
Data Mining: Exercises on Classification Trees

Exercise 1: Computing Splits

We want to determine the optimal split in a node that contains the following data:

x1 a b b b c c d d d e
x2 28 31 35 40 40 45 45 52 52 60
y B B B G B G B G G G

Here x1 is a categorical attribute with possible values {a,b,c,d,e}, x2 is a numerical
attribute, and y is the binary class label. We use the gini index as splitting criterion.

(a) How many possible binary splits are there on x1?

(b) Which splits on x1 do we have to evaluate to determine the optimal one?

(c) How many possible binary splits are there on x2?

(d) Which splits on x2 do we have to evaluate to determine the optimal one?

Exercise 2: Splitting and Pruning

We have grown the tree at the top of the next page (called Tmax) on a training sample.
In each node, the number of observations with class A is given in the left part, and the
number of observations with class B in the right part. The leaf nodes have been drawn as
rectangles (sort of).

(a) Compute the impurity of nodes t1, t2 and t3 using the gini index.

(b) Give the impurity reduction achieved by the first split.

(c) Compute T1, the smallest minimizing subtree of Tmax for α = 0.

(d) Compute the cost-complexity pruning sequence T1 > T2 > . . . > {t1}. For each tree
in the sequence, give the interval of α values for which it is the smallest minimizing
subtree of Tmax.



Exercise 3: Gini index

We have defined the gini index for binary classification as

i(t) = p(0|t)p(1|t) = p(0|t)(1− p(0|t)), (1)

where the class values are coded as 0 and 1, and p(j|t) denotes the relative frequency of
class j in node t. The generalization to an arbitrary number of classes is given by:

i(t) =
C∑

j=1

p(j|t)(1− p(j|t)), (2)

where C denotes the number of classes. If we apply equation (2) to the binary case, we
should get the same results as when we apply equation (1). Is this indeed the case?

Show that equation (2) can alternatively be written as

i(t) = 1−
C∑

j=1

p(j|t)2.


