Exercises Bayesian Networks: Solutions

Exercise 1

(a) Factorization:

$$
\begin{aligned}
P(X)= & \prod_{i=1}^{9} P\left(X_{i} \mid X_{p a(i)}\right) \\
= & P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{4}\right) P\left(X_{5} \mid X_{2}\right) P\left(X_{6} \mid X_{3}\right) \\
& P\left(X_{7} \mid X_{3}, X_{4}\right) P\left(X_{8} \mid X_{6}, X_{7}\right) P\left(X_{9} \mid X_{5}, X_{7}\right)
\end{aligned}
$$

(b) $6 \Perp 7$

To verify $X \Perp Y \mid Z$, take the directed independence graph on $\mathrm{an}^{+}(X \cup Y \cup Z)$ and moralize this graph. Then you can verify the independence property in the resulting undirected graph using separation.

The directed independence graph on $\mathrm{an}^{+}(\{6,7\})$ is given left, the corresponding moral graph is given right:

Since 6 and 7 are not separated by the empty set (there is a path between 6 and 7), they are not marginally independent.
(c) $6 \Perp 7 \mid 3$

For the graphs, see (b). Yes, every path between 6 and 7 must pass through 3.
(d) $6 \Perp 7 \mid 8$

The directed independence graph on an $^{+}(\{6,7,8\})$ is given left, the corresponding moral graph is given right:

No, 8 does not separate 6 and 7 in the moral graph.
(e) $2 \Perp 9 \mid\{5,7\}$

The directed independence graph on an $^{+}(\{2,5,7,9\})$ is given left, the corresponding moral graph is given right:

Yes: $\{5,7\}$ separates 2 from 9 , that is, every path from 2 to 9 must pass through a node in the set $\{5,7\}$.
(f) $2 \Perp 9 \mid\{3,5\}$

For the graphs, see (e). Yes: $\{3,5\}$ separates 2 from 9 .
(g) $5 \Perp 8$

The directed independence graph on $\mathrm{an}^{+}(\{5,8\})$ is given left, the corresponding moral graph is given right:

No, there is a path between 5 and 8 .
(h) $5 \Perp 8 \mid 3$

For the graphs, see (g). Yes, 3 separates 5 from 8 in the moral graph.

Exercise 2

(a) The maximum likelihood estimates are:

$$
\begin{array}{ll}
\hat{p}_{1}(0)=\frac{n_{1}(0)}{n}=\frac{5}{10} & \hat{p}_{1}(1)=\frac{n_{1}(1)}{n}=\frac{5}{10} \\
\hat{p}_{2}(0)=\frac{n_{2}(0)}{n}=\frac{6}{10} & \hat{p}_{2}(1)=\frac{n_{2}(1)}{n}=\frac{4}{10} \\
\hat{p}_{3}(0)=\frac{n_{3}(0)}{n}=\frac{5}{10} & \hat{p}_{3}(1)=\frac{n_{3}(1)}{n}=\frac{5}{10}
\end{array}
$$

(b) The contribution of each node (variable) to the loglikelihood score is:

Node 1: $5 \log \frac{5}{10}+5 \log \frac{5}{10}$.
Node 2: $6 \log \frac{6}{10}+4 \log \frac{4}{10}$.
Node 3: $5 \log \frac{5}{10}+5 \log \frac{5}{10}$.
Hence, the total loglikelihood score is:

$$
\begin{aligned}
\mathcal{L} & =5 \log \frac{5}{10}+5 \log \frac{5}{10}+6 \log \frac{6}{10}+4 \log \frac{4}{10} \\
& +5 \log \frac{5}{10}+5 \log \frac{5}{10} \approx-20.59
\end{aligned}
$$

(c) The neighbors are:

Pairs of models in the same row are equivalent, because moralisation does not require marrying parents, and the resulting undirected graphs are the same.
(d) No, X_{1} and X_{2} are independent in the data, that is, for all values x_{1} of X_{1} and x_{2} of X_{2} : $\hat{P}\left(x_{2}\right)=\hat{P}\left(x_{2} \mid x_{1}\right)$. This means that adding an edge from X_{1} to X_{2} does not improve the loglikelihood score. The BIC-score will go down because of the extra parameter.
(e) We compute

$$
\hat{p}_{3 \mid 1}(0 \mid 0)=\frac{1}{5} \quad \hat{p}_{3 \mid 1}(1 \mid 0)=\frac{4}{5} \quad \hat{p}_{3 \mid 1}(0 \mid 1)=\frac{4}{5}, \quad \hat{p}_{3 \mid 1}(1 \mid 1)=\frac{1}{5}
$$

where $\hat{p}_{3 \mid 1}(0 \mid 0)$ is shorthand for $\hat{p}\left(x_{3}=0 \mid x_{1}=0\right)$. Hence, the new contribution of node 3 to the loglikelihood score is:

$$
\log \frac{1}{5}+4 \log \frac{4}{5}+4 \log \frac{4}{5}+\log \frac{1}{5}
$$

The new loglikelihood score therefore becomes

$$
\begin{aligned}
\mathcal{L} & =5 \log \frac{5}{10}+5 \log \frac{5}{10}+6 \log \frac{6}{10}+4 \log \frac{4}{10} \\
& +\log \frac{1}{5}+4 \log \frac{4}{5}+4 \log \frac{4}{5}+\log \frac{1}{5} \approx-18.66
\end{aligned}
$$

The loglikelihood score improves by $-18.66+20.59=1.93$. This is at the cost of one extra parameter that costs $0.5 \log 10=1.15$. All in all adding an edge from X_{1} to X_{3} improves the BIC score by $1.93-1.15=0.78$.

Exercise 3

(a) The maximum likelihood estimates are:

$$
\begin{array}{rlrl}
\hat{p}_{1}(0) & =\frac{n_{1}(0)}{n}=\frac{4}{10} & \hat{p}_{1}(1)=\frac{n_{1}(1)}{n}=\frac{6}{10} \\
\hat{p}_{2}(0)=\frac{n_{2}(0)}{n}=\frac{5}{10} & \hat{p}_{2}(1)=\frac{n_{2}(1)}{n}=\frac{5}{10} \\
\hat{p}_{3 \mid 12}(0 \mid 0,0) & =\frac{n_{123}(0,0,0)}{n_{12}(0,0)}=\frac{0}{2}=0 & \hat{p}_{3 \mid 12}(1 \mid 0,0)=\frac{n_{123}(0,0,1)}{n_{12}(0,0)}=\frac{2}{2}=1 \\
\hat{p}_{3 \mid 12}(0 \mid 0,1) & =\frac{n_{123}(0,1,0)}{n_{12}(0,1)}=\frac{1}{2} & \hat{p}_{3 \mid 12}(1 \mid 0,1)=\frac{n_{123}(0,1,1)}{n_{12}(0,1)}=\frac{1}{2} \\
\hat{p}_{3 \mid 12}(0 \mid 1,0) & =\frac{n_{123}(1,0,0)}{n_{12}(1,0)}=\frac{3}{3}=1 & \hat{p}_{3 \mid 12}(1 \mid 1,0)=\frac{n_{123}(1,0,1)}{n_{12}(1,0)}=\frac{0}{3}=0 \\
\hat{p}_{3 \mid 12}(0 \mid 1,1) & =\frac{n_{123}(1,1,0)}{n_{12}(1,1)}=\frac{1}{3} & \hat{p}_{3 \mid 12}(1 \mid 1,1)=\frac{n_{123}(1,1,1)}{n_{12}(1,1)}=\frac{2}{3} \\
\hat{p}_{4 \mid 3}(0 \mid 0) & =\frac{n_{34}(0,0)}{n_{3}(0)}=\frac{2}{5} & \hat{p}_{4 \mid 3}(1 \mid 0)=\frac{n_{34}(0,1)}{n_{3}(0)}=\frac{3}{5} \\
\hat{p}_{4 \mid 3}(0 \mid 1) & =\frac{n_{34}(1,0)}{n_{3}(1)}=\frac{4}{5} & \hat{p}_{4 \mid 3}(1 \mid 1)=\frac{n_{34}(1,1)}{n_{3}(1)}=\frac{1}{5}
\end{array}
$$

(b) The loglikelihood score is:

$$
\begin{aligned}
\mathcal{L} & =4 \log \frac{4}{10}+6 \log \frac{6}{10}+5 \log \frac{5}{10}+5 \log \frac{5}{10} \\
& +0 \log 0+2 \log 1+\log \frac{1}{2}+\log \frac{1}{2} \\
& +3 \log 1+0 \log 0+\log \frac{1}{3}+2 \log \frac{2}{3} \\
& +2 \log \frac{2}{5}+3 \log \frac{3}{5}+4 \log \frac{4}{5}+\log \frac{1}{5} \\
& =-22.82450
\end{aligned}
$$

(c) Count the number of parameters per node (variable) as follows. Suppose a node has k different parent configurations (possible value assignments to its parents), and it can take on m different values itself. Then the number of parameters associated with that node is $k(m-1)$ because you have to estimate k different conditional distributions, and each conditional distribution requires the estimation of $m-1$ probabilities. If a node doesn't have any parents, then the number of parameters associated with it is $m-1$. Specified per node, the number of parameters is therefore:

- Node 1: 1.
- Node 2: 1.
- Node 3: $4 \times 1=4$.
- Node 4: $2 \times 1=2$.

Hence, the BIC score is:

$$
-22.82450-1.15(1+1+4+2)=-32.02450
$$

(d) Adding an arc:

A and B are equivalent.
Removing an arc:

Reversing an arc:

H and I are equivalent.
(e) The parent set of X_{4} changes so we have to recompute the part of the score corresponding to this node. The boxed part of the loglikelihood under (b) is replaced by

$$
2 \log \frac{2}{4}+2 \log \frac{2}{4}+\log \frac{1}{2}+\log \frac{1}{2} \approx-4.16
$$

where we left out all the terms that evaluate to zero. The boxed part under (b) evaluates to -5.86 so the loglikelihood increases by 1.7. This is however at the cost of two extra parameters, that cost 1.15 each, so all in all addition of an arc from X_{1} to X_{4} decreases the BIC score. Hence it is not preferred to the current model.
(f) The smoothed estimate is

$$
p_{3 \mid 12}^{s}(0 \mid 0,0)=\frac{n_{12}(0,0) \times \hat{p}_{3 \mid 12}(0 \mid 0,0)+m \times p_{3 \mid 12}^{0}(0 \mid 0,0)}{n_{12}(0,0)+m}=\frac{2 \times 0+1 \times 5 / 10}{2+1}=\frac{1}{6}
$$

since

$$
p_{3 \mid 12}^{0}(0 \mid 0,0)=\hat{p}_{3}(0)=\frac{5}{10} .
$$

