
Solutions Undirected Graphical Models

Exercise 1

(a) N = 2026, n(female, brown) = 352, and n(hazel) = 347.

(b) For example

n̂(male, green) =
n(male)n(green)

N
=

919× 308

2026
= 139.71

The other cells in the table of fitted counts are computed in a similar way.
This yields:

Eye Color
Gender blue brown green hazel Total
female 398.32 350.79 168.29 189.60 1107
male 330.68 291.21 139.71 157.40 919
Total 729 642 308 347 2026

(c) The cliques of the independence graph are the individual nodes of gender and eye
color, so we have the margin constraints:

n̂(gender) = n(gender)

n̂(eye color) = n(eye color)

The IPF algorithm fits the counts to each margin in turn, and repeats this process
until all margin constraints are satisfied simultaneously. For the algorithm to work
correctly, we should start from a solution that satisfies all constraints of the model
to be fitted: if the model puts a u-term to zero, it should also have the value 0 in
our initial solution n̂(0). Therefore, starting from the uniform table is a safe choice,
because it puts all u-terms to zero except u∅. Which particular count we put in all
cells is not important. So take n̂(0) to be:
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Eye Color
Gender blue brown green hazel Total
female 1 1 1 1 4
male 1 1 1 1 4
Total 2 2 2 2 8

To obtain n̂(1), we fit to the observed row margin:

Eye Color
Gender blue brown green hazel Total
female 1107
male 919
Total 2026

We distribute the row total over the columns according to P̂ (0)(Eye Color|Gender),
so for example

P̂ (0)(blue|female) =
1

4
,

so the cell (female,blue) gets a fitted count of n̂(1)(female, blue) = 1107× 1
4

= 276.75.
Completing the table in this way, n̂(1) becomes:

Eye Color
Gender blue brown green hazel Total
female 276.75 276.75 276.75 276.75 1107
male 229.75 229.75 229.75 229.75 919
Total 506.5 506.5 506.5 506.5 2026

Now the row margin is correct, but the column margin is off. To obtain n̂(2), we fit
to the observed column margin:

Eye Color
Gender blue brown green hazel Total
female
male
Total 729 642 308 347 2026

We distribute the column total over the rows according to P̂ (1)(Gender|Eye Color),
so for example

P̂ (1)(female|blue) =
276.75

506.5
= 0.5463986

so the cell (female,blue) gets a fitted count of n̂(2)(female, blue) = 729× 0.5463986 =
398.32. Completing the table in this way, n̂(2) becomes:
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Eye Color
Gender blue brown green hazel Total
female 398.32 350.79 168.29 189.60 1107
male 330.68 291.21 139.71 157.40 919
Total 729 642 308 347 2026

Now both margin constraints are satisfied simultaneously, so the algorithm has con-
verged. As a general rule, if closed form estimates exist (the model is decomposable),
then the IPF algorithm converges in one cycle through all margins that have to be
fitted.

(d) I don’t know!

(e) We test the independence model against the saturated model. The degrees of freedom
for the χ2 test is equal to the difference in the number of u-terms of the two models.
The log-linear expansion of the saturated model is:

logP (gender, eye color) = u∅ + u(gender) + u(eye color) + u(gender, eye color)

The log-linear expansion for the independence model is:

logP (gender, eye color) = u∅ + u(gender) + u(eye color)

The independence model excludes all u-terms u(gender, eye color). How many are
there? Number the values of gender as 0 and 1, and number the values of eye color
as 0,1,2,3. If either variable has the value 0, then u(gender, eye color) = 0. So the
number of non-zero such u-terms is 1× 3 = 3. In the table we look up χ2

3;0.05 = 7.82.
The observed deviance is 16.29, which is bigger than the critical value of 7.82, so we
reject the null hypothesis that the independence model is the true model.

In general, if we have an r× c table (where r is the number of rows and c the number
of columns) and we test the independence model against the saturated model, then
the appropriate degrees of freedom for the test is (r − 1)× (c− 1).

(f) The cliques of the independence graph are the individual nodes of gender and eye
color, so we have the margin constraints:

n̂(gender) = n(gender)

n̂(eye color) = n(eye color)

Because of the independence assumption we have

P̂ (gender, eye color) = P̂ (gender)P̂ (eye color)
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Multiplying on the left by N and on the right by N2

N
= N we get

n̂(gender, eye color) =
n̂(gender)n̂(eye color)

N

Finally, we use the margin constraints to obtain

n̂(gender, eye color) =
n(gender)n(eye color)

N

Exercise 2

(a) {3} separates {1,2} from {4,5} because every path from a node in {1,2} to a node in
{4,5} has to pass through node 3. Therefore we may conclude that the conditional
independence

(X1, X2) ⊥⊥ (X4, X5)|X3

holds.

(b) P (X1, X2, X4, X5|X3) = P (X1, X2|X3)P (X4, X5|X3).

(c) The cliques are {1,2,3} and {3,4,5}. The corresponding margin constraints are

n̂ (X1, X2, X3) = n(X1, X2, X3)

n̂(X3, X4, X5) = n(X3, X4, X5)

(d) Make sure you justify each step:

P̂ (X1, X2, X3, X4, X5) = P̂ (X1, X2, X4, X5|X3)P̂ (X3) (product law)

= P̂ (X1, X2|X3)P̂ (X4, X5|X3)P̂ (X3)
((X1, X2) ⊥⊥ (X4, X5) | X3)

=
P̂ (X1, X2, X3)P̂ (X3, X4, X5)

P̂ (X3)
(product law twice)

We have reached our goal: in the numerator we have distributions over the cliques,
and in the denominator over a subset of a clique. Now we multiply by N on the left
and by N2/N = N on the right to get fitted counts instead of fitted probabilities:

n̂(X1, X2, X3, X4, X5) =
n̂(X1, X2, X3)n̂(X3, X4, X5)

n̂(X3)

Finally, we can use the property that the maximum likelihood solution satisfies the
margin constraints (fitted = observed for every margin corresponding to a complete
subgraph), so we can replace the fitted counts on the right hand side by observed
counts:

n̂(X1, X2, X3, X4, X5) =
n(X1, X2, X3)n(X3, X4, X5)

n(X3)
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Excercise 3

(a) There are
(
k
2

)
different edges. Each edge can be either included or excluded, so 2(k

2).

(b)
(
8
2

)
= 28. 228 = 268, 435, 456. So roughly 268 million.

(c) Graphical: We can remove 7 edges. We can add: AC,AF ,BD,BF ,CD,CE,CF ,DF .
That’s 8 in total, so there are 7 + 8 = 15 neighboring graphical models. Could we
have found the answer without actually enumerating the possibilities?

Decomposable: We can remove 6 edges (not AE because that would create the
chordless 4-cycle A−B−E−D−A). We can add every edge, except CF (chordless
4-cylce B − C − F − E − B) and CD (chordless 4-cycle A − B − C − D − A). So
6+6=12 neighbors.

Exercise 4

(a) P(yes | male) = 245/400=0.6125 and P(yes | female)=75/200=0.375.

(b) Fitted cell counts of the independence model:

Gender Admission
Yes No

Male 213.33 186.67
Female 106.67 93.33

(c) Value of the deviance:

2

[
245 ln

245

213.33
+ 155 ln

155

186.67
+ 75 ln

75

106.67
+ 125 ln

125

93.33

]
≈ 30.4

(d) The independence model puts one extra u-term to zero compared to the saturated
model, so we should use a χ2 distribution with one degree of freedom. The critical
value is

χ2
1;0.05 = 3.84.

We reject the independence model because the observed deviance is bigger than the
critical value.

(e) Clearly, women are less likely to be admitted than men. In itself this does not prove
discrimination however. Men and women might differ on other attributes that are
legitimate admittance criteria, but that were not taken into account in this analysis
(see also the next exercise).
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Exercise 5

(a) The independence graph is

P

G

A

Within each program, Gender and Admission are independent.

(b) Maximum likelihood fitted counts:

n̂(P,G,A) =
n(P,G)n(P,A)

n(P )

The fitted counts are:

Program Gender Admission
Yes No

A Male 24.71 80.29
Female 35.29 114.71

B Male 222.32 72.68
Female 37.68 12.32

The deviance is 0.712. Since χ2
2;0.05 = 6.00, we don’t reject the model.

(c) No. Within program A, the fraction of male applicants that is accepted is 25/105 =
0.24 and the fraction of female applicants that is accepted is 35/150 = 0.23, so slightly
smaller. However, in program B this is the other way around: 75% of the males is
accepted, and 80% of the females.

More women apply to program A, and program A accepts fewer students. That
there is no discrimination is confirmed by the good fit of the model G ⊥⊥ A|P .
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