
Classification Trees

1 Introduction
One of the most common tasks in data mining is to build models for the pre-
diction (or explanation) of the class of an object on the basis of some of its
attributes. The term object should be interpreted very loosely here: it could
be a customer, transaction, household, e-mail message,traffic accident, patient,
handwritten digits and so on. Likewise, the class of such an object could be
many things, for example:

• Good/bad credit for loan applicants.

• Respondent/non-respondent for mailing.

• Y es/no claim on insurance policy.

• Spam/no spam for e-mail message.

• The numbers 0 through 9 for handwritten digits.

We consider here the problem of learning a classification tree model from
data. We start with an example concerning the classification of loan applicants
into good and bad risks. After that we discuss the general theory of learning
classification trees.

2 Example: credit scoring
In credit scoring, loan applicants are either rejected or accepted depending on
characteristics of the applicant such as age, income and marital status. Repay-
ment behaviour of the accepted applicants is observed by the creditor, usually
leading to a classification as either a good or bad (defaulted) loan. Such his-
torical information can be used to learn a new classification model on the basis
of the characteristics of the applicant together with the observed outcome of



the loan. This new classification model can then be used to make acceptance
decisions for new applicants.

Figure 1shows a classification tree that has been constructed from the data
in table 1. First we explain how such a tree may be used to classify a new
applicant. Later we explain in detail how such a tree can be constructed from
the data.
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Figure 1: Tree built on credit scoring data

When a new applicant arrives he or she is “dropped down” the tree until we
arrive at a leaf node, where we assign the associated class to the applicant. Sup-



pose an applicant arrives and fills in the following information on the application
form:

age: 42, married?: no, own house?: yes, income: 30,000, gender:
male.

In order to assign a class to the applicant we start at the root node of the tree
and perform the associated test on income. Here we go to the right and we
arrive at a new test on age. The applicant is sent to the left where we arrive at
the final test on marital status. Since the applicant is not married he’s sent to
the right and we arrive at a leaf node with class label “bad” . We predict that
the applicant will default and therefore he’s rejected.

How do we construct a tree from the data? The general idea is very simple:
we use the historical data to find tests that are very informative about the
class label. Compare the first test in the tree to the alternative test on gender
shown in figure 2. The figure shows that there are five men in our data set and
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three (60%) of them defaulted. There are also five women and two (40%) of
them defaulted. What information concerning the class label have we gained
by asking the gender? Not so much. In the data set 50% of the applicants



defaulted. If we know nothing about an applicant and w e had to guess the class
label, we could say bad (or good) and we would be right 50% of the times. If
we know the gender we can improve the prediction somewhat. If it’s a male we
should guess that it’s a bad loan and we would be right about 60% of the times.
On the other hand, if it’s a female w e should guess that it’s a good loan and
we would again be right 60% of the times. Our knowledge of the gender would
improve the predictive accuracy from 50% to 60%. Now compare this to the
first test in the tree in figure 1. All three applicants with income above 36,000
are good loans, and for the applicants with income below 36,000 5 out of 7 are
bad loans. Using the income of an applicant, w e would only make 2 mistakes
out of 10, i.e. a predictive accuracy of 80%. Clearly, the test on income gives
us more information about the class label than the test on gender. This is the
way we build a tree. We use the historical data to compute which test provides
us with the most information about the class label. When we have found this
test, we split up the data in two groups that correspond to the two possible test
outcomes. Within each of the resulting two groups we again look for the test
that provides the most additional information on the class label. We continue
in this fashion until all groups contain either only good or only bad loans.

Figure 3 gives a visual representation of the splits on income and age of the
tree in figure 1. In this figure each applicant is indicated by its class label located
on the (age,income) coordinate of the applicant. For example, the “good” label
in the upper right corner corresponds to record number 7 in table 1. The tree
algorithm divides the space into rectangular areas, and strives t oward rectangles
that contain applicants of a single class. The first split in the tree is indicated
by the horizontal dashed line at income = 36. We see in the picture that the
rectangle above the dashed line only contains good loans, whereas the lower
rectangle contains good as well as bad loans. The second split in the tree is
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Figure 2: Test on gender

indicated by the vertical line at age=37 in the picture. This split subdivides the
lower rectangle into two rectangles. The one to the left of age=37 only contains
bad loans, and so we are done there. The rectangle to the right of age=37
contains two bad loans and one good loan. The final split in the tree subdivides
these cases still further on the basis of marital status.

3 Building classification trees

3.1 Impurity Measures and the Quality of a split

In the previous section we saw that in constructing a tree it makes sense to
choose a split (test) that provides us the most information concerning the class
label. An alternative formulation is to say we should choose a split that leads
to subsets that contain predominantly cases of one class. These are still vague
notions, and in this section we will look at different ways of formalizing them.

The objective of tree construction is to finally obtain nodes that are pure in
the sense that they contain cases of a single class only. We start with quantifying



the notion of impurity of a node, as a function of the relative frequencies of the
classes in that node:

i(t) = φ(p1,p2, . . . ,pJ)

where the p j (j = 1, . . . ,J) are the relative frequencies of the J different classes
in that node.
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Figure 3: Visual representation of splits on age and income

Before discussing alternative ways of doing that, we list three sensible re-
quirements of any acceptable quantification of impurity:

1. An impurity measure of a node should be at a maximum when the obser-



vations are distributed evenly over all classes in that node, i.e. at

(J1,J1,...,J1)

2. An impurity measure of a node should be at a minimum when all obser-
vations belong to a single class in that node, i.e. at

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)

3. φ is a symmetric function of p 1, . . . ,pJ.

Given these requirements there are still many alternatives for defining impu-
rity, and different implementations of tree construction algorithms use different
measures. Whatever impurity we finally choose, it makes sense to define the
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quality of a split (test) as the reduction of impurity that the split achieves.
Hence we define the quality of split s in node t as

∆i(s, t) = i(t) − π(‘)i(‘) − π(r)i(r)

where π(‘) is the proportion of cases sent to the left by the split, and π(r) the
proportion of cases sent to the right. We discuss some well known impurity
measures.

3.1. 1 Resubstitution error

Perhaps the most obvious choice of impurity measure is the so-called resub-
stitution error. It measures what fraction of the cases in a node is classified
incorrectly if we assign every case to the majority class in that node. That is

i(t) = 1− m ajxp(j|t)

where p(j |t) is the relative frequency of class j in node t (check that resubsti-
wtuhteiorne error fi sullt fhiles rtehlea requirements lio sftec dla essar jliei nr) . Fdoer tt( hech important case toi-f
two-class problems we denote the classes by 0 and 1; p (0) denotes the relative
frequency of class 0 and p (1) must be equal to 1−p(0) since the relative frequen-
fcrieesq umenuscyt sum tasos s10 . aInn dfipg u(1re) 4m tuhset dbeas ehqeuda llit noe 1sh−opw(s0 )ths ein cgrea tphhe roef lraetsivuebs ftrietquutieonn-



error as a function of the class distribution for two-class problems (actually it is
scaled to have a maximum of 1at p (0) = p (1) = 0.5; what is its true maximum?)

p(0)

Figure 4: Graph of entropy (solid line) , gini-index (dot-dash) and resubstitution
error (dashed line) for two-class problem.
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The quality (impurity reduction) of a split becomes (after some algebra)

∆i(s,t) =m ajxp(j|‘)π(‘)+ m jaxp(j|r)π(r) − mjaxp(j|t)
Question 1 What is the impurity reduction of the f irst split in f igure 1if we
use resubstitution error as impurity measure? ?

Despite its intuitive appeal, resubstitution error has some shortcomings as a
measure of the quality of a split. Consider for example the two splits displayed
in figure 5. According to resubstitution error these splits are equally good,



because both yield an error of 200 out of 800. Yet we tend to prefer the split
at the right because one of the resulting nodes is pure. We w ould like our
measure of impurity to reflect this preference. W hat this means is that as we
move from the maximum at p (0) = 1/2 toward the minimum at p (0) = 1, φ
should decrease faster than linearly. Likewise, as we move from the minimum
at p (0) = 0 toward the maximum at p (0) = 1/2, φ should increase slower
than linearly. Equivalently, this requires that φ be strictly concave. If φ has a
continuous second derivative on [0,1] , then the strict concavity translates into
φ00(p(0)) < 0, 0 < p (0) < 1. Thus we define the class F of impurity functions
(for(p (tw0)o)-c< las 0s, 0pr< oblp e(m0)s)< <th1 a.t Tshatuissfyw

1. φ(0) = φ(1) = 0,

2. φ(p(0)) = φ(1 − p (0)) ,

3. φ00(p(0)) < 0, 0 < p (0) < 1.

Next we discuss two impurity measures that belong to this class.

300 100400s?1?400100??300200??400400s24 00200?????0
Figure 5: These splits are equally good according to resubstitution error
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3.1.2 Gini-index

For the two-class case the Gini-index is

i(t) = p (0|t)p(1 |t) = p (0|t) (1−p (0|t))

The graph of the gini-index is displayed in figure 4 as the dot-dashed line, scaled
to have a maximum v alue of 1.

Question 2 Check that the gini-index belongs to F.

Question 3 Check that if we use the gini-index as an impurity measure, split
s2 in f igure 5 is preferred.

Remark 1 This is the variance of a Bernoulli random variable defined by draw-
ing (with replacement) an example at random f rom this node, and observing its
class. Hence we can view impurity reduction as variance reduction in this case.
The objective is to obtain nodes with zero variance in the class label.

The generalisation to problems with more than two classes for the gini-index
is

i(t) =Xjp(j|t)(1− p (j|t))

3.1.3 Entropy

Another well-known impurity measure that is used for example in the programs
ID3 and C4.5 ([Qui93]) is the entropy. For the two-class case the entropy is

i(t) = −p(0|t) logp(0|t)−p(1 |t) logp(1 |t) = −p(0|t) logp(0|t)− (1−p(0|t)) log(1−p(0|t))

The graph of entropy is displayed in figure 4 as the solid line (log with base 2) .

Question 4 Check that entropy impurity belongs to F.

Remark 2 This is the average amount of information generated by drawing
(with replacement) an example at random f rom this node, and observing its
class. If a node is p ure, observing the class label yields zero information.

The generalisation to problems with more than two classes for entropy is

i(t) = −Xjp(j|t)logp(j|t)
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3.2 The set of splits considered

We have looked at different criteria for assessing the quality of a split. In this
section we look at which splits are considered in the first place. We denote the set
of explanatory variables (features) by x1,x2 , . . . ,xp. Variables may be numeric
(ordered) or categorical. The set of splits considered is defined as follows:

1. Each split depends on the value of only a single variable.

2. If x is numeric, we consider all splits of type x ≤ c for all c ranging over
I(f− x∞i s, s∞n )u .

3. If x is categorical, taking values in V( x) = {b1,b2 , . . . ,bL}, we consider all
sIfp lxitsi s o cfa type x a∈l St a, kwinhegrv ea lSu eiss any non-empty proper su},b swete coof nVsi( dxe)r .

3.2.1 Splits on numeric variables

We can easily see there is only a finite number of distinct splits of the data.
Let n denote the number of examples in the training sample. Then, if x is
ordered, the observations in the training sample contain at most n distinct
values x1,x2 , . . . ,xn of x. This means there are at most n −1 distinct splits
of type x ≤ cm, m =o f1x, . . . , hn0i s≤m n, nwsh tehreer etha er cm are sttak nen− h1 alf dwisatyin cbtet swpeleitns
coofnt syepceutx ive≤ d cistinct values of x.

Remark 3 Note that any split between the same consecutive values of x yields
the same partition of the data and therefore has the same quality computed on
the training sample.

Example 1Let’ ’s see how the best split on income is computed in our credit
scoring example. In table 2 we have listed the impurity reduction (using the
gini-index as impurity measure) achieved by all possible splits on income in the
root node. For example, in the third row of the table we compute the quality of



the split income ≤ 29 (halfway between 28 and 30). Four observations are sent
tthoe eths ep lietf tin ocfo mwhei ≤ch one Gaolfowda yanb det twhereeen 2B8ad a,n so t0h)e. impurity eorfv tahtieo lnesft a crhei lsde nist
(1/4) (3/4)=3/16. Six observations are sent to the right, of which two are Bad
and f our are Good, so the impurity of the right child is (2/6) (4/6)=8/36=2/9.
The impurity of the root node is (1/2)(1/2) = 1/4, so the impurity reduction of
the split is

1/4 −( 4/10)(3/16) −( 6/10)(2/9) ≈ 0.04

From table 2 we conclude that the best split on income is between 32 and 40,
and since we always choose the midpoint, we get: income ≤ 36.

3.2.2 Splits on categorical variables

For a categorical variable x w ith L distinct values there are 2L−1 − 1 possible
splits to consider. There are 2L − 2 non-empty proper subsets of V−( x1) p(i.oes.s it bhlee
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empty subset and V( x) itself are no splits at all) . But the splits x ∈ S and
x m∈p tSyc, uwbhseerte aSncd disV t (hxe) ci tomselpflea mreenn to o sfp Sli wsia tht respect tto tVhe( xs )p , are xcl∈ earS ly atnhde
same. So the number of different splits is only



21(2L − 2) = 2−12L − 1= 2L−1 − 1

Example 2 Consider the categorical variable marital status with possible values
{single,married, divorced} . The number of distinct splits is 22 −1 = 3. They
are: lme,amriatarrli sedta,tduivso r∈c d{s}i.ngT leh}e, nmuamribtaelr os tfatd uiss i∈n{cmt asprrliitesd}i s, 2and− m1 a r=ita3 l. stT ahtuesy
a∈r e{: :dim voarrcietda}l . aTtuhes s∈pl{i ts mngalrei}ta,l m sataritutasl s∈t {tumsar∈ ri{emd,a driiveod}rc,e da}n dism eaqruiitvaalle sntatt utos
∈ma {rditiavlo rscteadtu}s. ∈T {hsei nsgplleit} .

3.3 The basic tree construction algorithm

We finish this section with an overview of the basic tree construction algorithm
(see Table 3) . The algorithm maintains a list of nodes (a node is a set of
examples) that have to be considered for expansion. Initially we put the set
of training examples on this list. We select a node from the list and call it
the current node. If the node contains examples from different classes (i.e. its
impurity is larger than zero) , then we find the best split and apply this split
to the node. The resulting child nodes are added to the list. The algorithm
finishes when there are no more nodes to be expanded.

3.4 Overfitting and pruning

Did you ever notice that economists and stock analysts always have a perfect
explanation of an event, once they know the event has happened? This is an
example of what is called the “silly certainty of hindsight” . After some stock
has gone down (or up) they can always explain that this had to happen because
of a number of very compelling reasons, but could they have predicted the stock
movement?

In data mining we also have to be careful not to fall into the trap of the
silly certainty of hindsight. Once we know which applicants have defaulted
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Algorithm: Construct tree

nodelist ← {training sample}
Repeat

current node ← select node from nodelist
ncuordreelnistt ←od eno← dels ieslte c−t cnuordreenf tr nmodn eo
nifo idmepliustrit ←y(cn uordreelnistt n −od ceu) r>e n0t
then



S ← candidate splits in current node
sS* ←← arg maxs∈S impurity rreendutcn toiodne(s,current node)
csh*i ←ld na rogdmes ←x apply(s*,current node)
nchoidldeli nsto d←es n← od aeplipslty ∪(s *ch,ciuldr neontden so

fi
Until nodelist = ∅

Table 3: Basic Tree Construction Algorithm

and which not, we can construe some complicated model that gives a perfect
“explanation” . Unless there are two applicants with the same attribute values,
but different class label, we can build a tree that classifies every applicant used
to construct the tree correctly (if necessary by creating a separate leaf node for
each applicant) . But is this a good model? Do we really think that we can
predict the outcome for a group of new applicants with 100% accuracy? No, in
fact we know w e can’t. Even though we can construct a model that “predicts”
the data used to construct the model perfectly, its performance on new data is
likely to be much w orse. By fitting the model perfectly to the data, w e have
“overfitted” the model to the data, and have in fact been modelling noise. Think
of it this way: we may have two applicants with the same characteristics except
one earns 2000 euro a month and the other 2010. The one who earns 2010 euro’s
defaulted and the other guy didn’t. Do we really think the second applicant
defaulted because he earns 10 euro’s more? No, of course not. More likely there
is some other reason that is perhaps not recorded in our database. Perhaps the
guy was a gambler, a question we didn’t ask on the application form.

How do we avoid overfitting w hen we construct a classification tree? Two
basic approaches have been tried:

• Stopping Rules: don’t expand a node if the impurity reduction of the best
sSptolitp piisn bgeR louwl some nth’tre esxphoanldd.

• Pruning: grow a very large tree and merge back nodes.

The disadvantage of a stopping rule is that sometimes you first have to make
a weak split to be able to follow up with a good split.

Example 3 Suppose we want to build a tree for the logical xor, which is defined
as follows
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LetP  and Qb et hea ttribuPt1100es,a Q0101nd PPx x o0o011rrQ Q t hec lassl abelt ob ep redicted.
In the top node we have 2 examples of each class. A split on P in the top node
yields no impurity reduction, and neither does a split on Q. If we make the split
on either attribute however, we can f ollow up with a split on the other attribute
in both of the child nodes to obtain a tree with no errors.

Because of this problem with stopping rules, we have to look at other ways
of finding the right-sized t ree. The basic idea of pruning is to initially grow a
large tree, and then to prune this tree (merge back nodes) to obtain a smaller
tree of the right size. What is the right size? Since we want to have a tree that
has good performance on new data (i.e. data not used to construct the tree) , we
divide the available data into a sample used for building the tree (the training
sample) and another sample for testing the performance of the tree (the test
sample). W e look at different trees constructed on the training sample, and
select the one that performs best on the test sample. In the next section we
discuss cost-complexity pruning, a well-known pruning algorithm to determine
the tree of the right size.

3.4. 1 Cost-complexity pruning

After building the large tree we can look at different pruned subtrees of this
tree and compare their performance on a test sample. To prune a tree T in a
node t means that t becomes a leaf node and all descendants of t are removed.

Figure 8 shows the tree that results from pruning the tree in figure 6 in node
t2. The branch Tt2 consist of node t2 and all its descendants. The tree obtained
by pruning T in t2 is denoted by T − Tt2 .

A pruned subtreise doefn oTt eisd any tr −ee T that can be obtained by pruning T in
0 or more nodes. If T0 is a pruned subtree of T, we write this as T0 ≤ T or



alternatively T ≥ T0.
Trnhaet ipvreolbylT em≥ we face now is that the number of pruned subtrees may become

very large and it may not be feasible to compare them all on a test set.

Remark 4 More p recisely, let |T˜| denote the number of leaf nodes of binary

tree T. Then the number of pruned subtrees of T is b1.5028369|T˜|c . So, for a
ttrreeee wTi.th T 2h5e nlet ahfe enn oduems (ewrh oicfhp risu nneodt usunbutrsueeaslloy flaT rgi es) we 0w2o8u3ld6 alreca.d yS oh,a fvoer tao
compare 26,4 72 pruned subtrees.

The basic idea of cost-complexity pruning is not to consider all pruned sub-
trees, but only those that are the “best of their kind” in a sense to be defined
below.
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Figure 6: Tree T with leaf nodes T˜ = {t5, t6, t7, t8, t9}, |T˜| = 5



Let R(T) denote the fraction of cases in the training sample that are mis-
classified by T (R(T) is called the resubstitution error of T).

We define the total cost Cα (T) of tree T as

Cα(T) = R(T) + α|T˜|

The total cost of tree T consists of two components: resubstitution error R(T),
and a penalty for the complexity of the tree α|T˜| . In this expression T˜ denotes
tahned sea t p oefn laealtfy yn foodret sh oef T, apnlde α iys tohfe t parameter t|h.a Int d tehtiesre mxipnreess tshioen complexity
penalty: when the number of leaf nodes increases with one (one additional split
in a binary tree) , then the total cost (if R remains equal) increases w ith α.

Depending on the v alue of α(≥ 0) a complex tree that makes no errors may now
hDaevpee a hiinggho ern t tohteavl acoluset othf αan(≥ a 0sm) aacl lo tmrepel etxha trt met ahkaets a nakuemsbn eor eorrf errors.

We denote the large tree that is to be pruned to the right size by Tmax. If
we fix the value of α, there is a smallest minimizing subtree T(α) of Tmax that
fulfills the following conditions:

1. Cα(T(α)) = minT≤Tmax Cα(T)

2. If Cα(T) = Cα(T(α)) then T(α) ≤ T.

The first condition says there is no subtree of Tmax with lower cost than T(α),
at this value of α. The second condition says that if there is a tie, i.e. there is
more than one tree that achieves this minimum, then we pick the smallest tree
(i.e. the one that is a subtree of all others that achieve the minimum) .
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Figure 7: Branch Tt2: T˜t2 = {t5, t8, t9}, |T˜t2 | = 3

Figure 8: Tree T − Tt2 resulting from pruning T in t2

It can be shown that for every value of α there is such a smallest minimizing
subtree. This is not trivial. What this says is that it cannot occur that we
have two trees that achieve the minimum, but are incomparable, i.e. neither is
a subtree of the other. We w ill not prove this result.

Although α goes through a continuum of values, there is only a finite number
of subtrees of Tmax. We can construct a decreasing sequence of subtrees of Tmax

T1 > T2 > T3 > . . . > {t1}

(where t1 is the root node of the tree) such that Tk is the smallest minimizing
subtree for α ∈ [αk ,αk+1 ). This is an important result, because it means we can
osubbtatirnee etf hoer nα ex ∈t [tαree in the sequence by pruning the current one. This allows the
specification of an efficient algorithm to find the smallest minimizing subtrees
at different values of α.

The first tree in the sequence, T1 is the smallest subtree of Tmax with the
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same resubstitution error as Tmax (i.e. T1 = T(α = 0)).

Remark 5 If we continue splitting until a node contains observations of a sin-
gle class, as outlined in the basic tree construction algorithm, then T1 = Tmax .
Usually we apply a different stopping criterion however, e.g. we also stop split-
ting when the number of observations in a node is below a certain threshold.
Furthermore, we may have a node with observations f rom different classes, but
with all attribute vectors identical. In that case there is no p ossibility of split-
ting the node any further. With these more complex stopping rules, there may
be subtrees of Tmax that have the same resubstitution error.

The algorithm to compute T1 from Tmax is straightforward. Find any pair
of leaf nodes (with a common parent) that can be merged back (i.e. pruned in
the parent node) without increasing the resubtitution error . Continue until no
more such pair can be found. Thus we obtain a tree that has the same total
cost as Tmax at α = 0, but since it is smaller it is preferred over Tmax .

Algorithm: Compute T1 from Tmax
T0 ← Tmax
Rep←eaT t

Pick any pair of terminal nodes ‘ and r with common parent t in T0
such that R(t) = R(‘) + R(r) , and set
T0 ← T0 − Tt (i.e. prune T0 in t)

Until no more sTuch pair exists
T1 ← T0

How do we find the trees in the sequence and the corresponding values of
α? Let Tt denote the branch of T with root node t. At which value of α does
T − Tt become better than T? If w e w ere to prune in t, its contribution to the
tTo− talT cost of T −T t would become Cα ({t}) = R(t) + α, where R(t) = r(t)p(t) ,
rt(ott)a lisc tohset rofes Tub− st Titution error at node t, ta}n)d= =p (R t)( tis) t+hαe p,r wohpeorretiR on(t o)f= cases pth(ta)t,
fall into node t.

The contribution of Tt to the total cost of T is Cα (Tt) = R(Tt) +α|T˜t | , w here
R(Tt) = Pt0∈T˜t R(t0) . T − Tt becomes the better tree when Cα (){+t}α) = |C, αw (hTetr)e ,
because aPt th∈at v alu)e. Tof− α they have the same total cost, but( tT} )−= =TCt is the
sbmecaalluesset Paotf t thhea ttwv oa.l uWe ohfenα αCt αh (e{yt} h) =ve eCt αh (eTts )a , we thoatvael

R(Tt) + α|T˜t| = R(t) + α



Solving for α we get

α =R((t|)T˜t− |− R (1 T)t)
So for any node t in T1, if we increase α, then when

α= R((|t)T˜1− ,t|R − (T1 1),t)
15

the tree obtained by pruning in t becomes better than T1. The basic idea is to
compute this value of α for each node in T1, and t hen to select the “weakest
links” (there may be more than one), i.e. the nodes for which

g(t)= R((|tT)˜1− ,t| R− (T 11),t)
is the smallest. We prune T1 in these nodes to obtain T2, the next tree in the
sequence. Then we repeat the same process for this pruned tree, and so on until
we reach the root node.

Here we give an outline of the algorithm for cost-complexity pruning. We
start at T1, the smallest minimizing subtree of Tmax for α = 0. Then we repeat
the following until we reach the root node: For each node t in the current t ree
Tk , we compute gk (t) , the value of α at which Tk − Tt becomes better than Tk .
Then we prune Tk in all nodes for w hich g k achi−evT es the minimum to obtain
Tk+1.

Algorithm: Compute tree sequence
T1 ← T(0)
α1 ←← 0T

k ←← ←1

kW ←hile1 Tk > {t1} do
For all> >n o{nt-t}ed rominal nodes t ∈ Tk

gk(t) ← R((t|T)˜−k,Rt|(−T1k),t)
αk+1 ← mint gk (t)
Visit t←hem mniondes in top-down order and prune
whenever gk (t) = αk+1 to obtain Tk+1
k ← k + 1



od

In pruning the tree, we visit the nodes in top-down order to avoid considering
nodes which themselves will be pruned away.

Example 4 As an example, let’ ’s compute the sequence of subtrees and corre-
sponding values of α for the tree depicted in f igure 9.

It is easy to see that T1 = Tmax, since merging two leaf nodes (by pruning
in t3 or t5) leads to an increase in resubstitution error. Next we compute g1(t)
for all nodes t in T1;g1(t) is the value of α at which the total cost of the tree
obtained by pruning in t becomes equal to the total cost of T1. We compute:
g1(t1) = 1/8, g1(t2) = 3/20, g1(t3) = 1/20, g1(t5) = 1/20. We show how g1(t5)
was computed in detail: R(t5) = 10/200 = 1/20 since in t5 10 cases are classified
incorrectly and we have 200 cases in total. An alternative way to compute R(t5)
is through R(t) = r(t) ×p (t) . Then we get R(t5) = 1/7 ×70/200 = 70/1400 =
1is/ t2h0r. R(T1,t5 )) == r0( s)i× ncep tb)o.thT lehaefn n woedeg se tbR elo(wt t5 i 1n/ 7T×1 h7 a0v/e2 000 error. S40o0 we
compute

g1(t5)= R(t|5T)˜1− ,t5R |− (T1 1,t5)=1/22− 0− 1 0 =210
16



Figure 9: Tree Tmax

Nodes t3 and t5 both achieve the minimal value of g1, so we obtain T2 from
T1 by pruning in both nodes. We then obtain the tree in f igure 10.

Next we compute the g-values for T2 : g 2 (t1) = 2/10, g2 (t2) = 1/4. The
minimum is achieved by t1, so we prune in t1 and we have reached the root of
the tree (T3 = {t1}).

The sequence }o)f. α-values has become: α1 = 0, α2 = 1/20, α3 = 2/10.

TT3h=us { Tt11}is fot rheα b  ∈est [120t r,e∞ef )o.rα ∈ [ 0,210),T 2ist heb estt reef orα ∈ [ 210,120) and

3.5 Selection of the final tree

3.5.1 Train and Test

The most straightforward way to select the final tree from the sequence created
with cost complexity pruning is to pick the one with the lowest error rate on
a test set. We denote the estimated error rate of tree T on a test sample by



Rts(T).

Remark 6 The standard error of Rts as an estimate of the true error rate R∗
is

SE(Rts)= sRts(n1te− stR ts),

where ntest is the number of examples in the test set.
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Figure 10: Tree T2

Experiments have shown that usually there is quite a long subsequence of
trees with error rates close to each other, as illustrated in figure 11.

Again, experiments have shown that the tree size that achieves the minimum
within this long flat valley, is quite sensitive to the examples we happen t o select
for testing. To reduce this instability CART/Rpart [BFOS84] use the 1-SE rule:
select the smallest tree w ith Rts within one standard error of the minimum. In
figure 11we have depicted the tree that achieves the lowest Rts with the interval
[Rts ,Rts + SE] as a vertical line next to it. The two trees to the left of it have a
value of Rts within this interval, and the leftmost (the smallest one) is selected
as the final tree.



3.5.2 Cross-validation

When the data set is relatively small, it is a bit of a waste to set aside part of
the data for testing. A way to avoid this problem is to use cross-validation. In
that case we can proceed as follows.

Construct a tree on the full data set, and compute α1 ,α2 , . . . ,αK and T1 >
T2 > .. . > TK . Recall that Tk is the smallest minimizing subtree for α ∈
[αk, αk+1).

Now we want to select a tree from this sequence, but we have already used
all data for constructing it, so we have no test set to select the final tree.

The trick is that we are going to estimate the error of a tree Tk from this
sequence in an indirect way as follows.

Step 1

Set β1 = 0, β2 = √α2α3, β3 = √α3α4, . . . ,βK−1 = √αK−1αK, βK = ∞. βk
is considered to be a typical value for [αk ,αk+1) , and therefore as =th∞e v.alβu e
corresponding to Tk .

18



Figure 11: Estimated error rate as a function of tree size

Step 2

Divide the data set in v groups G1,G2, . . . ,Gv (of equal size) and for each group
Gj

1. Compute a tree sequence with cost-complexity pruning on all data except
Gj , and determine T(j) (β1 ),T(j) (β2) , . . . ,T(j) (βK) for this sequence.

2. Compute the error of T(j) (βk) on Gj .

Remark 7 Note that T(j) (βk) is the smallest minimizing subtree f rom the se-
quence built on all data except Gj , for α = βk .

Step 3

For each βk , sum the errors of T(j) (βk) over Gj (j = 1, . . . ,v) . Let βh be the
one with the lowest overall error. Since βh corresponds to Th, we select Th from
the tree sequence constructed on all data as the final tree. Use the error rate
computed with cross-validation as an estimate of its error rate.

Alternatively, we could again use the 1-SE rule in the last step to select the
final tree from the sequence.

It is important to note that in the procedure described here we are effectively
using cross-validation to select the best value of the complexity parameter from
the set β1 , . . . ,βK. Once the best value has been determined, the corresponding
tree from the original cost-complexity sequence is returned.
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4 Handling missing data in trees
Most data mining algorithms and statistical methods assume there are no miss-
ing values in the data set. In practical data analysis this assumption is almost
never true. Some common reasons for missing data are:



1. respondents may not be willing to answer some question

2. errors in data entry

3. joining of not entirely matching data sets

The most common “solution” to handling missing data is to throw out all
observations that have one or more attributes missing. This practice has some
disadvantages however:

1. Potential bias: if examples with missing attributes differ in some way from
completely observed examples, then our analysis may yield biased results.

2. Loss of power: we may have to throw away a lot of examples, and the
precision of our results is reduced accordingly.

For tree-based models some ad-hoc procedures have been constructed to
handle missing data both for training and prediction.

We have to solve the following problems if we want to construct and use a
tree with incomplete data:

1. How do we determine the quality of a split?

2. Which way do we send an observation with a missing value for the best
split? (both in training and prediction)

Note that an observation with a missing class label is useless for tree con-
struction, and will be thrown away.

In determining the quality of a split, CART [BFOS84] simply ignores missing
values, i.e.

∆i(s, t) = i(t) − π(‘)i(‘) − π(r)i(r)

is computed using observed values only. This “solves” the first problem, but
now we still have to determine which way to send an observation with a missing
value for the best split. To this end, CART computes so-called surrogate splits.
A surrogate split is a split that is similar to the best split, in the sense that it
makes a similar partition of the cases in the current node. To determine the
value of an alternative split as a surrogate we make a cross-table (see Table 4) .

In this table π(‘∗ ,‘0) denotes the proportion of cases that is sent to the left
by both the best split s∗ and alternative split s0, and likewise for π(r∗ ,r0) , so
π(‘∗ ,‘0) + π(r∗ , r0) is the proportion of cases that is sent the same way by both



splits. It is a measure of the similarity of the splits, or alternatively: it indicates
how well we can predict which way a case is sent by the best split by looking at
the alternative split.
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ππ((‘r∗∗,,‘‘00))ππ((r‘∗∗,,rr00))
Table 4: Cross-table for computing the v alue of alternative split s0 as a surrogate
for best split s∗ .

Remark 8 If π(‘∗ ,‘0)+π(r∗ , r0) < 0.5 we can get a better surrogate by switching
left and right for the alternative split. Furthermore it should be noted that the
proportions in table 4 are computed on the cases where both the variable of the
best and alternative split are observed.

The alternative splits with π(‘∗ ,‘0) +π(r∗ ,r0) > max(π(‘∗), π(r∗ )) are sorted
in descending order of similarity. Now if the value of the best split is missing,
try the first surrogate on the list, and if that one is missing as well try the
second one, etc. If all surrogates are missing, use max(π(‘∗ ),π(r∗)).

Example 5 In f igure 12, we have depicted the best split at the left, and an
alternative split on marital status on the right. The best split is the right child
of the root of the credit scoring tree as shown in f igure 1. What is the value of the
alternative split on marital status as a surrogate? ? We can read f rom f igure 12

rtheacotr bdosth 1s a pnlidts4 s e tnodt hr eec roirgdhst 6, sa on dπ( 1r0∗,t or0)t h =el e72fta,ss ow eπ l(l‘.∗I ,t‘s0)v a= lue72.a B so ath sus rprloitgsas teeni ds
therefore π(‘∗, ‘0) + π(r∗, r0) = 72 + 72 = 74. Since max(π(‘∗), π(r∗)) = 74 as well,
the alternative split on marital status is not a good surrogate.

Question 5 In f igure 13, we have depicted the best split at the left, and an
alternative split on gender on the right. Is the split on gender a good surrogate? ?

5 Computational efficiency



In this section we discuss some issues concerning the computational efficiency
of tree construction algorithms.

5.1 Splitting on categorical attributes

We have seen that for a categorical attribute with L distinct values, the number
of distinct splits is 2L−1 − 1. For attributes with many distinct values, the
number of possible splits may .become quite large. For example, with 15 distinct
values the number of splits is already 214 −1 = 16383. For binary class problems
and impurity measures that belong to cla−ss1 1F= th1 6er3e8 3is. a more aerffyicic leansts ap lgroobriltehmms
faonrd fi inmdpinugri ttyh em oeaptsiumreasl hspaltit.b lLoentg g p t(o0|c xl =ss Fb‘) dheenreoti se atm heo rreelae tffiivceie nfrte aqlugeonrciyth omf
cfolrasf si n0d finorg o tbhseero vpattiimonasl s inp ltiht.e cLuetrrep n(t0 nxo= de with x = b‘. Order the p (0|x = b‘),
that is,

p(0|x = b‘1) ≤ p (0|x = b‘2) ≤ . . . ≤ p (0|x = b‘L)
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Best split Alternative split

Figure 12: Alternative split on marital status

Then one of the L subsets

{b‘1 , . . . , b‘h}, h = 1, . . . ,L − 1,



is the optimal split. Thus the search is reduced from looking at 2L−1 − 1splits
to L − 1splits. Intuitively, the best split should put all those categories l1esa dpilnitgs
ttoo Lh i−gh1 1p srpoblitasb.ilI intiteusi otivf beleyi,ngt h ien bcelsastss 0p iintt soh one dn poudte,a laln tdh toshee categories lleeaaddiinngg
to lower class 0 probabilities in the other.

5.2 Splitting on numerical attributes

We have seen that if x is a numeric variable with n distinct values, we have to
compute n− 1splits to determine the optimal one. Let x(1) ,x(2) , . . . , x(n) denote
tcohem spourtteedn −dis1ti snpclitt svat loued es toefr x. nLee tt hxe(i o) patnimd axl( io+n1e). b Lee any two consecutive values
of x. Let E denote the set of examples with x = x(i) or x = x(i+1) . Fayyad
and Irani [FI92] have shown that if all examples in E have the same class label,
then the optimal entropy split cannot occur between x(i) and x(i+1) .

This means we don’t have to compute the split value for these cases. This
can save a lot of computation.

Question 6 For simplicity, suppose that all values of x are distinct and that
we have two classes. In the best case, what reduction in computation is achieved
by exploiting this rule? ? And in the worst case? ?

The proof is rather lengthy, so we ommit it here. See [FI92] if you want to
know the details.
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Figure 13: Alternative split on gender

5.3 Computational complexity of tree construction

We can make some rough statements about the computational complexity of
constructing a classification tree. Let’s assume all p attributes x1, . . . , xp are
numeric. Initially we have to sort all attributes, as a preparation to computing
the values of the splits. This takes O(n log n) t ime for each attribute.

During tree construction we have to evaluate all possible splits in each node.
Let’s assume we continue splitting until each leaf contains only one example.
The time this takes depends on the way the tree is balanced. The best case
occurs when in each node the best split divides the examples exactly in half,
half of the examples go to the left and half of them go to the right. Then the
resulting tree has depth log n. At each level in the tree w e have to consider
O(n) splits for each attribute, so per attribute this takes again O(n log n) time.

In the w orst case w e split of one example at a time and we get a tree of
depth n. At each level in the tree we again have to consider O(n) splits for each
attribute, so per attribute this takes O(n2) time.

Consider the case where we have n = 16 observations. Let’s see how many
splits we have to compute depending on the balance of the tree. We start with
the perfectly balanced tree depicted in figure 14, w here the number of cases is
given inside the node.

On the first level, there are 16 − 1= 15 splits to consider. On the second
leveOl 2n ×t (e7 −fir s1t) =lev 1el4,, tehtec.r eIna rteot 1a6l we get 1155 s+p l1it4s s+t 1o2c o+n 8s d=e r4.9 Oponss tihbele sepcolitnsd.
Ilefv n li2s a power )o=f two, etthce. Ig nent eortaal f woremg uetla 1is5



loXg(n) loXg(n)

X n− 2 ‘−1 = nlogn− X 2‘−1 =n logn− n + 1
‘X= X1 ‘X= X1
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Figure 14: Balanced tree for n = 16

since Pkm=12k−1 = 2m − 1.
AtP Pthe other extrem−e i.s the unbalanced tree of figure 15. The number of

splits Pto consider for this tree is

15 +1 4+ . ..+ 1 = 15× 21 6=1 20

and in general

(n − 1) + (n−  2)+ . ..+ 1 = n(n2− 1 )=n22−n

since Pim=1 i= 21m(m + 1).



116115
121

Figure 15: Unbalanced tree for n= 16

It’s hard to make statements about the average case but intuitively it should
be closer to the best case than to the worst case.
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