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Question 1 Multiple Choice (16 points)

For the following questions, zero or more answers may be true.

a) 1,2.

b) 1,4.

c) 2,4.

d) 1,3.

Question 2 Frequent Itemset Mining (25 points)

a) Level 1:

candidate support frequent?
A 3 Y
B 5 Y
C 2 Y
D 3 Y
E 2 Y

All 1-itemsets are frequent, so all 2-itemsets are candidates at level 2:
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candidate support frequent?
AB 3 Y
AC 1 N
AD 1 N
AE 0 N
BC 2 Y
BD 3 Y
BE 2 Y
CD 1 N
CE 1 N
DE 2 Y

All subsets of BDE are frequent, so this is a candidate at level 3:

candidate support frequent?
BDE 2 Y

There are no level 4 candidates.

b) An itemset is a generator if it is frequent and has no subset with the same
support. Level 1:

candidate support generator?
A 3 Y
B 5 Y
C 2 Y
D 3 Y
E 2 Y

All 1-itemsets are generators, so all 2-itemsets are candidates at level 2:

candidate support generator?
AB 3 N
AC 1 N
AD 1 N
AE 0 N
BC 2 N
BD 3 N
BE 2 N
CD 1 N
CE 1 N
DE 2 N

Now we have all generators. The next step is to compute their closure.
The closure has the same support as the generator. The result is the set
of all closed frequent itemsets.
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generator closure support
A AB 3
B B 5
C BC 2
D BD 3
E BDE 2

c) krimp codetable (order on size, then on support and finally lexicographi-
cally)

itemset usage codelength
BDE 2 − log 2

8 = log 4 = 2 bits
AB 3 − log 3

8 = 1.415 bits
BD 0 none
BC 0 none
B 0 none
A 0 none
D 1 − log 1

8 = log 8 = 3 bits
C 2 − log 2

8 = log 4 = 2 bits
E 0 none

d) Yes. This constraint has the Apriori property that if an itemset satisfies
this constraint, then so do all of its subsets. Or, conversely, if an itemset
does not satisfy this constraint, then neither does any of its supersets.
Hence we can prune any itemset that does not satisfy the constraint in an
Apriori style levelwise search.

Question 3 Undirected Graphical Models (15 points)

a) From the definition of pairwise independence for undirected graphs:

1. A ⊥⊥ D | B,C

2. A ⊥⊥ C | B,D

3. C ⊥⊥ D | A,B

Using separation in the graph, these can be strengthened to:

1. A ⊥⊥ D | B
2. A ⊥⊥ C | B
3. C ⊥⊥ D | B

b) 1. n̂(A,B) = n(A,B)

2. n̂(B,C) = n(B,C)

3. n̂(B,D) = n(B,D)
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c)

n̂(A,B, C, D) =
n(A,B)n(B,C)n(B,D)

n(B)2

Question 4 Bayesian Network Classifiers (20 points)

a) The probability estimates produced by naive Bayes may be off, but this
does not necessarily harm classification performance. For example, in the
binary case, all that matters is whether the class probability estimate is
on the correct side of 0.5. Furthermore, since naive Bayes only has few
parameters, they can be estimated with relatively high precision.

b) Each attribute except the root has 2 parents: the class label and another
attribute. This gives 2m parent configurations, and for each parent con-
figuration a single probability has to be estimated. Since there are k − 1
such attributes this gives 2m(k − 1) parameters. The attribute with only
the class as parent has m probabilities to be estimated, and for the class
label itself there are m− 1. Hence, the total is 2mk − 1.

c) The independence properties of a directed graph are the same as that of
its moral graph if no marrying of parents is required (no V-structures). In
a tan each attribute (except the root) has two parents: the class label and
another attribute. Since the class label is connected to every attribute,
these two parents are already married (no V-structures).

d) The score function of standard structure learning algorithms is

BIC(M |D) =
lnn

2
dim(M)− L(M |D)

where

L(M |D) =
n∑

j=1

log PM (C(j)|A(j)) +
n∑

j=1

log PM (A(j))

From the viewpoint of classification only accurate modeling of P (C|A)
matters, so the second part of the score, modeling the marginal distribu-
tion P (A) of the attributes is irrelevant. When there are many attributes,
the probability of each single combination of attribute values becomes
small, leading to large negative values in the loglikelihood. On the other
hand, the conditional probabilities P (C|A) remain of the same order of
magnitude regardless of the number of attributes. Hence the irrelevant
component of the score function starts to dominate when the number of
attributes becomes large: we run the risk of accurately modeling P (A) at
the expense of P (C|A).
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e) 1. Compute the conditional mutual information between each pair of
attributes.

2. Make a complete graph with the attributes as nodes, and put the
mutual information as a weight on the edge between two attributes.

3. Compute a maximum weight spanning tree on this graph.

4. Choose one of its nodes as root, and let the edges point away from
it.

5. Add the class variable and edges from the class variable to each at-
tribute.

Question 5 Bayesian Networks (10 points)

a) Neighbours C and D are equivalent:

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

(A) (B)

(C) (D)

(E) (F)

b) The current model has 10 parameters: Node 1: 2, Node 2: 6, Node 3: 2.
We count the number of parameters of the neighbours:

(A) 2+6+6=14.

(B) 2+18+2=22.

(C) 2+6+6=14.

(D) 6+6+2=14.

The penalty per parameter is ln 100
2 ≈ 2.3. So, for (A), (C) and (D), the

increase should be more than 4×2.3 = 9.2 and for (B) the increase should
be more than 12× 2.3 = 27.6.
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Question 6 Classification Trees (14 points)

a) i(t1) = 0.4× 0.6 = 0.24, i(t2) = 0.75× 0.25 = 0.1875, i(t3) = 0.5× 0.5 =
0.25, ∆i = 0.24− 0.4× 0.1875− 0.6× 0.25 = 0.015.

b) T1 is obtained by pruning in t7: the resulting tree has the same resubsti-
tution error as Tmax. Then we have

g(t1) =
0.4− 0.15

3
≈ 0.08, g(t2) =

0.1− 0.05
1

= 0.05, g(t3) =
0.3− 0.1

1
= 0.2

The minimum is g(t2), so we prune in t2. Then we recompute the g values.
g(t3) doesn’t have to be recomputed, and

g(t1) =
0.4− 0.2

2
= 0.1

which is smaller than g(t3), so we prune in the root.

Summarizing: T1 is obtained by pruning Tmax in t7. This is the best
tree for α ∈ [0, 0.05). T2 is obtained by pruning T1 in t2. This is the best
tree for α ∈ [0.05, 0.1). Then we prune in the root, which is the best tree
for α ∈ [0.1,∞).
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