
Data Mining: Exercises on Classification Trees

Exercise 1: Computing Splits

We want to determine the optimal split in a node that contains the following data:

x1 a b b b c c d d d e
x2 28 31 35 40 40 45 45 52 52 60
y B B B G B G B G G G

Here x1 is a categorical attribute with possible values {a,b,c,d,e}, x2 is a numerical
attribute, and y is the binary class label. We use the gini index as splitting criterion.

(a) The number of splits for a categorical variable with L distinct values is 2L−1 − 1.
So: 24 − 1 = 15.

(b) Sort the values of x1 on probability of B (or G) and consider all splits between adjacent
values in the sorted list. We find P (B|a) = 1, P (B|b) = 2

3
, P (B|c) = 1

2
, P (B|d) =

1
3
, P (B|e) = 0. So the splits are: {a},{a,b},{a,b,c},{a,b,c,d}. Note: in our notation,

the split {a,b} is the split that sends all cases with x1 ∈ {a, b} to one child node, and
all cases with x1 ∈ {c, d, e} (the complement of {a, b}) to the other child node. Note
also that it doesn’t matter whether we sort on P (B|x1) or on P (G|x1), nor whether
we sort ascending or descending. In all cases we get the same collection of splits.

(c) The sorted distinct values of x2 are : 28,31,35,40,45,52,60. So the number of splits is
6 (all splits halfway between 2 adjacent distinct values in the sorted list)

(d) Optimal splits can only occur on segment borders. To determine the segments we
merge all values of the split attribute that are adjacent in the sorted list and have
the same class distribution (i.e., the same relative frequencies for all classes). This
gives the three segments: (28,31,35),(40,45), and (52,60). So we have to evaluate just
2 splits: x2 ≤ 37.5 and x2 ≤ 48.5.

Exercise 2: Splitting and Pruning

(a) i(t1) = 6
10
· 4
10

= 24
100

, i(t2) = 2
5
· 3
5

= 24
100

, i(t3) = 1
5
· 4
5

= 16
100

(b) ∆i = 24
100
−
(
1
2
· 24
100

+ 1
2
· 16
100

)
= 4

100
.



(c) Since we continued splitting until all nodes were pure, we have T1 = Tmax.

(d) Rows in the table represent the iterations of the pruning algorithm:

t1 t2 t3 t4 t5 t7

g1(·) 1
15

1
15

1
20

∗ 1
20

∗ 1
10

1
20

∗

g2(·) 1
12

15
200

∗ − − 1
10
−

g3(·) 1
10

∗ − − − − −

The subscript of g indicates the iteration number. In each iteration the nodes with
minimum g values are pruned (indicated with a star in the table). Note that if the
pruning hasn’t changed Tt, then we don’t have to recompute g(t). So we don’t need
to recompute g(t5) in the second iteration, because Tt5 wasn’t changed by the pruning
in the first iteration.

Summarizing: T1 is the smallest minimizing subtree for α ∈ [0, 1
20

). T2 is obtained
by pruning T1 in t4, t7 and t3, and it is the best tree for α ∈ [ 1

20
, 15
200

). T3 is obtained
by pruning T2 in t2, and it is the best tree for α ∈ [ 15

200
, 1
10

). The root node wins for
α ∈ [ 1

10
,∞).

Note that in the first pruning step, if we prune in t3 before we prune in t7, then t7
will already be pruned away. To avoid this situation, the pruning algorithm specifies
that the nodes should be visited in top-down (depth-first) order. It depends on how
you implement the pruning whether this really is an issue.

Exercise 3: Splitting on a numeric attribute

In the best case, all examples of one class precede all examples of the other class in the
sorted order. In that case we only have to evaluate one split, and it would be a very good
one!

In the worst case the class label changes every time in the sorted order, so that we still
have to evaluate all possible splits. The resulting split will not be very good either.

In general, if we have k classes we have to evaluate just k − 1 splits in the best case.
In the worst case, we have to evaluate n− 1 splits, where n is the number of observations
in the node concerned.



Exercise 4: Gini index

We have defined the gini index for binary classification as

i(t) = p(0|t)p(1|t) = p(0|t)(1− p(0|t)), (1)

where the class values are coded as 0 and 1, and p(j|t) denotes the relative frequency of
class j in node t. The generalization to an arbitrary number of classes is given by:

i(t) =
C∑

j=1

p(j|t)(1− p(j|t)), (2)

where C denotes the number of classes. If we apply equation (2) to the binary case, we
should get the same results as when we apply equation (1). Is this indeed the case?

Call impurity according to equation (1) i1, and according to equation (2) i2. For the
binary case, we have

i2(t) = p(0|t)(1− p(0|t)) + p(1|t)(1− p(1|t)) = 2 p(0|t)(1− p(0|t)) = 2 i1(t)

So impurity according to equation (2) is twice as large as according to equation (1). There-
fore, also ∆i2 = 2 ∆i1. This makes no difference in determining the optimal split because
it is only the order of the values that matters. The same split will win.

Show that equation (2) can alternatively be written as

i(t) = 1−
C∑

j=1

p(j|t)2.

Starting with (2):

i(t) =
C∑

j=1

p(j|t)(1− p(j|t))

=
C∑

j=1

p(j|t)− p(j|t)2

=
C∑

j=1

p(j|t)−
C∑

j=1

p(j|t)2

= 1−
C∑

j=1

p(j|t)2.


