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1 Introduction

This report describes the solution to the second practical assignment of the master course
"Data Mining" at Utrecht University, taught in the 1st period of the academic year 2013/2014.

2 Organization of the distributed package

The handed-in solution is organized as follows:

R workspace The R workspace image containing both the code and the datasets used for
analysis is under the package root directory with name “RData.RData”

R Source The source code of the functions implemented is located in the package root
with the name “graphModel.R”. In a running R session, the code can be loaded by
issuing the command source (“graphModel.R”).

Datasets The datasets available for usage are available under the “datasets” subdirec-
tory, in table and CSV format.

3 Remarks and improvements

Error corrected in the retake period A small error was causing all the problems in the
first version of the handed-in code, and it was corrected. Namely, the dimension of a model
was being calculated incorrectly, therefore also the score. Now we calculate the dimension
of a model (number of unique parameters) as the number of cells in the contingency table
(parameters of the saturated model) minus the degrees of freedom (value df returned by
the loglin function).

Remarks from the original work (regular period) We improved the “standard” solu-
tion to the assignment in the following ways:

1. We use our own clique-finding function. It is based on the Bron-Kerbosch algorithm,
but we had written the code before the version by the lecturer was released. Our
implementation is based on recursion.



2. We implemented Iterated Local Search (ILS). Apart from the requested “restarts”
function (usually called Repeated or Multistart Local Search), we implemented a
function which performs hill climbing on the space of local minima. To implement
this, we define two perturbation functions: one small and one large. The small per-
turbation is used for the “inner” local search, to achieve a local minimum. This
function only adds or removes an edge in a graph i.e. generates an immediate neigh-
bor in the search space of all possible graphs. In our code this function is called
gm.perturbateEdge. Then, in the ILS function, given a local minimum, we pertur-
bate it using the large perturbation, find “neighbours” and then start a local search
for each of these neighbours. The large perturbation function in our code is called
gm.perturbateForILS. It takes as a parameters the number of edges to be perturbated
(defaults to 3) and chooses n edges at random in the graph to perturbate.

4 Data Analysis

This section contains the answers to part 2 of the assignment, which involved using the
implemented algorithm to perform the analysis of a dataset about cancer treatment and
mortality.

The dataset contains data about 5.735 critically ill patients receiving care in an Intensive
Care Unit for 1 of 9 disease categories. The goal of the study was to examine the association
between use of right heart catheterization (RHC) in the first 24 hours of treatment and
subsequent survival.

The analyzed dataset consists of 10 categorical variables, distributed as follows:

catl Disease category (9 possible values)

death Did the patient die within 180 days

swangl Was RHC performed in the first 24 hours
gender Male/Female

race Black/White/Other

ninsclas Type of medical insurance (6 possible values)
income Patient income (4 possible values)

ca Cancer status (yes/no/metastatic)

age Patient age (5 possible values)

meanbpl Mean blood pressure (2 possible values)

4.1 Answers to the data analysis questions
Question a: How many different graphical models are there for this dataset?

R: For n vertices, there are 2"~ 1)/2 possible simple graphs with those vertices. There-
fore, considering that the RHC dataset has 10 variables, graphical models for it will have
10 vertices, and there are 219(10-1)/2 — 945 pogsible graphical models with 10 vertices.

Question b: How many cells does the table of counts for this data set have? How many
parameters does the saturated model have?



R: The dataset has 10 variables, with respectively 9, 2, 2, 2, 3, 6, 4, 3, 5 and 2 possible
values each. Therefore, the contingency table has 9*2x2x2x3x6x4x3+x5%x2 = 155520 cells.
The saturated model has one parameter for each cell in the contingency table, therefore also
155520 parameters.

Question c: Perform a forward-backward search on this data set, starting from the
empty graph (independence model). Use the BIC scoring function. List the cliques of the
resulting model and draw the independence graph.

R: The search resulted in a model with a score of 15841.66, with the following cliques:
{1,3,10}, {1, 8}, {1,9}, {2, 8}, {2,9}, {2,10}, {3,6}, {4,6}, {5,6}, {5,10}, {6, 7},

{6,8},{6,9}.
The resulting graph is drawn below on figure .1}

Figure 1: Model resulting from starting with the empty graph and using BIC score

Question d: Using the independence graph you found under question ¢, what can
you say about the pairwise conditional independence between income and gender? If we
are interested in predicting whether or not someone survives, looking at the independence
graph, which variables appear to be sufficient for that purpose?

R: According to the graph found in question (c), the variables income and gender
are independent given the type of insurance. If we are interested in predicting the death
variable, the local Markov property tell us that we only need to know the values of variable
in the boundary of the death variable. That is, to predict death we need to know the values
of variables 10 (mean blood pressure), 8 (cancer status) and 9 (age).

Question e: Perform a forward-backward search on this data set, starting from the
complete graph (saturated model). Use the BIC scoring function. List the cliques of the



resulting model and draw the independence graph. How does it compare to the model you
found under (c¢)?

R: These search parameters returned a model with score 15850.53, and the cliques:
{1,3,10}, {1,8}, {2,7}, {2,8}, {2,9}, {2,10}, {3,4}, {3,9}, {4,6}, {5,7}, {5,9},

{5,10}, {6,7}, {6,8}, {6,9}.
The graph of this model is drawn below on figure [4.1]

Figure 2: Graph of the model resulting from starting with the complete graph and using
BIC score

Question f: Perform a forward-backward search with AIC scoring on this data set,
starting from the complete graph and empty graph. Give the cliques of the models you
find, and the score of the models. Are they the same? Compare the complexity of the
models you found with BIC to those you found with AIC. Can you explain the difference?

R: Both searches using AIC scoring resulted in the same model with score 14278.21
and containing following 14 cliques: {1,2,8}, {1,2,9}, {1,2,10}, {1, 3,9}, {1, 3,10},
{1,4,8}, {1,4,10}, {2,7}, {3,6,9}, {4,5,6}, {4, 5,10}, {4,6, 8}, {5,6,7}, {5,6,9}.

Graph of this model is shown on figure

The difference between AIC and BIC lies in the sizes of contained cliques. The models
obtained with BIC scoring have majority of cliques of size 2 and only one of size 3 (staring
on empty graph) or two (when complete graph was the starting point) whereas when AIC
scoring was used the ratio was opposite - it contained one /-clique and 13 3-cliques This
can be explained by the fact that the BIC scoring function gives a larger penalty for complex
models. The factor for the penalty in BIC is Inn (where n is the number of observations),
while for AIC it is the constant 2. In this dataset, n = 5735, and In 5735 > 2.

Question g: Use random restarts to see whether you can find better scoring models
than you have found so far (both for AIC and for BIC scoring). Report your findings.

R: We have performed 10 searches from distinct starting graphs in the searched space
with both scoring schemes (AIC and BIC). We chose equal probability for an edge to exists



Figure 3: Graph of the model obrained with AIC scoring starting from both empty and
complete graphs

between any given pair of vertices in an initial graph i.e. prob parameter was 0.5. Interest-
ingly enough both runs have provided models with slightly higher score than models which
were found starting on complete or empty graphs. The returned model has score 14347.75
using AIC and 16000.28 using BIC scoring. The model obtained with AIC scoring contains
following cliques:

{{1,2,8},{1,2,10},{1,3,10},{1,4,6},{1,4,8},{1,4,10},{2,7,8} ,{2,8,9},{3,7},{3,9},{4,6,9}, {4,8,9} ,{

The graph of this model is shown below on figure [4.1]
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Figure 4: Model found by random restarts with AIC scoring

The model found with BIC scoring and random restarts contains 18 cliques:

{{1,8},{1,9},{1,10},{2,7},{2,8},{2,9},{2,10} ,{3,4} , {3,8} , {3,9} , {3, 10} , {4, 6}, {5, 7}, {5,9} , {5, 10} {
This model is shown on figure .1}



Figure 5: Model found by random restarts with BIC scoring

Tests showed that structure of the resulting model is heavily dependent on the initial
parameter prob. With lower value the algorithm starts with sparser initial graphs and the
resulting model was also sparse in comparision with results obtained with higher values
of prob. Unfortunately searches starting on denser graphs tend to be very computationally
demanding which have preventend us from using higher number of random restarts.
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