
Exam Data Mining
Date: 5-11-2013
Time: 17.00-20.00

Question 1 Short Questions

(a) We speak of overfitting when a model is adjusted too much to the peculiarities of the
training sample, causing bad generalization to unseen data. To prevent overfitting
in classification trees, one can use cost-complexity pruning. We compute a nested
sequence of trees where each tree in the sequence is the smallest minimizing subtree
for an interval of alpha (the complexity penalty) values. We select the tree from the
sequence that has the smallest error on a test set.

(b) Two disadvantages:

1. We may have to throw away a large part of the records just because one attribute
value in the record is missing. The remaining data set may be quite small, which
tends to have a negative effect on the quality of the model.

2. There may be a systematic difference between records with missing values and
complete records, so if we only consider the complete records, we may have a
biased sample.

(c) 1. Compute the mutual information between each pair of variables.

2. Make a complete (undirected) graph where each node corresponds to a variable.

3. Put the mutual information between a pair of variables as a weight on the edge
between that pair.

4. Compute a maximum weight spanning tree.

5. Pick a root node, and let all the edges point away from the root.

(d) A-close is more efficient then Apriori on dense, highly correlated data sets.

(e) To predict the class label of one object, we need the class labels of the linked objects,
because they determine the value of the link-attributes. But the class labels of these
linked objects are also unknown. To bootstrap the whole process, we can start with
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an initial classification that only uses the node-attributes and disregards the link-
attributes. Starting from this initial classification we can iteratively improve the
solution.

Question 2: Classification Trees

(a) The split between 12 and 14, and the split between 15 and 17.

(b) Split between 12 and 14:
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Split between 15 and 17:
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The split between 12 and 14 wins. It has an impurity reduction of
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(c) No. Suppose minleaf=4: then neither of the splits listed under (a) would be accept-
able. But we can make a split between 14 and 15 that satisfies the minleaf constraint.
Hence, it is not correct to only consider splits on the border between segments in the
presence of a minleaf constraint.

Question 3: Frequent Pattern Mining

(a) Level 1:

candidate support frequent?

A 5 !

B 3 !

C 3 !

D 4 !

E 1 %

F 1 %

Level 2:
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candidate support frequent?

AB 2 !

AC 2 !

AD 3 !

BC 1 %

BD 1 %

CD 3 !

Level 3:

candidate support frequent?

ACD 2 !

The “pre-candidate” ABC is generated from level 2 frequent item sets AB and AC,
but it is pruned because level 2 subset BC is not frequent. The same reasoning
applies to ABD. There are no level 4 candidates.

(b) Two times. The RMO-list is: (v6, v8).

(c) Six times.

w1 w2 w3

φ1 v1 v3 v6
φ2 v1 v3 v8
φ3 v1 v5 v6
φ4 v1 v5 v8
φ5 v1 v7 v8
φ6 v6 v7 v8

(d) Nine candidates. There are 3 nodes on the rightmost path of the tree, and to each
we can add a node labeled a,b, or c as the rightmost child.

Question 4: Iterative Proportional Fitting

(a) Which margin constraints have to be satisfied by the fitted counts?

n̂1(x1) = n1(x1)

n̂2(x2) = n2(x2)
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(b)

n̂(1) =

0 1
0 40 40 80
1 10 10 20

50 50

n̂(2) =

0 1
0 72 8 80
1 18 2 20

90 10

The algorithm has converged since all margin constraints have been satisfied simul-
taneously.

(c)

n̂(1) =

0 1
0 75 5 80
1 15 5 20

90 10

The algorithm has converged since all margin constraints have been satisfied simul-
taneously.

(d) Solution (b) is correct. Solution (c) doesn’t satisfy the independence constraint.
The initial solution of (c) didn’t satisfy the independence constraint, in which case
the algorithm may fail to converge to the correct solution. Of course, you can also
check which solution corresponds to the one obtained by using the formula for the
maximum likelihood fitted counts:

n̂12(x1, x2) =
n1(x1)n2(x2)

N

Question 5: Bayesian Networks

(a) A and B are equivalent. E is equivalent to the current model.
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(b) Note that we subtract 1 from the log-likelihood score, because the node G costs 1
parameter.

AIC(G) = 213 ln
213

474
+ 261 ln

261

474
− 1 = −327.12

(c) Recompute the contribution of node G to the score:

AIC(G) = 77 ln
77

150
+ 73 ln

73

150
+ 136 ln

136

324
+ 188 ln

188

324
− 2 = −326.31

The score of node G has increased. Since this is the only node whose score (parent
set) has changed, the overall score of the model increases by this change.

(d) Survival and Center are independent given Grade.
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