
Exercises Bayesian Networks: Solutions

Exercise 1

(a) Factorization:

P (X) =

9∏
i=1

P (Xi | Xpa(i))

= P (X1)P (X2)P (X3|X1, X2)P (X4)P (X5|X2)P (X6|X3)

P (X7|X3, X4)P (X8|X6, X7)P (X9|X5, X7)

(b) 6 ⊥⊥ 7
To verify X ⊥⊥ Y | Z, take the directed independence graph on
an+(X ∪ Y ∪ Z) and moralize this graph. Then you can verify the inde-
pendence property in the resulting undirected graph using separation.

The directed independence graph on an+({6, 7}) is given left, the cor-
responding moral graph is given right:

1 2

3 4

6 7

1 2

3 4

6 7

Since 6 and 7 are not separated by the empty set (there is a path between
6 and 7), they are not marginally independent.

(c) 6 ⊥⊥ 7 | 3
For the graphs, see (b). Yes, every path between 6 and 7 must pass
through 3.

(d) 6 ⊥⊥ 7 | 8
The directed independence graph on an+({6, 7, 8}) is given left, the cor-
responding moral graph is given right:
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1 2

3 4

6 7

8

1 2

3 4

6 7

8

No, 8 does not separate 6 and 7 in the moral graph.

(e) 2 ⊥⊥ 9 | {5, 7}
The directed independence graph on an+({2, 5, 7, 9}) is given left, the
corresponding moral graph is given right:

1 2

3 4 5

7

9

1 2

3 4 5

7

9

Yes: {5,7} separates 2 from 9, that is, every path from 2 to 9 must pass
through a node in the set {5,7}.

(f) 2 ⊥⊥ 9 | {3, 5}
For the graphs, see (e). Yes: {3,5} separates 2 from 9.

(g) 5 ⊥⊥ 8
The directed independence graph on an+({5, 8}) is given left, the corre-
sponding moral graph is given right:
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1 2

3 4 5

6 7

8

1 2

3 4 5

6 7

8

No, there is a path between 5 and 8.

(h) 5 ⊥⊥ 8 | 3
For the graphs, see (g). Yes, 3 separates 5 from 8 in the moral graph.

Exercise 2

(a) The maximum likelihood estimates are:

p̂1(0) =
n1(0)

n
=

5

10
p̂1(1) =

n1(1)

n
=

5

10

p̂2(0) =
n2(0)

n
=

6

10
p̂2(1) =

n2(1)

n
=

4

10

p̂3(0) =
n3(0)

n
=

5

10
p̂3(1) =

n3(1)

n
=

5

10

(b) The contribution of each node (variable) to the loglikelihood score is:

Node 1: 5 log 5
10 + 5 log 5

10 .

Node 2: 6 log 6
10 + 4 log 4

10 .

Node 3: 5 log 5
10 + 5 log 5

10 .

Hence, the total loglikelihood score is:

L = 5 log
5

10
+ 5 log

5

10
+ 6 log

6

10
+ 4 log

4

10

+ 5 log
5

10
+ 5 log

5

10
≈ −20.59

(c) The neighbors are:
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1 1

1 1

1 1

2 2

2 2

2 2

3 3

3 3

3 3

Pairs of models in the same row are equivalent, because moralisation does
not require marrying parents, and the resulting undirected graphs are the
same.

(d) No, X1 and X2 are independent in the data, that is, for all values x1 of
X1 and x2 of X2: P̂ (x2) = P̂ (x2|x1). This means that adding an edge
from X1 to X2 does not improve the loglikelihood score. The BIC-score
will go down because of the extra parameter.

(e) We compute

p̂3|1(0 | 0) =
1

5
p̂3|1(1 | 0) =

4

5
p̂3|1(0 | 1) =

4

5
, p̂3|1(1 | 1) =

1

5

where p̂3|1(0 | 0) is shorthand for p̂(x3 = 0 | x1 = 0). Hence, the new
contribution of node 3 to the loglikelihood score is:

log
1

5
+ 4 log

4

5
+ 4 log

4

5
+ log

1

5

The new loglikelihood score therefore becomes

L = 5 log
5

10
+ 5 log

5

10
+ 6 log

6

10
+ 4 log

4

10

+ log
1

5
+ 4 log

4

5
+ 4 log

4

5
+ log

1

5
≈ −18.66

The loglikelihood score improves by −18.66 + 20.59 = 1.93. This is at the
cost of one extra parameter that costs 0.5 log 10 = 1.15. All in all adding
an edge from X1 to X3 improves the BIC score by 1.93− 1.15 = 0.78.
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Exercise 3

(a) The maximum likelihood estimates are:

p̂1(0) =
n1(0)

n
=

4

10
p̂1(1) =

n1(1)

n
=

6

10

p̂2(0) =
n2(0)

n
=

5

10
p̂2(1) =

n2(1)

n
=

5

10

p̂3|12(0|0, 0) =
n123(0, 0, 0)

n12(0, 0)
=

0

2
= 0 p̂3|12(1|0, 0) =

n123(0, 0, 1)

n12(0, 0)
=

2

2
= 1

p̂3|12(0|0, 1) =
n123(0, 1, 0)

n12(0, 1)
=

1

2
p̂3|12(1|0, 1) =

n123(0, 1, 1)

n12(0, 1)
=

1

2

p̂3|12(0|1, 0) =
n123(1, 0, 0)

n12(1, 0)
=

3

3
= 1 p̂3|12(1|1, 0) =

n123(1, 0, 1)

n12(1, 0)
=

0

3
= 0

p̂3|12(0|1, 1) =
n123(1, 1, 0)

n12(1, 1)
=

1

3
p̂3|12(1|1, 1) =

n123(1, 1, 1)

n12(1, 1)
=

2

3

p̂4|3(0|0) =
n34(0, 0)

n3(0)
=

2

5
p̂4|3(1|0) =

n34(0, 1)

n3(0)
=

3

5

p̂4|3(0|1) =
n34(1, 0)

n3(1)
=

4

5
p̂4|3(1|1) =

n34(1, 1)

n3(1)
=

1

5

(b) The loglikelihood score is:

L = 4 log
4

10
+ 6 log

6

10
+ 5 log

5

10
+ 5 log

5

10

+ 0 log 0 + 2 log 1 + log
1

2
+ log

1

2

+ 3 log 1 + 0 log 0 + log
1

3
+ 2 log

2

3

+ 2 log 2
5 + 3 log 3

5 + 4 log 4
5 + log 1

5

= −22.82450

(c) Count the number of parameters per node (variable) as follows. Suppose
a node has k different parent configurations (possible value assignments
to its parents), and it can take on m different values itself. Then the
number of parameters associated with that node is k(m− 1) because you
have to estimate k different conditional distributions, and each conditional
distribution requires the estimation of m−1 probabilities. If a node doesn’t
have any parents, then the number of parameters associated with it is
m− 1. Specified per node, the number of parameters is therefore:

– Node 1: 1.

– Node 2: 1.
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– Node 3: 4× 1 = 4.

– Node 4: 2× 1 = 2.

Hence, the BIC score is:

−22.82450− 1.15 (1 + 1 + 4 + 2) = −32.02450

(d) Adding an arc:

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

A B C D

A and B are equivalent.

Removing an arc:

1 2

3

4

1 2

3

4

1 2

3

4

E F G

Reversing an arc:

1 2

3

4

1 2

3

4

1 2

3

4

H I J

H and I are equivalent.

(e) The parent set of X4 changes so we have to recompute the part of the score
corresponding to this node. The boxed part of the loglikelihood under (b)
is replaced by

2 log
2

4
+ 2 log

2

4
+ log

1

2
+ log

1

2
≈ −4.16,

where we left out all the terms that evaluate to zero. The boxed part
under (b) evaluates to −5.86 so the loglikelihood increases by 1.7. This is
however at the cost of two extra parameters, that cost 1.15 each, so all in
all addition of an arc from X1 to X4 decreases the BIC score. Hence it is
not preferred to the current model.
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(f) The smoothed estimate is

ps3|12(0|0, 0) =
n12(0, 0)× p̂3|12(0|0, 0) + m× p03|12(0|0, 0)

n12(0, 0) + m
=

2× 0 + 1× 5/10

2 + 1
=

1

6
,

since

p03|12(0|0, 0) = p̂3(0) =
5

10
.
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