%]

nmin

m
in

le
af

15

20

25

30

35

15 20 25 30 35

0.926

0.928

0.930

0.932

0.934

0.936

0.938

0.940

0.942

0.944

Figure 2: Performance plot for the cancer dataset

4


	Introduction
	Organization of the distributed package
	Requirements on the data to be analyzed
	Training and classification process
	Testing the accuracy of the built classification trees


